1
|
Abstract
Protein coats are supramolecular complexes that assemble on the cytosolic face of membranes to promote cargo sorting and transport carrier formation in the endomembrane system of eukaryotic cells. Several types of protein coats have been described, including COPI, COPII, AP-1, AP-2, AP-3, AP-4, AP-5, and retromer, which operate at different stages of the endomembrane system. Defects in these coats impair specific transport pathways, compromising the function and viability of the cells. In humans, mutations in subunits of these coats cause various congenital diseases that are collectively referred to as coatopathies. In this article, we review the fundamental properties of protein coats and the diseases that result from mutation of their constituent subunits.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
2
|
Wang Q, Liu Z, Lin Z, Zhang R, Lu Y, Su W, Li F, Xu X, Tu M, Lou Y, Zhao J, Zheng X. De Novo Germline Mutations in SEMA5A Associated With Infantile Spasms. Front Genet 2019; 10:605. [PMID: 31354784 PMCID: PMC6635550 DOI: 10.3389/fgene.2019.00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Infantile spasm (IS) is an early-onset epileptic encephalopathy that usually presents with hypsarrhythmia on an electroencephalogram with developmental impairment or regression. In this study, whole-exome sequencing was performed to detect potential pathogenic de novo mutations, and finally we identified a novel damaging de novo mutation in SEMA5A and a compound heterozygous mutation in CLTCL1 in three sporadic trios with IS. The expression profiling of SEMA5A in the human brain showed that it was mainly highly expressed in the cerebral cortex, during the early brain development stage (8 to 9 post-conception weeks and 0 to 5 months after birth). In addition, we identified a close protein-protein interaction network between SEMA5A and candidate genes associated with epilepsy, autism spectrum disorder (ASD) or intellectual disability. Gene enrichment and function analysis demonstrated that genes interacting with SEMA5A were significantly enriched in several brain regions across early fetal development, including the cortex, cerebellum, striatum and thalamus (q < 0.05), and were involved in axonal, neuronal and synapse-associated processes. Furthermore, SEMA5A and its interacting genes were associated with ASD, epilepsy syndrome and developmental disorders of mental health. Our results provide insightful information indicating that SEMA5A may contribute to the development of the brain and is associated with IS. However, further genetic studies are still needed to evaluate the role of SEMA5A in IS to definitively establish the role of SEMA5A in this disorder.
Collapse
Affiliation(s)
- Qiongdan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ru Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yutian Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weijue Su
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyun Tu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Junzhao Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Shi X, Huang T, Wang J, Liang Y, Gu C, Xu Y, Sun J, Lu Y, Sun K, Chen S, Yu Y. Next-generation sequencing identifies novel genes with rare variants in total anomalous pulmonary venous connection. EBioMedicine 2018; 38:217-227. [PMID: 30448225 PMCID: PMC6306349 DOI: 10.1016/j.ebiom.2018.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/22/2018] [Accepted: 11/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background Total anomalous pulmonary venous connection (TAPVC) is recognized as a rare congenital heart defect (CHD). With a high mortality rate of approximately 80%, the survival rate and outcomes of TAPVC patients are not satisfactory. However, the genetic aetiology and mechanism of TAPVC remain elusive. This study aimed to investigate the underlying genomic risks of TAPVC through next-generation sequencing (NGS). Methods Rare variants were identified through whole exome sequencing (WES) of 78 sporadic TAPVC cases and 100 healthy controls using Fisher's exact test and gene-based burden test. We then detected candidate gene expression patterns in cells, pulmonary vein tissues, and embryos. Finally, we validated these genes using target sequencing (TS) in another 100 TAPVC cases. Findings We identified 42 rare variants of 7 genes (CLTCL1, CST3, GXYLT1, HMGA2, SNAI1, VAV2, ZDHHC8) in TAPVC cases compared with controls. These genes were highly expressed in human umbilical vein endothelial cells (HUVECs), mouse pulmonary veins and human embryonic hearts. mRNA levels of these genes in human pulmonary vein samples were significantly different between cases and controls. Through network analysis and expression patterns in zebrafish embryos, we revealed that SNAI1, HMGA2 and VAV2 are the most important genes for TAPVC. Interpretation Our study identifies novel candidate genes potentially related to TAPVC and elucidates the possible molecular pathogenesis of this rare congenital birth defect. Furthermore, SNAI1, HMGA2 and VAV2 are novel TAPVC candidate genes that have not been reported previously in either humans or animals. Fund National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Xin Shi
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Wang
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yulai Liang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tong Ji University School of Medicine, Shanghai 200433, China
| | - Yuejuan Xu
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing Sun
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yanan Lu
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Sun Chen
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
4
|
Nilsson SR, Fejgin K, Gastambide F, Vogt MA, Kent BA, Nielsen V, Nielsen J, Gass P, Robbins TW, Saksida LM, Stensbøl TB, Tricklebank MD, Didriksen M, Bussey TJ. Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome. Cereb Cortex 2016; 26:3991-4003. [PMID: 27507786 PMCID: PMC5028007 DOI: 10.1093/cercor/bhw229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/03/2016] [Indexed: 12/26/2022] Open
Abstract
A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus - within the current protocols - the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional "hits" being required for phenotypic expression.
Collapse
Affiliation(s)
- Simon Ro Nilsson
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA
| | - Kim Fejgin
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby 2500, Denmark
| | - Francois Gastambide
- In Vivo Pharmacology, Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - Miriam A Vogt
- Central Institute of Mental Health, Mannheim Faculty, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Brianne A Kent
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Vibeke Nielsen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby 2500, Denmark
| | - Jacob Nielsen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby 2500, Denmark
| | - Peter Gass
- Central Institute of Mental Health, Mannheim Faculty, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Lisa M Saksida
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Tine B Stensbøl
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby 2500, Denmark
| | - Mark D Tricklebank
- In Vivo Pharmacology, Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - Michael Didriksen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby 2500, Denmark
| | - Timothy J Bussey
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
5
|
DeMari J, Mroske C, Tang S, Nimeh J, Miller R, Lebel RR. CLTC as a clinically novel gene associated with multiple malformations and developmental delay. Am J Med Genet A 2016; 170A:958-66. [PMID: 26822784 DOI: 10.1002/ajmg.a.37506] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022]
Abstract
Diagnostic exome sequencing has recently emerged as an invaluable tool in determining the molecular etiology of cases involving dysmorphism and developmental delay that are otherwise unexplained by more traditional methods of genetic testing. Our patient was large for gestational age at 35 weeks, delivered to a 27-year-old primigravid Caucasian whose pregnancy was complicated by preeclampsia. Neonatal period was notable for hypoglycemia, apnea, bradycardia, hyperbilirubinemia, grade I intraventricular hemorrhage, subdural hematoma, laryngomalacia, hypotonia, and feeding difficulties. The patient had numerous minor dysmorphic features. At three and a half years of age, she has global developmental delays and nystagmus, and is being followed for a mediastinal neuroblastoma that is currently in remission. Karyotype and oligo-microarray were normal. Whole-exome, next generation sequencing (NGS) coupled to bioinformatic filtering and expert medical review at Ambry Genetics revealed 14 mutations in 9 genes, and these genes underwent medical review. A heterozygous de novo frameshift mutation, c.2737_2738dupGA p.D913Efs*59, in which two nucleotides are duplicated in exon 17 of the CLTC gene, results in substitution of glutamic acid for aspartic acid at position 913 of the protein, as well as a frame shift that results in a premature termination codon situated 58 amino acids downstream. Clathrin Heavy Chain 1 (CHC1) has been shown to play an important role in the brain for vesicle recycling and neurotransmitter release at pre-synaptic nerve terminals. There is also evidence implicating it in the proper development of the placenta during the early stages of pregnancy. The CLTC alteration identified herein is likely to provide an explanation for the patient's adverse phenotype. Ongoing functional studies will further define the impact of this alteration on CHC1 function and consequently, human disease.
Collapse
Affiliation(s)
- Joseph DeMari
- Department of Pediatrics, Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, New York
| | | | - Sha Tang
- Ambry Genetics Corporation, Aliso Viejo, California
| | - Joseph Nimeh
- Department of Pediatrics, Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, New York
| | - Ryan Miller
- Department of Pediatrics, Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, New York
| | - Robert R Lebel
- Department of Pediatrics, Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
6
|
Tan X, Anzick SL, Khan SG, Ueda T, Stone G, Digiovanna JJ, Tamura D, Wattendorf D, Busch D, Brewer CC, Zalewski C, Butman JA, Griffith AJ, Meltzer PS, Kraemer KH. Chimeric negative regulation of p14ARF and TBX1 by a t(9;22) translocation associated with melanoma, deafness, and DNA repair deficiency. Hum Mutat 2013; 34:1250-9. [PMID: 23661601 DOI: 10.1002/humu.22354] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/29/2013] [Indexed: 12/15/2022]
Abstract
Melanoma is the most deadly form of skin cancer and DiGeorge syndrome (DGS) is the most frequent interstitial deletion syndrome. We characterized a novel balanced t(9;22)(p21;q11.2) translocation in a patient with melanoma, DNA repair deficiency, and features of DGS including deafness and malformed inner ears. Using chromosome sorting, we located the 9p21 breakpoint in CDKN2A intron 1. This resulted in underexpression of the tumor suppressor p14 alternate reading frame (p14ARF); the reduced DNA repair was corrected by transfection with p14ARF. Ultraviolet radiation-type p14ARF mutations in his melanoma implicated p14ARF in its pathogenesis. The 22q11.2 breakpoint was located in a palindromic AT-rich repeat (PATRR22). We identified a new gene, FAM230A, that contains PATRR22 within an intron. The 22q11.2 breakpoint was located 800 kb centromeric to TBX1, which is required for inner ear development. TBX1 expression was greatly reduced. The translocation resulted in a chimeric transcript encoding portions of p14ARF and FAM230A. Inhibition of chimeric p14ARF-FAM230A expression increased p14ARF and TBX1 expression and improved DNA repair. Expression of the chimera in normal cells produced dominant negative inhibition of p14ARF. Similar chimeric mRNAs may mediate haploinsufficiency in DGS or dominant negative inhibition of other genes such as those involved in melanoma.
Collapse
Affiliation(s)
- Xiaohui Tan
- DNA Repair Section, Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4258, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet 2012; 8:e1002635. [PMID: 22511880 PMCID: PMC3325173 DOI: 10.1371/journal.pgen.1002635] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 02/21/2012] [Indexed: 12/13/2022] Open
Abstract
Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolarization regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which may have broader applicability to other complex, heterogeneous disorders.
Collapse
|
8
|
A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review. BMC MEDICAL GENETICS 2009; 10:48. [PMID: 19490635 PMCID: PMC2700091 DOI: 10.1186/1471-2350-10-48] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 06/02/2009] [Indexed: 12/31/2022]
Abstract
Background Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date. Methods We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents. Results Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial de novo 1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping. Conclusion The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors.
Collapse
|
9
|
Balanced translocations in mental retardation. Hum Genet 2009; 126:133-47. [PMID: 19347365 DOI: 10.1007/s00439-009-0661-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/23/2009] [Indexed: 12/13/2022]
Abstract
Over the past few decades, the knowledge on genetic defects causing mental retardation has dramatically increased. In this review, we discuss the importance of balanced chromosomal translocations in the identification of genes responsible for mental retardation. We present a database-search guided overview of balanced translocations identified in patients with mental retardation. We divide those in four categories: (1) balanced translocations that helped to identify a causative gene within a contiguous gene syndrome, (2) balanced translocations that led to the identification of a mental retardation gene confirmed by independent methods, (3) balanced translocations disrupting candidate genes that have not been confirmed by independent methods and (4) balanced translocations not reported to disrupt protein coding sequences. It can safely be concluded that balanced translocations have been instrumental in the identification of multiple genes that are involved in mental retardation. In addition, many more candidate genes were identified with a suspected but (as yet?) unconfirmed role in mental retardation. Some balanced translocations do not disrupt a protein coding gene and it can be speculated that in the light of recent findings concerning ncRNA's and ultra-conserved regions, such findings are worth further investigation as these potentially may lead us to the discovery of novel disease mechanisms.
Collapse
|
10
|
Gotter AL, Nimmakayalu MA, Jalali GR, Hacker AM, Vorstman J, Conforto Duffy D, Medne L, Emanuel BS. A palindrome-driven complex rearrangement of 22q11.2 and 8q24.1 elucidated using novel technologies. Genome Res 2007; 17:470-81. [PMID: 17351131 PMCID: PMC1832094 DOI: 10.1101/gr.6130907] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Constitutional translocations at the same 22q11.21 low copy repeat B (LCR-B) breakpoint involved in the recurrent t(11;22) are relatively abundant. A novel 46,XY,t(8;22)(q24.13;q11.21) rearrangement was investigated to determine whether the recurrent LCR-B breakpoint is involved. Investigations demonstrated an inversion of the 3Mb region typically deleted in patients with the 22q11.2 deletion syndrome. The 22q11.21 inversion appears to be mediated by low copy repeats, and is presumed to have taken place prior to translocation with 8q24.13. Despite predictions based on inversions observed in other chromosomes harboring low copy repeats, this 22q11.2 inversion has not been observed previously. The current studies utilize novel laser microdissection and MLPA (multiplex ligation-dependent probe amplification) approaches, as adjuncts to FISH, to map the breakpoints of the complex rearrangements of 22q11.21 and 8q24.21. The t(8;22) occurs between the recurrent site on 22q11.21 and an AT-rich site at 8q24.13, making it the fifth different chromosomal locus characterized at the nucleotide level engaged in a translocation with the unstable recurrent breakpoint at 22q11.21. Like the others, this breakpoint occurs at the center of a palindromic sequence. This sequence appears capable of forming a perfect 145 bp stem-loop. Remarkably, this site appears to have been involved in a previously reported t(3;8) occurring between 8q24.13 and FRA3B on 3p14.2. Further, the fragile site-like nature of all of the breakpoint sites involved in translocations with the recurrent site on 22q11.21, suggests a mechanism based on delay of DNA replication in the initiation of these chromosomal rearrangements.
Collapse
Affiliation(s)
- Anthony L. Gotter
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - Manjunath A. Nimmakayalu
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - G. Reza Jalali
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - April M. Hacker
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - Jacob Vorstman
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - Danielle Conforto Duffy
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - Livija Medne
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
| | - Beverly S. Emanuel
- The Division of Human Genetics, The Children’s Hospital of Philadelphia and the Joseph Stokes Jr. Research Institute, Philadelphia, Pennsylvania 19104, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Corresponding author.E-mail ; fax (215) 590-3764
| |
Collapse
|
11
|
Gribble SM, Prigmore E, Burford DC, Porter KM, Ng BL, Douglas EJ, Fiegler H, Carr P, Kalaitzopoulos D, Clegg S, Sandstrom R, Temple IK, Youings SA, Thomas NS, Dennis NR, Jacobs PA, Crolla JA, Carter NP. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J Med Genet 2006; 42:8-16. [PMID: 15635069 PMCID: PMC1735914 DOI: 10.1136/jmg.2004.024141] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To describe the systematic analysis of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes, characterise the structural chromosome rearrangements, map the translocation breakpoints, and report detectable genomic imbalances. METHODS DNA microarrays were used with a resolution of 1 Mb for the detailed genome-wide analysis of the patients. Array CGH was used to screen for genomic imbalance and array painting to map chromosome breakpoints rapidly. These two methods facilitate rapid analysis of translocation breakpoints and screening for cryptic chromosome imbalance. Breakpoints of rearrangements were further refined (to the level of spanning clones) using fluorescence in situ hybridisation where appropriate. RESULTS Unexpected additional complexity or genome imbalance was found in six of 10 patients studied. The patients could be grouped according to the general nature of the karyotype rearrangement as follows: (A) three cases with complex multiple rearrangements including deletions, inversions, and insertions at or near one or both breakpoints; (B) three cases in which, while the translocations appeared to be balanced, microarray analysis identified previously unrecognised imbalance on chromosomes unrelated to the translocation; (C) four cases in which the translocation breakpoints appeared simple and balanced at the resolution used. CONCLUSIONS This high level of unexpected rearrangement complexity, if generally confirmed in the study of further patients, will have an impact on current diagnostic investigations of this type and provides an argument for the more widespread adoption of microarray analysis or other high resolution genome-wide screens for chromosome imbalance and rearrangement.
Collapse
Affiliation(s)
- S M Gribble
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Towler MC, Gleeson PA, Hoshino S, Rahkila P, Manalo V, Ohkoshi N, Ordahl C, Parton RG, Brodsky FM. Clathrin isoform CHC22, a component of neuromuscular and myotendinous junctions, binds sorting nexin 5 and has increased expression during myogenesis and muscle regeneration. Mol Biol Cell 2004; 15:3181-95. [PMID: 15133132 PMCID: PMC452575 DOI: 10.1091/mbc.e04-03-0249] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The muscle isoform of clathrin heavy chain, CHC22, has 85% sequence identity to the ubiquitously expressed CHC17, yet its expression pattern and function appear to be distinct from those of well-characterized clathrin-coated vesicles. In mature muscle CHC22 is preferentially concentrated at neuromuscular and myotendinous junctions, suggesting a role at sarcolemmal contacts with extracellular matrix. During myoblast differentiation, CHC22 expression is increased, initially localized with desmin and nestin and then preferentially segregated to the poles of fused myoblasts. CHC22 expression is also increased in regenerating muscle fibers with the same time course as embryonic myosin, indicating a role in muscle repair. CHC22 binds to sorting nexin 5 through a coiled-coil domain present in both partners, which is absent in CHC17 and coincides with the region on CHC17 that binds the regulatory light-chain subunit. These differential binding data suggest a mechanism for the distinct functions of CHC22 relative to CHC17 in membrane traffic during muscle development, repair, and at neuromuscular and myotendinous junctions.
Collapse
Affiliation(s)
- Mhairi C Towler
- The G.W. Hooper Foundation, Department of Microbiology and Immunology and Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-0552, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gotter AL, Shaikh TH, Budarf ML, Rhodes CH, Emanuel BS. A palindrome-mediated mechanism distinguishes translocations involving LCR-B of chromosome 22q11.2. Hum Mol Genet 2003; 13:103-15. [PMID: 14613967 PMCID: PMC2818528 DOI: 10.1093/hmg/ddh004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two known recurrent constitutional translocations, t(11;22) and t(17;22), as well as a non-recurrent t(4;22), display derivative chromosomes that have joined to a common site within the low copy repeat B (LCR-B) region of 22q11.2. This breakpoint is located between two AT-rich inverted repeats that form a nearly perfect palindrome. Breakpoints within the 11q23, 17q11 and 4q35 partner chromosomes also fall near the center of palindromic sequences. In the present work the breakpoints of a fourth translocation involving LCR-B, a balanced ependymoma-associated t(1;22), were characterized not only to localize this junction relative to known genes, but also to further understand the mechanism underlying these rearrangements. FISH mapping was used to localize the 22q11.2 breakpoint to LCR-B and the 1p21 breakpoint to single BAC clones. STS mapping narrowed the 1p21.2 breakpoint to a 1990 bp AT-rich region, and junction fragments were amplified by nested PCR. Junction fragment-derived sequence indicates that the 1p21.2 breakpoint splits a 278 nt palindrome capable of forming stem-loop secondary structure. In contrast, the 1p21.2 reference genomic sequence from clones in the database does not exhibit this configuration, suggesting a predisposition for regional genomic instability perhaps etiologic for this rearrangement. Given its similarity to known chromosomal fragile site (FRA) sequences, this polymorphic 1p21.2 sequence may represent one of the FRA1 loci. Comparative analysis of the secondary structure of sequences surrounding translocation breakpoints that involve LCR-B with those not involving this region indicate a unique ability of the former to form stem-loop structures. The relative likelihood of forming these configurations appears to be related to the rate of translocation occurrence. Further analysis suggests that constitutional translocations in general occur between sequences of similar melting temperature and propensity for secondary structure.
Collapse
Affiliation(s)
- Anthony L. Gotter
- Division of Human Genetics and Molecular Biology, Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, ARC 1002, Philadelphia, PA 19104, USA
| | - Tamim H. Shaikh
- Division of Human Genetics and Molecular Biology, Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, ARC 1002, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Marcia L. Budarf
- Division of Human Genetics and Molecular Biology, Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, ARC 1002, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - C. Harker Rhodes
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Beverly S. Emanuel
- Division of Human Genetics and Molecular Biology, Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, ARC 1002, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- To whom correspondence should be addressed. Tel: +1 2155903856; Fax: +1 2155903764;
| |
Collapse
|
14
|
DeBerardinis RJ, Conforto D, Russell K, Kaplan J, Kollros PR, Zackai EH, Emanuel BS. Myoclonus in a patient with a deletion of the epsilon-sarcoglycan locus on chromosome 7q21. Am J Med Genet A 2003; 121A:31-6. [PMID: 12900898 DOI: 10.1002/ajmg.a.20162] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autosomal dominant myoclonus-dystonia syndrome (MDS) is characterized by myoclonic and/or dystonic movements with onset as early as infancy. In most families, MDS is caused by mutations in the gene SGCE, which encodes epsilon -sarcoglycan and is located on chromosome 7q21. Data from several sources, including multi-generation pedigrees revealing parent-of-origin effects on MDS penetrance, suggest that SGCE is maternally imprinted. We present a 32-month-old patient with an interstitial deletion affecting chromosome 7q21, and a phenotype including myoclonus, microcephaly, short stature, dysmorphic face and language delay. We used fluorescence in situ hybridization (FISH) to estimate the size of our patient's deletion (9.0-15 Mbp) and to confirm absence of SGCE on the affected chromosome. Polymerase chain reaction (PCR) analysis of polymorphic markers in the region revealed that the paternally inherited chromosome contained the deletion, consistent with a model of maternal SGCE imprinting. Our patient is the first case of MDS caused by complete deletion of SGCE, and represents a new contiguous gene disorder. The case underscores the need to consider chromosomal deletions in patients whose phenotypes are more complex than the classic presentation of a known disease.
Collapse
Affiliation(s)
- Ralph J DeBerardinis
- Department of Pediatrics, Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Maynard TM, Haskell GT, Lieberman JA, LaMantia AS. 22q11 DS: genomic mechanisms and gene function in DiGeorge/velocardiofacial syndrome. Int J Dev Neurosci 2002; 20:407-19. [PMID: 12175881 DOI: 10.1016/s0736-5748(02)00050-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
22q11 deletion syndrome (22qDS), also known as DiGeorge or velocardiofacial syndrome (DGS/VCFS), is a relatively common genetic anomaly that results in malformations of the heart, face and limbs. In addition, patients with 22qDS are at significant risk for psychiatric disorders as well, with one in four developing schizophrenia, and one in six developing major depressive disorders. Like several other deletion syndromes associated with psychiatric or cognitive problems, it has been difficult to determine which of the specific genes in this genomic region may mediate the syndrome. For example, patients with different genomic deletions within the 22q11 region have been found that have similar phenotypes, even though their deletions do not compromise the same set of genes. In this review, we discuss the individual genes found in the region of 22q11 that is commonly deleted in 22qDS patients, and the potential roles each of these genes may play in the syndrome. Although many of these genes are interesting candidates by themselves, we hypothesize that the full spectrum of anomalies associated with 22qDS may result from the combined result of disruptions to numerous genes within the region that are involved in similar developmental or cellular processes.
Collapse
Affiliation(s)
- Thomas M Maynard
- Department of Cell and Molecular Physiology, CB #7545, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
16
|
McDermid HE, Morrow BE. Genomic disorders on 22q11. Am J Hum Genet 2002; 70:1077-88. [PMID: 11925570 PMCID: PMC447586 DOI: 10.1086/340363] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Accepted: 02/18/2002] [Indexed: 11/03/2022] Open
Abstract
The 22q11 region is involved in chromosomal rearrangements that lead to altered gene dosage, resulting in genomic disorders that are characterized by mental retardation and/or congenital malformations. Three such disorders-cat-eye syndrome (CES), der(22) syndrome, and velocardiofacial syndrome/DiGeorge syndrome (VCFS/DGS)-are associated with four, three, and one dose, respectively, of parts of 22q11. The critical region for CES lies centromeric to the deletion region of VCFS/DGS, although, in some cases, the extra material in CES extends across the VCFS/DGS region. The der(22) syndrome region overlaps both the CES region and the VCFS/DGS region. Molecular approaches have revealed a set of common chromosome breakpoints that are shared between the three disorders, implicating specific mechanisms that cause these rearrangements. Most VCFS/DGS and CES rearrangements are likely to occur by homologous recombination events between blocks of low-copy repeats (e.g., LCR22), whereas nonhomologous recombination mechanisms lead to the constitutional t(11;22) translocation. Meiotic nondisjunction events in carriers of the t(11;22) translocation can then lead to offspring with der(22) syndrome. The molecular basis of the clinical phenotype of these genomic disorders has also begun to be addressed. Analysis of both the genomic sequence for the 22q11 interval and the orthologous regions in the mouse has identified >24 genes that are shared between VCFS/DGS and der(22) syndrome and has identified 14 putative genes that are shared between CES and der(22) syndrome. The ability to manipulate the mouse genome aids in the identification of candidate genes in these three syndromes. Research on genomic disorders on 22q11 will continue to expand our knowledge of the mechanisms of chromosomal rearrangements and the molecular basis of their phenotypic consequences.
Collapse
Affiliation(s)
- Heather E. McDermid
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta; and Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Bernice E. Morrow
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta; and Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
17
|
Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 2002; 17:517-68. [PMID: 11687498 DOI: 10.1146/annurev.cellbio.17.1.517] [Citation(s) in RCA: 488] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has recently been considerable progress in understanding the regulation of clathrin-coated vesicle (CCV) formation and function. These advances are due to the determination of the structure of a number of CCV coat components at molecular resolution and the identification of novel regulatory proteins that control CCV formation in the cell. In addition, pathways of (a) phosphorylation, (b) receptor signaling, and (c) lipid modification that influence CCV formation, as well as the interaction between the cytoskeleton and CCV transport pathways are becoming better defined. It is evident that although clathrin coat assembly drives CCV formation, this fundamental reaction is modified by different regulatory proteins, depending on where CCVs are forming in the cell. This regulatory difference likely reflects the distinct biological roles of CCVs at the plasma membrane and trans-Golgi network, as well as the distinct properties of these membranes themselves. Tissue-specific functions of CCVs require even more-specialized regulation and defects in these pathways can now be correlated with human diseases.
Collapse
Affiliation(s)
- F M Brodsky
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
18
|
Black JL, Krahn LE, Jalal SM. Voltage-gated calcium channel gamma 2 subunit gene is not deleted in velo-cardio-facial syndrome. Mol Psychiatry 2001; 6:461-4. [PMID: 11443534 DOI: 10.1038/sj.mp.4000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Revised: 12/12/2000] [Accepted: 12/14/2000] [Indexed: 11/09/2022]
Abstract
Velo-cardio-facial syndrome (VCFS) has been associated with schizophrenic symptoms in some patients and is caused by a deletion of 22q11.21--q11.23. The voltage-gated calcium channel (VGCC) gamma 2 subunit is located on chromosome 22 and is telemeric to the most commonly observed VCFS deletion region but is near a putative marker for schizophrenia (D22S278). Metaphase spreads of four controls, four patients with VCFS, and one patient with VCFS and schizophrenia were evaluated for the VCFS deletion using the VCFS-diagnostic probe, TUPLE 1, and for deletion of VGCC gamma 2 subunit gene using probes for that gene's exon 1 and exons 3 and 4. All of the VCFS patients had deletion of the TUPLE 1 probe on one chromosome of the chromosome 22 pair. None showed deletion of the gamma 2 subunit exons studied. The location of the gamma 2 subunit gene at 22q13.1 was confirmed by FISH in all cases. This study did not show a deletion of the gamma 2 subunit gene as a distinguishing feature of our patient with VCFS and schizophrenia.
Collapse
Affiliation(s)
- J L Black
- Department of Psychiatry and Psychology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
19
|
Abstract
Clathrin was discovered nearly 25 years ago. Since then, a large number of other proteins that participate in the process by which clathrin-coated vesicles retrieve synaptic membranes or take up endocytic receptors have been identified. The functional relationships among these disparate components remain, in many cases, obscure. High-resolution structures of parts of clathrin, determined by X-ray crystallography, and lower-resolution images of assembled coats, determined by electron cryomicroscopy, now provide the information necessary to integrate various lines of evidence and to design experiments that test specific mechanistic notions. This review summarizes and illustrates the recent structural results and outlines what is known about coated-vesicle assembly in the context of this information.
Collapse
Affiliation(s)
- T Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
20
|
Liu SH, Towler MC, Chen E, Chen CY, Song W, Apodaca G, Brodsky FM. A novel clathrin homolog that co-distributes with cytoskeletal components functions in the trans-Golgi network. EMBO J 2001; 20:272-84. [PMID: 11226177 PMCID: PMC140205 DOI: 10.1093/emboj/20.1.272] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A clathrin homolog encoded on human chromosome 22 (CHC22) displays distinct biochemistry, distribution and function compared with conventional clathrin heavy chain (CHC17), encoded on chromosome 17. CHC22 protein is upregulated during myoblast differentiation into myotubes and is expressed at high levels in muscle and at low levels in non-muscle cells, relative to CHC17. The trimeric CHC22 protein does not interact with clathrin heavy chain subunits nor bind significantly to clathrin light chains. CHC22 associates with the AP1 and AP3 adaptor complexes but not with AP2. In non-muscle cells, CHC22 localizes to perinuclear vesicular structures, the majority of which are not clathrin coated. Treatments that disrupt the actin-myosin cytoskeleton or affect sorting in the trans-Golgi network (TGN) cause CHC22 redistribution. Overexpression of a subdomain of CHC22 induces altered distribution of TGN markers. Together these results implicate CHC22 in TGN membrane traffic involving the cytoskeleton.
Collapse
MESH Headings
- Cells, Cultured
- Chromosome Mapping
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 22
- Clathrin/genetics
- Clathrin/metabolism
- Cytoskeleton/physiology
- Cytoskeleton/ultrastructure
- HeLa Cells
- Humans
- Microscopy, Electron
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Muscle, Skeletal/ultrastructure
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Transport
- Receptor, IGF Type 2/metabolism
- Transfection
- trans-Golgi Network/physiology
- trans-Golgi Network/ultrastructure
Collapse
Affiliation(s)
| | | | | | | | - Wenxia Song
- The G.W.Hooper Foundation, Department of Microbiology and Immunology, and Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0552,
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 and Renal-Electrolyte Division of the Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Gerard Apodaca
- The G.W.Hooper Foundation, Department of Microbiology and Immunology, and Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0552,
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 and Renal-Electrolyte Division of the Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Frances M. Brodsky
- The G.W.Hooper Foundation, Department of Microbiology and Immunology, and Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0552,
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 and Renal-Electrolyte Division of the Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| |
Collapse
|
21
|
Epstein JA, Buck CA. Transcriptional regulation of cardiac development: implications for congenital heart disease and DiGeorge syndrome. Pediatr Res 2000; 48:717-24. [PMID: 11102536 DOI: 10.1203/00006450-200012000-00003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent years, impressive advances have occurred in our understanding of transcriptional regulation of cardiac development. These insights have begun to elucidate the mystery of congenital heart disease at the molecular level. In addition, the molecular pathways emerging from the study of cardiac development are being applied to the understanding of adult cardiac disease. Preliminary results support the contention that a thorough understanding of molecular programs governing cardiac morphogenesis will provide important insights into the pathogenesis of human cardiac diseases. This review will focus on examples of transcription factors that play critical roles at various phases of cardiac development and their relevance to cardiac disease. This is an exciting and burgeoning area of investigation. It is not possible to be all-inclusive, and the reader will note important efforts in the areas of cardiomyocyte determination, left-right asymmetry, cardiac muscular dystrophies, electrophysiology and vascular disease are not covered. For a more complete discussion, the reader is referred to recent reviews including the excellent compilation of observations assembled by Harvey and Rosenthal (1).
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/genetics
- Animals
- Aorta/embryology
- Branchial Region/embryology
- Branchial Region/pathology
- Cell Lineage
- Cell Movement
- Chick Embryo
- Chromosomes, Human, Pair 22/genetics
- DiGeorge Syndrome/embryology
- DiGeorge Syndrome/genetics
- Fetal Heart/growth & development
- Fetal Heart/pathology
- Gene Expression Regulation, Developmental
- Genes
- Genes, Homeobox
- Gestational Age
- Heart Conduction System/cytology
- Heart Conduction System/embryology
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heart Valves/embryology
- Homeodomain Proteins/physiology
- Humans
- Mice
- Mice, Mutant Strains
- Morphogenesis/genetics
- Neural Crest/cytology
- Sequence Deletion
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- J A Epstein
- Cardiovascular Division, Department of Medicine, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
| | | |
Collapse
|
22
|
Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000. [DOI: 10.1182/blood.v95.10.3204] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAnaplastic lymphoma kinase (ALK)-positive lymphomas are characterized by expression of a hybrid protein, comprising the cytoplasmic portion of the ALK tyrosine kinase fused to a partner protein. This hybrid kinase is often encoded by the nucleophosmin (NPM)NPM-ALK fusion gene resulting from the (2;5)(p23;q35) chromosomal translocation. However, the ALK gene at 2p23 may also be involved in 2 variant translocations, namely t(1;2)(q25;p23) and t(2;3)(p23;q21), which create the TPM3-ALK andTFG-ALK fusion genes, respectively. We report here 2 lymphomas with an unusual finely granular cytoplasmic ALK staining pattern, clearly different from the pattern observed in ALK-positive lymphomas carrying NPM-ALK or its variants. A cloned complementary DNA sequence from 1 of these 2 lymphomas contained the ALK gene fused to the second clathrin heavy chain gene (also referred to as clathrin heavy polypeptide-like gene) (CLTCL). The distinctive granular cytoplasmic staining pattern for ALK was likely to be due to binding of the fusion protein to clathrin-coated vesicles. TheCLTCL gene is constitutively expressed in lymphoid cells and therefore presumably contributes an active promoter for theCLTCL-ALK gene. The fusion protein had a molecular weight (250 kd) that differs from all known ALK products, and it was autophosphorylated in an in vitro kinase assay, confirming that it is constitutively active and hence capable of contributing to malignant transformation. These 2 cases, therefore, represent a hitherto undescribed mechanism of ALK activation in lymphoma and further illustrate the diversity of fusion partners for the ALKgene.
Collapse
|
23
|
Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000. [DOI: 10.1182/blood.v95.10.3204.010k04_3204_3207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK)-positive lymphomas are characterized by expression of a hybrid protein, comprising the cytoplasmic portion of the ALK tyrosine kinase fused to a partner protein. This hybrid kinase is often encoded by the nucleophosmin (NPM)NPM-ALK fusion gene resulting from the (2;5)(p23;q35) chromosomal translocation. However, the ALK gene at 2p23 may also be involved in 2 variant translocations, namely t(1;2)(q25;p23) and t(2;3)(p23;q21), which create the TPM3-ALK andTFG-ALK fusion genes, respectively. We report here 2 lymphomas with an unusual finely granular cytoplasmic ALK staining pattern, clearly different from the pattern observed in ALK-positive lymphomas carrying NPM-ALK or its variants. A cloned complementary DNA sequence from 1 of these 2 lymphomas contained the ALK gene fused to the second clathrin heavy chain gene (also referred to as clathrin heavy polypeptide-like gene) (CLTCL). The distinctive granular cytoplasmic staining pattern for ALK was likely to be due to binding of the fusion protein to clathrin-coated vesicles. TheCLTCL gene is constitutively expressed in lymphoid cells and therefore presumably contributes an active promoter for theCLTCL-ALK gene. The fusion protein had a molecular weight (250 kd) that differs from all known ALK products, and it was autophosphorylated in an in vitro kinase assay, confirming that it is constitutively active and hence capable of contributing to malignant transformation. These 2 cases, therefore, represent a hitherto undescribed mechanism of ALK activation in lymphoma and further illustrate the diversity of fusion partners for the ALKgene.
Collapse
|
24
|
Novelli G, Amati F, Dallapiccola B. Individual haploinsufficient loci and the complex phenotype of DiGeorge syndrome. MOLECULAR MEDICINE TODAY 2000; 6:10-1. [PMID: 10637567 DOI: 10.1016/s1357-4310(99)01577-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Shaikh TH, Budarf ML, Celle L, Zackai EH, Emanuel BS. Clustered 11q23 and 22q11 breakpoints and 3:1 meiotic malsegregation in multiple unrelated t(11;22) families. Am J Hum Genet 1999; 65:1595-607. [PMID: 10577913 PMCID: PMC1288370 DOI: 10.1086/302666] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The t(11;22) is the only known recurrent, non-Robertsonian constitutional translocation. We have analyzed t(11;22) balanced-translocation carriers from multiple unrelated families by FISH, to localize the t(11;22) breakpoints on both chromosome 11 and chromosome 22. In 23 unrelated balanced-translocation carriers, the breakpoint was localized within a 400-kb interval between D22S788 (N41) and ZNF74, on 22q11. Also, 13 of these 23 carriers were tested with probes from chromosome 11, and, in each, the breakpoint was localized between D11S1340 and APOA1, on 11q23, to a region </=185 kb. Thus, the breakpoints on both chromosome 11 and chromosome 22 are clustered in multiple unrelated families. Supernumerary-der(22)t(11;22) syndrome can occur in the progeny of balanced-t(11;22) carriers, because of malsegregation of the der(22). There has been speculation regarding the mechanism by which the malsegregation occurs. To elucidate this mechanism, we have analyzed 16 of the t(11;22) families, using short tandem-repeat-polymorphism markers on both chromosome 11 and chromosome 22. In all informative cases the proband received two of three alleles, for markers above the breakpoint on chromosome 22 and below the breakpoint on chromosome 11, from the t(11;22)-carrier parent. These data strongly suggest that 3:1 meiosis I malsegregation in the t(11;22) balanced-translocation-carrier parent is the mechanism in all 16 families. Taken together, these results establish that the majority of t(11;22) translocations occur within the same genomic intervals and that the majority of supernumerary-der(22) offspring result from a 3:1 meiosis I malsegregation in the balanced-translocation carrier.
Collapse
Affiliation(s)
- Tamim H. Shaikh
- Division of
Human Genetics and Molecular Biology, The Children's Hospital
of Philadelphia, and Department of Pediatrics, University
of Pennsylvania School of Medicine, Philadelphia
| | - Marcia L. Budarf
- Division of
Human Genetics and Molecular Biology, The Children's Hospital
of Philadelphia, and Department of Pediatrics, University
of Pennsylvania School of Medicine, Philadelphia
| | - Livija Celle
- Division of
Human Genetics and Molecular Biology, The Children's Hospital
of Philadelphia, and Department of Pediatrics, University
of Pennsylvania School of Medicine, Philadelphia
| | - Elaine H. Zackai
- Division of
Human Genetics and Molecular Biology, The Children's Hospital
of Philadelphia, and Department of Pediatrics, University
of Pennsylvania School of Medicine, Philadelphia
| | - Beverly S. Emanuel
- Division of
Human Genetics and Molecular Biology, The Children's Hospital
of Philadelphia, and Department of Pediatrics, University
of Pennsylvania School of Medicine, Philadelphia
| |
Collapse
|
26
|
McQuade L, Christodoulou J, Budarf M, Sachdev R, Wilson M, Emanuel B, Colley A. Patient with a 22q11.2 deletion with no overlap of the minimal DiGeorge syndrome critical region (MDGCR). ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-8628(19990903)86:1<27::aid-ajmg6>3.0.co;2-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
van Karnebeek CD, Hennekam RC. Associations between chromosomal anomalies and congenital heart defects: a database search. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 84:158-66. [PMID: 10323742 DOI: 10.1002/(sici)1096-8628(19990521)84:2<158::aid-ajmg13>3.0.co;2-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent technical advances in molecular biology and cytogenetics, as well as a more developmental approach to congenital heart disorders (CHDs), have led to considerable progress in our understanding of their pathogenesis, especially of the important causative role of genetic factors. The complex embryology of the heart suggests the involvement of numerous genes, and hence, numerous chromosomal loci, such as the recently identified 22q11, in normal cardiomorphogenesis. In order to identify other loci, the Human Cytogenetics DataBase was searched for all chromosome anomalies associated with CHD. Through the application of several (arbitrary) criteria we have selected associations occurring so frequently that they may not be forfuituous, suggesting assignment of a gene or genes responsible for specific CHDs to certain chromosome regions. The results of this study may be a first step in the detection of specific chromosome defects responsible for CHD, which will be useful in daily patient care and may provide clues for further cytogenetic and molecular studies.
Collapse
Affiliation(s)
- C D van Karnebeek
- Emma Kinderziekenhuis AMC, Department of Pediatric Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
28
|
Lorain S, Quivy JP, Monier-Gavelle F, Scamps C, Lécluse Y, Almouzni G, Lipinski M. Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA. Mol Cell Biol 1998; 18:5546-56. [PMID: 9710638 PMCID: PMC109139 DOI: 10.1128/mcb.18.9.5546] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human HIRA gene has been named after Hir1p and Hir2p, two corepressors which together appear to act on chromatin structure to control gene transcription in Saccharomyces cerevisiae. HIRA homologs are expressed in a regulated fashion during mouse and chicken embryogenesis, and the human gene is a major candidate for the DiGeorge syndrome and related developmental disorders caused by a reduction to single dose of a fragment of chromosome 22q. Western blot analysis and double-immunofluorescence experiments using a specific antiserum revealed a primary nuclear localization of HIRA. Similar to Hir1p, HIRA contains seven amino-terminal WD repeats and probably functions as part of a multiprotein complex. HIRA and core histone H2B were found to physically interact in a yeast double-hybrid protein interaction trap, in GST pull-down assays, and in coimmunoprecipitation experiments performed from cellular extracts. In vitro, HIRA also interacted with core histone H4. H2B- and H4-binding domains were overlapping but distinguishable in the carboxy-terminal region of HIRA, and the region for HIRA interaction was mapped to the amino-terminal tail of H2B and the second alpha helix of H4. HIRIP3 (HIRA-interacting protein 3) is a novel gene product that was identified from its HIRA-binding properties in the yeast protein interaction trap. In vitro, HIRIP3 directly interacted with HIRA but also with core histones H2B and H3, suggesting that a HIRA-HIRIP3-containing complex could function in some aspects of chromatin and histone metabolism. Insufficient production of HIRA, which we report elsewhere interacts with homeodomain-containing DNA-binding factors during mammalian embryogenesis, could perturb the stoichiometric assembly of multimolecular complexes required for normal embryonic development.
Collapse
Affiliation(s)
- S Lorain
- Biologie des Tumeurs Humaines, CNRS UMR 1598, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Lindsay EA, Baldini A. Congenital heart defects and 22q11 deletions: which genes count? MOLECULAR MEDICINE TODAY 1998; 4:350-7. [PMID: 9755454 DOI: 10.1016/s1357-4310(98)01302-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hemizygous deletions on the long arm of chromosome 22 (del22q11) are a relatively common cause of congenital heart disease. For some specific heart defects such as interrupted aortic arch type B and tetralogy of Fallot with absent pulmonary valve, del22q11 is probably the most frequent genetic cause. Although extensive gene searches have been successful in discovering many novel genes in the deleted segment, standard positional cloning has so far failed to demonstrate a role for any of these genes in the disease. We show how the use of experimental animal models is beginning to provide an insight into the developmental role of some of these genes, while novel genome manipulation technologies promise to dissect the genetic aspects of this complex syndrome.
Collapse
Affiliation(s)
- E A Lindsay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Carlson C, Sirotkin H, Pandita R, Goldberg R, McKie J, Wadey R, Patanjali SR, Weissman SM, Anyane-Yeboa K, Warburton D, Scambler P, Shprintzen R, Kucherlapati R, Morrow BE. Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am J Hum Genet 1997; 61:620-9. [PMID: 9326327 PMCID: PMC1715959 DOI: 10.1086/515508] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Velo-cardio-facial syndrome (VCFS) is a relatively common developmental disorder characterized by craniofacial anomalies and conotruncal heart defects. Many VCFS patients have hemizygous deletions for a part of 22q11, suggesting that haploinsufficiency in this region is responsible for its etiology. Because most cases of VCFS are sporadic, portions of 22q11 may be prone to rearrangement. To understand the molecular basis for chromosomal deletions, we defined the extent of the deletion, by genotyping 151 VCFS patients and performing haplotype analysis on 105, using 15 consecutive polymorphic markers in 22q11. We found that 83% had a deletion and >90% of these had a similar approximately 3 Mb deletion, suggesting that sequences flanking the common breakpoints are susceptible to rearrangement. We found no correlation between the presence or size of the deletion and the phenotype. To further define the chromosomal breakpoints among the VCFS patients, we developed somatic hybrid cell lines from a set of VCFS patients. An 11-kb resolution physical map of a 1,080-kb region that includes deletion breakpoints was constructed, incorporating genes and expressed sequence tags (ESTs) isolated by the hybridization selection method. The ordered markers were used to examine the two separated copies of chromosome 22 in the somatic hybrid cell lines. In some cases, we were able to map the chromosome breakpoints within a single cosmid. A 480-kb critical region for VCFS has been delineated, including the genes for GSCL, CTP, CLTD, HIRA, and TMVCF, as well as a number of novel ordered ESTs.
Collapse
Affiliation(s)
- C Carlson
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|