1
|
Nagata Y, Watanabe R, Eichhorn C, Ohno S, Aiba T, Ishikawa T, Nakano Y, Aizawa Y, Hayashi K, Murakoshi N, Nakajima T, Yagihara N, Mishima H, Sudo T, Higuchi C, Takahashi A, Sekine A, Makiyama T, Tanaka Y, Watanabe A, Tachibana M, Morita H, Yoshiura KI, Tsunoda T, Watanabe H, Kurabayashi M, Nogami A, Kihara Y, Horie M, Shimizu W, Makita N, Tanaka T. Targeted deep sequencing analyses of long QT syndrome in a Japanese population. PLoS One 2022; 17:e0277242. [PMID: 36480497 PMCID: PMC9731492 DOI: 10.1371/journal.pone.0277242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Long QT syndrome (LQTS) is one of the most common inherited arrhythmias and multiple genes have been reported as causative. Presently, genetic diagnosis for LQTS patients is becoming widespread and contributing to implementation of therapies. However, causative genetic mutations cannot be detected in about 20% of patients. To elucidate additional genetic mutations in LQTS, we performed deep-sequencing of previously reported 15 causative and 85 candidate genes for this disorder in 556 Japanese LQTS patients. We performed in-silico filtering of the sequencing data and found 48 novel variants in 33 genes of 53 cases. These variants were predicted to be damaging to coding proteins or to alter the binding affinity of several transcription factors. Notably, we found that most of the LQTS-related variants in the RYR2 gene were in the large cytoplasmic domain of the N-terminus side. They might be useful for screening of LQTS patients who had no known genetic factors. In addition, when the mechanisms of these variants in the development of LQTS are revealed, it will be useful for early diagnosis, risk stratification, and selection of treatment.
Collapse
Affiliation(s)
- Yuki Nagata
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Christian Eichhorn
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Aiba
- Devision of Arrhythmia, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobue Yagihara
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takeaki Sudo
- Institute of Education, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chihiro Higuchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihiro Sekine
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Tanaka
- Center for Arrhythmia Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Atsuyuki Watanabe
- Department of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Motomi Tachibana
- Department of Cardiology, Sakakibara heart institute of Okayama, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Division of Advanced Preventive Medical Sciences and Leading Medical Research Core Unit, Nagasaki Univerisity Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Watanabe
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshihiro Tanaka
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- * E-mail:
| |
Collapse
|
2
|
Abbott GW. Kv Channel Ancillary Subunits: Where Do We Go from Here? Physiology (Bethesda) 2022; 37:0. [PMID: 35797055 PMCID: PMC9394777 DOI: 10.1152/physiol.00005.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated potassium (Kv) channels each comprise four pore-forming α-subunits that orchestrate essential duties such as voltage sensing and K+ selectivity and conductance. In vivo, however, Kv channels also incorporate regulatory subunits-some Kv channel specific, others more general modifiers of protein folding, trafficking, and function. Understanding all the above is essential for a complete picture of the role of Kv channels in physiology and disease.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
3
|
Sanguinetti MC, Seebohm G. Physiological Functions, Biophysical Properties, and Regulation of KCNQ1 (K V7.1) Potassium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:335-353. [PMID: 35138621 DOI: 10.1007/978-981-16-4254-8_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
KCNQ1 (KV7.1) K+ channels are expressed in multiple tissues, including the heart, pancreas, colon, and inner ear. The gene encoding the KCNQ1 protein was discovered by a positional cloning effort to determine the genetic basis of long QT syndrome, an inherited ventricular arrhythmia that can cause sudden death. Mutations in KCNQ1 can also cause other types of arrhythmia (i.e., short QT syndrome, atrial fibrillation) and the gene may also have a role in diabetes and certain cancers. KCNQ1 α-subunits can partner with accessory β-subunits (KCNE1-KCNE5) to form K+-selective channels that have divergent biophysical properties. In the heart, KCNQ1 α-subunits coassemble with KCNE1 β-subunits to form channels that conduct IKs, a very slowly activating delayed rectifier K+ current. KV7.1 channels are highly regulated by PIP2, calmodulin, and phosphorylation, and rich pharmacology includes blockers and gating modulators. Recent biophysical studies and a cryo-EM structure of the KCNQ1-calmodulin complex have provided new insights into KV7.1 channel function, and how interactions between KCNQ1 and KCNE subunits alter the gating properties of heteromultimeric channels.
Collapse
Affiliation(s)
| | - Guiscard Seebohm
- Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| |
Collapse
|
4
|
Synková I, Bébarová M, Andršová I, Chmelikova L, Švecová O, Hošek J, Pásek M, Vít P, Valášková I, Gaillyová R, Navrátil R, Novotný T. Long-QT founder variant T309I-Kv7.1 with dominant negative pattern may predispose delayed afterdepolarizations under β-adrenergic stimulation. Sci Rep 2021; 11:3573. [PMID: 33574382 PMCID: PMC7878757 DOI: 10.1038/s41598-021-81670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
The variant c.926C > T (p.T309I) in KCNQ1 gene was identified in 10 putatively unrelated Czech families with long QT syndrome (LQTS). Mutation carriers (24 heterozygous individuals) were more symptomatic compared to their non-affected relatives (17 individuals). The carriers showed a mild LQTS phenotype including a longer QTc interval at rest (466 ± 24 ms vs. 418 ± 20 ms) and after exercise (508 ± 32 ms vs. 417 ± 24 ms), 4 syncopes and 2 aborted cardiac arrests. The same haplotype associated with the c.926C > T variant was identified in all probands. Using the whole cell patch clamp technique and confocal microscopy, a complete loss of channel function was revealed in the homozygous setting, caused by an impaired channel trafficking. Dominant negativity with preserved reactivity to β-adrenergic stimulation was apparent in the heterozygous setting. In simulations on a human ventricular cell model, the dysfunction resulted in delayed afterdepolarizations (DADs) and premature action potentials under β-adrenergic stimulation that could be prevented by a slight inhibition of calcium current. We conclude that the KCNQ1 variant c.926C > T is the first identified LQTS-related founder mutation in Central Europe. The dominant negative channel dysfunction may lead to DADs under β-adrenergic stimulation. Inhibition of calcium current could be possible therapeutic strategy in LQTS1 patients refractory to β-blocker therapy.
Collapse
Affiliation(s)
- Iva Synková
- Department of Medical Genetics, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Markéta Bébarová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Irena Andršová
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Larisa Chmelikova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00, Brno, Czech Republic
| | - Olga Švecová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Michal Pásek
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,Institute of Thermomechanics, Czech Academy of Sciences, Dolejškova 5, 182 00, Prague, Czech Republic
| | - Pavel Vít
- Department of Paediatrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Černopolní 9, 613 00, Brno, Czech Republic
| | - Iveta Valášková
- Department of Medical Genetics, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Renata Gaillyová
- Department of Medical Genetics, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Rostislav Navrátil
- Repromeda, Clinic for Reproductive Medicine and Preimplantation Genetic Diagnosis, Biology Park, Studentská 812/6, 625 00, Brno, Czech Republic
| | - Tomáš Novotný
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| |
Collapse
|
5
|
De Silva AM, Manville RW, Abbott GW. Deconstruction of an African folk medicine uncovers a novel molecular strategy for therapeutic potassium channel activation. SCIENCE ADVANCES 2018; 4:eaav0824. [PMID: 30443601 PMCID: PMC6235520 DOI: 10.1126/sciadv.aav0824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/18/2018] [Indexed: 05/02/2023]
Abstract
A third of the global population relies heavily upon traditional or folk medicines, such as the African shrub Mallotus oppositifolius. Here, we used pharmacological screening and electrophysiological analysis in combination with in silico docking and site-directed mutagenesis to elucidate the effects of M. oppositifolius constituents on KCNQ1, a ubiquitous and influential cardiac and epithelial voltage-gated potassium (Kv) channel. Two components of the M. oppositifolius leaf extract, mallotoxin (MTX) and 3-ethyl-2-hydroxy-2-cyclopenten-1-one (CPT1), augmented KCNQ1 current by negative shifting its voltage dependence of activation. MTX was also highly effective at augmenting currents generated by KCNQ1 in complexes with native partners KCNE1 or SMIT1; conversely, MTX inhibited KCNQ1-KCNE3 channels. MTX and CPT1 activated KCNQ1 by hydrogen bonding to the foot of the voltage sensor, a previously unidentified drug site which we also find to be essential for MTX activation of the related KCNQ2/3 channel. The findings elucidate the molecular mechanistic basis for modulation by a widely used folk medicine of an important human Kv channel and uncover novel molecular approaches for therapeutic modulation of potassium channel activity.
Collapse
|
6
|
Abou Ziki MD, Seidelmann SB, Smith E, Atteya G, Jiang Y, Fernandes RG, Marieb MA, Akar JG, Mani A. Deleterious protein-altering mutations in the SCN10A voltage-gated sodium channel gene are associated with prolonged QT. Clin Genet 2018; 93:741-751. [PMID: 28407228 PMCID: PMC5640462 DOI: 10.1111/cge.13036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long QT syndrome (LQT) is a pro-arrhythmogenic condition with life-threatening complications. Fifteen genes have been associated with congenital LQT, however, the genetic causes remain unknown in more than 20% of cases. MATERIALS AND METHODS Eighteen patients with history of palpitations, pre-syncope, syncope and prolonged QT were referred to the Yale Cardiovascular Genetics Program. All subjects underwent whole-exome sequencing (WES) followed by confirmatory Sanger sequencing. Mutation burden analysis was carried out using WES data from 16 subjects with no identifiable cause of LQT. RESULTS Deleterious and novel SCN10A mutations were identified in 3 of the 16 patients (19%) with idiopathic LQT. These included 2 frameshifts and 1 missense variants (p.G810fs, p.R1259Q, and p.P1877fs). Further analysis identified 2 damaging SCN10A mutations with allele frequencies of approximately 0.2% (p.R14L and p.R1268Q) in 2 independent cases. None of the SCN10A mutation carriers had mutations in known arrhythmia genes. Damaging SCN10A mutations (p.R209H and p.R485C) were also identified in the 2 subjects on QT prolonging medications. CONCLUSION Our findings implicate SCN10A in LQT. The presence of frameshift mutations suggests loss-of-function as the underlying disease mechanism. The common association with atrial fibrillation suggests a unique mechanism of disease for this LQT gene.
Collapse
Affiliation(s)
- Maen D. Abou Ziki
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Sara B. Seidelmann
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Emily Smith
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Gourg Atteya
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Yuexin Jiang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Rodolfo Gil Fernandes
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Mark A. Marieb
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Joseph G. Akar
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Arya Mani
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
- Deparetment of Genetics, Yale University School of Medicine, New Haven, CT, 06510
| |
Collapse
|
7
|
Burgos M, Arenas A, Cabrera R. Semiconductor Whole Exome Sequencing for the Identification of Genetic Variants in Colombian Patients Clinically Diagnosed with Long QT Syndrome. Mol Diagn Ther 2016; 20:353-62. [PMID: 27251404 DOI: 10.1007/s40291-016-0207-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Inherited long QT syndrome (LQTS) is a cardiac channelopathy characterized by a prolongation of QT interval and the risk of syncope, cardiac arrest, and sudden cardiac death. Genetic diagnosis of LQTS is critical in medical practice as results can guide adequate management of patients and distinguish phenocopies such as catecholaminergic polymorphic ventricular tachycardia (CPVT). However, extensive screening of large genomic regions is required in order to reliably identify genetic causes. Semiconductor whole exome sequencing (WES) is a promising approach for the identification of variants in the coding regions of most human genes. METHODS DNA samples from 21 Colombian patients clinically diagnosed with LQTS were enriched for coding regions using multiplex polymerase chain reaction (PCR) and subjected to WES using a semiconductor sequencer. RESULTS Semiconductor WES showed mean coverage of 93.6 % for all coding regions relevant to LQTS at >10× depth with high intra- and inter-assay depth heterogeneity. Fifteen variants were detected in 12 patients in genes associated with LQTS. Three variants were identified in three patients in genes associated with CPVT. Co-segregation analysis was performed when possible. All variants were analyzed with two pathogenicity prediction algorithms. The overall prevalence of LQTS and CPVT variants in our cohort was 71.4 %. All LQTS variants previously identified through commercial genetic testing were identified. CONCLUSION Standardized WES assays can be easily implemented, often at a lower cost than sequencing panels. Our results show that WES can identify LQTS-causing mutations and permits differential diagnosis of related conditions in a real-world clinical setting. However, high heterogeneity in sequencing depth and low coverage in the most relevant genes is expected to be associated with reduced analytical sensitivity.
Collapse
Affiliation(s)
- Mariana Burgos
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil - Instituto de Cardiología, Calle 163ª #13b -60 Torre A Piso 1, Bogotá, Colombia
| | - Alvaro Arenas
- Centro de Cardiopatías Congénitas, Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - Rodrigo Cabrera
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil - Instituto de Cardiología, Calle 163ª #13b -60 Torre A Piso 1, Bogotá, Colombia.
| |
Collapse
|
8
|
Hedley PL, Durrheim GA, Hendricks F, Goosen A, Jespersgaard C, Støvring B, Pham TT, Christiansen M, Brink PA, Corfield VA. Long QT syndrome in South Africa: the results of comprehensive genetic screening. Cardiovasc J Afr 2014; 24:231-7. [PMID: 24217263 PMCID: PMC3772322 DOI: 10.5830/cvja-2013-032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/24/2013] [Indexed: 01/06/2023] Open
Abstract
Congenital long QT syndrome (cLQTS) is a genetic disorder predisposing to ventricular arrhythmia, syncope and sudden death. Over 700 different cLQTS-causing mutations in 13 genes are known. The genetic spectrum of LQTS in 44 South African cLQTS patients (23 known to carry the South African founder mutation p.A341V in KCNQ1) was established by screening for mutations in the coding regions of KCNQ1, KCNH2, KCNE1, KCNE2 and SCN5A, the most frequently implicated cLQTS-causing genes (five-gene screening). Fourteen disease-causing mutations were identified, eight (including the founder mutation) in KCNQ1, five in KCNH2 and one in KCNE1. Two mutations were novel. Two double heterozygotes were found among the 23 families (8.5%) carrying the founder mutation. In conclusion, cLQTS in South Africa reflects both a strong founder effect and a genetic spectrum similar to that seen in other populations. Consequently, five-gene screening should be offered as a standard screening option, as is the case internationally. This will disclose compound and double heterozygotes. Fivegene screening will most likely be even more informative in other South African sub-populations with a greater genetic diversity.
Collapse
Affiliation(s)
- Paula L Hedley
- US/MRC Centre for Molecular and Cellular Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Clinical characteristics of 30 Czech families with long QT syndrome and KCNQ1 and KCNH2 gene mutations: importance of exercise testing. J Electrocardiol 2012; 45:746-51. [DOI: 10.1016/j.jelectrocard.2012.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Indexed: 11/24/2022]
|
10
|
The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proc Natl Acad Sci U S A 2010; 107:10232-7. [PMID: 20534576 DOI: 10.1073/pnas.1004644107] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations in KCNQ2 and KCNQ3 voltage-gated potassium channels lead to neonatal epilepsy as a consequence of their key role in regulating neuronal excitability. Previous studies in the brain have focused primarily on these KCNQ family members, which contribute to M-currents and afterhyperpolarization conductances in multiple brain areas. In contrast, the function of KCNQ5 (Kv7.5), which also displays widespread expression in the brain, is entirely unknown. Here, we developed mice that carry a dominant negative mutation in the KCNQ5 pore to probe whether it has a similar function as other KCNQ channels. This mutation renders KCNQ5(dn)-containing homomeric and heteromeric channels nonfunctional. We find that Kcnq5(dn/dn) mice are viable and have normal brain morphology. Furthermore, expression and neuronal localization of KCNQ2 and KCNQ3 subunits are unchanged. However, in the CA3 area of hippocampus, a region that highly expresses KCNQ5 channels, the medium and slow afterhyperpolarization currents are significantly reduced. In contrast, neither current is affected in the CA1 area of the hippocampus, a region with low KCNQ5 expression. Our results demonstrate that KCNQ5 channels contribute to the afterhyperpolarization currents in hippocampus in a cell type-specific manner.
Collapse
|
11
|
Hedley PL, Jørgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, Brink PA, Kanters JK, Corfield VA, Christiansen M. The genetic basis of long QT and short QT syndromes: A mutation update. Hum Mutat 2009; 30:1486-511. [DOI: 10.1002/humu.21106] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
The G314S KCNQ1 mutation exerts a dominant-negative effect on expression of KCNQ1 channels in oocytes. Biochem Biophys Res Commun 2009; 383:206-9. [DOI: 10.1016/j.bbrc.2009.03.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 03/28/2009] [Indexed: 11/24/2022]
|
13
|
Mutation analysis of KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 genes in Chinese patients with long QT syndrome. ACTA ACUST UNITED AC 2007; 1:312-5. [DOI: 10.1007/s11684-007-0060-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 05/20/2007] [Indexed: 11/27/2022]
|
14
|
Anastasakis A, Kotta CM, Kyriakogonas S, Wollnik B, Theopistou A, Stefanadis C. Phenotype reveals genotype in a Greek long QT syndrome family. ACTA ACUST UNITED AC 2006; 8:241-4. [PMID: 16627448 DOI: 10.1093/europace/eul012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We aimed to verify the long QT syndrome (LQTS) genotype in a family with strong evidence of LQTS type 1 (LQT1) on the basis of so far established genotype-phenotype correlations. Genetic testing for mutations in the KCNQ1 potassium channel gene revealed an A341V mutation in three generations of the family. Existing genotype-phenotype correlations were correctly predictive of the genotype in the case of this family, despite the fact that there are no previously reported data for the Greek LQTS genetic pool. Thus, genotype-phenotype correlations are often a helpful tool in the management of LQTS patients and their families.
Collapse
Affiliation(s)
- Aris Anastasakis
- Division of Inherited Cardiovascular Diseases, 1st Department of Cardiology, University of Athens Medical School, l99 Michalakopoulou Street, Athens 11528, Greece
| | | | | | | | | | | |
Collapse
|
15
|
Wehrens XHT. Structural determinants of potassium channel blockade and drug-induced arrhythmias. Handb Exp Pharmacol 2006:123-57. [PMID: 16610343 DOI: 10.1007/3-540-29715-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cardiac K+ channels play an important role in the regulation of the shape and duration of the action potential. They have been recognized as targets for the actions of neurotransmitters, hormones, and anti-arrhythmic drugs that prolong the action potential duration (APD) and increase refractoriness. However, pharmacological therapy, often for the purpose of treating syndromes unrelated to cardiac disease, can also increase the vul- nerability of some patients to life-threatening rhythm disturbances. This may be due to an underlying propensity stemming from inherited mutations or polymorphisms, or structural abnormalities that provide a substrate allowing for the initiation of arrhythmic triggers. A number of pharmacological agents that have proved useful in the treatment of allergic reactions, gastrointestinal disorders, and psychotic disorders, among others, have been shown to reduce repolarizing K+ currents and prolong the Q-T interval on the electrocardiogram. Understanding the structural determinants of K+ channel blockade might provide new insights into the mechanism and rate-dependent effects of drugs on cellular physiology. Drug-induced disruption of cellular repolarization underlies electrocardiographic abnormalities that are diagnostic indicators of arrhythmia susceptibility.
Collapse
Affiliation(s)
- X H T Wehrens
- Center for Molecular Cardiology, Dept. of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, 630 West 168th Street, P&S 9-401, New York, NY 10032, USA.
| |
Collapse
|
16
|
Zehelein J, Thomas D, Khalil M, Wimmer AB, Koenen M, Licka M, Wu K, Kiehn J, Brockmeier K, Kreye VAW, Karle CA, Katus HA, Ulmer HE, Schoels W. Identification and characterisation of a novel KCNQ1 mutation in a family with Romano–Ward syndrome. Biochim Biophys Acta Mol Basis Dis 2004; 1690:185-92. [PMID: 15511625 DOI: 10.1016/j.bbadis.2004.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 12/29/2022]
Abstract
Romano-Ward syndrome (RWS), the autosomal dominant form of the congenital long QT syndrome, is characterised by prolongation of the cardiac repolarisation process associated with ventricular tachyarrhythmias of the torsades de pointes type. Genetic studies have identified mutations in six ion channel genes, KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 and the accessory protein Ankyrin-B gene, to be responsible for this disorder. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequence analysis have identified a KCNQ1 mutation in a family that were clinically conspicuous due to several syncopes and prolonged QTc intervals in the ECG. The mutant subunit was expressed and functionally characterised in the Xenopus oocyte expression system. A novel heterozygous missense mutation with a C to T transition at the first position of codon 343 (CCA) of the KCNQ1 gene was identified in three concerned family members (QTc intervals: 500, 510 and 530 ms, respectively). As a result, proline 343 localised within the highly conserved transmembrane segment S6 of the KCNQ1 channel is replaced by a serine. Co-expression of mutant (KCNQ1-P343S) and wild-type (KCNQ1) cRNA in Xenopus oocytes produced potassium currents reduced by approximately 92%, while IKs reconstitution experiments with a combination of KCNQ1 mutant, wild-type and KCNE1 subunits yielded currents reduced by approximately 60%. A novel mutation (P343S) identified in the KCNQ1 subunit gene of three members of a RWS family showed a dominant-negative effect on native IKs currents leading to prolongation of the heart repolarisation and possibly increases the risk of malign arrhythmias with sudden cardiac death.
Collapse
Affiliation(s)
- J Zehelein
- Innere Medizin III, Universitätsklinik Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kobori A, Sarai N, Shimizu W, Nakamura Y, Murakami Y, Makiyama T, Ohno S, Takenaka K, Ninomiya T, Fujiwara Y, Matsuoka S, Takano M, Noma A, Kita T, Horie M. Additional Gene Variants Reduce Effectiveness of Beta-Blockers in the LQT1 Form of Long QT Syndrome. J Cardiovasc Electrophysiol 2004; 15:190-9. [PMID: 15028050 DOI: 10.1046/j.1540-8167.2004.03212.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Beta-blockers are widely used to prevent the lethal cardiac events associated with the long QT syndrome (LQTS), especially in KCNQ1-related LQTS (LQT1) patients. Some LQT1 patients, however, are refractory to this therapy. METHODS AND RESULTS Eighteen symptomatic LQTS patients (12 families) were genetically diagnosed as having heterozygous KCNQ1 variants and received beta-blocker therapy. Cardiac events recurred in 4 members (3 families) despite continued therapy during mean follow-up of 70 months. Three of these patients (2 families) had the same mutation [A341V (KCNQ1)]; and the other had R243H (KCNQ1). The latter patient took aprindine, which seemed to be responsible for the event. By functional assay using a heterologous mammalian expression system, we found that A341V (KCNQ1) is a loss-of-function type mutation (not dominant negative). Further genetic screening revealed that one A341V (KCNQ1) family cosegregated with S706C (KCNH2) and another with G144S (KCNJ2). Functional assay of the S706C (KCNH2) mutation was found to reduce the current density of expressed heterozygous KCNH2 channels with a positive shift (+8 mV) of the activation curve. Action potential simulation study was conducted based on the KYOTO model to estimate the influence of additional gene modifiers. In both models mimicking LQT1 plus 2 and LQT1 plus 7, the incidence of early afterdepolarization was increased compared with the LQT1 model under the setting of beta-adrenergic stimulation. CONCLUSION Multiple mutations in different LQTS-related genes may modify clinical characteristics. Expanded gene survey may be required in LQT1 patients who are resistant to beta-blocker therapy.
Collapse
Affiliation(s)
- Atsushi Kobori
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Seebohm G, Pusch M, Chen J, Sanguinetti MC. Pharmacological Activation of Normal and Arrhythmia-Associated Mutant KCNQ1 Potassium Channels. Circ Res 2003; 93:941-7. [PMID: 14576198 DOI: 10.1161/01.res.0000102866.67863.2b] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KCNQ1 α-subunits coassemble with KCNE1 β-subunits to form channels that conduct the slow delayed rectifier K
+
current (
I
Ks
) important for repolarization of the cardiac action potential. Mutations in
KCNQ1
reduce
I
Ks
and cause long-QT syndrome, a disorder of ventricular repolarization that predisposes affected individuals to arrhythmia and sudden death. Current therapy for long-QT syndrome is inadequate. R-L3 is a benzodiazepine that activates
I
Ks
and has the potential to provide gene-specific therapy. In the present study, we characterize the molecular determinants of R-L3 interaction with KCNQ1 channels, use computer modeling to propose a mechanism for drug-induced changes in channel gating, and determine its effect on several long-QT syndrome–associated mutant KCNQ1 channels heterologously expressed in
Xenopus
oocytes. Scanning mutagenesis combined with voltage-clamp analysis indicated that R-L3 interacts with specific residues located in the 5th and 6th transmembrane domains of KCNQ1 subunits. Most KCNQ1 mutant channels responded to R-L3 similarly to wild-type channels, but one mutant channel (G306R) was insensitive to R-L3 possibly because it disrupted a key component of the drug-binding site.
Collapse
Affiliation(s)
- Guiscard Seebohm
- Department of Physiology and Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
19
|
Clancy CE, Kurokawa J, Tateyama M, Wehrens XHT, Kass RS. K+ channel structure-activity relationships and mechanisms of drug-induced QT prolongation. Annu Rev Pharmacol Toxicol 2003; 43:441-61. [PMID: 12540747 DOI: 10.1146/annurev.pharmtox.43.100901.140245] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacological intervention, often for the purpose of treating syndromes unrelated to cardiac disease, can increase the vulnerability of some patients to life-threatening rhythm disturbances. This may be due to an underlying propensity stemming from genetic defects or polymorphisms, or structural abnormalities that provide a substrate allowing for the initiation of arrhythmic triggers. A number of pharmacological agents that have proven useful in the treatment of allergic reactions, gastrointestinal disorders, and psychotic disorders, among others, have been shown to reduce repolarizing K(+) currents and prolong the QT interval on the electrocardiogram. Understanding the structural determinants of K(+) channel blockade may provide new insights into the mechanism and rate-dependent effects of drugs on cellular physiology. Drug-induced disruption of cellular repolarization underlies electrocardiographic abnormalities that are diagnostic indicators of arrhythmia susceptibility.
Collapse
Affiliation(s)
- Colleen E Clancy
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
20
|
Makielski JC, Fozzard HA. Ion Channels and Cardiac Arrhythmia in Heart Disease. Compr Physiol 2002. [DOI: 10.1002/cphy.cp020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Bianchi L, Priori SG, Napolitano C, Surewicz KA, Dennis AT, Memmi M, Schwartz PJ, Brown AM. Mechanisms of I(Ks) suppression in LQT1 mutants. Am J Physiol Heart Circ Physiol 2000; 279:H3003-11. [PMID: 11087258 DOI: 10.1152/ajpheart.2000.279.6.h3003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the cardiac potassium ion channel gene KCNQ1 (voltage-gated K(+) channel subtype KvLQT1) cause LQT1, the most common type of hereditary long Q-T syndrome. KvLQT1 mutations prolong Q-T by reducing the repolarizing cardiac current [slow delayed rectifier K(+) current (I(Ks) )], but, for reasons that are not well understood, the clinical phenotypes may vary considerably even for carriers of the same mutation, perhaps explaining the mode of inheritance. At present, only currents expressed by LQT1 mutants have been studied, and it is unknown whether abnormal subunits are transported to the cell surface. Here, we have examined for the first time trafficking of KvLQT1 mutations and correlated the results with the I(Ks) currents that were expressed. Two missense mutations, S225L and A300T, produced abnormal currents, and two others, Y281C and Y315C, produced no currents. However, all four KvLQT1 mutations were detected at the cell surface. S225L, Y281C, and Y315C produced dominant negative effects on wild-type I(Ks) current, whereas the mutant with the mildest dysfunction, A300T, did not. We examined trafficking of a severe insertion deletion mutant Delta544 and detected this protein at the cell surface as well. We compared the cellular and clinical phenotypes and found a poor correlation for the severely dysfunctional mutations.
Collapse
Affiliation(s)
- L Bianchi
- The Rammelkamp Center for Education and Research, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio 44109-1998, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Humans have over 70 potassium channel genes, but only some of these have been linked to disease. In this respect, the KCNQ family of potassium channels is exceptional: mutations in four out of five KCNQ genes underlie diseases including cardiac arrhythmias, deafness and epilepsy. These disorders illustrate the different physiological functions of KCNQ channels, and provide a model for the study of the 'safety margin' that separates normal from pathological levels of channel expression. In addition, several KCNQ isoforms can associate to form heteromeric channels that underlie the M-current, an important regulator of neuronal excitability.
Collapse
Affiliation(s)
- T J Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Hamburg University, Martinistrasse 85, D-20246 Hamburg, Germany.
| |
Collapse
|
23
|
Hirose S, Okada M, Kaneko S, Mitsudome A. Are some idiopathic epilepsies disorders of ion channels?: A working hypothesis. Epilepsy Res 2000; 41:191-204. [PMID: 10962210 DOI: 10.1016/s0920-1211(00)00141-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epilepsy is a common neurological disease and encompasses a variety of disorders with paroxysms. Although there is a genetic component in the pathogenesis of epilepsy, the molecular mechanisms of this syndrome remains poorly understood. Linkage analysis and positional cloning have not been sufficient tools for determining the pathogenic mechanisms of common idiopathic epilepsies, and hence, novel approaches, based on the etiology of epilepsy, are necessary. Recently, many paroxysmal disorders, including, epilepsy, have been considered to be due to ion channel abnormalities or channelopathies. Results of recent studies employing gene analysis in animal models of epilepsy and human familial epilepsies support the hypothesis that at least some of the so called idiopathic epilepsies, i.e. epilepsies currently, classified as idiopathic could be considered as a channelopathy. This hypothesis is consistent with the putative prerequisites for genes responsible for the majority of idiopathic epilepsies that can adequately explain the following characteristics of epilepsy. Neuronal hyperexcitability, dominant inheritance with various penetrance, pharmacological role of some conventional antiepileptic drugs, age dependency in the onset of epilepsy, and the involvement of genetic factors in the pathogenesis of post-traumatic epilepsy. Search for mutations in ion channels expressed in the central nervous system may help in finding defects underlying some of idiopathic epilepsies, thereby enhancing, our understanding of the molecular pathogenesis of epilepsy. A working hypothesis to view certain idiopathic epilepsies as disorders of ion channels should provide a new insight to our understanding of epilepsy and allow the design of novel therapies.
Collapse
Affiliation(s)
- S Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, 45-1, 7-chome Nanakuma, Jonan-ku, 814-0180, Fukuoka, Japan.
| | | | | | | |
Collapse
|
24
|
Abstract
Many ion channels and receptors display striking phenotypes for gain-of-function mutations but milder phenotypes for null mutations. Gain of molecular function can have several mechanistic bases: selectivity changes, gating changes including constitutive activation and slowed inactivation, elimination of a subunit that enhances inactivation, decreased drug sensitivity, changes in regulation or trafficking of the channel, or induction of apoptosis. Decreased firing frequency can occur via increased function of K+ or Cl- channels. Channel mutants also cause gain-of-function syndromes at the cellular and circuit level; of these syndromes, the cardiac long-QT syndromes are explained in a more straightforward way than are the epilepsies. G protein-coupled receptors are also affected by activating mutations.
Collapse
Affiliation(s)
- H A Lester
- Division of Biology, California Institute of Technology, Pasadena 91125, USA.
| | | |
Collapse
|
25
|
Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, Moss AJ, Schwartz PJ, Towbin JA, Vincent GM, Keating MT. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000; 102:1178-85. [PMID: 10973849 DOI: 10.1161/01.cir.102.10.1178] [Citation(s) in RCA: 811] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Long-QT Syndrome (LQTS) is a cardiovascular disorder characterized by prolongation of the QT interval on ECG and presence of syncope, seizures, and sudden death. Five genes have been implicated in Romano-Ward syndrome, the autosomal dominant form of LQTS: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Mutations in KVLQT1 and KCNE1 also cause the Jervell and Lange-Nielsen syndrome, a form of LQTS associated with deafness, a phenotypic abnormality inherited in an autosomal recessive fashion. METHODS AND RESULTS We used mutational analyses to screen a pool of 262 unrelated individuals with LQTS for mutations in the 5 defined genes. We identified 134 mutations in addition to the 43 that we previously reported. Eighty of the mutations were novel. The total number of mutations in this population is now 177 (68% of individuals). CONCLUSIONS KVLQT1 (42%) and HERG (45%) accounted for 87% of identified mutations, and SCN5A (8%), KCNE1 (3%), and KCNE2 (2%) accounted for the other 13%. Missense mutations were most common (72%), followed by frameshift mutations (10%), in-frame deletions, and nonsense and splice-site mutations (5% to 7% each). Most mutations resided in intracellular (52%) and transmembrane (30%) domains; 12% were found in pore and 6% in extracellular segments. In most cases (78%), a mutation was found in a single family or an individual.
Collapse
Affiliation(s)
- I Splawski
- Department of Human Genetics, Howard Hughes Medical Institute, Division of Cardiology, Salt Lake City, Utah, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
It is becoming clear that mutations in the KVLQT1, human "ether-a-go-go" related gene, cardiac voltage-dependent sodium channel gene, minK and MiRP1 genes, respectively, are responsible for the LQT1, LQT2, LQT3, LQT5 and LQT6 variants of the Romano-Ward syndrome, characterized by autosomal dominant transmission and no deafness. The much rarer Jervell-Lange-Nielsen syndrome (with marked QT prolongation and sensorineural deafness) arises when a child inherits mutant KVLQT1 or minK alleles from both parents. In addition, some families are not linked to the known genetic loci. Cardiac voltage-dependent sodium channel gene encodes the cardiac sodium channel, and long QT syndrome (LQTS) mutations prolong action potentials by increasing inward plateau sodium current. The other mutations cause a decrease in net repolarizing current by reducing potassium currents through "dominant negative" or "loss of function" mechanisms. Polymorphic ventricular tachycardia (torsade de pointes) is thought to be initiated by early after-depolarizations in the Purkinje system and maintained by reentry in the myocardium. Clinical presentations vary with the specific gene affected and the specific mutation. Nevertheless, patients with identical mutations can also present differently, and some patients with LQTS mutations may have no manifest baseline phenotype. The question of whether the latter situation is one of high risk for administration of QT prolonging drugs or during myocardial ischemia is under active investigation. More generally, the identification of LQTS genes has provided tremendous new insights for our understanding of normal cardiac electrophysiology and its perturbation in a wide range of conditions associated with sudden death. It seems likely that the approach of applying information from the genetics of uncommon congenital syndromes to the study of common acquired diseases will be an increasingly important one in the next millennium.
Collapse
Affiliation(s)
- C E Chiang
- Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taiwan.
| | | |
Collapse
|
27
|
Saarinen K, Swan H, Kainulainen K, Toivonen L, Viitasalo M, Kontula K. Molecular genetics of the long QT syndrome: two novel mutations of the KVLQT1 gene and phenotypic expression of the mutant gene in a large kindred. Hum Mutat 2000; 11:158-65. [PMID: 9482580 DOI: 10.1002/(sici)1098-1004(1998)11:2<158::aid-humu9>3.0.co;2-f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At least three different gene loci were recently shown to account for the long QT syndrome (LQTS), a monogenic disorder with altered myocardial repolarization and occurrence of life-threatening cardiac arrhythmias. We screened 44 unrelated probands for mutations of the gene encoding the cardiac potassium channel KVLQT1 using single-strand conformational polymorphism (SSCP) and subsequent DNA sequencing. Two different mutations, T182I and D188N, were identified in two separate pedigrees. Cosegregation of the mutation with the disease phenotype was evident in both families. No mutations were identified at codon 212, previously suggested to represent a mutational hot spot of the KVLQT1 channel, in any of the 44 probands. The large pedigree with the D188N mutation (30 affected and 43 nonaffected individuals) permitted an analysis of expression of the mutant gene in its documented carriers. Although the mean (+/-SD) QTc interval was markedly longer in affected (484+/-38 ms) than in nonaffected individuals (406+/-27 ms, P < 0.001), there was a marked overlapping of individual values in these two groups. QTc values in symptomatic and asymptomatic carriers of the mutant gene were not significantly different. In conclusion, we have identified two novel mutations of the KVLQT1 component of a cardiac potassium channel. Our data support the functional significance of the pore-S6 domain of this membrane protein and emphasize the diagnostic usefulness of DNA analyses in families with LQTS.
Collapse
Affiliation(s)
- K Saarinen
- Department of Medicine, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
28
|
Jongbloed RJ, Wilde AA, Geelen JL, Doevendans P, Schaap C, Van Langen I, van Tintelen JP, Cobben JM, Beaufort-Krol GC, Geraedts JP, Smeets HJ. Novel KCNQ1 and HERG missense mutations in Dutch long-QT families. Hum Mutat 2000; 13:301-10. [PMID: 10220144 DOI: 10.1002/(sici)1098-1004(1999)13:4<301::aid-humu7>3.0.co;2-v] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital long QT syndrome (cLQTS) is electrocardiographically characterized by a prolonged QT interval and polymorphic ventricular arrhythmias (torsade de pointes). These cardiac arrhythmias may result in recurrent syncopes, seizure, or sudden death. LQTS can occur either as an autosomal dominant (Romano Ward) or as an autosomal recessive disorder (Jervell and Lange-Nielsen syndrome). Mutations in at least five genes have been associated with the LQTS. Four genes, encoding cardiac ion channels, have been identified. The most common forms of LQTS are due to mutations in the potassium-channel genes KCNQ1 and HERG. We have screened 24 Dutch LQTS families for mutations in KCNQ1 and HERG. Fourteen missense mutations were identified. Eight of these missense mutations were novel: three in KCNQ1 and five in HERG. Novel missense mutations in KCNQ1 were Y184S, S373P, and W392R and novel missense mutations in HERG were A558P, R582C, G604S, T613M, and F640L. The KCNQ1 mutation G189R and the HERG mutation R582C were detected in two families. The pathogenicity of the mutations was based on segregation in families, absence in control individuals, the nature of the amino acid substitution, and localization in the protein. Genotype-phenotype studies indicated that auditory stimuli as trigger of cardiac events differentiate LQTS2 and LQTS1. In LQTS1, exercise was the predominant trigger. In addition, a number of asymptomatic gene defect carriers were identified. Asymptomatic carriers are still at risk of the development of life-threatening arrhythmias, underlining the importance of DNA analyses for unequivocal diagnosis of patients with LQTS.
Collapse
Affiliation(s)
- R J Jongbloed
- Department of Molecular Cell Biology and Genetics, Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hayashi K, Shimizu M, Ino H, Okeie K, Yamaguchi M, Yasuda T, Fujino N, Fujii H, Fujita S, Mabuchi H. Identical twins with long QT syndrome associated with a missense mutation in the S4 region of the HERG. JAPANESE HEART JOURNAL 2000; 41:399-404. [PMID: 10987356 DOI: 10.1536/jhj.41.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Familial long QT syndrome (LQTS) is caused by mutations in genes encoding ion channels important in determining ventricular repolarization. Mutations in at least five genes have been associated with the LQTS. Fire genes, KCNQ1, HERG, SCN5A, KCNE1, and KCNE2, have been identified. We have identified a missense mutation in the HERG gene in identical twins in a Japanese family with LQTS. The identical twins in our study had QT prolongation and the same missense mutation. However only the proband had a history of syncope. Although many mutations in LQT genes have been reported, there are few reports of twins with LQTS. This is the first report, to our knowledge, of identical twins with a HERG gene mutation.
Collapse
Affiliation(s)
- K Hayashi
- Second Department of Internal Medicine, School of Medicine, Kanazawa University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
By the introduction of technological advancement in methods of structural analysis, electronics, and recombinant DNA techniques, research in physiology has become molecular. Additionally, focus of interest has been moving away from classical physiology to become increasingly centered on mechanisms of disease. A wonderful example for this development, as evident by this review, is the field of ion channel research which would not be nearly as advanced had it not been for human diseases to clarify. It is for this reason that structure-function relationships and ion channel electrophysiology cannot be separated from the genetic and clinical description of ion channelopathies. Unique among reviews of this topic is that all known human hereditary diseases of voltage-gated ion channels are described covering various fields of medicine such as neurology (nocturnal frontal lobe epilepsy, benign neonatal convulsions, episodic ataxia, hemiplegic migraine, deafness, stationary night blindness), nephrology (X-linked recessive nephrolithiasis, Bartter), myology (hypokalemic and hyperkalemic periodic paralysis, myotonia congenita, paramyotonia, malignant hyperthermia), cardiology (LQT syndrome), and interesting parallels in mechanisms of disease emphasized. Likewise, all types of voltage-gated ion channels for cations (sodium, calcium, and potassium channels) and anions (chloride channels) are described together with all knowledge about pharmacology, structure, expression, isoforms, and encoding genes.
Collapse
Affiliation(s)
- F Lehmann-Horn
- Department of Applied Physiology, University of Ulm, Ulm, Germany.
| | | |
Collapse
|
31
|
Murray A, Donger C, Fenske C, Spillman I, Richard P, Dong YB, Neyroud N, Chevalier P, Denjoy I, Carter N, Syrris P, Afzal AR, Patton MA, Guicheney P, Jeffery S. Splicing mutations in KCNQ1: a mutation hot spot at codon 344 that produces in frame transcripts. Circulation 1999; 100:1077-84. [PMID: 10477533 DOI: 10.1161/01.cir.100.10.1077] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Long-QT syndrome is a monogenic disorder that produces cardiac arrhythmias and can lead to sudden death. At least 5 loci and 4 known genes exist in which mutations have been shown to be responsible for the disease. The potassium channel gene KCNQ1, previously named KVLQT1, on chromosome 11p15.5 is one of these. METHODS AND RESULTS We initially analyzed one family using microsatellite markers and found linkage to KCNQ1. Mutation detection showed a G to C change in the last base of exon 6 (1032 G-->C) that does not alter the coded alanine. Restriction digest analysis in the family showed that only affected individuals carried the mutation. A previous report suggested that a G to A substitution at the same position may act as a splice mutation in KCNQ1, but no data was given to support this hypothesis nor was the transcription product identified. We have shown by reverse-transcription polymerase chain reaction that 2 smaller bands were produced for the KCNQ1 gene transcripts in addition to the normal-sized transcripts when lymphocytes of affected individuals were analyzed. Sequencing these transcripts showed a loss of exon 7 in one and exons 6 and 7 in the other, but an in-frame transcript was left in each instance. We examined other families in whom long-QT syndrome was diagnosed and found another unreported splice-site mutation, 922-1 G-->C, in the acceptor site of intron 5, and 2 of the previously reported 1032 G-->A mutations. All these showed a loss of exons 6 and 7 in the mutant transcripts, validating the proposal that a consensus sequence is affected in the exonic mutations and that the integrity of the base at position 1032 is essential for correct processing of the transcript. CONCLUSIONS The 6 cases already reported in the literature with the 1032 G-->A transition, the novel 1032 G-->C transversion, and a recent G-->T transversion at the same base show that codon 344 is the second most frequently mutated after codon 341, suggesting at least two hotspots for mutations in KCNQ1.
Collapse
Affiliation(s)
- A Murray
- Medical Genetics Unit, St George's Hospital Medical School, London, England
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sanguinetti MC. Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia. Ann N Y Acad Sci 1999; 868:406-13. [PMID: 10414310 DOI: 10.1111/j.1749-6632.1999.tb11302.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The rapid (IKr) and slow (IKs) delayed rectifier K+ currents are key regulators of cardiac repolarization. HERG encodes the Kr channel, and KVLQT1 and hminK encode subunits that coassemble to form Ks channels. Mutations in any one of these genes cause Romano-Ward syndrome, an autosomal dominant form of long QT syndrome (LQT). Mutations in KVLQT1 and HERG are the most common cause of LQT. Not all missense mutations of HERG or KVLQT1 have the same effect on K+ channel function. Most mutations result in a dominant-negative effect, but the severity of the resulting phenotype varies widely, as judged by reduction of current induced by coexpression of wild-type and mutant subunits in heterologous expression systems. Mutations in hminK (S74L, D76N) reduce IKs by shifting the voltage dependence of activation and accelerating channel deactivation. A recessive form of LQT is caused by mutations in either KVLQT1 or hminK. The functional consequences of mutations in delayed rectifier K+ channel subunits are delayed cardiac repolarization, lengthened QT interval, and an increased risk of torsade de pointes and sudden death.
Collapse
Affiliation(s)
- M C Sanguinetti
- Department of Medicine, University of Utah, Salt Lake City 84112, USA.
| |
Collapse
|
33
|
Neyroud N, Richard P, Vignier N, Donger C, Denjoy I, Demay L, Shkolnikova M, Pesce R, Chevalier P, Hainque B, Coumel P, Schwartz K, Guicheney P. Genomic organization of the KCNQ1 K+ channel gene and identification of C-terminal mutations in the long-QT syndrome. Circ Res 1999; 84:290-7. [PMID: 10024302 DOI: 10.1161/01.res.84.3.290] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The voltage-gated K+ channel KVLQT1 is essential for the repolarization phase of the cardiac action potential and for K+ homeostasis in the inner ear. Mutations in the human KCNQ1 gene encoding the alpha subunit of the KVLQT1 channel cause the long-QT syndrome (LQTS). The autosomal dominant form of this cardiac disease, the Romano-Ward syndrome, is characterized by a prolongation of the QT interval, ventricular arrhythmias, and sudden death. The autosomal recessive form, the Jervell and Lange-Nielsen syndrome, also includes bilateral deafness. In the present study, we report the entire genomic structure of KCNQ1, which consists of 19 exons spanning 400 kb on chromosome 11p15.5. We describe the sequences of exon-intron boundaries and oligonucleotide primers that allow polymerase chain reaction (PCR) amplification of exons from genomic DNA. Two new (CA)n repeat microsatellites were found in introns 10 and 14. The present study provides helpful tools for the linkage analysis and mutation screening of the complete KCNQ1 gene. By use of these tools, five novel mutations were identified in LQTS patients by PCR-single-strand conformational polymorphism (SSCP) analysis in the C-terminal part of KCNQ1: two missense mutations, a 20-bp and 1-bp deletions, and a 1-bp insertion. Such mutations in the C-terminal domain of the gene may be more frequent than previously expected, because this region has not been analyzed so far. This could explain the low percentage of mutations found in large LQTS cohorts.
Collapse
Affiliation(s)
- N Neyroud
- INSERM U153, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 1999; 96:437-46. [PMID: 10025409 DOI: 10.1016/s0092-8674(00)80556-5] [Citation(s) in RCA: 616] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Potassium channels regulate electrical signaling and the ionic composition of biological fluids. Mutations in the three known genes of the KCNQ branch of the K+ channel gene family underlie inherited cardiac arrhythmias (in some cases associated with deafness) and neonatal epilepsy. We have now cloned KCNQ4, a novel member of this branch. It maps to the DFNA2 locus for a form of nonsyndromic dominant deafness. In the cochlea, it is expressed in sensory outer hair cells. A mutation in this gene in a DFNA2 pedigree changes a residue in the KCNQ4 pore region. It abolishes the potassium currents of wild-type KCNQ4 on which it exerts a strong dominant-negative effect. Whereas mutations in KCNQ1 cause deafness by affecting endolymph secretion, the mechanism leading to KCNQ4-related hearing loss is intrinsic to outer hair cells.
Collapse
Affiliation(s)
- C Kubisch
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Larsen LA, Andersen PS, Kanters JK, Jacobsen JR, Vuust J, Christiansen M. A single strand conformation polymorphism/heteroduplex (SSCP/HD) method for detection of mutations in 15 exons of the KVLQT1 gene, associated with long QT syndrome. Clin Chim Acta 1999; 280:113-25. [PMID: 10090529 DOI: 10.1016/s0009-8981(98)00177-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Congenital long QT syndrome (LQTS) is characterised by prolongation of the QT interval on ECG and cardiac arrhythmias, syncopes and sudden death. A rapid and reliable genetic diagnosis of the disease may be of great importance for diagnosis and treatment of LQTS. Mutations in the KVLQT1 gene, encoding a potassium-channel subunit of importance for the depolarisation of cardiac myocytes, is believed to be associated with 50% of all LQTS cases. Our data confirms that KvLQT1 isoform 1 is encoded by 16 exons, and not 15, as reported previously. We have used genomic DNA sequences to design intronic PCR primers for amplification of 15 exons of KVLQT1 and optimised a non-radioactive single stranded conformation polymorphism/heteroduplex (SSCP/HD) method for detection of mutations in KVLQT1. The sensitivity of the method was 100% when it was tested on 15 in vitro constructed mutants. By multiplexing the PCR amplification of KVLQT1, it is possible to cover all 15 exons in four PCR reactions.
Collapse
Affiliation(s)
- L A Larsen
- Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
36
|
Chapter 7 Mutational Analysis of Familial Long QT Syndrome in Japan. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Schroeder BC, Kubisch C, Stein V, Jentsch TJ. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 1998; 396:687-90. [PMID: 9872318 DOI: 10.1038/25367] [Citation(s) in RCA: 402] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Epilepsy affects more than 0.5% of the world's population and has a large genetic component. It is due to an electrical hyperexcitability in the central nervous system. Potassium channels are important regulators of electrical signalling, and benign familial neonatal convulsions (BFNC), an autosomal dominant epilepsy of infancy, is caused by mutations in the KCNQ2 or the KCNQ3 potassium channel genes. Here we show that KCNQ2 and KCNQ3 are distributed broadly in brain with expression patterns that largely overlap. Expression in Xenopus oocytes indicates the formation of heteromeric KCNQ2/KCNQ3 potassium channels with currents that are at least tenfold larger than those of the respective homomeric channels. KCNQ2/KCNQ3 currents can be increased by intracellular cyclic AMP, an effect that depends on an intact phosphorylation site in the KCNQ2 amino terminus. KCNQ2 and KCNQ3 mutations identified in BFNC pedigrees compromised the function of the respective subunits, but exerted no dominant-negative effect on KCNQ2/KCNQ3 heteromeric channels. We predict that a 25% loss of heteromeric KCNQ2/KCNQ3-channel function is sufficient to cause the electrical hyperexcitability in BFNC. Drugs raising intracellular cAMP may prove beneficial in this form of epilepsy.
Collapse
Affiliation(s)
- B C Schroeder
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Germany
| | | | | | | |
Collapse
|
38
|
Wang Q, Bowles NE, Towbin JA. The molecular basis of long QT syndrome and prospects for therapy. MOLECULAR MEDICINE TODAY 1998; 4:382-8. [PMID: 9791861 DOI: 10.1016/s1357-4310(98)01320-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long QT syndrome (LQT) is a cardiac disorder that causes sudden death from ventricular tachyarrhythmias, specifically torsade de pointes. Two types of LQT have been reported, autosomal-dominant LQT (Romano-Ward syndrome) and autosomal-recessive LQT (Jervell and Lange-Nielsen syndrome); Jervell and Lange-Nielsen syndrome is also associated with deafness. Four LQT genes have been identified for autosomal-dominant LQT: K+ channel genes KVLQT1 on chromosome 11p15.5, HERG on 7q35-36 and minK on 21q22, and the cardiac Na+ channel gene SCN5A on chromosome 3p21-24. Two genes, KVLQT1 and minK, have been identified for Jervell and Lange-Nielsen syndrome. Genetic testing and gene-specific therapies are available for some LQT patients.
Collapse
Affiliation(s)
- Q Wang
- Lillie Frank Abercrombie Section of Pediatric Cardiology, Baylor College of Medicine, Texas Children's Hospital, Houston 77030, USA
| | | | | |
Collapse
|
39
|
Pusch M, Magrassi R, Wollnik B, Conti F. Activation and inactivation of homomeric KvLQT1 potassium channels. Biophys J 1998; 75:785-92. [PMID: 9675180 PMCID: PMC1299753 DOI: 10.1016/s0006-3495(98)77568-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The voltage-gated potassium channel protein KvLQT1 (Wang et al., 1996. Nature Genet. 12:17-23) is believed to underlie the delayed rectifier potassium current of cardiac muscle together with the small membrane protein minK (also named IsK) as an essential auxiliary subunit (Barhanin et al., 1996. Nature. 384:78-80; Sanguinetti et al., 1996. Nature. 384:80-83) Using the Xenopus oocyte expression system, we analyzed in detail the gating characteristics of homomeric KvLQT1 channels and of heteromeric KvLQT1/minK channels using two-electrode voltage-clamp recordings. Activation of homomeric KvLQT1 at positive voltages is accompanied by an inactivation process that is revealed by a transient increase in conductance after membrane repolarization to negative values. We studied the recovery from inactivation and the deactivation of the channels during tail repolarizations at -120 mV after conditioning pulses of variable amplitude and duration. Most measurements were made in high extracellular potassium to increase the size of inward tail currents. However, experiments in normal low-potassium solutions showed that, in contrast to classical C-type inactivation, the inactivation of KvLQT1 is independent of extracellular potassium. At +40 mV inactivation develops with a delay of 100 ms. At the same potential, the activation estimated from the amplitude of the late exponential decay of the tail currents follows a less sigmoidal time course, with a late time constant of 300 ms. Inactivation of KvLQT1 is not complete, even at the most positive voltages. The delayed, voltage-dependent onset and the incompleteness of inactivation suggest a sequential gating scheme containing at least two open states and ending with an inactivating step that is voltage independent. In coexpression experiments of KvLQT1 with minK, inactivation seems to be largely absent, although biphasic tails are also observed that could be related to similar phenomena.
Collapse
Affiliation(s)
- M Pusch
- Istituto di Cibernetica e Biofisica, CNR, I-16149 Genoa, Italy
| | | | | | | |
Collapse
|
40
|
Ackerman MJ, Schroeder JJ, Berry R, Schaid DJ, Porter CJ, Michels VV, Thibodeau SN. A novel mutation in KVLQT1 is the molecular basis of inherited long QT syndrome in a near-drowning patient's family. Pediatr Res 1998; 44:148-53. [PMID: 9702906 DOI: 10.1203/00006450-199808000-00002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
After identifying a 10-year-old boy with inherited long QT syndrome (LQTS) after a near-drowning that required defibrillation from torsades de pointes, evaluation of first degree relatives revealed a four-generation kindred comprising 26 individuals with four additional symptomatic and eight asymptomatic members harboring an abnormally prolonged QTc (defined as > or =0.46 s1/2). We set out to determine the molecular basis of their LQTS. The inherited LQTS represents a collection of genetically distinct ion channelopathies with over 40 mutations in four fundamental cardiac ion channels identified. Molecular studies, including linkage analysis and identification of the disease-associated mutation, were performed on genomic DNA isolated from peripheral blood samples from 29 available family members. Genetic linkage analysis excluded the regions for LQT2, LQT3, and LQT5. However, the chromosome 11p15.5 region (LQT1) showed evidence of linkage with a maximum lod score of 3.36. Examination of the KVLQT1 gene revealed a novel 3-bp deletion resulting in an in-frame deltaF339 (phenylalanine) deletion in the proband. This deltaF339 mutation was confirmed in nine additional family members who shared both an assigned affected phenotype and the disease-associated linked haplotype. Importantly, three asymptomatic family members, with a tentative clinical diagnosis based on their QTc, did not have this mutation and could be reclassified as unaffected. It is noteworthy that the proband's ECG suggested the sodium channel-based LQT3 genotype. These findings show the potential importance of establishing a molecular diagnosis rather than initiating genotype-specific interventions based upon inspection of a patient's ECG.
Collapse
Affiliation(s)
- M J Ackerman
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Splawski I, Shen J, Timothy KW, Vincent GM, Lehmann MH, Keating MT. Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. Genomics 1998; 51:86-97. [PMID: 9693036 DOI: 10.1006/geno.1998.5361] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long QT syndrome (LQT) is a cardiac disorder causing syncope and sudden death from arrhythmias. LQT is characterized by prolongation of the QT interval on electrocardiogram, an indicationof abnormal cardiac repolarization. Mutations in KVLQT1, HERG, SCN5A, and KCNE1, genes encoding cardiac ion channels, cause LQT. Here, we define thecomplete genomic structure of three LQT genesand use this information to identify disease-associated mutations. KVLQT1 is composed of 16 exonsand encompasses approximately 400 kb. HERG consists of 16 exons and spans 55 kb. Three exons make up KCNE1. Each intron of these genes contains the invariant GT and AG at the donor and acceptor splice sites, respectively. Intron sequences were used to design primer pairs for the amplification of all exons. Familial and sporadic cases affected bymutations in KVLQT1, HERG, and KCNE1 can nowbe genetically screened to identify individuals at risk of developing this disorder. This work has clinical implications for presymptomatic diagnosis and therapy.
Collapse
Affiliation(s)
- I Splawski
- Cardiology Division, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | | | | | | | | |
Collapse
|
42
|
Barhanin J, Attali B, Lazdunski M. IKs, a Slow and Intriguing Cardiac K+ Channel and Its Associated Long QT Diseases. Trends Cardiovasc Med 1998; 8:207-14. [PMID: 14987566 DOI: 10.1016/s1050-1738(98)00013-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Shaping of cardiac action potentials depends on a finely tuned orchestra of ion channels. Among them, K(+) channels probably form the most diverse family. They are responsible for inwardly rectifying (I(K1), I(KAch), I(KATP)), transient (I(to)), and sustained outward rectifying (I(Kur), I(Kr), I(Ks)) K(+) currents. The properties of these cardiac K(+) channels have recently been extensively reviewed. This article focuses on recent progress made toward understanding the molecular structure of the particular channel responsible for the slow outward K(+) current I(Ks) and its implication in the delayed ventricular repolarization that characterizes the congenital long QT syndrome.
Collapse
Affiliation(s)
- J Barhanin
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | | |
Collapse
|
43
|
Kanters JK, Larsen LA, Orholm M, Agner E, Andersen PS, Vuust J, Christiansen M. Novel donor splice site mutation in the KVLQT1 gene is associated with long QT syndrome. J Cardiovasc Electrophysiol 1998; 9:620-4. [PMID: 9654228 DOI: 10.1111/j.1540-8167.1998.tb00944.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Inherited long QT syndrome (LQTS) recently has been associated with mutations in genes coding for potassium (KVLQT1, KCNE1, and HERG) or sodium (SCN5A) ion channels involved in regulating either sodium inward or potassium outward currents of heart cells, resulting in prolongation of the repolarization period. We describe a new mutation, a -1 donor splice site mutation in a kindred with two affected members (QTc = 0.61 and 0.54 sec). METHODS AND RESULTS Single stranded conformation polymorphism (SSCP) analyses were performed on DNA fragments amplified by polymerase chain reaction from DNA extracted from whole blood. Aberrant conformers were analyzed by DNA sequencing. SSCP analysis of the KVLQT1 gene revealed an aberrant conformer in the affected family members. DNA sequencing confirmed the presence of a G-->A change in the last nucleotide of codon 344. This mutation does not cause an amino acid change, but a change of the splice site characteristics at the 3' end of exon 6. The mutation may affect, through deficient splicing, the putative sixth transmembrane segment of the K+ channel, and this type of mutation has not previously been described in KVLQT1. CONCLUSION The clinical course of LQTS in the affected family members, in whom no deaths occurred despite 20 to 30 syncopes, can be explained by the ability of the cellular machinery to perform partial correct splicing in the mutant allele. This type of mutation may be misinterpreted as a normal variant, since it is a point mutation causing neither an amino acid change nor the introduction of a stop codon.
Collapse
Affiliation(s)
- J K Kanters
- Department of Internal Medicine, Elsinore Hospital, Helsingør, Denmark.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Once limited to discussions of the Jervell and Lange-Nielsen syndrome and Romano-Ward syndrome, the long QT syndrome (LQTS) is now understood to be a collection of genetically distinct arrhythmogenic cardiovascular disorders resulting from mutations in fundamental cardiac ion channels that orchestrate the action potential of the human heart. Our understanding of this genetic "channelopathy" has increased dramatically from electrocardiographic depictions of marked QT interval prolongation and torsades de pointes and clinical descriptions of people experiencing syncope and sudden death to molecular revelations in the 1990s of perturbed ion channel genes. More than 35 mutations in four cardiac ion channel genes--KVLQT1 (voltage-gated K channel gene causing one of the autosomal dominant forms of LQTS) (LQT1), HERG (human ether-a-go-go related gene.) (LQT2), SCN5A (LQT3), and KCNE1 (minK, LQT5)--have been identified in LQTS. These genes encode ion channels responsible for three of the fundamental ionic currents in the cardiac action potential. These exciting molecular break-throughs have provided new opportunities for translational research with investigations into genotype-phenotype correlations and gene-targeted therapies.
Collapse
Affiliation(s)
- M J Ackerman
- Department of Pediatric and Adolescent Medicine, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|
45
|
Abstract
Cardiac arrhythmias cause more than 300,000 sudden deaths each year in the USA alone. Long QT syndrome (LQT) is a cardiac disorder that causes sudden death from ventricular tachyarrhythmias, specifically torsade de pointes. Four LQT genes have been identified: KVLQT1 (LQT1) on chromosome 11p15.5, HERG (LQT2) on chromosome 7q35-36, SCN5A (LQT3) on chromosome 3p21-24, and MinK (LQT5) on chromosome 21q22. SCN5A encodes the cardiac sodium channel, and LQT-causing mutations in SCN5A lead to the generation of a late phase of inactivation-resistant whole-cell inward currents. Mexiletine, a sodium channel blocker, is effective in shortening the QT interval corrected for heart rate (QTc) of patients with SCN5A mutations. HERG encodes the cardiac I(Kr) potassium channel. Mutations in HERG act by a dominant-negative mechanism or by a loss-of-function mechanism. Raising the serum potassium concentration can increase outward HERG potassium current and is effective in shortening the QTc of patients with HERG mutations. KVLQT1 is a cardiac potassium channel protein that interacts with another small potassium channel MinK to form the cardiac I(Ks) potassium channel. Like HERG mutations, mutations in KVLQT1 and MinK can act by a dominant-negative mechanism or a loss-of-function mechanism. An effective treatment for LQT patients with KVLQT1 or MinK mutations is expected to be developed based on the functional characterization of the I(Ks) potassium channel. Genetic testing is now available for some patients with LQT.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 3
- Chromosomes, Human, Pair 7
- Death, Sudden, Cardiac/etiology
- Genes, Dominant
- Genes, Recessive
- Humans
- Long QT Syndrome/diagnosis
- Long QT Syndrome/drug therapy
- Long QT Syndrome/genetics
- Potassium Channels/genetics
- Sodium Channels/genetics
Collapse
Affiliation(s)
- Q Wang
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston 77030, USA.
| | | | | |
Collapse
|
46
|
Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, Ronen GM, Bjerre I, Quattlebaum T, Murphy JV, McHarg ML, Gagnon D, Rosales TO, Peiffer A, Anderson VE, Leppert M. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998; 18:25-9. [PMID: 9425895 DOI: 10.1038/ng0198-25] [Citation(s) in RCA: 839] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Idiopathic generalized epilepsies account for about 40% of epilepsy up to age 40 and commonly have a genetic basis. One type is benign familial neonatal convulsions (BFNC), a dominantly inherited disorder of newborns. We have identified a sub-microscopic deletion of chromosome 20q13.3 that co-segregates with seizures in a BFNC family. Characterization of cDNAs spanning the deleted region identified one encoding a novel voltage-gated potassium channel, KCNQ2, which belongs to a new KQT-like class of potassium channels. Five other BFNC probands were shown to have KCNQ2 mutations, including two transmembrane missense mutations, two frameshifts and one splice-site mutation. This finding in BFNC provides additional evidence that defects in potassium channels are involved in the mammalian epilepsy phenotype.
Collapse
Affiliation(s)
- N A Singh
- Department of Human Genetics, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Donger C, Denjoy I, Berthet M, Neyroud N, Cruaud C, Bennaceur M, Chivoret G, Schwartz K, Coumel P, Guicheney P. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation 1997; 96:2778-81. [PMID: 9386136 DOI: 10.1161/01.cir.96.9.2778] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND KVLQT1, the gene encoding the alpha-subunit of a cardiac potassium channel, is the most common cause of the dominant form of long-QT syndrome (LQT1-type), the Romano-Ward syndrome (RWS). The overall phenotype of RWS is characterized by a prolonged QT interval on the ECG and cardiac ventricular arrhythmias leading to recurrent syncopes and sudden death. However, there is considerable variability in the clinical presentation, and potential severity is often difficult to evaluate. To analyze the relationship between phenotypes and underlying defects in KVLQT1, we investigated mutations in this gene in 20 RWS families originating from France. METHODS AND RESULTS By PCR-SSCP analysis, 16 missense mutations were identified in KVLQT1, 11 of them being novel. Fifteen mutations, localized in the transmembrane domains S2-S3, S4-S5, P, and S6, were associated with a high percentage of symptomatic carriers (55 of 95, or 58%) and sudden deaths (23 of 95, or 24%). In contrast, a missense mutation, Arg555Cys, identified in the C-terminal domain in 3 families, was associated with a significantly less pronounced QT prolongation (459+/-33 ms, n=41, versus 480+/-32 ms, n=70, P=.0012), and significantly lower percentages of symptomatic carriers (7 of 44, or 16%, P<.001) and sudden deaths (2 of 44, or 5%, P<.01). Most of the cardiac events occurring in these 3 families were triggered by drugs known to affect ventricular repolarization. CONCLUSIONS Our data show a wide KVLQT1 allelic heterogeneity among 20 families in which KVLQT1 causes RWS. We describe the first missense mutation in the C-terminal domain of KVLQT1, which is clearly associated with a fruste phenotype, which could be a favoring factor of acquired LQT syndrome.
Collapse
Affiliation(s)
- C Donger
- INSERM U153, Groupe Hospitalier Pitié-Salpêtrière, Institut de Myologie, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wollnik B, Schroeder BC, Kubisch C, Esperer HD, Wieacker P, Jentsch TJ. Pathophysiological mechanisms of dominant and recessive KVLQT1 K+ channel mutations found in inherited cardiac arrhythmias. Hum Mol Genet 1997; 6:1943-9. [PMID: 9302275 DOI: 10.1093/hmg/6.11.1943] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The inherited long QT syndrome (LQTS), characterized by a prolonged QT interval in the electrocardiogram and cardiac arrhythmia, is caused by mutations in at least four different genes, three of which have been identified and encode cardiac ion channels. The most common form of LQTS is due to mutations in the potassium channel gene KVLQT1, but their effects on associated currents are still unknown. Different mutations in KVLQT1 cause the dominant Romano-Ward (RW) syndrome and the recessive Jervell and Lange-Nielsen (JLN) syndrome, which, in addition to cardiac abnormalities, includes congenital deafness. Co-expression of KvLQT1 with the IsK protein elicits slowly activating potassium currents resembling the cardiac Iks current. We now show that IsK not only changes the kinetics of KvLQT1 currents, but also its ion selectivity. Several mutations found in RW, including a novel mutation (D222N) in the putative channel pore, abolish channel activity and reduce the activity of wild-type KvLQT1 by a dominant-negative mechanism. By contrast, a JLN mutation truncating the carboxyterminus of the KvLQT1 channel protein abolishes channel function without having a dominant-negative effect. This fully explains the different patterns of inheritance. Further, we identified a novel splice variant of the KVLQT1 gene, but could not achieve functional expression of this nor of a previously described heart-specific isoform.
Collapse
Affiliation(s)
- B Wollnik
- Centre for Molecular Neurobiology (ZMNH), Hamburg University, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Jiang M, Tseng-Crank J, Tseng GN. Suppression of slow delayed rectifier current by a truncated isoform of KvLQT1 cloned from normal human heart. J Biol Chem 1997; 272:24109-12. [PMID: 9305853 DOI: 10.1074/jbc.272.39.24109] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been suggested that the cardiac slow delayed rectifier channel is formed by the association of two subunits: IsK (also called minK) and KvLQT1. N-terminal splice variants of the human KvLQT1 gene have been identified, but the functional roles of different KvLQT1 isoforms are not clear. Using the nested 5'-rapid amplification of cDNA ends technique, we obtained a truncated isoform of KvLQT1 (termed tKvLQT1) that lacks the N-terminal cytoplasmic domain and the initial one-third of the first transmembrane domain. The function of tKvLQT1 was tested by oocyte expression, alone or together with the full-length KvLQT1 or a human IsK clone (hIsK). tKvLQT1 alone did not generate functional channels. However, it suppressed the KvLQT1 current when coexpressed with the full-length isoform. It also suppressed the slow delayed rectifier current induced by hIsK, probably by competing with the KvLQT1 subunit endogenous to Xenopus oocytes in coassembly with the hIsK subunit. On the other hand, tKvLQT1 did not suppress the expression of Kv1.4, Kv4.3, or hERG. Using the reverse transcription-polymerase chain reaction technique, we further show that the truncated and full-length isoforms are coexpressed in different regions of human heart. Therefore, tKvLQT1 may modulate the function of IKs in human cardiac myocytes.
Collapse
Affiliation(s)
- M Jiang
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
50
|
Chouabe C, Neyroud N, Guicheney P, Lazdunski M, Romey G, Barhanin J. Properties of KvLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J 1997; 16:5472-9. [PMID: 9312006 PMCID: PMC1170178 DOI: 10.1093/emboj/16.17.5472] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations in the delayed rectifier K+ channel subunit KvLQT1 have been identified as responsible for both Romano-Ward (RW) and Jervell and Lange-Nielsen (JLN) inherited long QT syndromes. We report the molecular cloning of a human KvLQT1 isoform that is expressed in several human tissues including heart. Expression studies revealed that the association of KvLQT1 with another subunit, IsK, reconstitutes a channel responsible for the IKs current involved in ventricular myocyte repolarization. Six RW and two JLN mutated KvLQT1 subunits were produced and co-expressed with IsK in COS cells. All the mutants, except R555C, fail to produce functional homomeric channels and reduce the K+ current when co-expressed with the wild-type subunit. Thus, in both syndromes, the main effect of the mutations is a dominant-negative suppression of KvLQT1 function. The JLN mutations have a smaller dominant-negative effect, in agreement with the fact that the disease is recessive. The R555C subunit forms a functional channel when expressed with IsK, but with altered gating properties. The voltage dependence of the activation is strongly shifted to more positive values, and deactivation kinetics are accelerated. This finding indicates the functional importance of a small positively charged cytoplasmic region of the KvLQT structure where two RW and one JLN mutations have been found to take place.
Collapse
Affiliation(s)
- C Chouabe
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|