1
|
Hamsanathan S, Anthonymuthu T, Prosser D, Lokshin A, Greenspan SL, Resnick NM, Perera S, Okawa S, Narasimhan G, Gurkar AU. A molecular index for biological age identified from the metabolome and senescence-associated secretome in humans. Aging Cell 2024; 23:e14104. [PMID: 38454639 PMCID: PMC11019119 DOI: 10.1111/acel.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Unlike chronological age, biological age is a strong indicator of health of an individual. However, the molecular fingerprint associated with biological age is ill-defined. To define a high-resolution signature of biological age, we analyzed metabolome, circulating senescence-associated secretome (SASP)/inflammation markers and the interaction between them, from a cohort of healthy and rapid agers. The balance between two fatty acid oxidation mechanisms, β-oxidation and ω-oxidation, associated with the extent of functional aging. Furthermore, a panel of 25 metabolites, Healthy Aging Metabolic (HAM) index, predicted healthy agers regardless of gender and race. HAM index was also validated in an independent cohort. Causal inference with machine learning implied three metabolites, β-cryptoxanthin, prolylhydroxyproline, and eicosenoylcarnitine as putative drivers of biological aging. Multiple SASP markers were also elevated in rapid agers. Together, our findings reveal that a network of metabolic pathways underlie biological aging, and the HAM index could serve as a predictor of phenotypic aging in humans.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tamil Anthonymuthu
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Denise Prosser
- Department of MedicineUniversity of Pittsburgh Medical Center and University of Pittsburgh Cancer InstitutePittsburghPennsylvaniaUSA
| | - Anna Lokshin
- Department of MedicineUniversity of Pittsburgh Medical Center and University of Pittsburgh Cancer InstitutePittsburghPennsylvaniaUSA
| | - Susan L. Greenspan
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Neil M. Resnick
- Aging Institute of UPMC and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Subashan Perera
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of BiostatisticsUniversity of Pittsburgh Graduate School of Public HealthPittsburghPennsylvaniaUSA
| | - Satoshi Okawa
- Pittsburgh Heart, Lung, and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Computational and Systems BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Biomolecular Sciences InstituteFlorida International UniversityMiamiFloridaUSA
| | - Aditi U. Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Chen Y, Xie Y, Ci H, Cheng Z, Kuang Y, Li S, Wang G, Qi Y, Tang J, Liu D, Li W, Yang Y. Plasma metabolites and risk of seven cancers: a two-sample Mendelian randomization study among European descendants. BMC Med 2024; 22:90. [PMID: 38433226 PMCID: PMC10910673 DOI: 10.1186/s12916-024-03272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND While circulating metabolites have been increasingly linked to cancer risk, the causality underlying these associations remains largely uninterrogated. METHODS We conducted a comprehensive 2-sample Mendelian randomization (MR) study to evaluate the potential causal relationship between 913 plasma metabolites and the risk of seven cancers among European-ancestry individuals. Data on variant-metabolite associations were obtained from a genome-wide association study (GWAS) of plasma metabolites among 14,296 subjects. Data on variant-cancer associations were gathered from large-scale GWAS consortia for breast (N = 266,081), colorectal (N = 185,616), lung (N = 85,716), ovarian (N = 63,347), prostate (N = 140,306), renal cell (N = 31,190), and testicular germ cell (N = 28,135) cancers. MR analyses were performed with the inverse variance-weighted (IVW) method as the primary strategy to identify significant associations at Bonferroni-corrected P < 0.05 for each cancer type separately. Significant associations were subjected to additional scrutiny via weighted median MR, Egger regression, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and reverse MR analyses. Replication analyses were performed using an independent dataset from a plasma metabolite GWAS including 8,129 participants of European ancestry. RESULTS We identified 94 significant associations, suggesting putative causal associations between 66 distinct plasma metabolites and the risk of seven cancers. Remarkably, 68.2% (45) of these metabolites were each associated with the risk of a specific cancer. Among the 66 metabolites, O-methylcatechol sulfate and 4-vinylphenol sulfate demonstrated the most pronounced positive and negative associations with cancer risk, respectively. Genetically proxied plasma levels of these two metabolites were significantly associated with the risk of lung cancer and renal cell cancer, with an odds ratio and 95% confidence interval of 2.81 (2.33-3.37) and 0.49 (0.40-0.61), respectively. None of these 94 associations was biased by weak instruments, horizontal pleiotropy, or reverse causation. Further, 64 of these 94 were eligible for replication analyses, and 54 (84.4%) showed P < 0.05 with association patterns consistent with those shown in primary analyses. CONCLUSIONS Our study unveils plausible causal relationships between 66 plasma metabolites and cancer risk, expanding our understanding of the role of circulating metabolites in cancer genetics and etiology. These findings hold promise for enhancing cancer risk assessment and prevention strategies, meriting further exploration.
Collapse
Affiliation(s)
- Yaxin Chen
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufang Xie
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Ci
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China
| | - Zhengpei Cheng
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, 560 Ray C. Hunt Dr., Rm 4408, Charlottesville, VA, USA
| | - Yongjie Kuang
- Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Shuqing Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China
| | - Gang Wang
- Innovation Laboratory for Precision Diagnostics, Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yawen Qi
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China
| | - Jun Tang
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 37, Chengdu, Sichuan, China.
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yaohua Yang
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, 560 Ray C. Hunt Dr., Rm 4408, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Al Ashmar S, Anwardeen NR, Anlar GG, Pedersen S, Elrayess MA, Zeidan A. Metabolomic profiling reveals key metabolites associated with hypertension progression. Front Cardiovasc Med 2024; 11:1284114. [PMID: 38390445 PMCID: PMC10881871 DOI: 10.3389/fcvm.2024.1284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Pre-hypertension is a prevalent condition among the adult population worldwide. It is characterized by asymptomatic elevations in blood pressure beyond normal levels but not yet reaching the threshold for hypertension. If left uncontrolled, pre-hypertension can progress to hypertension, thereby increasing the risk of serious complications such as heart disease, stroke, kidney damage, and others. Objective The precise mechanisms driving the progression of hypertension remain unknown. Thus, identifying the metabolic changes associated with this condition can provide valuable insights into potential markers or pathways implicated in the development of hypertension. Methods In this study, we utilized untargeted metabolomics profiling, which examines over 1,000 metabolites to identify novel metabolites contributing to the progression from pre-hypertension to hypertension. Data were collected from 323 participants through Qatar Biobank. Results By comparing metabolic profiles between pre-hypertensive, hypertensive and normotensive individuals, six metabolites including stearidonate, hexadecadienoate, N6-carbamoylthreonyladenosine, 9 and 13-S-hydroxyoctadecadienoic acid (HODE), 2,3-dihydroxy-5-methylthio- 4-pentenoate (DMTPA), and linolenate were found to be associated with increased risk of hypertension, in both discovery and validation cohorts. Moreover, these metabolites showed a significant diagnostic performance with area under curve >0.7. Conclusion These findings suggest possible biomarkers that can predict the risk of progression from pre-hypertension to hypertension. This will aid in early detection, diagnosis, and management of this disease as well as its associated complications.
Collapse
Affiliation(s)
- Sarah Al Ashmar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Gulsen Guliz Anlar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shona Pedersen
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed A Elrayess
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Vints WAJ, Kušleikiene S, Sheoran S, Šarkinaite M, Valatkevičiene K, Gleizniene R, Kvedaras M, Pukenas K, Himmelreich U, Cesnaitiene VJ, Levin O, Verbunt J, Masiulis N. Inflammatory Blood Biomarker Kynurenine Is Linked With Elevated Neuroinflammation and Neurodegeneration in Older Adults: Evidence From Two 1H-MRS Post-Processing Analysis Methods. Front Psychiatry 2022; 13:859772. [PMID: 35479493 PMCID: PMC9035828 DOI: 10.3389/fpsyt.2022.859772] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022] Open
Abstract
RATIONALE AND OBJECTIVES Pro-inflammatory processes have been argued to play a role in conditions associated with cognitive decline and neurodegeneration, like aging and obesity. Only a limited number of studies have tried to measure both peripheral and central biomarkers of inflammation and examined their interrelationship. The primary aim of this study was to examine the hypothesis that chronic peripheral inflammation would be associated with neurometabolic changes that indicate neuroinflammation (the combined elevation of myoinositol and choline), brain gray matter volume decrease, and lower cognitive functioning in older adults. MATERIALS AND METHODS Seventy-four older adults underwent bio-impedance body composition analysis, cognitive testing with the Montreal Cognitive Assessment (MoCA), blood serum analysis of inflammatory markers interleukin-6 (IL-6) and kynurenine, magnetic resonance imaging (MRI), and proton magnetic resonance spectroscopy (1H-MRS) of the brain. Neurometabolic findings from both Tarquin and LCModel 1H-MRS post-processing software packages were compared. The regions of interest for MRI and 1H-MRS measurements were dorsal posterior cingulate cortex (DPCC), left hippocampal cortex (HPC), left medial temporal cortex (MTC), left primary sensorimotor cortex (SM1), and right dorsolateral prefrontal cortex (DLPFC). RESULTS Elevated serum kynurenine levels were associated with signs of neuroinflammation, specifically in the DPCC, left SM1 and right DLPFC, and signs of neurodegeneration, specifically in the left HPC, left MTC and left SM1, after adjusting for age, sex and fat percentage (fat%). Elevated serum IL-6 levels were associated with increased Glx levels in left HPC, left MTC, and right DLPFC, after processing the 1H-MRS data with Tarquin. Overall, the agreement between Tarquin and LCModel results was moderate-to-strong for tNAA, tCho, mIns, and tCr, but weak to very weak for Glx. Peripheral inflammatory markers (IL-6 and kynurenine) were not associated with older age, higher fat%, decreased brain gray matter volume loss or decreased cognitive functioning within a cohort of older adults. CONCLUSION Our results suggest that serum kynurenine may be used as a peripheral inflammatory marker that is associated with neuroinflammation and neurodegeneration, although not linked to cognition. Future studies should consider longitudinal analysis to assess the causal inferences between chronic peripheral and neuroinflammation, brain structural and neurometabolic changes, and cognitive decline in aging.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania.,Department of Rehabilitation Medicine Research School Caphri, Maastricht University, Maastricht, Netherlands.,Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek, Netherlands
| | - Simona Kušleikiene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Samrat Sheoran
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Milda Šarkinaite
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kristina Valatkevičiene
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rymante Gleizniene
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mindaugas Kvedaras
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Kazimieras Pukenas
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, Catholic University Leuven, Leuven, Belgium
| | - Vida J Cesnaitiene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania.,Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Heverlee, Belgium
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School Caphri, Maastricht University, Maastricht, Netherlands.,Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek, Netherlands
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania.,Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Teixeira-Gomes A, Laffon B, Valdiglesias V, Gostner JM, Felder T, Costa C, Madureira J, Fuchs D, Teixeira JP, Costa S. Exploring Early Detection of Frailty Syndrome in Older Adults: Evaluation of Oxi-Immune Markers, Clinical Parameters and Modifiable Risk Factors. Antioxidants (Basel) 2021; 10:antiox10121975. [PMID: 34943076 PMCID: PMC8750623 DOI: 10.3390/antiox10121975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Ageing is accompanied with a decline in several physiological systems. Frailty is an age-related syndrome correlated to the loss of homeostasis and increased vulnerability to stressors, which is associated with increase in the risk of disability, comorbidity, hospitalisation, and death in older adults. The aim of this study was to understand the relationship between frailty syndrome, immune activation, and oxidative stress. Serum concentrations of vitamins A and E were also evaluated, as well as inflammatory biomarkers (CRP and IL-6) and oxidative DNA levels. A group of Portuguese older adults (≥65 years old) was engaged in this study and classified according to Fried’s frailty phenotype. Significant increases in the inflammatory mediators (CRP and IL-6), neopterin levels, kynurenine to tryptophan ratio (Kyn/Trp), and phenylalanine to tyrosine ratio (Phe/Tyr), and significant decreases in Trp and Tyr concentrations were observed in the presence of frailty. IL-6, neopterin, and Kyn/Trp showed potential as predictable biomarkers of frailty syndrome. Several clinical parameters such as nutrition, dependency scales, and polypharmacy were related to frailty and, consequently, may influence the associations observed. Results obtained show a progressive immune activation and production of pro-inflammatory molecules in the presence of frailty, agreeing with the inflammageing model. Future research should include different dimensions of frailty, including psychological, social, biological, and environmental factors.
Collapse
Affiliation(s)
- Armanda Teixeira-Gomes
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; (A.T.-G.); (C.C.); (J.M.); (S.C.)
- Environmental Health Department, National Institute of Health Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Blanca Laffon
- Centro de Investigaciones Científicas Avanzadas (CICA), Grupo DICOMOSA, Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, Universidade da Coruña, 15071 A Coruña, Spain;
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC. Oza, 15071 A Coruña, Spain;
| | - Vanessa Valdiglesias
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC. Oza, 15071 A Coruña, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Grupo NanoToxGen, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, Universidade da Coruña, 15071 A Coruña, Spain
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Thomas Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Carla Costa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; (A.T.-G.); (C.C.); (J.M.); (S.C.)
- Environmental Health Department, National Institute of Health Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Joana Madureira
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; (A.T.-G.); (C.C.); (J.M.); (S.C.)
- Environmental Health Department, National Institute of Health Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - João Paulo Teixeira
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; (A.T.-G.); (C.C.); (J.M.); (S.C.)
- Environmental Health Department, National Institute of Health Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
- Correspondence: or
| | - Solange Costa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; (A.T.-G.); (C.C.); (J.M.); (S.C.)
- Environmental Health Department, National Institute of Health Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
| |
Collapse
|
6
|
Minakata S, Manabe S, Inai Y, Ikezaki M, Nishitsuji K, Ito Y, Ihara Y. Protein C-Mannosylation and C-Mannosyl Tryptophan in Chemical Biology and Medicine. Molecules 2021; 26:molecules26175258. [PMID: 34500691 PMCID: PMC8433626 DOI: 10.3390/molecules26175258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.
Collapse
Affiliation(s)
- Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Shino Manabe
- Pharmaceutical Department, The Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan;
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan;
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| |
Collapse
|
7
|
Alme KN, Askim T, Assmus J, Mollnes TE, Naik M, Næss H, Saltvedt I, Ueland PM, Ulvik A, Knapskog AB. Investigating novel biomarkers of immune activation and modulation in the context of sedentary behaviour: a multicentre prospective ischemic stroke cohort study. BMC Neurol 2021; 21:318. [PMID: 34399717 PMCID: PMC8365944 DOI: 10.1186/s12883-021-02343-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background Sedentary behaviour is associated with disease, but the molecular mechanisms are not understood. Valid biomarkers with predictive and explanatory properties are required. Therefore, we have investigated traditional and novel biomarkers of inflammation and immune modulation and their association to objectively measured sedentary behaviour in an ischemic stroke population. Methods Patients admitted to hospital with acute ischemic stroke were included in the multicentre Norwegian Cognitive Impairment After Stroke (Nor-COAST) study (n = 815). For this sub-study (n = 257), sedentary behaviour was registered 3 months after stroke using position transition data from the body-worn sensor, ActivPal®. Blood samples were analysed for high sensitive C-reactive protein (hsCRP), the cytokines interleukin-6 (IL-6) and 10 (IL-10), neopterin, tryptophan (Trp), kynurenine (kyn), kynurenic acid (KA), and three B6 vitamers, pyridoxal 5′-phosphate (PLP), pyridoxal (PL), and pyridoxic acid (PA). The kynurenine/tryptophan ratio (KTR) and the pyridoxic acid ratio index (PAr = PA: PL + PLP) were calculated. Results Of the 815 patients included in the main study, 700 attended the three-month follow-up, and 257 fulfilled the inclusion criteria for this study. Sedentary time was significantly associated with levels of hsCRP, IL-6, neopterin, PAr-index, and KA adjusted for age, sex, waist circumference, and creatinine. In a fully adjusted model including all the significant biomarkers except hsCRP (because of missing values), sedentary time was independently positively associated with the PAr-index and negatively with KA. We did not find an association between sedentary behaviour, IL-10, and KTR. Conclusions The PAr-index is known to capture several modes of inflammation and has previously shown predictive abilities for future stroke. This novel result indicates that the PAr-index could be a useful biomarker in future studies on sedentary behaviour and disease progression. KA is an important modulator of inflammation, and this finding opens new and exciting pathways to understand the hazards of sedentary behaviour. Trial registration The study was registered at Clinicaltrials.gov (NCT02650531). First posted 08/01/2016. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02343-0.
Collapse
Affiliation(s)
- Katinka Nordheim Alme
- Institute of Clinical Medicine (K1), University of Bergen, Bergen, Norway. .,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.
| | - Torunn Askim
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Jörg Assmus
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, and K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mala Naik
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science (K2), University of Bergen, Bergen, Norway
| | - Halvor Næss
- Institute of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Centre for age-related medicine, Stavanger University Hospital, Stavanger, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Department of Geriatrics, Clinic of internal medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | | | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, Ullevaal, Oslo, Norway
| |
Collapse
|
8
|
Gao S, Quick C, Guasch-Ferre M, Zhuo Z, Hutchinson JM, Su L, Hu F, Lin X, Christiani D. The Association Between Inflammatory and Oxidative Stress Biomarkers and Plasma Metabolites in a Longitudinal Study of Healthy Male Welders. J Inflamm Res 2021; 14:2825-2839. [PMID: 34234508 PMCID: PMC8254568 DOI: 10.2147/jir.s316262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Human metabolism and inflammation are closely related modulators of homeostasis and immunity. Metabolic profiling is a useful tool to understand the association between metabolism and inflammation at a systemic level. OBJECTIVE To investigate the longitudinal associations between the concentration of plasma metabolites and biomarkers related to inflammation and oxidative stress. METHODS We conducted a repeated cross-sectional analysis consisting of 8 short-term panels that included 88 healthy adult male welders in Massachusetts, USA. In each panel, we collected 1-6 repeated measurements of blood and urine. We used a human vascular injury panel assay and custom cytokine/chemokine assay to quantify inflammatory biomarker plasma levels, liquid chromatography-mass spectrometry to quantify the concentrations of 665 plasma metabolites, and a competitive enzyme-linked immunoassay to quantify urinary 8-OHdG and 8-isoprostane levels. We used linear mixed effects models to estimate the longitudinal association between each inflammatory and oxidative stress biomarker and each metabolite. RESULTS At a 5% FDR threshold, we detected ≥1metabolite association for 8 unique inflammatory and oxidative stress biomarkers: urinary 8-isoprostane, plasma C-reactive protein (CRP), serum amyloid A (SAA), intercellular adhesion molecule 1, circulating vascular cell adhesion molecule-1, interleukin 8 (IL-8), interleukin 10 (IL-10) and vascular endothelial growth factor. Specifically, 3 metabolites in the androgenic steroids pathway were negatively associated with SAA; 3 dihydrosphingomyelins metabolites were positively associated with 1 or more of CRP, SAA, IL-8 and IL-10; 4 metabolites in acyl choline metabolism pathways were negatively associated with IL-8; 7 lysophospholipid metabolites were negatively associated with 1 or more of CRP, SAA and IL-8; 4 sphingomyelins were positively associated with CRP and/or SAA; and 10 metabolites in the xanthine pathway were positively associated with urinary 8-isoprostane. CONCLUSION We found that metabolites in phospholipid groups had strong associations with multiple inflammatory biomarkers, especially CRP, SAA and IL-8. The mechanism of these associations warrants further investigation.
Collapse
Affiliation(s)
- Shangzhi Gao
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Corbin Quick
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Marta Guasch-Ferre
- Nutrition, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Zhu Zhuo
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - John M Hutchinson
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Frank Hu
- Nutrition, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Xihong Lin
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - David Christiani
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
- Pulmonary and Critical Care Division, Department of Medicine, MA General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Gaitán JM, Moon HY, Stremlau M, Dubal DB, Cook DB, Okonkwo OC, van Praag H. Effects of Aerobic Exercise Training on Systemic Biomarkers and Cognition in Late Middle-Aged Adults at Risk for Alzheimer's Disease. Front Endocrinol (Lausanne) 2021; 12:660181. [PMID: 34093436 PMCID: PMC8173166 DOI: 10.3389/fendo.2021.660181] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that physical activity and exercise training may delay or prevent the onset of Alzheimer's disease (AD). However, systemic biomarkers that can measure exercise effects on brain function and that link to relevant metabolic responses are lacking. To begin to address this issue, we utilized blood samples of 23 asymptomatic late middle-aged adults, with familial and genetic risk for AD (mean age 65 years old, 50% female) who underwent 26 weeks of supervised treadmill training. Systemic biomarkers implicated in learning and memory, including the myokine Cathepsin B (CTSB), brain-derived neurotrophic factor (BDNF), and klotho, as well as metabolomics were evaluated. Here we show that aerobic exercise training increases plasma CTSB and that changes in CTSB, but not BDNF or klotho, correlate with cognitive performance. BDNF levels decreased with exercise training. Klotho levels were unchanged by training, but closely associated with change in VO2peak. Metabolomic analysis revealed increased levels of polyunsaturated free fatty acids (PUFAs), reductions in ceramides, sphingo- and phospholipids, as well as changes in gut microbiome metabolites and redox homeostasis, with exercise. Multiple metabolites (~30%) correlated with changes in BDNF, but not CSTB or klotho. The positive association between CTSB and cognition, and the modulation of lipid metabolites implicated in dementia, support the beneficial effects of exercise training on brain function. Overall, our analyses indicate metabolic regulation of exercise-induced plasma BDNF changes and provide evidence that CTSB is a marker of cognitive changes in late middle-aged adults at risk for dementia.
Collapse
Affiliation(s)
- Julian M. Gaitán
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Hyo Youl Moon
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
- Department of Education, Seoul National University, Seoul, South Korea
- Institute of Sport Science, Seoul National University, Seoul, South Korea
- Institute on Aging, Seoul National University, Seoul, South Korea
| | - Matthew Stremlau
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, United States
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Henriette van Praag
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
10
|
Gasmi A, Chirumbolo S, Peana M, Mujawdiya PK, Dadar M, Menzel A, Bjørklund G. Biomarkers of Senescence during Aging as Possible Warnings to Use Preventive Measures. Curr Med Chem 2021; 28:1471-1488. [PMID: 32942969 DOI: 10.2174/0929867327999200917150652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Human life expectancy is increasing significantly over time thanks to the improved possibility for people to take care of themselves and the higher availability of food, drugs, hygiene, services, and assistance. The increase in the average age of the population worldwide is, however, becoming a real concern, since aging is associated with the rapid increase in chronic inflammatory pathologies and degenerative diseases, very frequently dependent on senescent phenomena that occur alongside with senescence. Therefore, the search for reliable biomarkers that can diagnose the possible onset or predict the risk of developing a disease associated with aging is a crucial target of current medicine. In this review, we construct a synopsis of the main addressable biomarkers to study the development of aging and the associated ailments.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Alain Menzel
- Laboratoires Réunis, Junglinster, Luxembourg, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
11
|
von Känel R, Mills PJ, Dimsdale JE, Ziegler MG, Allison MA, Patterson TL, Ancoli-Israel S, Pruitt C, Grant I, Mausbach BT. Effects of Psychosocial Interventions and Caregiving Stress on Cardiovascular Biomarkers in Family Dementia Caregivers: The UCSD Pleasant Events Program (PEP) Randomized Controlled Trial. J Gerontol A Biol Sci Med Sci 2021; 75:2215-2223. [PMID: 32242215 DOI: 10.1093/gerona/glaa079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This study examined whether biological mechanisms linking dementia caregiving with an increased risk of coronary heart disease can be modified by psychosocial interventions and which caregivers might benefit the most from an intervention. METHODS Spousal dementia caregivers were randomized to 12-week treatment with either a behavioral activation intervention (ie, Pleasant Events Program [PEP]; n = 60), or an active control Information and Support (IS; n = 63) condition. Indicators of caregiving stress were assessed pretreatment and circulating cardiovascular biomarkers were measured pre- and posttreatment. RESULTS There were no significant changes in biomarker levels from pre- to posttreatment both by treatment condition and across all caregivers. Regardless of the treatment condition, exploratory regression analysis revealed that caregivers were more likely to show significant decreases in C-reactive protein (CRP) and D-dimer when their spouse had severe functional impairment; in interleukin (IL)-6 and CRP when they had greater distress due to care recipient's problem behaviors; in tumor necrosis factor (TNF)-α when they had higher levels of negative affect; and in IL-6, CRP, TNF-α, and D-dimer when they had higher personal mastery. Within the PEP group, caregivers with higher negative affect and those with higher positive affect were more likely to show a reduction in von Willebrand factor and D-dimer, respectively. Within the IS group, caregivers whose spouse had severe functional impairment were more likely to show a decrease in IL-6. CONCLUSIONS Unlike the average caregiver, caregivers high in burden/distress and resources might benefit from psychosocial interventions to improve cardiovascular risk, although these observations need confirmation.
Collapse
Affiliation(s)
- Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Switzerland.,Department of Psychiatry, University of California San Diego, La Jolla
| | - Paul J Mills
- Department of Psychiatry, University of California San Diego, La Jolla.,Department of Family Medicine and Public Health, University of California San Diego, La Jolla
| | - Joel E Dimsdale
- Department of Psychiatry, University of California San Diego, La Jolla
| | - Michael G Ziegler
- Department of Medicine, University of California San Diego, La Jolla
| | - Matthew A Allison
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla
| | | | | | - Christopher Pruitt
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, La Jolla
| | - Brent T Mausbach
- Department of Psychiatry, University of California San Diego, La Jolla
| |
Collapse
|
12
|
Jang IY, Park JH, Kim JH, Lee S, Lee E, Lee JY, Park SJ, Kim DA, Hamrick MW, Kim BJ. The association of circulating kynurenine, a tryptophan metabolite, with frailty in older adults. Aging (Albany NY) 2020; 12:22253-22265. [PMID: 33188590 DOI: 10.18632/aging.104179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Despite the accumulating evidence from in vitro and animal experiments supporting the role of kynurenine (a tryptophan metabolite) in a number of degenerative age-related changes, the relationship between kynurenine and frailty in older adults is not well understood. We collected blood samples from 73 participants who underwent a comprehensive geriatric assessment, measuring kynurenine levels using liquid chromatography-tandem mass spectrometry. We assessed the phenotypic frailty and the deficit accumulation frailty index using widely validated approaches proposed by Fried et al. and Rockwood et al., respectively. After adjusting for sex, age, and body mass index, the frail participants presented 52.9% and 34.3% higher serum kynurenine levels than those with robustness and prefrailty, respectively (P = 0.005 and 0.014, respectively). Serum kynurenine levels were positively associated with the frailty index, time to complete 5 chair stands, and patient health questionnaire-2 score and inversely associated with grip strength and gait speed (P = 0.042 to <0.001). Furthermore, the odds ratio per increase in serum kynurenine level for phenotypic frailty was approximately 2.62 (95% confidence interval = 1.22-5.65, P = 0.014). These data provide clinical evidence that circulating kynurenine might be a potential biomarker for assessing the risk of frailty in humans.
Collapse
Affiliation(s)
- Il-Young Jang
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin Hoon Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jeoung Hee Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seungjoo Lee
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eunju Lee
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin Young Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Da Ae Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mark W Hamrick
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Anderson G, Carbone A, Mazzoccoli G. Aryl Hydrocarbon Receptor Role in Co-Ordinating SARS-CoV-2 Entry and Symptomatology: Linking Cytotoxicity Changes in COVID-19 and Cancers; Modulation by Racial Discrimination Stress. BIOLOGY 2020; 9:E249. [PMID: 32867244 PMCID: PMC7564943 DOI: 10.3390/biology9090249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
There is an under-recognized role of the aryl hydrocarbon receptor (AhR) in co-ordinating the entry and pathophysiology of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) that underpins the COVID-19 pandemic. The rise in pro-inflammatory cytokines during the 'cytokine storm' induce indoleamine 2,3-dioxygenase (IDO), leading to an increase in kynurenine that activates the AhR, thereby heightening the initial pro-inflammatory cytokine phase and suppressing the endogenous anti-viral response. Such AhR-driven changes underpin the heightened severity and fatality associated with pre-existent high-risk medical conditions, such as type II diabetes, as well as to how racial discrimination stress contributes to the raised severity/fatality in people from the Black Asian and Minority Ethnic (BAME) communities. The AhR is pivotal in modulating mitochondrial metabolism and co-ordinating specialized, pro-resolving mediators (SPMs), the melatonergic pathways, acetyl-coenzyme A, and the cyclooxygenase (COX) 2-prostaglandin (PG) E2 pathway that underpin 'exhaustion' in the endogenous anti-viral cells, paralleling similar metabolic suppression in cytolytic immune cells that is evident across all cancers. The pro-inflammatory cytokine induced gut permeability/dysbiosis and suppression of pineal melatonin are aspects of the wider pathophysiological underpinnings regulated by the AhR. This has a number of prophylactic and treatment implications for SARS-CoV-2 infection and cancers and future research directions that better investigate the biological underpinnings of social processes and how these may drive health disparities.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PB, UK;
| | - Annalucia Carbone
- Division of Internal Medicine and Chronobiology Laboratory, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Laboratory, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, 71013 Foggia, Italy;
| |
Collapse
|
14
|
Westbrook R, Chung T, Lovett J, Ward C, Joca H, Yang H, Khadeer M, Tian J, Xue QL, Le A, Ferrucci L, Moaddel R, de Cabo R, Hoke A, Walston J, Abadir PM. Kynurenines link chronic inflammation to functional decline and physical frailty. JCI Insight 2020; 5:136091. [PMID: 32814718 PMCID: PMC7455140 DOI: 10.1172/jci.insight.136091] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation is associated with physical frailty and functional decline in older adults; however, the molecular mechanisms of this linkage are not understood. A mouse model of chronic inflammation showed reduced motor function and partial denervation at the neuromuscular junction. Metabolomic profiling of these mice and further validation in frail human subjects showed significant dysregulation in the tryptophan degradation pathway, including decreased tryptophan and serotonin, and increased levels of some neurotoxic kynurenines. In humans, kynurenine strongly correlated with age, frailty status, TNF-αR1 and IL-6, weaker grip strength, and slower walking speed. To study the effects of elevated neurotoxic kynurenines on motor neuronal cell viability and axonal degeneration, we used motor neuronal cells treated with 3-hydroxykynurenine and quinolinic acid and observed neurite degeneration in a dose-dependent manner and potentiation of toxicity between 3-hydroxykynurenine and quinolinic acid. These results suggest that kynurenines mediate neuromuscular dysfunction associated with chronic inflammation and aging. Tryptophan-related toxic metabolites known as kynurenines are altered with chronic inflammation, which damages nerves in aged and frail mice and humans.
Collapse
Affiliation(s)
| | - Tae Chung
- Department of Physical Medicine and Rehabilitation, and.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Chris Ward
- Department of Orthopedics and Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Humberto Joca
- Department of Orthopedics and Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Huanle Yang
- Division of Geriatric Medicine and Gerontology
| | | | - Jing Tian
- Division of Geriatric Medicine and Gerontology
| | - Qian-Li Xue
- Division of Geriatric Medicine and Gerontology
| | - Anne Le
- Department of Oncology and.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Ruin Moaddel
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Rafa de Cabo
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Walston
- Division of Geriatric Medicine and Gerontology.,Department of Medicine, Kyung Hee University, Seoul, South Korea
| | | |
Collapse
|
15
|
Nierenberg JL, He J, Li C, Gu X, Shi M, Razavi AC, Mi X, Li S, Bazzano LA, Anderson AH, He H, Chen W, Guralnik JM, Kinchen JM, Kelly TN. Serum metabolites associate with physical performance among middle-aged adults: Evidence from the Bogalusa Heart Study. Aging (Albany NY) 2020; 12:11914-11941. [PMID: 32482911 PMCID: PMC7343486 DOI: 10.18632/aging.103362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022]
Abstract
Age-related declines in physical performance predict cognitive impairment, disability, chronic disease exacerbation, and mortality. We conducted a metabolome-wide association study of physical performance among Bogalusa Heart Study participants. Bonferroni corrected multivariate-adjusted linear regression was employed to examine cross-sectional associations between single metabolites and baseline gait speed (N=1,227) and grip strength (N=1,164). In a sub-sample of participants with repeated assessments of gait speed (N=282) and grip strength (N=201), significant metabolites from the cross-sectional analyses were tested for association with change in physical performance over 2.9 years of follow-up. Thirty-five and seven metabolites associated with baseline gait speed and grip strength respectively, including six metabolites that associated with both phenotypes. Three metabolites associated with preservation or improvement in gait speed over follow-up, including: sphingomyelin (40:2) (P=2.6×10-4) and behenoyl sphingomyelin (d18:1/22:0) and ergothioneine (both P<0.05). Seven metabolites associated with declines in gait speed, including: 1-carboxyethylphenylalanine (P=8.8×10-5), and N-acetylaspartate, N-formylmethionine, S-adenosylhomocysteine, N-acetylneuraminate, N2,N2-dimethylguanosine, and gamma-glutamylphenylalanine (all P<0.05). Two metabolite modules reflecting sphingolipid and bile acid metabolism associated with physical performance (minimum P=7.6×10-4). These results add to the accumulating evidence suggesting an important role of the human metabolome in physical performance and specifically implicate lipid, nucleotide, and amino acid metabolism in early physical performance decline.
Collapse
Affiliation(s)
- Jovia L Nierenberg
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.,Department of Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.,Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA 30606, USA
| | - Xiaoying Gu
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, National Clinical Research Center of Respiratory Diseases, Beijing, China
| | - Mengyao Shi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Alexander C Razavi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Xuenan Mi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Hospitals and Clinics of Minnesota, MN 55404, USA
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Amanda H Anderson
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Hua He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Jack M Guralnik
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Kynurenine signaling through the aryl hydrocarbon receptor: Implications for aging and healthspan. Exp Gerontol 2019; 130:110797. [PMID: 31786316 DOI: 10.1016/j.exger.2019.110797] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022]
Abstract
The tryptophan metabolite kynurenine increases with aging and inflammation, and appears to contribute directly to the development and progression of several age-related conditions. Kynurenine is now known to signal through the aryl hydrocarbon receptor (Ahr) to modulate levels of reactive oxygen species (ROS). The Ahr promoter region contains several sites for NF-kB binding, indicating that inflammation is a key factor modulating Ahr expression. Furthermore, kynurenine activation of Ahr is observed to stimulate expression of the enzyme IDO1, which generates kynurenine by degrading tryptophan, representing a positive feedback loop that may link inflammation with ROS production. On the other hand, the antioxidant system-inducing transcription factor Nrf2 can be stimulated by Ahr, and Nrf2 can itself activate Ahr expression. The balance between pro- and antioxidant functions of Ahr mediated by kynurenine may therefore regulate healthy versus unhealthy aging in different tissues and organ systems. Potential therapeutic approaches to target this pathway include exercise to alter kynurenine production or molecules such as metformin or resveratrol that may suppress Ahr activity.
Collapse
|
17
|
Wallert M, Ziegler M, Wang X, Maluenda A, Xu X, Yap ML, Witt R, Giles C, Kluge S, Hortmann M, Zhang J, Meikle P, Lorkowski S, Peter K. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol 2019; 26:101292. [PMID: 31419755 PMCID: PMC6831864 DOI: 10.1016/j.redox.2019.101292] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Myocardial infarction (MI) is a leading cause of mortality and morbidity worldwide and new treatment strategies are highly sought-after. Paradoxically, reperfusion of the ischemic myocardium, as achieved with early percutaneous intervention, results in substantial damage to the heart (ischemia/reperfusion injury) caused by cell death due to aggravated inflammatory and oxidative stress responses. Chronic therapy with vitamin E is not effective in reducing the cardiovascular event rate, presumably through failing to reduce atherosclerotic plaque instability. Notably, acute treatment with vitamin E in patients suffering a MI has not been systematically investigated. METHODS AND RESULTS We applied alpha-tocopherol (α-TOH), the strongest anti-oxidant form of vitamin E, in murine cardiac ischemia/reperfusion injury induced by ligation of the left anterior descending coronary artery for 60 min. α-TOH significantly reduced infarct size, restored cardiac function as measured by ejection fraction, fractional shortening, cardiac output, and stroke volume, and prevented pathological changes as assessed by state-of-the-art strain and strain-rate analysis. Cardioprotective mechanisms identified, include a decreased infiltration of neutrophils into cardiac tissue and a systemic anti-inflammatory shift from Ly6Chigh to Ly6Clow monocytes. Furthermore, we found a reduction in myeloperoxidase expression and activity, as well as a decrease in reactive oxygen species and the lipid peroxidation markers phosphatidylcholine (PC) (16:0)-9-hydroxyoctadecadienoic acid (HODE) and PC(16:0)-13-HODE) within the infarcted tissue. CONCLUSION Overall, α-TOH inhibits ischemia/reperfusion injury-induced oxidative and inflammatory responses, and ultimately preserves cardiac function. Therefore, our study provides a strong incentive to test vitamin E as an acute therapy in patients suffering a MI.
Collapse
Affiliation(s)
- Maria Wallert
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Ana Maluenda
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiaoqiu Xu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - May Lin Yap
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Roman Witt
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Stefan Kluge
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Marcus Hortmann
- Department for Cardiology and Angiology, University Heart Centre, Freiburg, Germany
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peter Meikle
- Department of Medicine, Monash University, Melbourne, Australia; Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
18
|
Ingenbleek Y. Plasma Transthyretin as A Biomarker of Sarcopenia in Elderly Subjects. Nutrients 2019; 11:E895. [PMID: 31010086 PMCID: PMC6521094 DOI: 10.3390/nu11040895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle (SM) mass, the chief component of the structural compartment belonging to lean body mass (LBM), undergoes sarcopenia with increasing age. Decreased SM in elderly persons is a naturally occurring process that may be accelerated by acute or chronic nutritional deficiencies and/or inflammatory disorders, declining processes associated with harmful complications. A recently published position paper by European experts has provided an overall survey on the definition and diagnosis of sarcopenia in elderly persons. The present review describes the additional contributory role played by the noninvasive transthyretin (TTR) micromethod. The body mass index (BMI) formula is currently used in clinical studies as a criterion of good health to detect, prevent, and follow up on the downward trend of muscle mass. The recent upsurge of sarcopenic obesity with its multiple subclasses has led to a confused stratification of SM and fat stores, prompting workers to eliminate BMI from screening programs. As a result, investigators are now focusing on indices of protein status that participate in SM growth, maturation, and catabolism that might serve to identify sarcopenia trajectories. Plasma TTR is clearly superior to all other hepatic biomarkers, showing the same evolutionary patterns as those displayed in health and disease by both visceral and structural LBM compartments. As a result, this TTR parameter maintains positive correlations with muscle mass downsizing in elderly persons. The liver synthesis of TTR is downregulated in protein-depleted states and suppressed in cytokine-induced inflammatory disorders. TTR integrates the centrally-mediated regulatory mechanisms governing the balance between protein accretion and protein breakdown, emerging as the ultimate indicator of LBM resources. This review proposes the adoption of a gray zone defined by cut-off values ranging from 200 mg/L to 100 mg/L between which TTR plasma values may fluctuate and predict either the best or the worst outcome. The best outcome occurs when appropriate dietary, medicinal and surgical decisions are undertaken, resuming TTR synthesis which manifests rising trends towards pre-stress levels. The worst occurs when all therapeutic means fail to succeed, leading inevitably to complete exhaustion of LBM and SM metabolic resources with an ensuing fatal outcome. Some patients may remain unresponsive in the middle of the gray area, combining steady clinical states with persistent stagnant TTR values. Using the serial measurement of plasma TTR values, these last patients should be treated with the most aggressive and appropriate therapeutic strategies to ensure the best outcome.
Collapse
Affiliation(s)
- Yves Ingenbleek
- Laboratory of Nutrition, Faculty of Pharmacy, University Louis Pasteur, F-67401 Strasbourg, France.
| |
Collapse
|
19
|
Huang J, Weinstein SJ, Moore SC, Derkach A, Hua X, Liao LM, Gu F, Mondul AM, Sampson JN, Albanes D. Serum Metabolomic Profiling of All-Cause Mortality: A Prospective Analysis in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study Cohort. Am J Epidemiol 2018; 187:1721-1732. [PMID: 29390044 DOI: 10.1093/aje/kwy017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Tobacco use, hypertension, hyperglycemia, overweight, and inactivity are leading causes of overall and cardiovascular disease (CVD) mortality worldwide, yet the relevant metabolic alterations responsible are largely unknown. We conducted a serum metabolomic analysis of 620 men in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (1985-2013). During 28 years of follow-up, there were 435 deaths (197 CVD and 107 cancer). The analysis included 406 known metabolites measured with ultra-high-performance liquid chromatography/mass spectrometry-gas chromatography/mass spectrometry. We used Cox regression to estimate mortality hazard ratios for a 1-standard-deviation difference in metabolite signals. The strongest associations with overall mortality were N-acetylvaline (hazard ratio (HR) = 1.28; P < 4.1 × 10-5, below Bonferroni statistical threshold) and dimethylglycine, 7-methylguanine, C-glycosyltryptophan, taurocholate, and N-acetyltryptophan (1.23 ≤ HR ≤ 1.32; 5 × 10-5 ≤ P ≤ 1 × 10-4). C-Glycosyltryptophan, 7-methylguanine, and 4-androsten-3β,17β-diol disulfate were statistically significantly associated with CVD mortality (1.49 ≤ HR ≤ 1.62, P < 4.1 × 10-5). No metabolite was associated with cancer mortality, at a false discovery rate of <0.1. Individuals with a 1-standard-deviation higher metabolite risk score had increased all-cause and CVD mortality in the test set (HR = 1.4, P = 0.05; HR = 1.8, P = 0.003, respectively). The several serum metabolites and their composite risk score independently associated with all-cause and CVD mortality may provide potential leads regarding the molecular basis of mortality.
Collapse
Affiliation(s)
- Jiaqi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andriy Derkach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xing Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Fangyi Gu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Stevens VL, Wang Y, Carter BD, Gaudet MM, Gapstur SM. Serum metabolomic profiles associated with postmenopausal hormone use. Metabolomics 2018; 14:97. [PMID: 30830410 DOI: 10.1007/s11306-018-1393-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Postmenopausal hormone use is linked to several health outcomes and the risk associated with some may differ depending on whether estrogen is used alone or in combination with progestin. OBJECTIVE Metabolomic analyses of postmenopausal hormone use and differences between hormone regimes was done to identify metabolites associated with each type of hormone treatment. METHODS Untargeted metabolomics analysis was done on serum from 1336 women enrolled in the Cancer Prevention II Nutrition Cohort. Levels of 781 named metabolites were compared between 667 nonusers with 332 estrogen-only and with 337 estrogen plus progestin users using linear regression. Metabolite levels were also compared between estrogen-only and estrogen plus progestin users. RESULTS Compared to nonusers, 276 metabolites were statistically significantly (P < 6.40 × 10- 5) associated with estrogen-only use and 222 were associated with estrogen plus progestin use. The metabolites associated with both types of hormones included numerous lipids, acyl carnitines, and amino acids as well as the thyroid hormone thyroxine and the oncometabolite fumarate. The 65 metabolites that differed significantly between estrogen-only and estrogen plus progestin users included 19 steroids and 12 lipids that contained the bioactive fatty acid arachidonic acid. CONCLUSIONS These findings suggest that postmenopausal hormone use influences metabolic pathways linked to a variety of cellular processes, including the regulation of metabolism and stress responses, energy production, and inflammation. The differential association of numerous lipids which influence cellular signaling suggests that differences in signal transduction may contribute to the disparate risks for some diseases between estrogen-only and estrogen plus progestin users.
Collapse
Affiliation(s)
- Victoria L Stevens
- Behavioral and Epidemiology Research Group, American Cancer Society, 250 Williams St, NW, Atlanta, GA, 30329, USA.
| | - Ying Wang
- Behavioral and Epidemiology Research Group, American Cancer Society, 250 Williams St, NW, Atlanta, GA, 30329, USA
| | - Brian D Carter
- Behavioral and Epidemiology Research Group, American Cancer Society, 250 Williams St, NW, Atlanta, GA, 30329, USA
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group, American Cancer Society, 250 Williams St, NW, Atlanta, GA, 30329, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, 250 Williams St, NW, Atlanta, GA, 30329, USA
| |
Collapse
|
21
|
Lustgarten MS, Fielding RA. Metabolites related to renal function, immune activation, and carbamylation are associated with muscle composition in older adults. Exp Gerontol 2017; 100:1-10. [PMID: 29030163 DOI: 10.1016/j.exger.2017.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/25/2022]
Abstract
Reduced skeletal muscle density in older adults is associated with insulin resistance, decreased physical function, and an increased all-cause mortality risk. To elucidate mechanisms that may underlie the maintenance of skeletal muscle density, we conducted a secondary analysis of previously published muscle composition and serum metabolomic data in 73 older adults (average age, 78y). Multivariable-adjusted linear regression was used to examine associations between 321 metabolites with muscle composition, defined as the ratio between normal density (NDM) with low density (LDM) thigh muscle cross sectional area (NDM/LDM). Sixty metabolites were significantly (p≤0.05 and q<0.30) associated with NDM/LDM. Decreased renal function and the immune response have been previously linked with reduced muscle density, but the mechanisms underlying these connections are less clear. Metabolites that were significantly associated with muscle composition were then tested for their association with circulating markers of renal function (blood urea nitrogen, creatinine, uric acid), and with the immune response (neutrophils/lymphocytes) and activation (kynurenine/tryptophan). 43 significant NDM/LDM metabolites (including urea) were co-associated with at least 1 marker of renal function; 23 of these metabolites have been previously identified as uremic solutes. The neutrophil/lymphocyte ratio was significantly associated with NDM/LDM (β±SE: -0.3±0.1, p=0.01, q=0.04). 35 significant NDM/LDM metabolites were co-associated with immune activation. Carbamylation (defined as homocitrulline/lysine) was identified as a pathway that may link renal function and immune activation with muscle composition, as 29 significant NDM/LDM metabolites were co-associated with homocitrulline/lysine, with at least 2 markers of renal function, and with kynurenine/tryptophan. When considering that elevated urea and uremic metabolites have been linked with an increased systemic microbial burden, that antimicrobial defense can be reduced in the presence of carbamylation, and that adipocytes can promote host defense, we propose the novel hypothesis that the age-related increase in adipogenesis within muscle may be a compensatory antimicrobial response to protect against an elevated microbial burden.
Collapse
Affiliation(s)
- Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, MA, USA.
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, MA, USA
| |
Collapse
|
22
|
Nealon NJ, Yuan L, Yang X, Ryan EP. Rice Bran and Probiotics Alter the Porcine Large Intestine and Serum Metabolomes for Protection against Human Rotavirus Diarrhea. Front Microbiol 2017; 8:653. [PMID: 28484432 PMCID: PMC5399067 DOI: 10.3389/fmicb.2017.00653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/30/2017] [Indexed: 01/20/2023] Open
Abstract
Human rotavirus (HRV) is a leading cause of severe childhood diarrhea, and there is limited vaccine efficacy in the developing world. Neonatal gnotobiotic pigs consuming a prophylactic synbiotic combination of probiotics and rice bran (Pro+RB) did not exhibit HRV diarrhea after challenge. Multiple immune, gut barrier protective, and anti-diarrheal mechanisms contributed to the prophylactic efficacy of Pro+RB when compared to probiotics (Pro) alone. In order to understand the molecular signature associated with diarrheal protection by Pro+RB, a global non-targeted metabolomics approach was applied to investigate the large intestinal contents and serum of neonatal gnotobiotic pigs. The ultra-high performance liquid chromatography-tandem mass spectrometry platform revealed significantly different metabolites (293 in LIC and 84 in serum) in the pigs fed Pro+RB compared to Pro, and many of these metabolites were lipids and amino acid/peptides. Lipid metabolites included 2-oleoylglycerol (increased 293.40-fold in LIC of Pro+RB, p = 3.04E-10), which can modulate gastric emptying, andhyodeoxycholate (decreased 0.054-fold in the LIC of Pro+RB, p = 0.0040) that can increase colonic mucus production to improve intestinal barrier function. Amino acid metabolites included cysteine (decreased 0.40-fold in LIC, p = 0.033, and 0.62-fold in serum, p = 0.014 of Pro+RB), which has been found to reduce inflammation, lower oxidative stress and modulate mucosal immunity, and histamine (decreased 0.18-fold in LIC, p = 0.00030, of Pro+RB and 1.57-fold in serum, p = 0.043), which modulates local and systemic inflammatory responses as well as influences the enteric nervous system. Alterations to entire LIC and serum metabolic pathways further contributed to the anti-diarrheal and anti-viral activities of Pro+RB such as sphingolipid, mono/diacylglycerol, fatty acid, secondary bile acid, and polyamine metabolism. Sphingolipid and long chain fatty acid profiles influenced the ability of HRV to both infect and replicate within cells, suggesting that Pro+RB created a protective lipid profile that interferes with HRV activity. Polyamines act on enterocyte calcium-sensing receptors to modulate intracellular calcium levels, and may directly interfere with rotavirus replication. These results support that multiple host and probiotic metabolic networks, notably those involving lipid and amino acid/peptide metabolism, are important mechanisms through which Pro+RB protected against HRV diarrhea in neonatal gnotobiotic pigs.
Collapse
Affiliation(s)
- Nora Jean Nealon
- Nutrition and Toxicology Laboratory, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort CollinsCO, USA
| | - Lijuan Yuan
- Yuan Laboratory, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, BlacksburgVA, USA
| | - Xingdong Yang
- Laboratory of Infectious Diseases, Viral Pathogenesis and Evolution Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, BethesdaMD, USA
| | - Elizabeth P Ryan
- Nutrition and Toxicology Laboratory, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort CollinsCO, USA
| |
Collapse
|