1
|
Moriya A, Nakato E, Li JP, Nakato H. Chondroitin sulfate in invertebrate development. PROTEOGLYCAN RESEARCH 2024; 2:e70009. [PMID: 39664970 PMCID: PMC11632948 DOI: 10.1002/pgr2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024]
Abstract
Chondroitin sulfate (CS) is one of the most evolutionarily conserved glycosaminoglycans (GAGs). Although CS's function in skeletal development is well established in vertebrates, CS exists in more primitive animal species with no cartilage or bone, such as C. elegans and Drosophila, indicating that the original role of CS was not in the skeletal system. In this review, we focus on the roles of CS and the mechanisms of action during development of two genetically trackable model organisms, C. elegans and Drosophila.
Collapse
Affiliation(s)
- Ayano Moriya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Chittum JE, Thompson A, Desai UR. Glycosaminoglycan microarrays for studying glycosaminoglycan-protein systems. Carbohydr Polym 2024; 335:122106. [PMID: 38616080 PMCID: PMC11032185 DOI: 10.1016/j.carbpol.2024.122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
More than 3000 proteins are now known to bind to glycosaminoglycans (GAGs). Yet, GAG-protein systems are rather poorly understood in terms of selectivity of recognition, molecular mechanism of action, and translational promise. High-throughput screening (HTS) technologies are critically needed for studying GAG biology and developing GAG-based therapeutics. Microarrays, developed within the past two decades, have now improved to the point of being the preferred tool in the HTS of biomolecules. GAG microarrays, in which GAG sequences are immobilized on slides, while similar to other microarrays, have their own sets of challenges and considerations. GAG microarrays are rapidly becoming the first choice in studying GAG-protein systems. Here, we review different modalities and applications of GAG microarrays presented to date. We discuss advantages and disadvantages of this technology, explain covalent and non-covalent immobilization strategies using different chemically reactive groups, and present various assay formats for qualitative and quantitative interpretations, including selectivity screening, binding affinity studies, competitive binding studies etc. We also highlight recent advances in implementing this technology, cataloging of data, and project its future promise. Overall, the technology of GAG microarray exhibits enormous potential of evolving into more than a mere screening tool for studying GAG - protein systems.
Collapse
Affiliation(s)
- John E Chittum
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Ally Thompson
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America.
| |
Collapse
|
3
|
Chelini G, Mirzapourdelavar H, Durning P, Baidoe-Ansah D, Sethi MK, O'Donovan SM, Klengel T, Balasco L, Berciu C, Boyer-Boiteau A, McCullumsmith R, Ressler KJ, Zaia J, Bozzi Y, Dityatev A, Berretta S. Focal clusters of peri-synaptic matrix contribute to activity-dependent plasticity and memory in mice. Cell Rep 2024; 43:114112. [PMID: 38676925 PMCID: PMC11251421 DOI: 10.1016/j.celrep.2024.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/09/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Recent findings show that effective integration of novel information in the brain requires coordinated processes of homo- and heterosynaptic plasticity. In this work, we hypothesize that activity-dependent remodeling of the peri-synaptic extracellular matrix (ECM) contributes to these processes. We show that clusters of the peri-synaptic ECM, recognized by CS56 antibody, emerge in response to sensory stimuli, showing temporal and spatial coincidence with dendritic spine plasticity. Using CS56 co-immunoprecipitation of synaptosomal proteins, we identify several molecules involved in Ca2+ signaling, vesicle cycling, and AMPA-receptor exocytosis, thus suggesting a role in long-term potentiation (LTP). Finally, we show that, in the CA1 hippocampal region, the attenuation of CS56 glycoepitopes, through the depletion of versican as one of its main carriers, impairs LTP and object location memory in mice. These findings show that activity-dependent remodeling of the peri-synaptic ECM regulates the induction and consolidation of LTP, contributing to hippocampal-dependent memory.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany
| | - Peter Durning
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - David Baidoe-Ansah
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany
| | - Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sinead M O'Donovan
- Cognitive Disorders Research Laboratory, University of Toledo, Toledo, OH 43606, USA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Translational Molecular Genomics Laboratory, Mclean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Luigi Balasco
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy
| | - Cristina Berciu
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Anne Boyer-Boiteau
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Robert McCullumsmith
- Cognitive Disorders Research Laboratory, University of Toledo, Toledo, OH 43606, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Neurobiology of Fear Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Yuri Bozzi
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy; CNR Neuroscience Institute Pisa, 56124 Pisa, Italy
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany; Medical Faculty, Otto von Guericke University, Magdeburg 39106 Saxony-Anhalt, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg 39106 Saxony-Anhalt, Germany
| | - Sabina Berretta
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Takeda-Okuda N, Yeon SJ, Matsumi Y, Matsuura Y, Hosaka YZ, Tamura JI. Quantitative, compositional, and immunohistochemical analyses of chondroitin sulfate, dermatan sulfate, and hyaluronan in internal organs of deer (Cervus nippon centralis and C. n. yesoensis) and cattle (Bos taurus). Int J Biol Macromol 2024; 261:129680. [PMID: 38281521 DOI: 10.1016/j.ijbiomac.2024.129680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Chondroitin sulfate (CS) + dermatan sulfate (DS) and hyaluronan (HA) concentrations and the sulfation patterns of CS-DS in the cartilaginous tissues and alimentary canals of Honshu Sika deer, Hokkaido Sika deer, and cattle were investigated in the present study. CS + DS concentrations were high in cartilaginous tissues, namely, the trachea and scapular cartilage region (5- 12 g*), and low in the alimentary canal (~0.3 g*). HA concentrations were low in cartilaginous tissues and the alimentary canal (~0.2 g*). All tissues mainly contained A-type [HexAGalNAc(4-sulfate)] and C-type [HexAGalNAc(6-sulfate)] CS + DS. The ratios of A-type/C-type CS + DS were 1.2- 3.1 and 0.9- 16.4 in cartilaginous tissues and the alimentary canal, respectively. CS + DS predominantly comprised β-D-GlcA and α-L-IdoA in cartilaginous tissues and the alimentary canal, respectively. The alimentary canal characteristically contained up to 14 % highly sulfated E-type [HexAGalNAc(4,6-disulfate)] and D-type [HexA(2-sulfate)GalNAc(6-sulfate)] CS + DS. The specific distributions of CS and DS were immunohistochemically confirmed using CS + DS-specific antibodies. Although the omasum of cattle is more likely to have higher concentrations of CS + DS and HA, no significant species differences were observed in the concentrations or sulfation patterns of CS + DS among species for Honshu Sika deer, Hokkaido Sika deer, and cattle. (*per 100 g of defatted dry tissue).
Collapse
Affiliation(s)
- Naoko Takeda-Okuda
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Koyamacho-minami 4-101, Tottori 680-8553, Japan
| | - Su-Jung Yeon
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Koyamacho-minami 4-101, Tottori 680-8553, Japan
| | - Yoshiaki Matsumi
- Technical Department, Tottori University, Koyamacho-minami 4-101, Tottori, 680-8550, Japan
| | - Yoshinori Matsuura
- Technical Department, Tottori University, Koyamacho-minami 4-101, Tottori, 680-8550, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Jun-Ichi Tamura
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Koyamacho-minami 4-101, Tottori 680-8553, Japan.
| |
Collapse
|
5
|
Seffouh I, Bilong M, Przybylski C, El Omrani N, Poyer S, Lamour G, Clément MJ, Boustany RJ, Gout E, Gonnet F, Vivès RR, Daniel R. Structure and functional impact of glycosaminoglycan modification of HSulf-2 endosulfatase revealed by atomic force microscopy and mass spectrometry. Sci Rep 2023; 13:22263. [PMID: 38097644 PMCID: PMC10721642 DOI: 10.1038/s41598-023-49147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
The human sulfatase HSulf-2 is one of only two known endosulfatases that play a decisive role in modulating the binding properties of heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Recently, HSulf-2 was shown to exhibit an unusual post-translational modification consisting of a sulfated glycosaminoglycan chain. This study describes the structural characterization of this glycosaminoglycan (GAG) and provides new data on its impact on the catalytic properties of HSulf-2. The unrevealed nature of this GAG chain is identified as a chondroitin/dermatan sulfate (CS/DS) mixed chain, as shown by mass spectrometry combined with NMR analysis. It consists primarily of 6-O and 4-O monosulfated disaccharide units, with a slight predominance of the 4-O-sulfation. Using atomic force microscopy, we show that this unique post-translational modification dramatically impacts the enzyme hydrodynamic volume. We identified human hyaluronidase-4 as a secreted hydrolase that can digest HSulf-2 GAG chain. We also showed that HSulf-2 is able to efficiently 6-O-desulfate antithrombin III binding pentasaccharide motif, and that this activity was enhanced upon removal of the GAG chain. Finally, we identified five N-glycosylation sites on the protein and showed that, although required, reduced N-glycosylation profiles were sufficient to sustain HSulf-2 integrity.
Collapse
Affiliation(s)
- Ilham Seffouh
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Mélanie Bilong
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Cédric Przybylski
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Nesrine El Omrani
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Salomé Poyer
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Guillaume Lamour
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Marie-Jeanne Clément
- Université Paris-Saclay, Univ Evry, INSERM, SABNP, 91025, Evry-Courcouronnes, France
| | | | - Evelyne Gout
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Florence Gonnet
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | | | - Régis Daniel
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France.
| |
Collapse
|
6
|
Štepánková K, Chudíčková M, Šimková Z, Martinez-Varea N, Kubinová Š, Urdzíková LM, Jendelová P, Kwok JCF. Low oral dose of 4-methylumbelliferone reduces glial scar but is insufficient to induce functional recovery after spinal cord injury. Sci Rep 2023; 13:19183. [PMID: 37932336 PMCID: PMC10628150 DOI: 10.1038/s41598-023-46539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Spinal cord injury (SCI) induces the upregulation of chondroitin sulfate proteoglycans (CSPGs) at the glial scar and inhibits neuroregeneration. Under normal physiological condition, CSPGs interact with hyaluronan (HA) and other extracellular matrix on the neuronal surface forming a macromolecular structure called perineuronal nets (PNNs) which regulate neuroplasticity. 4-methylumbelliferone (4-MU) is a known inhibitor for HA synthesis but has not been tested in SCI. We first tested the effect of 4-MU in HA reduction in uninjured rats. After 8 weeks of 4-MU administration at a dose of 1.2 g/kg/day, we have not only observed a reduction of HA in the uninjured spinal cords but also a down-regulation of CS glycosaminoglycans (CS-GAGs). In order to assess the effect of 4-MU in chronic SCI, six weeks after Th8 spinal contusion injury, rats were fed with 4-MU or placebo for 8 weeks in combination with daily treadmill rehabilitation for 16 weeks to promote neuroplasticity. 4-MU treatment reduced the HA synthesis by astrocytes around the lesion site and increased sprouting of 5-hydroxytryptamine fibres into ventral horns. However, the current dose was not sufficient to suppress CS-GAG up-regulation induced by SCI. Further adjustment on the dosage will be required to benefit functional recovery after SCI.
Collapse
Affiliation(s)
- Kateřina Štepánková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic.
| | - Milada Chudíčková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Zuzana Šimková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Noelia Martinez-Varea
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic
| | - Šárka Kubinová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, 182 21, Prague, Czech Republic
| | - Lucia Machová Urdzíková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic.
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic.
| | - Jessica C F Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Du M, Wei L, Yuan M, Zou R, Xu Y, Wang X, Wang W, Li F. Enzymatic comparison of two homologous enzymes reveals N-terminal domain of chondroitinase ABC I regulates substrate selection and product generation. J Biol Chem 2023; 299:104692. [PMID: 37031818 DOI: 10.1016/j.jbc.2023.104692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
Chondroitinase ABC-type I (CSase ABC I), which can digest both chondroitin sulfate (CS) and dermatan sulfate (DS) in an endolytic manner, is an essential tool in structural and functional studies of CS/DS. Although a few CSase ABC I have been identified from bacteria, the substrate-degrading pattern and regulatory mechanisms of them have rarely been investigated. Herein, two CSase ABC I, IM3796 and IM1634, were identified from the intestinal metagenome of CS-fed mice. They show high sequence homology (query coverage: 88.00%, percent identity: 90.10%) except for an extra peptide (Met1-His109) at the N-terminus in IM1634, but their enzymatic properties are very different. IM3796 prefers to degrade 6-O-sulfated GalNAc residue-enriched CS into tetra- and disaccharides. In contrast, IM1634 exhibits nearly a thousand times more activity than IM3796, and can completely digest CS/DS with various sulfation patterns to produce disaccharides, unlike most CSase ABC I. Structure modeling showed that IM3796 did not contain an N-terminal domain composed of two β-sheets, which is found in IM1634 and other CSase ABC I. Furthermore, deletion of the N-terminal domain (Met1-His109) from IM1634 caused the enzymatic properties of the variant IM1634-T109 to be similar to those of IM3796, and conversely, grafting this domain to IM3796 increased the similarity of the variant IM3796-A109 to IM1634. In conclusion, the comparative study of the new CSase ABC I provides two unique tools for CS/DS-related studies and applications and, more importantly, reveals the critical role of the N-terminal domain in regulating the substrate binding and degradation of these enzymes.
Collapse
Affiliation(s)
- Min Du
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lin Wei
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Min Yuan
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Ruyi Zou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yingying Xu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xu Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China; College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
8
|
Koh WS, Knudsen C, Izumikawa T, Nakato E, Grandt K, Kinoshita-Toyoda A, Toyoda H, Nakato H. Regulation of morphogen pathways by a Drosophila chondroitin sulfate proteoglycan Windpipe. J Cell Sci 2023; 136:jcs260525. [PMID: 36897575 PMCID: PMC10113886 DOI: 10.1242/jcs.260525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Morphogens provide quantitative and robust signaling systems to achieve stereotypic patterning and morphogenesis. Heparan sulfate (HS) proteoglycans (HSPGs) are key components of such regulatory feedback networks. In Drosophila, HSPGs serve as co-receptors for a number of morphogens, including Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp) and Unpaired (Upd, or Upd1). Recently, Windpipe (Wdp), a chondroitin sulfate (CS) proteoglycan (CSPG), was found to negatively regulate Upd and Hh signaling. However, the roles of Wdp, and CSPGs in general, in morphogen signaling networks are poorly understood. We found that Wdp is a major CSPG with 4-O-sulfated CS in Drosophila. Overexpression of wdp modulates Dpp and Wg signaling, showing that it is a general regulator of HS-dependent pathways. Although wdp mutant phenotypes are mild in the presence of morphogen signaling buffering systems, this mutant in the absence of Sulf1 or Dally, molecular hubs of the feedback networks, produces high levels of synthetic lethality and various severe morphological phenotypes. Our study indicates a close functional relationship between HS and CS, and identifies the CSPG Wdp as a novel component in morphogen feedback pathways.
Collapse
Affiliation(s)
- Woo Seuk Koh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Collin Knudsen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin Grandt
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Takiguchi M, Miyashita K, Yamazaki K, Funakoshi K. Chondroitinase ABC Administration Facilitates Serotonergic Innervation of Motoneurons in Rats With Complete Spinal Cord Transection. Front Integr Neurosci 2022; 16:881632. [PMID: 35845919 PMCID: PMC9280451 DOI: 10.3389/fnint.2022.881632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Chondroitinase ABC (ChABC) is an enzyme that degrades glycosaminoglycan side-chains of chondroitin sulfate (CS-GAG) from the chondroitin sulfate proteoglycan (CSPG) core protein. Previous studies demonstrated that the administration of ChABC after spinal cord injury promotes nerve regeneration by removing CS-GAGs from the lesion site and promotes the plasticity of spinal neurons by removing CS-GAGs from the perineuronal nets (PNNs). These effects of ChABC might enhance the regeneration and sprouting of descending axons, leading to the recovery of motor function. Anatomical evidence, indicating that the regenerated axons innervate spinal motoneurons caudal to the lesion site, however, has been lacking. In the present study, we investigated whether descending axons pass through the lesion site and innervate the lumbar motoneurons after ChABC administration in rats with complete spinal cord transection (CST) at the thoracic level. At 3 weeks after CST, 5-hydroxytryptamine (5-HT) fibers were observed to enter the lesion in ChABC-treated rats, but not saline-treated rats. In addition, 92% of motoneurons in the ventral horn of the fifth lumbar segment (L5) in saline-treated rats, and 38% of those in ChABC-treated rats were surrounded by chondroitin sulfate-A (CS-A) positive structures. At 8 weeks after CST, many 5-HT fibers were observed in the ventral horn of the L5, where they terminated in the motoneurons in ChABC-treated rats, but not in saline-treated rats. In total, 54% of motoneurons in the L5 ventral horn in saline-treated rats and 39% of those in ChABC-treated rats were surrounded by CS-A-positive structures. ChABC-treated rats had a Basso, Beattie, and Bresnahan (BBB) motor score of 3.8 at 2 weeks, 7.1 at 3 weeks, and 10.3 at 8 weeks after CST. These observations suggest that ChABC administration to the lesion site immediately after CST may promote the regeneration of descending 5-HT axons through the lesion site and their termination on motoneurons at the level of caudal to the lesion site. ChABC administration might facilitate reinnervation by degrading CS-GAGs around motoneurons. Motor function of the lower limbs was significantly improved in ChABC-treated rats even before the 5-HT axons terminated on the motoneurons, suggesting that other mechanisms may also contribute to the motor function recovery.
Collapse
Affiliation(s)
- Masahito Takiguchi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kanae Miyashita
- Yokohama City University School of Medicine, Yokohama, Japan
| | - Kohei Yamazaki
- Yokohama City University School of Medicine, Yokohama, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama, Japan
- *Correspondence: Kengo Funakoshi,
| |
Collapse
|
10
|
Takiguchi M, Akaike T, Shindo K, Sakuyama R, Koganemaru R, Funakoshi K. Chondroitin sulfate expression around motoneurons changes after complete spinal transection of neonatal rats. Neurosci Lett 2022; 766:136324. [PMID: 34740772 DOI: 10.1016/j.neulet.2021.136324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/23/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Hind limb locomotor activity spontaneously recovers after complete spinal transection (CST) in neonatal rats, but the mechanisms underlying the recovery are poorly understood. The perineuronal net (PNN) surrounding the neuronal cell bodies comprises an extracellular matrix that regulates neuronal plasticity during development. Here, we examined the expression of chondroitin sulfate (CS), a major component of the PNN, on motoneurons after CST in neonatal rats, and compared it with that in juvenile rats, in which hindlimb locomotor activity does not recover spontaneously. The spinal cord was transected at the mid-thoracic level in neonatal (postnatal day 5 [P5] and P10) and juvenile (P15 and P20) rats. Two weeks after CST, the percentage of motoneurons surrounded by chondroitin sulfate C (CS-C) - positive structures was significantly lower in rats with CST at P10 than in intact rats, and tended to be higher in rats with CST at P15 than in intact rats. The percentage of motoneurons with CS-A - positive structures was significantly lower in rats with CST at P15 than in intact rats. These findings suggest that CS-A and CS-C are differentially expressed in the PNNs in rats with CST. The decrease in CS-C - positive PNNs might facilitate the formation of new synaptic contacts to motoneurons, resulting in the recovery of the hindlimb locomotor activity in rats with CST during the neonatal period.
Collapse
Affiliation(s)
- Masahito Takiguchi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Takashi Akaike
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Kaoru Shindo
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Risa Sakuyama
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Ran Koganemaru
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan.
| |
Collapse
|
11
|
Takiguchi M, Morinobu S, Funakoshi K. Chondroitin sulfate expression around spinal motoneurons during postnatal development in rats. Brain Res 2021; 1752:147252. [PMID: 33421374 DOI: 10.1016/j.brainres.2020.147252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 01/11/2023]
Abstract
Perineuronal nets are extracellular matrix structures that surround neuronal cell bodies and their proximal dendrites in the central nervous system. Chondroitin sulfate proteoglycans, which contain chondroitin sulfates (CSs) are major components of perineuronal nets. CSs are considered to have inhibitory roles in neural plasticity, although the effects differ according to their sulfation pattern. In the present study, we investigated the expression of the CS subtypes CS-A and CS-C surrounding spinal motoneurons in different postnatal periods to explore the potential influence of altered CS sulfation patterns on spinal development. CS-A-positive structures were observed around motoneurons in the cervical, thoracic, and lumbar segments as early as postnatal day (P) 5. Most motoneurons were covered with CS-A-positive structures during the first 2 postnatal weeks. The percentage of motoneurons covered with CS-A-positive structures decreased after P20, becoming lower than 70% in the cervical, and lumber segments after P35. CS-C-positive structures were occasionally observed around motoneurons during the first 2 postnatal weeks. The percentage of motoneurons covered with CS-C-positive structures increased after P20, becoming significantly higher after P25 than before P20. The expression pattern of Wisteria Floribunda agglutinin-positive structures around motoneurons was similar to that of the CS-C-positive structures. The present findings revealed that CS-A and CS-C are differentially expressed in the extracellular matrix surrounding motoneurons. The altered sulfation pattern with increased CS-C expression is associated with the maturation of perineuronal nets and might lead to changes in the motoneuron plasticity.
Collapse
Affiliation(s)
- Masahito Takiguchi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Sonoko Morinobu
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan.
| |
Collapse
|
12
|
Wang W, Shi L, Qin Y, Li F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front Cell Dev Biol 2021; 8:560442. [PMID: 33425887 PMCID: PMC7793863 DOI: 10.3389/fcell.2020.560442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are widely distributed on the cell surface and in the extracellular matrix in the form of proteoglycan, where they participate in various biological processes. The diverse functions of CS/DS can be mainly attributed to their high structural variability. However, their structural complexity creates a big challenge for structural and functional studies of CS/DS. CS/DS-degrading enzymes with different specific activities are irreplaceable tools that could be used to solve this problem. Depending on the site of action, CS/DS-degrading enzymes can be classified as glycosidic bond-cleaving enzymes and sulfatases from animals and microorganisms. As discussed in this review, a few of the identified enzymes, particularly those from bacteria, have wildly applied to the basic studies and applications of CS/DS, such as disaccharide composition analysis, the preparation of bioactive oligosaccharides, oligosaccharide sequencing, and potential medical application, but these do not fulfill all of the needs in terms of the structural complexity of CS/DS.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yong Qin
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|
13
|
Zhang Q, Lu D, Wang S, Wei L, Wang W, Li F. Identification and biochemical characterization of a novel chondroitin sulfate/dermantan sulfate lyase from Photobacterium sp. Int J Biol Macromol 2020; 165:2314-2325. [PMID: 33132124 DOI: 10.1016/j.ijbiomac.2020.10.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Chondroitin sulfate (CS)/dermatan sulfate (DS) lyases play important roles in structural and functional studies of CS/DS. In this study, a novel CS/DS lyase (enCSase) was identified from the genome of the marine bacterium Photobacterium sp. QA16. This enzyme is easily heterologously expressed and purified as highly active form against various CS, DS and hyaluronic acid (HA). Under the optimal conditions, the specific activities of this enzyme towards CSA, CSC, CSD, CSE, DS and HA were 373, 474, 171, 172, 141 and 97 U/mg of proteins, respectively. As an endolytic enzyme, enCSase degrades HA to unsaturated hexa- and tetrasaccharides but CS/DS to unsaturated tetra- and disaccharides as the final products. Sequencing analysis showed that the structures of tetrasaccharides in the final products of CS variants were not unique but were highly variable, indicating the randomness of substrate degradation by this enzyme. Further studies showed that the smallest substrate of enCSase was octasaccharide for HA but hexasaccharide for CS/DS, which could explain why this enzyme cannot degrade HA hexa- and tetrasaccharides and CS/DS tetrasaccharides further. It is believed that enCSase may be a very useful tool for structural and functional studies and related applications of CS/DS and HA.
Collapse
Affiliation(s)
- Qingdong Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Danrong Lu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China; School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Shumin Wang
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), 619 Changcheng Road, Taian 271016, China
| | - Lin Wei
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China.
| |
Collapse
|
14
|
Alonge KM, Logsdon AF, Murphree TA, Banks WA, Keene CD, Edgar JS, Whittington D, Schwartz MW, Guttman M. Quantitative analysis of chondroitin sulfate disaccharides from human and rodent fixed brain tissue by electrospray ionization-tandem mass spectrometry. Glycobiology 2020; 29:847-860. [PMID: 31361007 DOI: 10.1093/glycob/cwz060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Chondroitin sulfates (CS) are long, negatively charged, unbranched glycosaminoglycan (GAG) chains attached to CS-proteoglycan (CSPG) core proteins that comprise the glycan component in both loose interstitial extracellular matrices (ECMs) and in rigid, structured perineuronal net (PNN) scaffolds within the brain. As aberrant CS-PNN formations have been linked to a range of pathological states, including Alzheimer's disease (AD) and schizophrenia, the analysis of CS-GAGs in brain tissue at the disaccharide level has great potential to enhance disease diagnosis and prognosis. Two mass-spectrometry (MS)-based approaches were adapted to detect CS disaccharides from minute fixed tissue samples with low picomolar sensitivity and high reproducibility. The first approach employed a straightforward, quantitative direct infusion (DI)-tandem mass spectrometry (MS/MS) technique to determine the percentages of Δ4S- and Δ6S-CS disaccharides within the 4S/6S-CS ratio, while the second used a comprehensive liquid chromatography (LC)-MS/MS technique to determine the relative percentages of Δ0S-, Δ4S-, Δ6S-, Δ4S6S-CS and Δ2S6S-CS disaccharides, with internal validation by full chondroitin lyase activity. The quantitative accuracy of the five primary biologically relevant CS disaccharides was validated using a developmental time course series in fixed rodent brain tissue. We then analyzed the CS disaccharide composition in formalin-fixed human brain tissue, thus providing the first quantitative report of CS sulfation patterns in the human brain. The ability to comprehensively analyze the CS disaccharide composition from fixed brain tissue provides a means with which to identify alterations in the CS-GAG composition in relation to the onset and/or progression of neurological diseases.
Collapse
Affiliation(s)
- Kimberly M Alonge
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA, USA
| | - Aric F Logsdon
- Department of Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, USA
| | - J Scott Edgar
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Palhares LC, Brito AS, de Lima MA, Nader HB, London JA, Barsukov IL, Andrade GP, Yates EA, Chavante SF. A further unique chondroitin sulfate from the shrimp Litopenaeus vannamei with antithrombin activity that modulates acute inflammation. Carbohydr Polym 2019; 222:115031. [PMID: 31320064 DOI: 10.1016/j.carbpol.2019.115031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
|
16
|
Green AR, Li K, Lockard B, Young RP, Mueller LJ, Larive CK. Investigation of the Amide Proton Solvent Exchange Properties of Glycosaminoglycan Oligosaccharides. J Phys Chem B 2019; 123:4653-4662. [PMID: 31067054 DOI: 10.1021/acs.jpcb.9b01794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One-dimensional 1H NMR experiments were conducted for aqueous solutions of glycosaminoglycan oligosaccharides to measure the amide proton temperature coefficients and activation energy barriers for solvent exchange and evaluate the effect of pH on the solvent exchange properties. A library of mono- and oligosaccharides was prepared by enzymatic depolymerization of amide-containing polysaccharides and by chemical modification of heparin and heparan sulfate saccharides including members that contain a 3- O-sulfated glucosamine residue. The systematic evaluation of this saccharide library facilitated assessment of the effects of structural characteristics, such as size, sulfation number and site, and glycosidic linkage, on amide proton solvent exchange rates. Charge repulsion by neighboring negatively charged sulfate and carboxylate groups was found to have a significant impact on the catalysis of amide proton solvent exchange by hydroxide. This observation leads to the conclusion that solvent exchange rates must be interpreted within the context of a given chemical environment. On their own, slow exchange rates do not conclusively establish the involvement of a labile proton in a hydrogen bond, and additional supporting experimental evidence such as reduced temperature coefficients is required.
Collapse
Affiliation(s)
- Andrew R Green
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| | - Kecheng Li
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States.,Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology , Chinese Academy of Sciences , Qingdao 266071 , China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Blake Lockard
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| | - Robert P Young
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States.,Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Leonard J Mueller
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| | - Cynthia K Larive
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| |
Collapse
|
17
|
Foscarin S, Raha-Chowdhury R, Fawcett JW, Kwok JCF. Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging (Albany NY) 2018; 9:1607-1622. [PMID: 28657900 PMCID: PMC5509459 DOI: 10.18632/aging.101256] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Abstract
Chondroitin sulfate (CS) proteoglycans in perineuronal nets (PNNs) from the central nervous system (CNS) are involved in the control of plasticity and memory. Removing PNNs reactivates plasticity and restores memory in models of Alzheimer’s disease and ageing. Their actions depend on the glycosaminoglycan (GAG) chains of CS proteoglycans, which are mainly sulfated in the 4 (C4S) or 6 (C6S) positions. While C4S is inhibitory, C6S is more permissive to axon growth, regeneration and plasticity. C6S decreases during critical period closure. We asked whether there is a late change in CS-GAG sulfation associated with memory loss in aged rats. Immunohistochemistry revealed a progressive increase in C4S and decrease in C6S from 3 to 18 months. GAGs extracted from brain PNNs showed a large reduction in C6S at 12 and 18 months, increasing the C4S/C6S ratio. There was no significant change in mRNA levels of the chondroitin sulfotransferases. PNN GAGs were more inhibitory to axon growth than those from the diffuse extracellular matrix. The 18-month PNN GAGs were more inhibitory than 3-month PNN GAGs. We suggest that the change in PNN GAG sulfation in aged brains renders the PNNs more inhibitory, which lead to a decrease in plasticity and adversely affect memory.
Collapse
Affiliation(s)
- Simona Foscarin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Ruma Raha-Chowdhury
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom.,The Prague Centre of Reconstructive Neuroscience, Institute of Experimental Medicine AS CR, 14220 Prague 4, Czech Republic
| | - Jessica C F Kwok
- The Prague Centre of Reconstructive Neuroscience, Institute of Experimental Medicine AS CR, 14220 Prague 4, Czech Republic.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
18
|
Biodiversity of CS–proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J 2018; 475:587-620. [DOI: 10.1042/bcj20170820] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
Abstract
Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.
Collapse
|
19
|
Matsushita K, Nakata T, Takeda-Okuda N, Nadanaka S, Kitagawa H, Tamura JI. Synthesis of chondroitin sulfate CC and DD tetrasaccharides and interactions with 2H6 and LY111. Bioorg Med Chem 2018; 26:1016-1025. [PMID: 29402610 DOI: 10.1016/j.bmc.2018.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/17/2022]
Abstract
We synthesized the biotinylated chondroitin sulfate tetrasaccharides CS-CC [-3)βGalNAc6S(1-4)βGlcA(1-]2 and CS-DD [-3)βGalNAc6S(1-4)βGlcA2S(1-]2 which possess sulfate groups at O-6 of GalNAc and an additional sulfate group at O-2 of GlcA, respectively. We also analyzed interactions among CS-CC and CS-DD and the antibodies 2H6 and LY111, both of which are known to bind with CS-A, while CS-DD was shown for the first time to bind with both antibodies.
Collapse
Affiliation(s)
- Kenya Matsushita
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8552, Japan
| | - Tomomi Nakata
- Department of Regional Environment, Faculty of Regional Sciences, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8551, Japan
| | - Naoko Takeda-Okuda
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8553, Japan
| | - Satomi Nadanaka
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Jun-Ichi Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8552, Japan; Department of Regional Environment, Faculty of Regional Sciences, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8551, Japan; Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Koyamacho-Minami 4-101, Tottori 680-8553, Japan.
| |
Collapse
|
20
|
Han W, Li Q, Lv Y, Wang Q, Zhao X. Preparation and structural characterization of regioselective 4-O/6-O-desulfated chondroitin sulfate. Carbohydr Res 2018; 460:8-13. [PMID: 29476992 DOI: 10.1016/j.carres.2018.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/12/2018] [Accepted: 01/31/2018] [Indexed: 02/05/2023]
Abstract
The sulfation pattern plays a crucial role in chondroitin sulfate (CS) biological activity, and preparation of CS with defined structure is essential for accurate pharmacological study. In this study, we focused on the preparation of regioselective 4-O/6-O-desulfated CS derived from porcine, employing a dimethyl sulfoxide-methanol (DMSO-MeOH) method and an N-methyl-N-(trimethylsilyl) -trifluoroacetamide (MTSTFA) method CS, respectively. Results showed that the sulfate at C4 position (4-O-S) of N-acetylgalactosamine (GalNAc) was selectively removed by the DMSO-MeOH method, and the sulfate at C6 position (6-O-S) of GalNAc was selectively removed by the MTSTFA method. Structures of desulfated CS were characterized by means of FT-IR, NMR and disaccharide composition analysis. The preparations of regioselective 4-O/6-O-desulfated CS are powerful for the study of structure-activity relationship of CS.
Collapse
Affiliation(s)
- Wenwei Han
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Quancai Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Youjing Lv
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - QingChi Wang
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| |
Collapse
|
21
|
Matho MH, Schlossman A, Gilchuk IM, Miller G, Mikulski Z, Hupfer M, Wang J, Bitra A, Meng X, Xiang Y, Kaever T, Doukov T, Ley K, Crotty S, Peters B, Hsieh-Wilson LC, Crowe JE, Zajonc DM. Structure-function characterization of three human antibodies targeting the vaccinia virus adhesion molecule D8. J Biol Chem 2018; 293:390-401. [PMID: 29123031 DOI: 10.1074/jbc.m117.814541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, and VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138- and VACV-304-binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.
Collapse
Affiliation(s)
| | | | - Iuliia M Gilchuk
- Department of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Greg Miller
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91126
| | - Zbigniew Mikulski
- Department of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | - Jing Wang
- Division of Cell Biology, La Jolla, California 92037
| | - Aruna Bitra
- Division of Cell Biology, La Jolla, California 92037
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Tom Kaever
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC, Menlo Park, California 94025
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla, California 92037
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037; University of California San Diego, La Jolla, California 92037
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91126
| | - James E Crowe
- Department of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla, California 92037; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Takeda A, Okada S, Funakoshi K. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord. Brain Res 2017; 1673:23-29. [PMID: 28801063 DOI: 10.1016/j.brainres.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 01/11/2023]
Abstract
Chondroitin sulfate proteoglycans produced in glial scar tissue are a major inhibitory factor for axonal regeneration after central nervous system injury in mammals. The inhibition is largely due to chondroitin sulfates, whose effects differ according to the sulfation pattern. In contrast to mammals, fish nerves spontaneously regenerate beyond the scar tissue after spinal cord injury, although the mechanisms that allow for axons to pass through the scar are unclear. Here, we used immunohistochemistry to examine the expression of two chondroitin sulfates with different sulfation variants at the lesion site in goldfish spinal cord. The intact spinal cord was immunoreactive for both chondroitin sulfate-A (CS-A) and chondroitin sulfate-C (CS-C), and CS-A immunoreactivity overlapped extensively with glial processes positive for glial fibrillary acidic protein. At 1week after inducing the spinal lesion, CS-A immunoreactivity was observed in the cell bodies and extracellular matrix, as well as in glial processes surrounding the lesion center. At 2weeks after the spinal lesion, regenerating axons entering the lesion center overtook the CS-A abundant area. In contrast, at 1week after lesion induction, CS-C immunoreactivity was significantly decreased, and at 2weeks after lesion induction, CS-C immunoreactivity was observed along the regenerating axons entering the lesion center. The present findings suggest that after spinal cord injury in goldfish, chondroitin sulfate proteoglycans are deposited in the extracellular matrix at the lesion site but do not form an impenetrable barrier to the growth of regenerating axons.
Collapse
Affiliation(s)
- Akihito Takeda
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Soichiro Okada
- Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| |
Collapse
|
23
|
Takeda N, Horai S, Tamura JI. Facile analysis of contents and compositions of the chondroitin sulfate/dermatan sulfate hybrid chain in shark and ray tissues. Carbohydr Res 2016; 424:54-8. [PMID: 26986023 DOI: 10.1016/j.carres.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 11/24/2022]
|
24
|
Shioiri T, Tsuchimoto J, Watanabe H, Sugiura N. Sequence determination of synthesized chondroitin sulfate dodecasaccharides. Glycobiology 2016; 26:592-606. [PMID: 26791444 DOI: 10.1093/glycob/cww008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/15/2016] [Indexed: 11/14/2022] Open
Abstract
Chondroitin sulfate (CS) is a linear acidic polysaccharide composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine. The polysaccharide is modified with sulfate groups at different positions by a variety of sulfotransferases. CS chains exhibit various biological and pathological functions by interacting with cytokines and growth factors and regulating their signal transduction. The fine structure of the CS chain defines its specific biological roles. However, structural analysis of CS has been restricted to disaccharide analysis, hampering the understanding of the structure-function relationship of CS chains. Here, we chemo-enzymatically synthesized CS dodecasaccharides having various sulfate modifications using a bioreactor system of bacterial chondroitin polymerase mutants and various CS sulfotransferases. We developed a sequencing method for CS chains using the CS dodecasaccharides. The method consists of (i) labeling a reducing end with 2-aminopyridine (PA), (ii) partial digestion of CS with testicular hyaluronidase, followed by separation of PA-conjugated oligosaccharides with different chain lengths, (iii) limited digestion of these oligosaccharides with chondroitin lyase AC II into disaccharides, followed by labeling with 2-aminobenzamide, (iv) CS disaccharide analysis using a dual-fluorescence HPLC system (reversed-phase ion-pair and ion-exchange chromatography), and (v) estimation of the composition by calculating individual disaccharide ratios. This CS chain sequencing allows characterization of CS-modifying enzymes and provides a useful tool toward understanding the structure-function relationship of CS chains.
Collapse
Affiliation(s)
- Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Jun Tsuchimoto
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
25
|
Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry 2015; 5:e496. [PMID: 25603412 PMCID: PMC4312825 DOI: 10.1038/tp.2014.128] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/08/2014] [Accepted: 10/26/2014] [Indexed: 12/18/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix aggregates surrounding distinct neuronal populations and regulating synaptic functions and plasticity. Previous findings showed robust PNN decreases in amygdala, entorhinal cortex and prefrontal cortex of subjects with schizophrenia (SZ), but not bipolar disorder (BD). These studies were carried out using a chondroitin sulfate proteoglycan (CSPG) lectin marker. Here, we tested the hypothesis that the CSPG aggrecan, and 6-sulfated chondroitin sulfate (CS-6) chains highly represented in aggrecan, may contribute to these abnormalities. Antibodies against aggrecan and CS-6 (3B3 and CS56) were used in the amygdala of healthy control, SZ and BD subjects. In controls, aggrecan immunoreactivity (IR) was observed in PNNs and glial cells. Antibody 3B3, but not CS56, also labeled PNNs in the amygdala. In addition, dense clusters of CS56 and 3B3 IR encompassed CS56- and 3B3-IR glia, respectively. In SZ, numbers of aggrecan- and 3B3-IR PNNs were decreased, together with marked reductions of aggrecan-IR glial cells and CS-6 (3B3 and CS56)-IR 'clusters'. In BD, numbers of 3B3-IR PNNs and CS56-IR clusters were reduced. Our findings show disruption of multiple PNN populations in the amygdala of SZ and, more modestly, BD. Decreases of aggrecan-IR glia and CS-6-IR glial 'clusters', in sharp contrast to increases of CSPG/lectin-positive glia previously observed, indicate that CSPG abnormalities may affect distinct glial cell populations and suggest a potential mechanism for PNN decreases. Together, these abnormalities may contribute to a destabilization of synaptic connectivity and regulation of neuronal functions in the amygdala of subjects with major psychoses.
Collapse
|
26
|
Structural analysis of isomeric chondroitin sulfate oligosaccharides using regioselective 6-O-desulfation method and tandem mass spectrometry. Anal Chim Acta 2014; 843:27-37. [DOI: 10.1016/j.aca.2014.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/17/2014] [Accepted: 07/20/2014] [Indexed: 01/24/2023]
|
27
|
Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, Pekny M, Chopp M. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 2014; 62:2022-33. [PMID: 25043249 DOI: 10.1002/glia.22723] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022]
Abstract
The functional role of reactive astrocytes after stroke is controversial. To elucidate whether reactive astrocytes contribute to neurological recovery, we compared behavioral outcome, axonal remodeling of the corticospinal tract (CST), and the spatio-temporal change of chondroitin sulfate proteoglycan (CSPG) expression between wild-type (WT) and glial fibrillary acidic protein/vimentin double knockout (GFAP(-/-) Vim(-/-) ) mice subjected to Rose Bengal induced cerebral cortical photothrombotic stroke in the right forelimb motor area. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the CST axons. Compared with WT mice, the motor functional recovery and BDA-positive CST axonal length in the denervated side of the cervical gray matter were significantly reduced in GFAP(-/-) Vim(-/-) mice (n = 10/group, P < 0.01). Immunohistological data showed that in GFAP(-/-) Vim(-/-) mice, in which astrocytic reactivity is attenuated, CSPG expression was significantly increased in the lesion remote areas in both hemispheres, but decreased in the ischemic lesion boundary zone, compared with WT mice (n = 12/group, P < 0.001). Our data suggest that attenuated astrocytic reactivity impairs or delays neurological recovery by reducing CST axonal remodeling in the denervated spinal cord. Thus, manipulation of astrocytic reactivity post stroke may represent a therapeutic target for neurorestorative strategies.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lang Y, Zhao X, Liu L, Yu G. Applications of mass spectrometry to structural analysis of marine oligosaccharides. Mar Drugs 2014; 12:4005-30. [PMID: 24983643 PMCID: PMC4113812 DOI: 10.3390/md12074005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/28/2014] [Accepted: 05/06/2014] [Indexed: 11/23/2022] Open
Abstract
Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out.
Collapse
Affiliation(s)
- Yinzhi Lang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Lili Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
29
|
Hromatka BS, Ngeleza S, Adibi JJ, Niles RK, Tshefu AK, Fisher SJ. Histopathologies, immunolocalization, and a glycan binding screen provide insights into Plasmodium falciparum interactions with the human placenta. Biol Reprod 2013; 88:154. [PMID: 23575149 PMCID: PMC4070867 DOI: 10.1095/biolreprod.112.106195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/06/2013] [Accepted: 03/29/2013] [Indexed: 11/01/2022] Open
Abstract
During pregnancy, Plasmodium falciparum-infected erythrocytes cytoadhere to the placenta. Infection is likely initiated at two sites where placental trophoblasts contact maternal blood: 1) via syncytiotrophoblast (STB), a multicellular transporting and biosynthetic layer that forms the surface of chorionic villi and lines the intervillous space, and 2) through invasive cytotrophoblasts, which line uterine vessels that divert blood to the placenta. Here, we investigated mechanisms of infected erythrocyte sequestration in relationship to the microanatomy of the maternal-fetal interface. Histological analyses revealed STB denudation in placental malaria, which brought the stromal cores of villi in direct contact with maternal blood. STB denudation was associated with hemozoin deposition (P = 0.01) and leukocyte infiltration (P = 0.001) and appeared to be a feature of chronic placental malaria. Immunolocalization of infected red blood cell receptors (CD36, ICAM1/CD54, and chondroitin sulfate A) in placentas from uncomplicated pregnancies showed that STB did not stain, while the underlying villous stroma was immunopositive. Invasive cytotrophoblasts expressed ICAM1. In malaria, STB denudation exposed CD36 and chondroitin sulfate A in the villous cores to maternal blood, and STB expressed ICAM1. Finally, we investigated infected erythrocyte adherence to novel receptors by screening an array of 377 glycans. Infected erythrocytes bound Lewis antigens that immunolocalized to STB. Our results suggest that P. falciparum interactions with STB-associated Lewis antigens could initiate placental malaria. Subsequent pathologies, which expose CD36, ICAM1, and chondroitin sulfate A, might propagate the infection.
Collapse
Affiliation(s)
- Bethann S. Hromatka
- Departments of Obstetrics and Gynecology, Anatomy, the Center for Reproductive Sciences, and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California
| | - Sadiki Ngeleza
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Jennifer J. Adibi
- Departments of Obstetrics and Gynecology, Anatomy, the Center for Reproductive Sciences, and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California
| | - Richard K. Niles
- Departments of Obstetrics and Gynecology, Anatomy, the Center for Reproductive Sciences, and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California
| | | | - Susan J. Fisher
- Departments of Obstetrics and Gynecology, Anatomy, the Center for Reproductive Sciences, and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California
| |
Collapse
|
30
|
Mass preparation of oligosaccharides by the hydrolysis of chondroitin sulfate polysaccharides with a subcritical water microreaction system. Carbohydr Res 2013; 371:16-21. [DOI: 10.1016/j.carres.2013.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/23/2013] [Accepted: 01/30/2013] [Indexed: 11/23/2022]
|
31
|
Yoo M, Khaled M, Gibbs KM, Kim J, Kowalewski B, Dierks T, Schachner M. Arylsulfatase B improves locomotor function after mouse spinal cord injury. PLoS One 2013; 8:e57415. [PMID: 23520469 PMCID: PMC3592852 DOI: 10.1371/journal.pone.0057415] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 01/24/2013] [Indexed: 12/03/2022] Open
Abstract
Bacterial chondroitinase ABC (ChaseABC) has been used to remove the inhibitory chondroitin sulfate chains from chondroitin sulfate proteoglycans to improve regeneration after rodent spinal cord injury. We hypothesized that the mammalian enzyme arylsulfatase B (ARSB) would also enhance recovery after mouse spinal cord injury. Application of the mammalian enzyme would be an attractive alternative to ChaseABC because of its more robust chemical stability and reduced immunogenicity. A one-time injection of human ARSB into injured mouse spinal cord eliminated immunoreactivity for chondroitin sulfates within five days, and up to 9 weeks after injury. After a moderate spinal cord injury, we observed improvements of locomotor recovery assessed by the Basso Mouse Scale (BMS) in ARSB treated mice, compared to the buffer-treated control group, at 6 weeks after injection. After a severe spinal cord injury, mice injected with equivalent units of ARSB or ChaseABC improved similarly and both groups achieved significantly more locomotor recovery than the buffer-treated control mice. Serotonin and tyrosine hydroxylase immunoreactive axons were more extensively present in mouse spinal cords treated with ARSB and ChaseABC, and the immunoreactive axons penetrated further beyond the injury site in ARSB or ChaseABC treated mice than in control mice. These results indicate that mammalian ARSB improves functional recovery after CNS injury. The structural/molecular mechanisms underlying the observed functional improvement remain to be elucidated.
Collapse
Affiliation(s)
- Myungsik Yoo
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Muntasir Khaled
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Kurt M. Gibbs
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jonghun Kim
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Björn Kowalewski
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstr Bielefeld, Germany
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstr Bielefeld, Germany
| | - Melitta Schachner
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Neuroscience, Shantou University Medical College, Shantou, Guandong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
32
|
Shimbo M, Ando S, Sugiura N, Kimata K, Ichijo H. Moderate repulsive effects of E-unit-containing chondroitin sulfate (CSE) on behavior of retinal growth cones. Brain Res 2013. [DOI: 10.1016/j.brainres.2012.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Chemokine oligomerization in cell signaling and migration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:531-78. [PMID: 23663982 DOI: 10.1016/b978-0-12-386931-9.00020-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemokines are small proteins best known for their role in controlling the migration of diverse cells, particularly leukocytes. Upon binding to their G-protein-coupled receptors on the leukocytes, chemokines stimulate the signaling events that cause cytoskeletal rearrangements involved in cell movement, and migration of the cells along chemokine gradients. Depending on the cell type, chemokines also induce many other types of cellular responses including those related to defense mechanisms, cell proliferation, survival, and development. Historically, most research efforts have focused on the interaction of chemokines with their receptors, where monomeric forms of the ligands are the functionally relevant state. More recently, however, the importance of chemokine interactions with cell surface glycosaminoglycans has come to light, and in most cases appears to involve oligomeric chemokine structures. This review summarizes existing knowledge relating to the structure and function of chemokine oligomers, and emerging methodology for determining structures of complex chemokine assemblies in the future.
Collapse
|
34
|
Mizumoto S, Murakoshi S, Kalayanamitra K, Deepa SS, Fukui S, Kongtawelert P, Yamada S, Sugahara K. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities. Glycobiology 2012; 23:155-68. [PMID: 23019154 DOI: 10.1093/glycob/cws137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Decarlo AA, Belousova M, Ellis AL, Petersen D, Grenett H, Hardigan P, O'Grady R, Lord M, Whitelock JM. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis. BMC Biotechnol 2012; 12:60. [PMID: 22967000 PMCID: PMC3485628 DOI: 10.1186/1472-6750-12-60] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022] Open
Abstract
Background Many growth factors, such as bone morphogenetic protein (BMP)-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS) glycosaminoglycans (GAGs), which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS), regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1) expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™). Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid significantly improved the dose-effectiveness of BMP-2 osteogenic activity for in vivo de novo bone generation when delivered together on a scaffold as a single-phase. The use of HS/CS PGs may be useful to augment GF therapeutics, and a plasmid-based approach has been shown here to be highly effective.
Collapse
Affiliation(s)
- Arthur A Decarlo
- Agenta Biotechnologies, Inc, 1500 1st Ave, N, Unit 31, Birmingham, AL 35203, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
37
|
Pomin VH, Park Y, Huang R, Heiss C, Sharp JS, Azadi P, Prestegard JH. Exploiting enzyme specificities in digestions of chondroitin sulfates A and C: production of well-defined hexasaccharides. Glycobiology 2012; 22:826-38. [PMID: 22345629 DOI: 10.1093/glycob/cws055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interactions between proteins and glycosaminoglycans (GAGs) of the extracellular matrix are important to the regulation of cellular processes including growth, differentiation and migration. Understanding these processes can benefit greatly from the study of protein-GAG interactions using GAG oligosaccharides of well-defined structure. Materials for such studies have, however, been difficult to obtain because of challenges in synthetic approaches and the extreme structural heterogeneity in GAG polymers. Here, it is demonstrated that diversity in structures of oligosaccharides derived by limited enzymatic digestion of materials from natural sources can be greatly curtailed by a proper selection of combinations of source materials and digestive enzymes, a process aided by an improved understanding of the specificities of certain commercial preparations of hydrolases and lyases. Separation of well-defined oligosaccharides can then be accomplished by size-exclusion chromatography followed by strong anion-exchange chromatography. We focus here on two types of chondroitin sulfate (CS) as starting material (CS-A, and CS-C) and the use of three digestive enzymes with varying specificities (testicular hyaluronidase and bacterial chondroitinases ABC and C). Analysis using nuclear magnetic resonance and mass spectrometry focuses on isolated CS disaccharides and hexasaccharides. In all, 15 CS hexasaccharides have been isolated and characterized. These serve as useful contributions to growing libraries of well-defined GAG oligosaccharides that can be used in further biophysical assays.
Collapse
Affiliation(s)
- Vitor H Pomin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Mizumoto S, Sugahara K. Glycosaminoglycan chain analysis and characterization (glycosylation/epimerization). Methods Mol Biol 2012; 836:99-115. [PMID: 22252630 DOI: 10.1007/978-1-61779-498-8_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), and heparan sulfate/heparin (HS/Hep) are linear polysaccharides and involved in the regulation of various biological events through interaction with functional proteins. GAGs are modified by sulfation at various positions of each saccharide residue and the epimerization of uronic acid residues during the chain's biosynthesis, resulting in enormous structural diversity. This structural diversity is the basis for the wide range of biological activities of GAGs. Thus, the structural analysis of GAGs is key to understanding their biological functions. This chapter describes detailed instructions for the extraction and structural analysis of GAGs from cultured cells and tissues using a combination of GAG-degrading enzymes and high-performance liquid chromatography.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
39
|
Kim JS, Werth VP. Identification of specific chondroitin sulfate species in cutaneous autoimmune disease. J Histochem Cytochem 2011; 59:780-90. [PMID: 21804080 DOI: 10.1369/0022155411411304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cutaneous lupus erythematosus and dermatomyositis (DM) are chronic inflammatory diseases of the skin with accumulated dermal mucin. Earlier work has shown chondroitin sulfate (CS) accumulation within the dermis of discoid lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE), and DM lesions compared with control skin. Immunohistochemistry for C4S revealed a greater density in DLE and DM lesions, whereas SCLE lesions did not differ from controls. Scleredema and scleromyxedema are attributed to increased hyaluronic acid, and lesional samples from these diseases also demonstrated accumulated dermal C4S. Interferon-γ and interleukin-1α, but not interferon-α, treatment of cultured dermal fibroblasts induced mRNA expression of CHST-11, which attaches sulfates to the 4-position of unsulfated chondroitin. These studies on possible CS core proteins revealed that serglycin, known to have C6S side chains in endothelial cells, had greater density within DM dermal endothelia but not in DLE or SCLE, following the pattern of C6S overexpression reported previously. CD44 variants expand the CS binding repertoire of the glycoprotein; CD44v7 co-localized to the distribution of C4S in DLE lesions, a finding not observed in DM, SCLE lesions, or controls. Because C4S and C6S have immunologic effects, their dysregulation in cutaneous mucinoses may contribute to the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Jessica S Kim
- New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
40
|
Huang R, Pomin VH, Sharp JS. LC-MS(n) analysis of isomeric chondroitin sulfate oligosaccharides using a chemical derivatization strategy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1577-87. [PMID: 21953261 PMCID: PMC3187560 DOI: 10.1007/s13361-011-0174-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/16/2011] [Accepted: 05/19/2011] [Indexed: 05/04/2023]
Abstract
Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS(n). The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS(n) fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS(n) experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS(n) methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.
Collapse
Affiliation(s)
- Rongrong Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
41
|
Werth BB, Bashir M, Chang L, Werth VP. Ultraviolet irradiation induces the accumulation of chondroitin sulfate, but not other glycosaminoglycans, in human skin. PLoS One 2011; 6:e14830. [PMID: 21829593 PMCID: PMC3150335 DOI: 10.1371/journal.pone.0014830] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022] Open
Abstract
Ultraviolet (UV) light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG) content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks) or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS), but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S) and 6-sulfated (C6S) isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV.
Collapse
Affiliation(s)
- Benjamin Boegel Werth
- Medical Research, Philadelphia Veterans Administration Medical Center, Philadelphia, Pennsylvania, United States of America.
| | | | | | | |
Collapse
|
42
|
Hamad OA, Nilsson PH, Lasaosa M, Ricklin D, Lambris JD, Nilsson B, Nilsson Ekdahl K. Contribution of chondroitin sulfate A to the binding of complement proteins to activated platelets. PLoS One 2010; 5:e12889. [PMID: 20886107 PMCID: PMC2944812 DOI: 10.1371/journal.pone.0012889] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/19/2010] [Indexed: 11/23/2022] Open
Abstract
Background Exposure of chondroitin sulfate A (CS-A) on the surface of activated platelets is well established. The aim of the present study was to investigate to what extent CS-A contributes to the binding of the complement recognition molecule C1q and the complement regulators C1 inhibitor (C1INH), C4b-binding protein (C4BP), and factor H to platelets. Principal Findings Human blood serum was passed over Sepharose conjugated with CS-A, and CS-A-specific binding proteins were identified by Western blotting and mass spectrometric analysis. C1q was shown to be the main protein that specifically bound to CS-A, but C4BP and factor H were also shown to interact. Binding of C1INH was dependent of the presence of C1q and then not bound to CS-A from C1q-depleted serum. The specific interactions observed of these proteins with CS-A were subsequently confirmed by surface plasmon resonance analysis using purified proteins. Importantly, C1q, C4BP, and factor H were also shown to bind to activated platelets and this interaction was inhibited by a CS-A-specific monoclonal antibody, thereby linking the binding of C1q, C4BP, and factor H to exposure of CS-A on activated platelets. CS-A-bound C1q was also shown to amplify the binding of model immune complexes to both microtiter plate-bound CS-A and to activated platelets. Conclusions This study supports the concept that CS-A contributes to the binding of C1q, C4BP, and factor H to platelets, thereby adding CS-A to the previously reported binding sites for these proteins on the platelet surface. CS-A-bound C1q also seems to amplify the binding of immune complexes to activated platelets, suggesting a role for this molecule in immune complex diseases.
Collapse
Affiliation(s)
- Osama A. Hamad
- Division of Clinical Immunology, Rudbeck Laboratory C5, Uppsala University, Uppsala, Sweden
| | - Per H. Nilsson
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | - Maria Lasaosa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bo Nilsson
- Division of Clinical Immunology, Rudbeck Laboratory C5, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Kristina Nilsson Ekdahl
- Division of Clinical Immunology, Rudbeck Laboratory C5, Uppsala University, Uppsala, Sweden
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
43
|
Li F, Nandini CD, Hattori T, Bao X, Murayama D, Nakamura T, Fukushima N, Sugahara K. Structure of pleiotrophin- and hepatocyte growth factor-binding sulfated hexasaccharide determined by biochemical and computational approaches. J Biol Chem 2010; 285:27673-85. [PMID: 20584902 PMCID: PMC2934635 DOI: 10.1074/jbc.m110.118703] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 06/05/2010] [Indexed: 01/16/2023] Open
Abstract
Endogenous pleiotrophin and hepatocyte growth factor (HGF) mediate the neurite outgrowth-promoting activity of chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains isolated from embryonic pig brain. CS/DS hybrid chains isolated from shark skin have a different disaccharide composition, but also display these activities. In this study, pleiotrophin- and HGF-binding domains in shark skin CS/DS were investigated. A high affinity CS/DS fraction was isolated using a pleiotrophin-immobilized column. It showed marked neurite outgrowth-promoting activity and strong inhibitory activity against the binding of pleiotrophin to immobilized CS/DS chains from embryonic pig brain. The inhibitory activity was abolished by chondroitinase ABC or B, and partially reduced by chondroitinase AC-I. A pentasulfated hexasaccharide with a novel structure was isolated from the chondroitinase AC-I digest using pleiotrophin affinity and anion exchange chromatographies. It displayed a potent inhibitory effect on the binding of HGF to immobilized shark skin CS/DS chains, suggesting that the pleiotrophin- and HGF-binding domains at least partially overlap in the CS/DS chains involved in the neuritogenic activity. Computational chemistry using molecular modeling and calculations of the electrostatic potential of the hexasaccharide and two pleiotrophin-binding octasaccharides previously isolated from CS/DS hybrid chains of embryonic pig brain identified an electronegative zone potentially involved in the molecular recognition of the oligosaccharides by pleiotrophin. Homology modeling of pleiotrophin based on a related midkine protein structure predicted the binding pocket of pleiotrophin for the oligosaccharides and provided new insights into the molecular mechanism of the interactions between the oligosaccharides and pleiotrophin.
Collapse
Affiliation(s)
- Fuchuan Li
- From the Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo 001-0021
- the Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558
| | | | | | - Xingfeng Bao
- the Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558
| | | | - Toshikazu Nakamura
- the Kringle Pharma Joint Research Division, Center for Advanced Science and Innovation, Osaka University, Osaka 565-0871, Japan
| | | | - Kazuyuki Sugahara
- From the Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo 001-0021
- the Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558
| |
Collapse
|
44
|
Horii-Hayashi N, Tatsumi K, Matsusue Y, Okuda H, Okuda A, Hayashi M, Yano H, Tsuboi A, Nishi M, Yoshikawa M, Wanaka A. Chondroitin sulfate demarcates astrocytic territories in the mammalian cerebral cortex. Neurosci Lett 2010; 483:67-72. [PMID: 20678547 DOI: 10.1016/j.neulet.2010.07.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/05/2010] [Accepted: 07/23/2010] [Indexed: 11/17/2022]
Abstract
Adjacent astrocytes in the grey matter of the mammalian cerebral cortex are organized in a tile-like manner and separated from one another, forming discrete domains named "non-overlapping territories". We have previously reported that an anti-chondroitin sulfate (CS) antibody, CS-56, marks a subpopulation of cortical astrocytes which we named the dandelion clock-like structure (DACS) based on its morphological characteristics. In the present study, we found that another anti-CS antibody (anti-CS-C) was also able to detect the DACS and the morphological analysis revealed that a single DACS enwrapped five to six neuronal somata on average, which indicated that DACS coincided with a single astrocyte territory. Double labeling of CS-C and glial fibrillary acidic protein (GFAP) showed a slight overlap between the two territories in the adult cerebral cortex of mice. The neuron number enwrapped by a single DACS was unchanged between 3- and 7-week-old mice, while more extensive processes of DACSs were found in 7-week-old mice compared with those in 3-week-old ones. Moreover, the measurement of a single DACS area was significantly increased by 45% between 3- and 7-week-old mice. In addition, DACSs were found in human, monkey, and domestic pig brains, but not mallard ones, indicating that DACS was conserved in mammalian species. Taken together, CS demarcates territories of a certain population of cortical astrocytes and the cerebral cortex is composed of CS-rich astrocytes and -poor astrocytes in a mosaic fashion.
Collapse
Affiliation(s)
- Noriko Horii-Hayashi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Akatsu C, Fongmoon D, Mizumoto S, Jacquinet JC, Kongtawelert P, Yamada S, Sugahara K. Development of a mouse monoclonal antibody against the chondroitin sulfate-protein linkage region derived from shark cartilage. Glycoconj J 2010; 27:387-99. [DOI: 10.1007/s10719-010-9286-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/29/2022]
|
46
|
Kaneiwa T, Mizumoto S, Sugahara K, Yamada S. Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology 2009; 20:300-9. [PMID: 19889881 DOI: 10.1093/glycob/cwp174] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human hyaluronidases have been considered to be the enzymes acting at the initial step in the catabolism of chondroitin sulfate (CS) in vivo. However, human hyaluronidase-1 digests CS more slowly than hyaluronan (HA), and its preferred substrate is HA rather than CS. We have identified a chondroitin hydrolase in Caenorhabditis elegans, which effectively degrades chondroitin but depolymerizes HA to a much lesser extent (Kaneiwa T, Yamada S, Mizumoto S, Montaño AM, Mitani S, Sugahara K. 2008. Identification of a novel chondroitin hydrolase in Caenorhabditis elegans. J Biol Chem. 283:14971-14979), suggesting the existence of CS-specific endoglycosidases in mammalian systems. In this study, human hyaluronidase-4 was demonstrated to be a CS-specific endo-beta-N-acetylgalactosaminidase. This is the first demonstration of a CS hydrolase in higher organisms. The specificity of a purified recombinant form of the enzyme was investigated in detail through the characterization of degradation products. The best substrate of the CS hydrolase was the galactosaminidic linkage in the sequence of a trisulfated tetrasaccharide GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)-GlcUA-GalNAc(4-O- or 6-O-sulfate), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. The disaccharide unit on the nonreducing side, GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate) (D unit), is rich in shark fin cartilage CS-D among various CS isoforms. CS hydrolase will be a useful tool for investigating CS-specific functions in tissues and cells. In addition, it may well be applicable to the treatment of acute spinal cord injuries as in the case of, or instead of, the bacterial CS lyase which has been used for recent clinical trials.
Collapse
Affiliation(s)
- Tomoyuki Kaneiwa
- Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | | | | | | |
Collapse
|
47
|
Liu A, Han X, Zhang G, Zhao X, Zheng G. Effects of cartilage polysaccharide on apoptosis of human hepatoma BEL-7402 cells and murine H22 hepatocarcinoma. Int J Food Sci Nutr 2009; 60 Suppl 6:47-58. [PMID: 19184762 DOI: 10.1080/09637480802616587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Toida T, Sato K, Sakamoto N, Sakai S, Hosoyama S, Linhardt RJ. Solvolytic depolymerization of chondroitin and dermatan sulfates. Carbohydr Res 2009; 344:888-93. [DOI: 10.1016/j.carres.2009.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 11/28/2022]
|
49
|
Malavaki C, Mizumoto S, Karamanos N, Sugahara K. Recent advances in the structural study of functional chondroitin sulfate and dermatan sulfate in health and disease. Connect Tissue Res 2008; 49:133-9. [PMID: 18661328 DOI: 10.1080/03008200802148546] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chondroitin sulfate (CS) dermatan sulfate (DS), and CS/DS hybrid chains are biologically active like heparan sulfate, and structurally the most complex species of the glycosaminoglycan family along with heparan sulfate. They exist at the cell surface and extracellular matrix in the form of proteoglycans. They function as regulators of functional proteins such as growth factors, cytokines, chemokines, adhesion molecules, and lipoproteins through interactions with the ligands of these proteins via specific saccharide domains. Structural alterations have been often implicated in pathological conditions, such as cancer and atherosclerosis. Recent microsequencing of CS/DS oligosaccharides that bind growth factors, such as pleiotrophin, and various monoclonal antibodies against CS/DS, have revealed a considerable number of unique oligosaccharide sequences. This review focuses on recent advances in the study of the structure-function relation of CS, DS and their hybrid chains in physiological and pathological conditions.
Collapse
Affiliation(s)
- Christina Malavaki
- Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | | | | | | |
Collapse
|
50
|
Hayashi N, Tatsumi K, Okuda H, Yoshikawa M, Ishizaka S, Miyata S, Manabe T, Wanaka A. DACS, novel matrix structure composed of chondroitin sulfate proteoglycan in the brain. Biochem Biophys Res Commun 2007; 364:410-5. [PMID: 17950248 DOI: 10.1016/j.bbrc.2007.10.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 10/09/2007] [Indexed: 11/17/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix (ECM) in the brain. In the adult cerebral cortex, there are special CSPG-containing structures known as perineuronal nets (PNNs), which are highly condensed ECM structures. Here, we report a novel CSPG-containing structure distinct from PNNs in the adult mouse cerebral cortex. An anti-chondroitin sulfate antibody CS56 delineated a structure with a unique morphology like a dandelion clock. Accordingly, we named it DAndelion Clock-like Structure (DACS). Immunohistochemical evidence showed that DACSs surrounded a group of NeuN-positive/GABA-negative neurons. At ultrastructural level, CS56-immunoreactivities were localized in the cytoplasm and on the membrane of astrocytes. As the postnatal cerebral cortex matured, DACSs became visible around the end of the critical period. This is the first report demonstrating the presence of an ECM structure DACS composed of CSPGs around a group of cortical neurons in the adult cerebral cortex.
Collapse
Affiliation(s)
- Noriko Hayashi
- Department of Parasitology, Faculty of Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|