1
|
Ideo H, Tsuchida A, Takada Y. Lectin-Based Approaches to Analyze the Role of Glycans and Their Clinical Application in Disease. Int J Mol Sci 2024; 25:10231. [PMID: 39337716 PMCID: PMC11432504 DOI: 10.3390/ijms251810231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Lectin-based approaches remain a valuable tool for analyzing glycosylation, especially when detecting cancer-related changes. Certain glycans function as platforms for cell communication, signal transduction, and adhesion. Therefore, the functions of glycans are important considerations for clinical aspects, such as cancer, infection, and immunity. Considering that the three-dimensional structure and multivalency of glycans are important factors for their function, their binding characteristics toward lectins provide vital information. Glycans and lectins are inextricably linked, and studies on lectins have also led to research on the roles of glycans. The applications of lectins are not limited to analysis but can also be used as drug delivery tools. Moreover, mammalian lectins are potential therapeutic targets because certain lectins change their expression in cancer, and lectin regulation subsequently regulates several molecules with glycans. Herein, we review lectin-based approaches for analyzing the role of glycans and their clinical applications in diseases, as well as our recent results.
Collapse
Affiliation(s)
- Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | | | | |
Collapse
|
2
|
Tsuchida A, Hachisu K, Mizuno M, Takada Y, Ideo H. High expression of B3GALT5 suppresses the galectin-4-mediated peritoneal dissemination of poorly differentiated gastric cancer cells. Glycobiology 2024; 34:cwae064. [PMID: 39163480 DOI: 10.1093/glycob/cwae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Peritoneal metastasis frequently accompanies metastatic and/or recurrent gastric cancer, leading to a poor prognosis owing to a lack of effective treatment. Hence, there is a pressing need to enhance our understanding of the mechanisms and molecules driving peritoneal metastasis. In a previous study, galectin-4 inhibition impeded peritoneal metastasis in a murine model. This study examined the glycan profiles of cell surface proteins and glycosphingolipids (GSLs) in cells with varying tumorigenic potentials to understand the intricate mechanisms underlying galectin-4-mediated regulation, particularly glycosylation. Detailed mass spectrometry analysis showed that galectin-4 knockout cells exhibit increased expression of lacto-series GSLs with β1,3-linked galactose while showing no significant alterations in neolacto-series GSLs. We conducted real-time polymerase chain reaction (PCR) analysis to identify candidate glycosyltransferases that synthesize increased levels of GSLs. Subsequently, we introduced the candidate B3GALT5 gene and selected the clones with high expression levels. B3GALT5 gene-expressing clones showed GSL glycan profiles like those of knockout cells and significantly reduced tumorigenic ability in mouse models. These clones exhibited diminished proliferative capacity and showed reduced expression of galectin-4 and activated AKT. Moreover, co-localization of galectin-4 with flotillin-2 (a raft marker) decreased in B3GALT5-expressing cells, implicating GSLs in galectin-4 localization to lipid rafts. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (a GSL synthase inhibitor) also affected galectin-4 localization in rafts, suggesting the involvement of GSL microdomains. We discovered that B3GALT5 plays a crucial role in regulating peritoneal metastasis of malignant gastric cancer cells by suppressing cell proliferation and modulating lipid rafts and galectin-4 via mechanisms that are yet to be elucidated.
Collapse
Affiliation(s)
- Akiko Tsuchida
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Kazuko Hachisu
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| |
Collapse
|
3
|
Reihill M, Ma H, Bengtsson D, Oscarson S. Synthesis of the 3'- O-sulfated TF antigen with a TEG-N 3 linker for glycodendrimersomes preparation to study lectin binding. Beilstein J Org Chem 2024; 20:173-180. [PMID: 38318459 PMCID: PMC10840529 DOI: 10.3762/bjoc.20.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
The synthesis of gram quantities of the TF antigen (β-ᴅ-Gal-(1→3)-α-ᴅ-GalNAc) and its 3'-sulfated analogue with a TEG-N3 spacer attached is described. The synthesis of the TF antigen comprises seven steps, from a known N-Troc-protected galactosamine donor, with an overall yield of 31%. Both the spacer (85%) and the galactose moiety (79%) were introduced using thioglycoside donors in NIS/AgOTf-promoted glycosylation reactions. The 3'-sulfate was finally introduced through tin activation in benzene/DMF followed by treatment with a sulfur trioxide-trimethylamine complex in a 66% yield.
Collapse
Affiliation(s)
- Mark Reihill
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hanyue Ma
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dennis Bengtsson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Hachisu K, Tsuchida A, Takada Y, Mizuno M, Ideo H. Galectin-4 Is Involved in the Structural Changes of Glycosphingolipid Glycans in Poorly Differentiated Gastric Cancer Cells with High Metastatic Potential. Int J Mol Sci 2023; 24:12305. [PMID: 37569679 PMCID: PMC10418866 DOI: 10.3390/ijms241512305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Gastric cancer with peritoneal dissemination is difficult to treat surgically, and frequently recurs and metastasizes. Currently, there is no effective treatment for this disease, and there is an urgent need to elucidate the molecular mechanisms underlying peritoneal dissemination and metastasis. Our previous study demonstrated that galectin-4 participates in the peritoneal dissemination of poorly differentiated gastric cancer cells. In this study, the glycan profiles of cell surface proteins and glycosphingolipids (GSLs) of the original (wild), galectin-4 knockout (KO), and rescue cells were investigated to understand the precise mechanisms involved in the galectin-4-mediated regulation of associated molecules, especially with respect to glycosylation. Glycan analysis of the NUGC4 wild type and galectin-4 KO clones with and without peritoneal metastasis revealed a marked structural change in the glycans of neutral GSLs, but not in N-glycan. Furthermore, mass spectrometry (MS) combined with glycosidase digestion revealed that this structural change was due to the presence of the lacto-type (β1-3Galactosyl) glycan of GSL, in addition to the neolacto-type (β1-4Galactosyl) glycan of GSL. Our results demonstrate that galectin-4 is an important regulator of glycosylation in cancer cells and galectin-4 expression affects the glycan profile of GSLs in malignant cancer cells with a high potential for peritoneal dissemination.
Collapse
Affiliation(s)
- Kazuko Hachisu
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (K.H.); (M.M.)
| | - Akiko Tsuchida
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | - Mamoru Mizuno
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (K.H.); (M.M.)
| | - Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| |
Collapse
|
5
|
Slámová K, Červený J, Mészáros Z, Friede T, Vrbata D, Křen V, Bojarová P. Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly. Molecules 2023; 28:molecules28104039. [PMID: 37241779 DOI: 10.3390/molecules28104039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Galectins are carbohydrate-binding lectins that modulate the proliferation, apoptosis, adhesion, or migration of cells by cross-linking glycans on cell membranes or extracellular matrix components. Galectin-4 (Gal-4) is a tandem-repeat-type galectin expressed mainly in the epithelial cells of the gastrointestinal tract. It consists of an N- and a C-terminal carbohydrate-binding domain (CRD), each with distinct binding affinities, interconnected with a peptide linker. Compared to other more abundant galectins, the knowledge of the pathophysiology of Gal-4 is sparse. Its altered expression in tumor tissue is associated with, for example, colon, colorectal, and liver cancers, and it increases in tumor progression, and metastasis. There is also very limited information on the preferences of Gal-4 for its carbohydrate ligands, particularly with respect to Gal-4 subunits. Similarly, there is virtually no information on the interaction of Gal-4 with multivalent ligands. This work shows the expression and purification of Gal-4 and its subunits and presents a structure-affinity relationship study with a library of oligosaccharide ligands. Furthermore, the influence of multivalency is demonstrated in the interaction with a model lactosyl-decorated synthetic glycoconjugate. The present data may be used in biomedical research for the design of efficient ligands of Gal-4 with diagnostic or therapeutic potential.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Jakub Červený
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Zuzana Mészáros
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Biochemistry, University of Chemistry and Technology Prague, Technická 6, 160 00 Prague 6, Czech Republic
| | - Tereza Friede
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - David Vrbata
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| |
Collapse
|
6
|
Das KK, Brown JW. 3'-sulfated Lewis A/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Front Cell Dev Biol 2023; 11:1089028. [PMID: 36866273 PMCID: PMC9971977 DOI: 10.3389/fcell.2023.1089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Metaplasia, dysplasia, and cancer arise from normal epithelia via a plastic cellular transformation, typically in the setting of chronic inflammation. Such transformations are the focus of numerous studies that strive to identify the changes in RNA/Protein expression that drive such plasticity along with the contributions from the mesenchyme and immune cells. However, despite being widely utilized clinically as biomarkers for such transitions, the role of glycosylation epitopes is understudied in this context. Here, we explore 3'-Sulfo-Lewis A/C, a clinically validated biomarker for high-risk metaplasia and cancer throughout the gastrointestinal foregut: esophagus, stomach, and pancreas. We discuss the clinical correlation of sulfomucin expression with metaplastic and oncogenic transformation, as well as its synthesis, intracellular and extracellular receptors and suggest potential roles for 3'-Sulfo-Lewis A/C in contributing to and maintaining these malignant cellular transformations.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Specificity of viscumin revised. As probed with a printed glycan array. Biochimie 2022; 202:94-102. [PMID: 35988841 DOI: 10.1016/j.biochi.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 01/01/2023]
Abstract
Viscumin, a lectin used in anti-cancer therapy, was originally considered as βGal recognizing protein; later, an ability to bind 6'-sialyl N-acetyllactosamine (6'SLN) terminated gangliosides was found. Here we probed viscumin with a printed glycan array (PGA) containing a large number of mammalian sulfated glycans, and found a strong binding to glycans with 6-O-SuGal moiety as lactose, N-acetyllactosamine (LN), di-N-acetyllactosamine (LacdiNAc), and even 6-O-SuGalNAcα (but not SiaTn). Also, the ability to bind some of αGal terminated glycans, including Galα1-3Galβ1-4GlcNAc, was observed. Unexpectedly, only weak interaction was detected with parent neutral β-galactosides including LN-LN-LN and branched (LN)2LN oligolactosamines; in the light of these data, one should not confidently classify viscumin as a β-galactoside-binding lectin. Carrying out PGA in the presence of neutral or sulfated/sialylated glycan, together with sequential elution from lactose-sepharose and consideration of the protein structure, lead to the conclusion that two glycan-binding sites of viscumin have different specificities, one of which prefers charged sulfated and sialylated moieties.
Collapse
|
8
|
Tang JSJ, Smaczniak AD, Tepper L, Rosencrantz S, Aleksanyan M, Dähne L, Rosencrantz RR. Glycopolymer based LbL Multilayer Thin Films with Embedded Liposomes. Macromol Biosci 2022; 22:e2100461. [PMID: 35080349 DOI: 10.1002/mabi.202100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/08/2022]
Abstract
Layer-by-layer (LbL) self-assembly emerged as an efficient technique for fabricating coating systems for, e.g., drug delivery systems with great versatility and control. In this work, we describe protecting group free and aqueous-based syntheses of bioinspired glycopolymer electrolytes. Thin films of the glycopolymers are fabricated by LbL self-assembly and function as scaffolds for liposomes, which potentially can encapsulate active substances. We investigate the adsorbed mass, pH stability and integrity of glycopolymer coatings as well as the embedded liposomes via whispering gallery mode (WGM) technology and quartz crystal microbalance with dissipation (QCM-D) monitoring, which enable label-free characterization. Glycopolymer thin films, with and without liposomes, are stable in the physiological pH range. QCM-D measurements verify the integrity of lipid vesicles. Thus, we present the fabrication of glycopolymer-based surface coatings with embedded and intact liposomes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jo Sing Julia Tang
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, Potsdam, 14476, Germany.,University of Potsdam, Institute of Chemistry, Chair of Polymer Materials and Polymer Technologies, Potsdam-Golm, 14476, Germany
| | | | - Lucas Tepper
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, Potsdam, 14476, Germany
| | - Sophia Rosencrantz
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, Potsdam, 14476, Germany
| | - Mina Aleksanyan
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, Potsdam, 14476, Germany
| | - Lars Dähne
- Surflay Nanotec GmbH, Max-Planck Straße 3, Berlin, 12489, Germany
| | - Ruben R Rosencrantz
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, Potsdam, 14476, Germany
| |
Collapse
|
9
|
Sun L, Konstantinidi A, Ye Z, Nason R, Zhang Y, Büll C, Kahl-Knutson B, Hansen L, Leffler H, Vakhrushev SY, Yang Z, Clausen H, Narimatsu Y. Installation of O-glycan sulfation capacities in human HEK293 cells for display of sulfated mucins. J Biol Chem 2021; 298:101382. [PMID: 34954141 PMCID: PMC8789585 DOI: 10.1016/j.jbc.2021.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
The human genome contains at least 35 genes that encode Golgi sulfotransferases that function in the secretory pathway, where they are involved in decorating glycosaminoglycans, glycolipids, and glycoproteins with sulfate groups. Although a number of important interactions by proteins such as selectins, galectins, and sialic acid–binding immunoglobulin-like lectins are thought to mainly rely on sulfated O-glycans, our insight into the sulfotransferases that modify these glycoproteins, and in particular GalNAc-type O-glycoproteins, is limited. Moreover, sulfated mucins appear to accumulate in respiratory diseases, arthritis, and cancer. To explore further the genetic and biosynthetic regulation of sulfated O-glycans, here we expanded a cell-based glycan array in the human embryonic kidney 293 (HEK293) cell line with sulfation capacities. We stably engineered O-glycan sulfation capacities in HEK293 cells by site-directed knockin of sulfotransferase genes in combination with knockout of genes to eliminate endogenous O-glycan branching (core2 synthase gene GCNT1) and/or sialylation capacities in order to provide simplified substrates (core1 Galβ1–3GalNAcα1–O-Ser/Thr) for the introduced sulfotransferases. Expression of the galactose 3-O-sulfotransferase 2 in HEK293 cells resulted in sulfation of core1 and core2 O-glycans, whereas expression of galactose 3-O-sulfotransferase 4 resulted in sulfation of core1 only. We used the engineered cell library to dissect the binding specificity of galectin-4 and confirmed binding to the 3-O-sulfo-core1 O-glycan. This is a first step toward expanding the emerging cell-based glycan arrays with the important sulfation modification for display and production of glycoconjugates with sulfated O-glycans.
Collapse
Affiliation(s)
- Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Medical College of Yan'an University, Yan'an University, Yan'an, 716000, Shaanxi Province, China
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yuecheng Zhang
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Jan Waldenströms gata 25, 205 06 Malmö, Sweden
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Barbro Kahl-Knutson
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan28, 221 84 Lund, Sweden
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan28, 221 84 Lund, Sweden
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
10
|
Li Y, Li Y, Xia J, Yang Q, Chen Y, Sun H. 3'-Sulfo-TF Antigen Determined by GAL3ST2/ST3GAL1 Is Essential for Antitumor Activity of Fungal Galectin AAL/AAGL. ACS OMEGA 2021; 6:17379-17390. [PMID: 34278124 PMCID: PMC8280635 DOI: 10.1021/acsomega.1c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Many lectins have been reported to have antitumor activities; identifying the glycan ligands in tumor cells of lectins is crucial for lectin clinical application. An edible mushroom galectin, Agrocybe aegerita lectin (AAL/AAGL), that has a high antitumor activity has been reported. In this paper, based on the glycan array data, it is showed that the Thomsen-Friedenreich antigen (TF antigen)-related O-glycans were found to be highly correlated with the antitumor activity of AAL/AAGL. Further glycosyltransferase quantification suggested that the ratio between GAL3ST2 and ST3GAL1 (GAL3ST2/ST3GAL1), which determined the 3'-sulfo-TF expression level, was highly correlated with the antitumor activity of AAL/AAGL. Overexpressing the enzyme of GAL3ST2 in HL60 and HeLa cell lines could increase the growth inhibition ratio of AAL/AAGL from 22.7 to 43.9% and 27.8 to 39.1%, respectively. However, ST3GAL1 in Jurkat cells could decrease the growth inhibition ratio from 44.7 to 35.6%. All the data suggested that the 3'-sulfo-TF antigen is one of the main glycan ligands that AAL/AAGL recognizes in tumor cells. AAL/AAGL may potentially serve as a reagent for cancer diagnosis and a targeted therapy for the 3'-sulfo-TF antigen.
Collapse
Affiliation(s)
- Yang Li
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
| | - Yan Li
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
| | - Jing Xia
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
| | - Qing Yang
- College
of Food Science and Engineering, Wuhan Polytechnic
University, Wuhan, Hubei Province 430023, P. R. China
| | - Yijie Chen
- College
of Food Science and Technology, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Hui Sun
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
- Hubei
Province key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei Province 430072, P. R. China
| |
Collapse
|
11
|
Quintana JI, Delgado S, Núñez-Franco R, Cañada FJ, Jiménez-Osés G, Jiménez-Barbero J, Ardá A. Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Front Chem 2021; 9:664097. [PMID: 33968903 PMCID: PMC8097242 DOI: 10.3389/fchem.2021.664097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
The tandem-repeat Galectin-4 (Gal-4) contains two different domains covalently linked through a short flexible peptide. Both domains have been shown to bind preferentially to A and B histo blood group antigens with different affinities, although the binding details are not yet available. The biological relevance of these associations is unknown, although it could be related to its attributed role in pathogen recognition. The presentation of A and B histo blood group antigens in terms of peripheral core structures differs among tissues and from that of the antigen-mimicking structures produced by pathogens. Herein, the binding of the N-terminal domain of Gal-4 toward a group of differently presented A and B oligosaccharide antigens in solution has been studied through a combination of NMR, isothermal titration calorimetry (ITC), and molecular modeling. The data presented in this paper allow the identification of the specific effects that subtle chemical modifications within this antigenic family have in the binding to the N-terminal domain of Gal-4 in terms of affinity and intermolecular interactions, providing a structural-based rationale for the observed trend in the binding preferences.
Collapse
Affiliation(s)
- Jon I Quintana
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sandra Delgado
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - F Javier Cañada
- Margarita Salas Center for Biological Research, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry ll, Faculty of Science & Technology, University of the Basque Country, Leioa, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Bernhard S, Goodman CK, Norton EG, Alme DG, Lawrence CM, Cloninger MJ. Time-Dependent Fluorescence Spectroscopy to Quantify Complex Binding Interactions. ACS OMEGA 2020; 5:29017-29024. [PMID: 33225133 PMCID: PMC7675582 DOI: 10.1021/acsomega.0c03416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 05/13/2023]
Abstract
Measuring the binding affinity for proteins that can aggregate or undergo complex binding motifs presents a variety of challenges. In this study, fluorescence lifetime measurements using intrinsic tryptophan fluorescence were performed to address these challenges and to quantify the binding of a series of carbohydrates and carbohydrate-functionalized dendrimers to recombinant human galectin-3. Collectively, galectins represent an important target for study; in particular, galectin-3 plays a variety of roles in cancer biology. Galectin-3 binding dissociation constants (K D) were quantified: lactoside (73 ± 4 μM), methyllactoside (54 ± 10 μM), and lactoside-functionalized G(2), G(4), and G(6)-PAMAM dendrimers (120 ± 58 μM, 100 ± 45 μM, and 130 ± 25 μM, respectively). The chosen examples showcase the widespread utility of time-dependent fluorescence spectroscopy for determining binding constants, including interactions for which standard methods have significant limitations.
Collapse
Affiliation(s)
- Samuel
P. Bernhard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Candace K. Goodman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Erienne G. Norton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Daniel G. Alme
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| | - Mary J. Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| |
Collapse
|
13
|
Zhang T, van Die I, Tefsen B, van Vliet SJ, Laan LC, Zhang J, Ten Dijke P, Wuhrer M, Belo AI. Differential O- and Glycosphingolipid Glycosylation in Human Pancreatic Adenocarcinoma Cells With Opposite Morphology and Metastatic Behavior. Front Oncol 2020; 10:732. [PMID: 32582529 PMCID: PMC7280451 DOI: 10.3389/fonc.2020.00732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 01/15/2023] Open
Abstract
Changes in the glycosylation profile of cancer cells have been strongly associated with cancer progression. To increase our insights into the role of glycosylation in human pancreatic ductal adenocarcinoma (PDAC), we performed a study on O-glycans and glycosphingolipid (GSL) glycans of the PDAC cell lines Pa-Tu-8988T (PaTu-T) and Pa-Tu-8988S (PaTu-S). These cell lines are derived from the same patient, but show an almost opposite phenotype, morphology and capacity to metastasize, and may thus provide an attractive model to study the role of glycosylation in progression of PDAC. Gene-array analysis revealed that 24% of the glycosylation-related genes showed a ≥ 1.5-fold difference in expression level between the two cell lines. Subsequent validation of the data by porous graphitized carbon nano-liquid chromatography coupled to a tandem ion trap mass spectrometry and flow cytometry established major differences in O-glycans and GSL-glycans between the cell lines, including lower levels of T and sialylated Tn (sTn) antigens, neoexpression of globosides (Gb3 and Gb4), and higher levels of gangliosides in the mesenchymal-like PaTu-T cells compared to the epithelial-like PaTu-S. In addition, PaTu-S cells demonstrated a significantly higher binding of the immune-lectins macrophage galactose-type lectin and galectin-4 compared to PaTu-T. In summary, our data provide a comprehensive and differential glycan profile of two PDAC cell lines with disparate phenotypes and metastatic behavior. This will allow approaches to modulate and monitor the glycosylation of these PDAC cell lines, which opens up avenues to study the biology and metastatic behavior of PDAC.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Boris Tefsen
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jing Zhang
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Ana I Belo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Yu SY, Snovida S, Khoo KH. Permethylation and Microfractionation of Sulfated Glycans for MS Analysis. Bio Protoc 2020; 10:e3617. [PMID: 33659290 PMCID: PMC7842599 DOI: 10.21769/bioprotoc.3617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 07/30/2023] Open
Abstract
Sulfated glycans are barely detectable in routine mass spectrometry (MS)-based glycomic analysis due to ion suppression by the significantly more abundant neutral glycans in the positive ion mode, and sialylated non-sulfated glycans in the negative ion mode, respectively. Nevertheless, the negative charge imparted by sulfate can be advantageous for selective detection in the negative ion mode if the sialic acids can first be neutralized. This is most conveniently achieved by a concerted sample preparation workflow in which permethylation is followed by solid phase fractionation to isolate the sulfated glycans prior to MS analysis. Importantly, we demonstrated that conventional NaOH/DMSO slurry permethylation method can retain the sulfates. Instead of extracting permethylated glycans into chloroform for sample clean-up, reverse phase C18 cartridge coupled with self-packed amine-tip or mixed mode weak anion exchange cartridge can be utilized to obtain in good yield the non-sulfated, mono-sulfated, and multiply sulfated permethylated glycans in separate fractions for sulfoglycomic analysis.
Collapse
Affiliation(s)
- Shin-Yi Yu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
- University Lille, CNRS, UMR 8576 –UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Sergei Snovida
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
15
|
Miller MC, Zheng Y, Zhou Y, Tai G, Mayo KH. Galectin-3 binds selectively to the terminal, non-reducing end of β(1→4)-galactans, with overall affinity increasing with chain length. Glycobiology 2019; 29:74-84. [PMID: 30204870 DOI: 10.1093/glycob/cwy085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Galactans are linear polysaccharides of β(1→4)-linked galactose residues. Although they can antagonize galectin function, the nature of their binding to galectins needs to be better defined to develop them as drugs. Here, we investigated interactions between galectin-3 (Gal-3) and a series of galactans ranging in weight average molecular weight from 670 to 7550 Da. 15N-1H HSQC NMR studies with 15N-labeled Gal-3 carbohydrate recognition domain (CRD) indicate that each of these galactans interacts primarily with residues in β-strands 4, 5 and 6 on the canonical, β-galactoside sugar binding S-face. Although these galactans also bind to full length Gal-3 (CRD plus N-terminal tail) to the same extent, it appears that binding to the S-face attenuates interactions between the CRD F-face and N-terminal tail, making interpretation of site-specific binding unclear. Following assignment of galactan 13C and 1H resonances using HSQC, HMBC and TOCSY experiments, we used 13C-1H HSQC data to demonstrate that the Gal-3 CRD binds to the terminal, non-reducing end of these galactans, regardless of their size, but with binding affinity increasing as the galactan chain length increases. Overall, our findings increase understanding as to how galactans interact with Gal-3 at the non-reducing, terminal end of galactose-containing polysaccharides as found on the cell surface.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN, USA
| | - Yi Zheng
- School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Integrated analysis of ethionamide resistance loci in Mycobacterium tuberculosis clinical isolates. Tuberculosis (Edinb) 2018; 113:163-174. [DOI: 10.1016/j.tube.2018.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/15/2018] [Accepted: 08/22/2018] [Indexed: 01/31/2023]
|
17
|
Dings RPM, Miller MC, Griffin RJ, Mayo KH. Galectins as Molecular Targets for Therapeutic Intervention. Int J Mol Sci 2018; 19:ijms19030905. [PMID: 29562695 PMCID: PMC5877766 DOI: 10.3390/ijms19030905] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Galectins are a family of small, highly conserved, molecular effectors that mediate various biological processes, including chemotaxis and angiogenesis, and that function by interacting with various cell surface glycoconjugates, usually targeting β-galactoside epitopes. Because of their significant involvement in various biological functions and pathologies, galectins have become a focus of therapeutic discovery for clinical intervention against cancer, among other pathological disorders. In this review, we focus on understanding galectin structure-function relationships, their mechanisms of action on the molecular level, and targeting them for therapeutic intervention against cancer.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc Natl Acad Sci U S A 2018; 115:E2509-E2518. [PMID: 29382751 PMCID: PMC5856548 DOI: 10.1073/pnas.1720055115] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells are decorated with charged and uncharged carbohydrate ligands known as glycans, which are responsible for several key functions, including their interactions with proteins known as lectins. Here, a platform consisting of synthetic nanoscale vesicles, known as glycodendrimersomes, which can be programmed with cell surface-like structural and topological complexity, is employed to dissect design aspects of glycan presentation, with specificity for lectin-mediated bridging. Aggregation assays reveal the extent of cross-linking of these biomimetic nanoscale vesicles—presenting both anionic and neutral ligands in a bioactive manner—with disease-related human and other galectins, thus offering the possibility of unraveling the nature of these fundamental interactions. Precise translation of glycan-encoded information into cellular activity depends critically on highly specific functional pairing between glycans and their human lectin counter receptors. Sulfoglycolipids, such as sulfatides, are important glycolipid components of the biological membranes found in the nervous and immune systems. The optimal molecular and spatial design aspects of sulfated and nonsulfated glycans with high specificity for lectin-mediated bridging are unknown. To elucidate how different molecular and spatial aspects combine to ensure the high specificity of lectin-mediated bridging, a bottom-up toolbox is devised. To this end, negatively surface-charged glycodendrimersomes (GDSs), of different nanoscale dimensions, containing sulfo-lactose groups are self-assembled in buffer from a synthetic sulfatide mimic: Janus glycodendrimer (JGD) containing a 3′-O-sulfo-lactose headgroup. Also prepared for comparative analysis are GDSs with nonsulfated lactose, a common epitope of human membranes. These self-assembled GDSs are employed in aggregation assays with 15 galectins, comprising disease-related human galectins, and other natural and engineered variants from four families, having homodimeric, heterodimeric, and chimera architectures. There are pronounced differences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsiveness to the charge of carbohydrate-derived ligand. Assays reveal strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface cross-linking. These findings demonstrate how synthetic JGD-headgroup tailoring teamed with protein engineering and network assays can help explain how molecular matchmaking operates in the cellular context of glycan and lectin complexity.
Collapse
|
19
|
Kamili NA, Arthur CM, Gerner-Smidt C, Tafesse E, Blenda A, Dias-Baruffi M, Stowell SR. Key regulators of galectin-glycan interactions. Proteomics 2017; 16:3111-3125. [PMID: 27582340 DOI: 10.1002/pmic.201600116] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
Protein-ligand interactions serve as fundamental regulators of numerous biological processes. Among protein-ligand pairs, glycan binding proteins (GBPs) and the glycans they recognize represent unique and highly complex interactions implicated in a broad range of regulatory activities. With few exceptions, cell surface receptors and secreted proteins are heavily glycosylated. As these glycans often represent highly regulatable post-translational modifications, alterations in glycosylation can fundamentally impact GBP recognition. Among GBPs, galectins in particular appear to engage a diverse set of glycan determinants to impact a broad range of biological processes. In this review, we will explore factors that impact galectin activity, including the effect of glycan modification on galectin-glycan interactions.
Collapse
Affiliation(s)
- Nourine A Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian Gerner-Smidt
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eden Tafesse
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Blenda
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biology, Erskine College, Due West, SC, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
20
|
Hosoda M, Akune Y, Aoki-Kinoshita KF. Development and application of an algorithm to compute weighted multiple glycan alignments. Bioinformatics 2017; 33:1317-1323. [PMID: 28093404 PMCID: PMC5408794 DOI: 10.1093/bioinformatics/btw827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 11/13/2022] Open
Abstract
Motivation A glycan consists of monosaccharides linked by glycosidic bonds, has branches and forms complex molecular structures. Databases have been developed to store large amounts of glycan-binding experiments, including glycan arrays with glycan-binding proteins. However, there are few bioinformatics techniques to analyze large amounts of data for glycans because there are few tools that can handle the complexity of glycan structures. Thus, we have developed the MCAW (Multiple Carbohydrate Alignment with Weights) tool that can align multiple glycan structures, to aid in the understanding of their function as binding recognition molecules. Results We have described in detail the first algorithm to perform multiple glycan alignments by modeling glycans as trees. To test our tool, we prepared several data sets, and as a result, we found that the glycan motif could be successfully aligned without any prior knowledge applied to the tool, and the known recognition binding sites of glycans could be aligned at a high rate amongst all our datasets tested. We thus claim that our tool is able to find meaningful glycan recognition and binding patterns using data obtained by glycan-binding experiments. The development and availability of an effective multiple glycan alignment tool opens possibilities for many other glycoinformatics analysis, making this work a big step towards furthering glycomics analysis. Availability and Implementation http://www.rings.t.soka.ac.jp. Contact kkiyoko@soka.ac.jp. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Masae Hosoda
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Yukie Akune
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | | |
Collapse
|
21
|
Synthesis of β-galactosylamides as ligands of the peanut lectin. Insights into the recognition process. Carbohydr Res 2017; 443-444:58-67. [PMID: 28355582 DOI: 10.1016/j.carres.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 11/21/2022]
Abstract
The synthesis of mono and divalent β-galactosylamides linked to a hydroxylated chain having a C2 symmetry axis derived from l-tartaric anhydride is reported. Reference compounds devoid of hydroxyl groups in the linker were also prepared from β-galactosylamine and succinic anhydride. After functionalization with an alkynyl residue, the resulting building blocks were grafted onto different azide-equipped scaffolds through the copper catalyzed azide-alkyne cycloaddition. Thus, a family of structurally related mono and divalent β-N-galactopyranosylamides was obtained and fully characterized. The binding affinities of the ligands towards the model lectin PNA were measured by the enzyme-linked lectin assay (ELLA). The IC50 values were significantly higher than that of galactose but the presence of hydroxyl groups in the aglycone chain improved lectin recognition. Docking and molecular dynamics experiments were in accordance with the hypothesis that a hydroxyl group properly disposed in the linker could mimic the Glc O3 in the recognition process. On the other hand, divalent presentation of the ligands led to lectin affinity enhancements.
Collapse
|
22
|
Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Histochem Cell Biol 2016; 147:285-301. [PMID: 28013366 DOI: 10.1007/s00418-016-1525-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
Abstract
A hallmark of endogenous lectins is their ability to select a few distinct glycoconjugates as counterreceptors for functional pairing from the natural abundance of cellular glycoproteins and glycolipids. As a consequence, assays to assess inhibition of lectin binding should necessarily come as close as possible to the physiological situation, to characterize an impact of a synthetic compound on biorelevant binding with pharmaceutical perspective. We here introduce in a proof-of-principle manner work with sections of paraffin-embedded tissue (jejunum, epididymis) and labeled adhesion/growth-regulatory galectins, harboring one (galectin-1 and galectin-3) or two (galectin-8) types of lectin domain. Six pairs of synthetic lactosides from tailoring of the headgroup (3'-O-sulfation) and the aglycone (β-methyl to aromatic S- and O-linked extensions) as well as three bi- to tetravalent glycoclusters were used as test compounds. Varying extents of reduction in staining intensity by synthetic compounds relative to unsubstituted/free lactose proved the applicability and sensitivity of the method. Flanking cytofluorimetric assays on lectin binding to native cells gave similar grading, excluding a major impact of tissue fixation. The experiments revealed cell/tissue binding of galectin-8 preferentially via one domain, depending on the cell type so that the effect of an inhibitor in a certain context cannot be extrapolated to other cells/tissues. Moreover, the work with the other galectins attests that this assay enables comprehensive analysis of the galectin network in serial tissue sections to determine overlaps and regional differences in inhibitory profiles.
Collapse
|
23
|
Higuero AM, Díez-Revuelta N, Abad-Rodríguez J. The sugar code in neuronal physiology. Histochem Cell Biol 2016; 147:257-267. [PMID: 27999993 DOI: 10.1007/s00418-016-1519-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Carbohydrate-related interactions are necessary for the correct development and function of the nervous system. As we illustrate with several examples, those interactions are controlled by carbohydrate-modifying enzymes and by carbohydrate-binding proteins that regulate a plethora of complex axonal processes. Among others, glycan-related proteins as sialidase Neu3 or galectins-1, -3, and -4 play central roles in the determination of axonal fate, axon growth, guidance and regeneration, as well as in polarized axonal glycoprotein transport. In addition, myelination is also highly dependent on glycans, and the stabilization of myelin architecture requires the interaction of the myelin-associated glycoprotein (siglec-4) with gangliosides in the axonal membrane. The roles of glycans in neuroscience are far from being completely understood, though the cases presented here underscore the importance and potential of carbohydrates to establish with precision key molecular mechanisms of the physiology of the nervous system. New specific applications in diagnosis as well as the definition of new molecular targets to treat neurological diseases related to lectins and/or glycans are envisioned in the future.
Collapse
Affiliation(s)
- Alonso M Higuero
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
24
|
Artigas G, Hinou H, Garcia-Martin F, Gabius HJ, Nishimura SI. Synthetic Mucin-Like Glycopeptides as Versatile Tools to Measure Effects of Glycan Structure/Density/Position on the Interaction with Adhesion/Growth-Regulatory Galectins in Arrays. Chem Asian J 2016; 12:159-167. [DOI: 10.1002/asia.201601420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Gerard Artigas
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| | - Fayna Garcia-Martin
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; Ludwig-Maximilians-University Munich; Veterinärstr. 13 80539 München Germany
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| |
Collapse
|
25
|
Noll AJ, Gourdine JP, Yu Y, Lasanajak Y, Smith DF, Cummings RD. Galectins are human milk glycan receptors. Glycobiology 2016; 26:655-69. [PMID: 26747425 PMCID: PMC4847615 DOI: 10.1093/glycob/cww002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
The biological recognition of human milk glycans (HMGs) is poorly understood. Because HMGs are rich in galactose we explored whether they might interact with human galectins, which bind galactose-containing glycans and are highly expressed in epithelial cells and other cell types. We screened a number of human galectins for their binding to HMGs on a shotgun glycan microarray consisting of 247 HMGs derived from human milk, as well as to a defined HMG microarray. Recombinant human galectins (hGal)-1, -3, -4, -7, -8 and -9 bound selectively to glycans, with each galectin recognizing a relatively unique binding motif; by contrast hGal-2 did not recognize HMGs, but did bind to the human blood group A Type 2 determinants on other microarrays. Unlike other galectins, hGal-7 preferentially bound to glycans expressing a terminal Type 1 (Galβ1-3GlcNAc) sequence, a motif that had eluded detection on non-HMG glycan microarrays. Interactions with HMGs were confirmed in a solution setting by isothermal titration microcalorimetry and hapten inhibition experiments. These results demonstrate that galectins selectively bind to HMGs and suggest the possibility that galectin-HMG interactions may play a role in infant immunity.
Collapse
Affiliation(s)
- Alexander J Noll
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Ying Yu
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yi Lasanajak
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA
| | - David F Smith
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087-3 Blackfan Circle, Boston, MA 02115, USA
| |
Collapse
|
26
|
Abstract
Galectin-4, a tandem repeat member of the β-galactoside-binding proteins, possesses two carbohydrate-recognition domains (CRD) in a single peptide chain. This lectin is mostly expressed in epithelial cells of the intestinal tract and secreted to the extracellular. The two domains have 40% similarity in amino acid sequence, but distinctly binding to various ligands. Just because the two domains bind to different ligands simultaneously, galectin-4 can be a crosslinker and crucial regulator in a large number of biological processes. Recent evidence shows that galectin-4 plays an important role in lipid raft stabilization, protein apical trafficking, cell adhesion, wound healing, intestinal inflammation, tumor progression, etc. This article reviews the physiological and pathological features of galectin-4 and its important role in such processes.
Collapse
|
27
|
Bum-Erdene K, Leffler H, Nilsson UJ, Blanchard H. Structural characterisation of human galectin-4 N-terminal carbohydrate recognition domain in complex with glycerol, lactose, 3'-sulfo-lactose, and 2'-fucosyllactose. Sci Rep 2016; 6:20289. [PMID: 26828567 PMCID: PMC4734333 DOI: 10.1038/srep20289] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 01/02/2023] Open
Abstract
Galectin-4 is a tandem-repeat galectin with two distinct carbohydrate recognition domains (CRD). Galectin-4 is expressed mainly in the alimentary tract and is proposed to function as a lipid raft and adherens junction stabilizer by its glycan cross-linking capacity. Galectin-4 plays divergent roles in cancer and inflammatory conditions, either promoting or inhibiting each disease progression, depending on the specific pathological condition. The study of galectin-4's ligand-binding profile may help decipher its roles under specific conditions. Here we present the X-ray structures of human galectin-4 N-terminal CRD (galectin-4N) bound to different saccharide ligands. Galectin-4's overall fold and its core interactions to lactose are similar to other galectin CRDs. Galectin-4N recognises the sulfate cap of 3'-sulfated glycans by a weak interaction through Arg45 and two water-mediated hydrogen bonds via Trp84 and Asn49. When galectin-4N interacts with the H-antigen mimic, 2'-fucosyllactose, an interaction is formed between the ring oxygen of fucose and Arg45. The extended binding site of galectin-4N may not be well suited to the A/B-antigen determinants, α-GalNAc/α-Gal, specifically due to clashes with residue Phe47. Overall, galectin-4N favours sulfated glycans whilst galectin-4C prefers blood group determinants. However, the two CRDs of galectin-4 can, to a less extent, recognise each other's ligands.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, BMC-C1228b, Klinikgatan 28, SE-22184 Lund, Sweden
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|
28
|
Rustiguel JK, Kumagai PS, Dias-Baruffi M, Costa-Filho AJ, Nonato MC. Recombinant expression, purification and preliminary biophysical and structural studies of C-terminal carbohydrate recognition domain from human galectin-4. Protein Expr Purif 2015; 118:39-48. [PMID: 26432949 DOI: 10.1016/j.pep.2015.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/26/2015] [Accepted: 09/26/2015] [Indexed: 01/16/2023]
Abstract
Galectin-4 (Gal4), a tandem-repeat type galectin, is expressed in healthy epithelium of the gastrointestinal tract. Altered levels of Gal4 expression are associated with different types of cancer, suggesting its usage as a diagnostic marker as well as target for drug development. The functional data available for this class of proteins suggest that the wide spectrum of cellular activities reported for Gal4 relies on distinct glycan specificity and structural characteristics of its two carbohydrate recognition domains. In the present work, two independent constructs for recombinant expression of the C-terminal domain of human galectin-4 (hGal4-CRD2) were developed. His6-tagged and untagged recombinant proteins were overexpressed in Escherichia coli, and purified by affinity chromatography followed by gel filtration. Correct folding and activity of hGal4-CRD2 were assessed by circular dichroism and fluorescence spectroscopies, respectively. Diffraction quality crystals were obtained by vapor-diffusion sitting drop setup and the crystal structure of CRD2 was solved by molecular replacement techniques at 1.78 Å resolution. Our work describes the development of important experimental tools that will allow further studies in order to correlate structure and binding properties of hGal4-CRD2 and human galectin-4 functional activities.
Collapse
Affiliation(s)
- Joane K Rustiguel
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-903 Ribeirão Preto-SP, Brazil
| | - Patricia S Kumagai
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, 13563-120 São Carlos-SP, Brazil
| | - Marcelo Dias-Baruffi
- Laboratório de Glicoimunologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-903 Ribeirão Preto-SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto-SP, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-903 Ribeirão Preto-SP, Brazil.
| |
Collapse
|
29
|
Bum-Erdene K, Leffler H, Nilsson UJ, Blanchard H. Structural characterization of human galectin-4 C-terminal domain: elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens. FEBS J 2015; 282:3348-67. [DOI: 10.1111/febs.13348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023]
Affiliation(s)
| | - Hakon Leffler
- Section MIG; Department of Laboratory Medicine; Lund University; Sweden
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis; Department of Chemistry; Lund University; Sweden
| | | |
Collapse
|
30
|
Liang Y, Chen H, Zhang HB, Jin YX, Guo HQ, Chen XG, Sun H. Lectin from Agrocybe aegerita as a glycophenotype probe for evaluation of progression and survival in colorectal cancer. Asian Pac J Cancer Prev 2015; 15:5601-5. [PMID: 25081672 DOI: 10.7314/apjcp.2014.15.14.5601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Agrocybe aegerita Lectin (AAL) has been identified to have high affinity for sulfated and α2-3- linked sialic acid glycoconjugates, especially the sulfated and sialyl TF (Thomsen-Friedenreich) disaccharide. This study was conducted to investigate the clinicopathological and prognostic value of AAL in identifying aberrant glycosylation in colorectal cancer (CRC). MATERIALS AND METHODS Glycoconjugate expression in 59 CRC tissues were detected using AAL-histochemistry. Clinicopathological associates of expression were analyzed with chi- square test or Fisher's exact test. Relationships between expression and the various clinicopathological parameters was estimated using Kaplan-Meier analysis and Cox regression models. RESULTS AAL specific glycoconjugate expression was significantly higher in tumor than corresponding normal tissues (66.1% and 46.1%, respectively, p=0.037), correlating with depth of invasion (p=0.015) and TNM stage (p=0.024). Patients with lower expression levels had a significantly higher survival rate than those with higher expression (p=0.046 by log rank test and p=0.047 by Breslow test for overall survival; p=0.054 by log rank test and P=0.038 by Breslow test for progress free survival). A marginally significant association was found between AAL specific glycoconjugate expression and overall survival by univariate Cox regression analysis (p=0.059). CONCLUSIONS Lower AAL specific glycoconjugate expression is a significant favorable prognostic factor for overall and progress free survival in CRC. This is the first report about the employment of AAL for histochemical analysis of cancer tissues. The binding characteristics of AAL means it has potential to become a powerful tool for the glycan investigation and clinical application.
Collapse
Affiliation(s)
- Yi Liang
- Department of Clinical Immunology, Guangdong Medical College, Dongguan, China E-mail : ,
| | | | | | | | | | | | | |
Collapse
|
31
|
Ideo H, Hinoda Y, Sakai K, Hoshi I, Yamamoto S, Oka M, Maeda K, Maeda N, Hazama S, Amano J, Yamashita K. Expression of mucin 1 possessing a 3'-sulfated core1 in recurrent and metastatic breast cancer. Int J Cancer 2015; 137:1652-60. [PMID: 25787775 DOI: 10.1002/ijc.29520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 03/03/2015] [Indexed: 11/06/2022]
Abstract
Breast cancer is the most frequent cancer threatening the lives of women between the ages of 30 and 64. The cancer antigen 15-3 assay (CA15-3) has been widely used for the detection of breast cancer recurrence; however, its sensitivity and specificity are inadequate. We previously found that the breast cancer cell line YMBS secretes mucin 1 possessing 3'-sulfated core1 (3Score1-MUC1) into the medium. Therefore, we here evaluated whether 3Score1-MUC1 is secreted into the blood streams of breast cancer patients, and whether it can serve as an improved breast cancer marker. We developed a lectin-sandwich immunoassay, called Gal4/MUC1, using a 3'-sulfated core1-specific galectin-4 and a MUC1 monoclonal antibody. Using the Gal4/MUC1 assay method, we found that 3Score1-MUC1 was profoundly expressed in the blood streams of patients with recurrent and/or metastatic breast cancer. The positive ratio of the Gal4/MUC1 assay was higher than that of the CA15-3 assay in both primary (n = 240) and relapsed (n = 43) patients, especially in the latter of which the positive ratio of Gal4/MUC1 was 86%. whereas that of CA15-3 was 47%. Furthermore, serum Gal4/MUC1 levels could more sensitively reflect the recurrence of primary breast cancer patients after surgery. Therefore, the Gal4/MUC1 assay should be an excellent alternative to the CA15-3 tumor marker for tracking the recurrence and metastasis of breast cancer.
Collapse
Affiliation(s)
- Hiroko Ideo
- Innovative Research Initiatives, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory of Glycobiology, Noguchi Institute, Tokyo, Japan
| | - Yuji Hinoda
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kohei Sakai
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Ikue Hoshi
- Innovative Research Initiatives, Tokyo Institute of Technology, Yokohama, Japan
| | - Shigeru Yamamoto
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Masaaki Oka
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kazunari Maeda
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Noriko Maeda
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Junko Amano
- Laboratory of Glycobiology, Noguchi Institute, Tokyo, Japan
| | - Katsuko Yamashita
- Innovative Research Initiatives, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
32
|
Hu D, Huang H, Tateno H, Nakakita SI, Sato T, Narimatsu H, Yao X, Hirabayashi J. Engineering of a 3′-sulpho-Galβ1-4GlcNAc-specific probe by a single amino acid substitution of a fungal galectin. ACTA ACUST UNITED AC 2015; 157:197-200. [DOI: 10.1093/jb/mvv023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Rauthu SR, Shiao TC, André S, Miller MC, Madej É, Mayo KH, Gabius HJ, Roy R. Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. Chembiochem 2014; 16:126-39. [DOI: 10.1002/cbic.201402474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 12/28/2022]
|
34
|
Aboulaich N, Chung WK, Thompson JH, Larkin C, Robbins D, Zhu M. A novel approach to monitor clearance of host cell proteins associated with monoclonal antibodies. Biotechnol Prog 2014; 30:1114-24. [PMID: 25044920 PMCID: PMC4415537 DOI: 10.1002/btpr.1948] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/21/2014] [Indexed: 11/24/2022]
Abstract
Co-purification of a subset of host cell proteins (HCPs) with monoclonal antibodies (mAbs) during the capture of mAbs on Protein A affinity chromatography is primarily caused by interactions of HCPs with the mAbs. To date, there is limited information about the identity of those HCPs due to the difficulty in detecting low abundance HCPs in the presence of a large amount of the mAb. Here, an approach is presented that allows identification of HCPs that specifically associate with the mAb, while avoiding interference from the mAb itself. This approach involves immobilization of purified mAb onto chromatography resin via cross-linking, followed by incubation with HCPs obtained from supernatant of non-mAb producer cells that are representative of the expression systems used in mAb manufacturing. The HCPs that bind to the mAb are recovered and identified using mass spectrometry. This approach has not only allowed a comprehensive comparison of HCP subpopulations that associate with different mAbs, but also enabled monitoring of the effects of a variety of wash modifiers on the dissociation of individual HCP–mAb interactions. The dissociation of HCPs that associated with the mAb was monitored by enzyme-linked immunosorbent assay and mass spectrometry. This approach can be utilized as a screening tool to assist the development of effective and targeted wash steps in Protein A chromatography that ensures not only reduction of HCP levels copurified with the mAb but also removal of specific HCPs that may have a potential impact on mAb structural stability and patient safety. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1114–1124, 2014
Collapse
Affiliation(s)
- Nabila Aboulaich
- Bioprocess Development, Medimmune LLC, One Medimmune Way, Gaithersburg, MD, 20878
| | | | | | | | | | | |
Collapse
|
35
|
Lakshminarayan R, Wunder C, Becken U, Howes MT, Benzing C, Arumugam S, Sales S, Ariotti N, Chambon V, Lamaze C, Loew D, Shevchenko A, Gaus K, Parton RG, Johannes L. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol 2014; 16:595-606. [PMID: 24837829 DOI: 10.1038/ncb2970] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/15/2014] [Indexed: 12/17/2022]
Abstract
Several cell surface molecules including signalling receptors are internalized by clathrin-independent endocytosis. How this process is initiated, how cargo proteins are sorted and membranes are bent remains unknown. Here, we found that a carbohydrate-binding protein, galectin-3 (Gal3), triggered the glycosphingolipid (GSL)-dependent biogenesis of a morphologically distinct class of endocytic structures, termed clathrin-independent carriers (CLICs). Super-resolution and reconstitution studies showed that Gal3 required GSLs for clustering and membrane bending. Gal3 interacted with a defined set of cargo proteins. Cellular uptake of the CLIC cargo CD44 was dependent on Gal3, GSLs and branched N-glycosylation. Endocytosis of β1-integrin was also reliant on Gal3. Analysis of different galectins revealed a distinct profile of cargoes and uptake structures, suggesting the existence of different CLIC populations. We conclude that Gal3 functionally integrates carbohydrate specificity on cargo proteins with the capacity of GSLs to drive clathrin-independent plasma membrane bending as a first step of CLIC biogenesis.
Collapse
Affiliation(s)
- Ramya Lakshminarayan
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France [4] [5]
| | - Christian Wunder
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France [4] [5]
| | - Ulrike Becken
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France [4] [5]
| | - Mark T Howes
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Carola Benzing
- Centre for Vascular Research, Australian Centre for Nanomedicine and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Senthil Arumugam
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France
| | - Susanne Sales
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Valérie Chambon
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France [4]
| | - Christophe Lamaze
- 1] CNRS UMR3666, 75005 Paris, France [2] INSERM U1143, 75005 Paris, France [3] Institut Curie-Centre de Recherche, Membrane Dynamics and Mechanics of Intracellular Signaling group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [4]
| | - Damarys Loew
- Institut Curie-Centre de Recherche, Proteomics and Mass Spectrometry Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Katharina Gaus
- Centre for Vascular Research, Australian Centre for Nanomedicine and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ludger Johannes
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France [4]
| |
Collapse
|
36
|
Yamashita K, Ohkura T. Determination of glycan motifs using serial lectin affinity chromatography. Methods Mol Biol 2014; 1200:79-92. [PMID: 25117226 DOI: 10.1007/978-1-4939-1292-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Serial lectin affinity chromatography is a convenient technique for characterizing glycan motifs (terminal glycan structures) of glycoproteins or released glycans. When these glycoconjugates are applied serially or in parallel to lectin-immobilized columns, information regarding the glycan motifs can be obtained. We demonstrate lectin affinity chromatographic methods for determining O-linked glycan structures of MUC1 purified from a breast cancer cell line, YMB-S, N-linked glycan structures of serum prostate-specific antigen from prostate cancer, and serum alkaline phosphatases from choriocarcinoma. These lectin-fractionated samples are analyzed quantitatively by measuring radioactivity, antigen contents are analyzed using enzyme-linked immunosorbent assay, and enzymatic activities are assessed.
Collapse
Affiliation(s)
- Katsuko Yamashita
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, 236-0004, Yokohama, Japan,
| | | |
Collapse
|
37
|
Ideo H, Hoshi I, Yamashita K, Sakamoto M. Phosphorylation and externalization of galectin-4 is controlled by Src family kinases. Glycobiology 2013; 23:1452-62. [DOI: 10.1093/glycob/cwt073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
38
|
Mauris J, Mantelli F, Woodward AM, Cao Z, Bertozzi CR, Panjwani N, Godula K, Argüeso P. Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers. PLoS One 2013; 8:e72304. [PMID: 23977277 PMCID: PMC3747151 DOI: 10.1371/journal.pone.0072304] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022] Open
Abstract
Background Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. Methodology/Principal Findings Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. Conclusions/Significance These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.
Collapse
Affiliation(s)
- Jerome Mauris
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Flavio Mantelli
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ashley M. Woodward
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ziyhi Cao
- Department of Ophthalmology, Center for Vision Research, Tufts University Medical School, Boston, Massachusetts, United States of America
| | - Carolyn R. Bertozzi
- Departments of Chemistry, Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, United States of America
- Materials Sciences Division and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Noorjahan Panjwani
- Department of Ophthalmology, Center for Vision Research, Tufts University Medical School, Boston, Massachusetts, United States of America
| | - Kamil Godula
- Materials Sciences Division and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Pablo Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Tu Z, Hsieh HW, Tsai CM, Hsu CW, Wang SG, Wu KJ, Lin KI, Lin CH. Synthesis and Characterization of Sulfated Gal-β-1,3/4-GlcNAc Disaccharides through Consecutive Protection/Glycosylation Steps. Chem Asian J 2013; 8:1536-50. [DOI: 10.1002/asia.201201204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/06/2013] [Indexed: 01/22/2023]
|
40
|
Houzelstein D, Reyes-Gomez E, Maurer M, Netter P, Higuet D. Expression patterns suggest that despite considerable functional redundancy, galectin-4 and -6 play distinct roles in normal and damaged mouse digestive tract. J Histochem Cytochem 2013; 61:348-61. [PMID: 23360694 DOI: 10.1369/0022155413478612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The galectin-4 protein is mostly expressed in the digestive tract and is associated with lipid raft stabilization, protein apical trafficking, wound healing, and inflammation. While most mammalian species, including humans, have a single Lgals4 gene, some mice have two paralogues: Lgals4 and Lgals6. So far, their significant similarities have hindered the analysis of their respective expression and function. We took advantage of two antibodies that discriminate between the galectin-4 and galectin-6 proteins to document their patterns of expression in the normal and the dextran sodium sulfate (DSS)-damaged digestive tract in the mouse. In the normal digestive tract, their pattern of expression from tongue to colon is quite similar, which suggests functional redundancy. However, the presence of galectin-4, but not galectin-6, in the lamina propria of the DSS-damaged colon, its association with luminal colonic bacteria, and differences in subcellular localization of these proteins suggest that they also have distinct roles in the normal and the damaged mouse digestive tract. Our results provide a rare example of ancestral and derived functions evolving after tandem gene duplication.
Collapse
Affiliation(s)
- Denis Houzelstein
- Equipe Génétique et Evolution, UMR7138, CNRS and Université Pierre et Marie Curie, 75252 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
41
|
Nishida A, Nagahama K, Imaeda H, Ogawa A, Lau CW, Kobayashi T, Hisamatsu T, Preffer FI, Mizoguchi E, Ikeuchi H, Hibi T, Fukuda M, Andoh A, Blumberg RS, Mizoguchi A. Inducible colitis-associated glycome capable of stimulating the proliferation of memory CD4+ T cells. ACTA ACUST UNITED AC 2012; 209:2383-94. [PMID: 23209314 PMCID: PMC3526363 DOI: 10.1084/jem.20112631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The colitis-associated glycome mediates CD4+ T cell expansion and contributes to the exacerbation of T cell–mediated intestinal inflammation. Immune responses are modified by a diverse and abundant repertoire of carbohydrate structures on the cell surface, which is known as the glycome. In this study, we propose that a unique glycome that can be identified through the binding of galectin-4 is created on local, but not systemic, memory CD4+ T cells under diverse intestinal inflammatory conditions, but not in the healthy state. The colitis-associated glycome (CAG) represents an immature core 1–expressing O-glycan. Development of CAG may be mediated by down-regulation of the expression of core-2 β1,6-N-acetylglucosaminyltransferase (C2GnT) 1, a key enzyme responsible for the production of core-2 O-glycan branch through addition of N-acetylglucosamine (GlcNAc) to a core-1 O-glycan structure. Mechanistically, the CAG seems to contribute to super raft formation associated with the immunological synapse on colonic memory CD4+ T cells and to the consequent stabilization of protein kinase C θ activation, resulting in the stimulation of memory CD4+ T cell expansion in the inflamed intestine. Functionally, CAG-mediated CD4+ T cell expansion contributes to the exacerbation of T cell–mediated experimental intestinal inflammations. Therefore, the CAG may be an attractive therapeutic target to specifically suppress the expansion of effector memory CD4+ T cells in intestinal inflammation such as that seen in inflammatory bowel disease.
Collapse
Affiliation(s)
- Atsushi Nishida
- Molecular Pathology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang GN, André S, Gabius HJ, Murphy PV. Bi- to tetravalent glycoclusters: synthesis, structure-activity profiles as lectin inhibitors and impact of combining both valency and headgroup tailoring on selectivity. Org Biomol Chem 2012; 10:6893-907. [PMID: 22842468 DOI: 10.1039/c2ob25870f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The emerging functional versatility of cellular glycans makes research on the design of synthetic inhibitors a timely topic. In detail, the combination of ligand (or headgroup or contact site) structure with spatial parameters that depend on topological and geometrical factors underlies the physiological selectivity of glycan-protein (lectin) recognition. We herein tested a panel of bi-, tri- and tetravalent compounds against two plant agglutinins and adhesion/growth-regulatory lectins (galectins). In addition, we examined the impact of headgroup tailoring (converting lactose to 2'-fucosyllactose) in combination with valency increase in two assay types of increasing biorelevance (from solid-phase binding to cell binding). Compounds were prepared using copper-catalysed azide alkyne cycloaddition from peracetylated lactosyl or 2'-fucosyllactosyl azides. Significant inhibition was achieved for the plant toxin with a tetravalent compound. Different levels of sensitivity were noted for the three groups of the galectin family. The headgroup extension to 2'-fucosyllactose led to a selectivity gain, especially for the chimera-type galectin-3. Valency increase established discrimination against the homodimeric proteins, whereas the combination of valency with the headgroup extension led to discrimination against the tandem-repeat-type galectin-8 for chicken galectins but not human galectins-3 and -4. Thus, detailed structure-activity profiling of glycoclusters combined with suitably modifying the contact site for the targeted lectin will help minimize cross-reactivity among this class of closely related proteins.
Collapse
Affiliation(s)
- Guan-Nan Wang
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | | | |
Collapse
|
43
|
Vokhmyanina OA, Rapoport EM, André S, Severov VV, Ryzhov I, Pazynina GV, Korchagina E, Gabius HJ, Bovin NV. Comparative study of the glycan specificities of cell-bound human tandem-repeat-type galectin-4, -8 and -9. Glycobiology 2012; 22:1207-17. [PMID: 22547138 DOI: 10.1093/glycob/cws079] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Adhesion/growth-regulatory galectins (gals) exert their functionality by the cis/trans-cross-linking of distinct glycans after initial one-point binding. In order to define the specificity of ensuing association events leading to cross-linking, we recently established a cell-based assay using fluorescent glycoconjugates as flow cytometry probes and tested it on two human gals (gal-1 and -3). Here we present a systematic study of tandem-repeat-type gal-4, -8 and -9 loaded on Raji cells resulting in the following key insights: (i) all three gals bound to oligolactosamines; (ii) binding to ligands with Galβ1-3GlcNAc or Galβ1-3GalNAc as basic motifs was commonly better than that to canonical Galβ1-4GlcNAc; (iii) all three gals bound to 3'-O-sulfated and 3'-sialylated disaccharides mentioned above better than that to parental neutral forms and (iv) histo-blood group ABH antigens were the highest affinity ligands in both the cell and the solid-phase assay. Fine specificity differences were revealed as follows: (i) gal-8 and -9, but not gal-4, bound to disaccharide Galβ1-3GlcNAc; (ii) increase in binding due to negatively charged substituents was marked only in the case of gal-4 and (iii) gal-4 and -8 bound preferably to histo-blood group A glycans, whereas gal-9 targeted B-type glycans. Experiments with single carbohydrate recognition domains (CRDs) of gal-4 showed that the C-CRD preferably bound to ABH glycans, whereas the N-CRD associated with oligolactosamines. In summary, the comparative analysis disclosed the characteristic profiles of glycan reactivity for the accessible CRD of cell-bound gals. These results indicate the distinct sets of functionality for these three members of the same subgroup of human gals.
Collapse
Affiliation(s)
- Olga A Vokhmyanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Seko A, Ohkura T, Ideo H, Yamashita K. Novel O-linked glycans containing 6'-sulfo-Gal/GalNAc of MUC1 secreted from human breast cancer YMB-S cells: possible carbohydrate epitopes of KL-6(MUC1) monoclonal antibody. Glycobiology 2011; 22:181-95. [PMID: 21880669 DOI: 10.1093/glycob/cwr118] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human serum Krebs von den Lugen-6 (KL-6) antigen is a MUC1 glycoprotein (KL-6/MUC1) recognized by anti-KL-6 monoclonal antibody (KL-6/mAb) and has been utilized as a diagnostic marker for interstitial pneumonia. KL-6/mAb is thought to recognize the specific glycopeptides sequence of MUC1, but the precise glycan structure of the epitope is unclear. In this study, we determined the carbohydrate structures of KL-6/MUC1 to search the carbohydrate epitopes for KL-6/mAb. KL-6/MUC1 was purified from the culture medium of human breast cancer YMB-S cells by KL-6/mAb-affinity chromatography; the O-linked glycan structures were determined in combination with paper electrophoresis, several lectin column chromatographies, sialidase digestion and methanolysis. KL-6/MUC1 contained core 1 and extended core 1 glycans modified with one or two sialic acid/sulfate residues. Based on these structures, several synthetic glycans binding to anti-KL-6/mAb were compared with one another by surface plasmon resonance. Sequentially, related radiolabeled oligosaccharides were enzymatically synthesized and analyzed for binding to a KL-6/mAb-conjugated affinity column. 3'-sialylated, 6'-sulfated LNnT [Neu5Acα2-3(SO(3)(-)-6)Galβ1-4GlcNAcβ1-3Galβ1-4Glc], 3'-sialylated, 6-sulfated core 1 [Neu5Acα2-3Galβ1-3(SO(3)(-)-6)GalNAc] and disulfated core 1 SO(3)(-)-3Galβ1-3(SO(3)(-)-6)GalNAc exhibited substantial affinity for KL-6/mAb, and 3'-sulfated core 1 derivatives [SO(3)(-)-3Galβ1-3(±Neu5Acα2-6)GalNAc] and 3'-sialylated core 1 weakly interacted with KL-6/mAb. These results indicated that the possible carbohydrate epitopes of KL-6/mAb involve not only 3'-sialylated core 1 but also novel core 1 and extended core 1 with sulfate and sialic acid residues. Epitope expressing changes with suppression or over-expression of the Gal6ST (Gal 6-O-sulfotransferase) gene, suggesting that Gal6ST is involved in the biosynthesis of the unique epitopes of KL-6/mAb.
Collapse
Affiliation(s)
- Akira Seko
- Innovative Research Initiatives, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | | | | | | |
Collapse
|
45
|
Barrow H, Rhodes JM, Yu LG. The role of galectins in colorectal cancer progression. Int J Cancer 2011; 129:1-8. [PMID: 21520033 DOI: 10.1002/ijc.25945] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galectins constitute a family of 15 mammalian galactoside-binding proteins that share a consensus amino acid sequence in their carbohydrate binding sites. They are multi-functional molecules and are expressed widely in human tissues. Four galectins: galectin -1, -3, -4 and -8 are expressed in the human colon and rectum and their expressions show significant changes during colorectal cancer development and metastasis. These changes in galectin expression correlate with alterations in cancer cell growth, apoptosis, cell-cell and cell-matrix interactions and angiogenesis. This review summaries current knowledge of the expression and roles of these galectins in the progression of human colorectal cancer and discusses the relevance of galectins and their ligands as potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Hannah Barrow
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
46
|
Iwaki J, Tateno H, Nishi N, Minamisawa T, Nakamura-Tsuruta S, Itakura Y, Kominami J, Urashima T, Nakamura T, Hirabayashi J. The Galβ-(syn)-gauche configuration is required for galectin-recognition disaccharides. Biochim Biophys Acta Gen Subj 2011; 1810:643-51. [DOI: 10.1016/j.bbagen.2011.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/15/2011] [Accepted: 04/06/2011] [Indexed: 12/11/2022]
|
47
|
Ideo H, Matsuzaka T, Nonaka T, Seko A, Yamashita K. Galectin-8-N-domain recognition mechanism for sialylated and sulfated glycans. J Biol Chem 2011; 286:11346-55. [PMID: 21288902 PMCID: PMC3064191 DOI: 10.1074/jbc.m110.195925] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/29/2010] [Indexed: 11/06/2022] Open
Abstract
Galectin-8 has much higher affinity for 3'-O-sulfated or 3'-O-sialylated glycoconjugates and a Lewis X-containing glycan than for oligosaccharides terminating in Galβ1→3/4GlcNAc, and this specificity is mainly attributed to the N-terminal carbohydrate recognition domain (N-domain, CRD) (Ideo, H., Seko, A., Ishizuka, I., and Yamashita, K. (2003) Glycobiology 13, 713-723). In this study, we elucidated the crystal structures of the human galectin-8-N-domain (-8N) in the absence or presence of 4 ligands. The apo molecule forms a dimer, which is different from the canonical 2-fold symmetric dimer observed for galectin-1 and -2. In a galectin-8N-lactose complex, the lactose-recognizing amino acids are highly conserved among the galectins. However, Arg(45), Gln(47), Arg(59), and the long loop region between the S3 and S4 β-strands are unique to galectin-8N. These amino acids directly or indirectly interact with the sulfate or sialic acid moieties of 3'-sialyl- and 3'-sulfolactose complexed with galectin-8N. Furthermore, in the LNF-III-galectin-8N complex, van der Waals interactions occur between the α1-3-branched fucose and galactose and between galactose and Tyr(141), and these interactions increase the affinity toward galectin-8N. Based on the findings of these x-ray crystallographic analyses, a mutagenesis study using surface plasmon resonance showed that Arg(45), Gln(47), and Arg(59) of galectin-8N are indispensable and coordinately contribute to the strong binding of galectins-8N to sialylated and sulfated oligosaccharides. Arg(59) is the most critical amino acid for binding in the S3-S4 loop region.
Collapse
Affiliation(s)
- Hiroko Ideo
- From the Innovative Research Initiatives, Tokyo Institute of Technology, Yokohama 226-8503 and
| | - Tsutomu Matsuzaka
- the School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Takamasa Nonaka
- the School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Akira Seko
- From the Innovative Research Initiatives, Tokyo Institute of Technology, Yokohama 226-8503 and
| | - Katsuko Yamashita
- From the Innovative Research Initiatives, Tokyo Institute of Technology, Yokohama 226-8503 and
| |
Collapse
|
48
|
Chachadi VB, Inamdar SR, Yu LG, Rhodes JM, Swamy BM. Exquisite binding specificity of Sclerotium rolfsii lectin toward TF-related O-linked mucin-type glycans. Glycoconj J 2011; 28:49-56. [DOI: 10.1007/s10719-011-9323-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/14/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
49
|
Scurr DJ, Horlacher T, Oberli MA, Werz DB, Kroeck L, Bufali S, Seeberger PH, Shard AG, Alexander MR. Surface characterization of carbohydrate microarrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17143-17155. [PMID: 20954727 DOI: 10.1021/la1029933] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Carbohydrate microarrays are essential tools to determine the biological function of glycans. Here, we analyze a glycan array by time-of-flight secondary ion mass spectrometry (ToF-SIMS) to gain a better understanding of the physicochemical properties of the individual spots and to improve carbohydrate microarray quality. The carbohydrate microarray is prepared by piezo printing of thiol-terminated sugars onto a maleimide functionalized glass slide. The hyperspectral ToF-SIMS imaging data are analyzed by multivariate curve resolution (MCR) to discern secondary ions from regions of the array containing saccharide, linker, salts from the printing buffer, and the background linker chemistry. Analysis of secondary ions from the linker common to all of the sugar molecules employed reveals a relatively uniform distribution of the sugars within the spots formed from solutions with saccharide concentration of 0.4 mM and less, whereas a doughnut shape is often formed at higher-concentration solutions. A detailed analysis of individual spots reveals that in the larger spots the phosphate buffered saline (PBS) salts are heterogeneously distributed, apparently resulting in saccharide concentrated at the rim of the spots. A model of spot formation from the evaporating sessile drop is proposed to explain these observations. Saccharide spot diameters increase with saccharide concentration due to a reduction in surface tension of the saccharide solution compared to PBS. The multivariate analytical partial least squares (PLS) technique identifies ions from the sugars that in the complex ToF-SIMS spectra correlate with the binding of galectin proteins.
Collapse
Affiliation(s)
- David J Scurr
- University of Nottingham, School of Pharmacy, Boots Science Building, NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Horlacher T, Oberli MA, Werz DB, Kröck L, Bufali S, Mishra R, Sobek J, Simons K, Hirashima M, Niki T, Seeberger PH. Determination of carbohydrate-binding preferences of human galectins with carbohydrate microarrays. Chembiochem 2010; 11:1563-73. [PMID: 20572248 DOI: 10.1002/cbic.201000020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Galectins are a class of carbohydrate-binding proteins named for their galactose-binding preference and are involved in a host of processes ranging from homeostasis of organisms to immune responses. As a first step towards correlating the carbohydrate-binding preferences of the different galectins with their biological functions, we determined carbohydrate recognition fine-specificities of galectins with the aid of carbohydrate microarrays. A focused set of oligosaccharides considered relevant to galectins was prepared by chemical synthesis. Structure-activity relationships for galectin-sugar interactions were determined, and these helped in the establishment of redundant and specific galectin actions by comparison of binding preferences. Distinct glycosylations on the basic lactosyl motifs proved to be key to galectin binding regulation--and therefore galectin action--as either high-affinity ligands are produced or binding is blocked. High-affinity ligands such as the blood group antigens that presumably mediate particular functions were identified.
Collapse
Affiliation(s)
- Tim Horlacher
- Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|