1
|
Stefanucci L, Collins J, Sims MC, Barrio-Hernandez I, Sun L, Burren OS, Perfetto L, Bender I, Callahan TJ, Fleming K, Guerrero JA, Hermjakob H, Martin MJ, Stephenson J, Paneerselvam K, Petrovski S, Porras P, Robinson PN, Wang Q, Watkins X, Frontini M, Laskowski RA, Beltrao P, Di Angelantonio E, Gomez K, Laffan M, Ouwehand WH, Mumford AD, Freson K, Carss K, Downes K, Gleadall N, Megy K, Bruford E, Vuckovic D. The effects of pathogenic and likely pathogenic variants for inherited hemostasis disorders in 140 214 UK Biobank participants. Blood 2023; 142:2055-2068. [PMID: 37647632 PMCID: PMC10733830 DOI: 10.1182/blood.2023020118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Rare genetic diseases affect millions, and identifying causal DNA variants is essential for patient care. Therefore, it is imperative to estimate the effect of each independent variant and improve their pathogenicity classification. Our study of 140 214 unrelated UK Biobank (UKB) participants found that each of them carries a median of 7 variants previously reported as pathogenic or likely pathogenic. We focused on 967 diagnostic-grade gene (DGG) variants for rare bleeding, thrombotic, and platelet disorders (BTPDs) observed in 12 367 UKB participants. By association analysis, for a subset of these variants, we estimated effect sizes for platelet count and volume, and odds ratios for bleeding and thrombosis. Variants causal of some autosomal recessive platelet disorders revealed phenotypic consequences in carriers. Loss-of-function variants in MPL, which cause chronic amegakaryocytic thrombocytopenia if biallelic, were unexpectedly associated with increased platelet counts in carriers. We also demonstrated that common variants identified by genome-wide association studies (GWAS) for platelet count or thrombosis risk may influence the penetrance of rare variants in BTPD DGGs on their associated hemostasis disorders. Network-propagation analysis applied to an interactome of 18 410 nodes and 571 917 edges showed that GWAS variants with large effect sizes are enriched in DGGs and their first-order interactors. Finally, we illustrate the modifying effect of polygenic scores for platelet count and thrombosis risk on disease severity in participants carrying rare variants in TUBB1 or PROC and PROS1, respectively. Our findings demonstrate the power of association analyses using large population datasets in improving pathogenicity classifications of rare variants.
Collapse
Affiliation(s)
- Luca Stefanucci
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- British Heart Foundation, BHF Centre of Research Excellence, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Janine Collins
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, Barts Health NHS Trust, London, United Kingdom
| | - Matthew C. Sims
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Luanluan Sun
- Department of Public Health and Primary Care, BHF Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Oliver S. Burren
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Livia Perfetto
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Biology and Biotechnology “C.Darwin,” Sapienza University of Rome, Rome, Italy
| | - Isobel Bender
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Tiffany J. Callahan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY
| | - Kathryn Fleming
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Jose A. Guerrero
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, Barts Health NHS Trust, London, United Kingdom
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Maria J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - James Stephenson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - NIHR BioResource
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- British Heart Foundation, BHF Centre of Research Excellence, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, Barts Health NHS Trust, London, United Kingdom
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Public Health and Primary Care, BHF Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
- Department of Biology and Biotechnology “C.Darwin,” Sapienza University of Rome, Rome, Italy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
- Genomic Medicine, The Jackson Laboratory, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences RILD Building, University of Exeter Medical School, Exeter, United Kingdom
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Health Data Science Centre, Human Technopole, Milan, Italy
- Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, United Kingdom
- Department of Haematology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, University College London Hospitals NHS Trust, London, United Kingdom
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
- Cambridge Genomics Laboratory, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Kalpana Paneerselvam
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Peter N. Robinson
- Genomic Medicine, The Jackson Laboratory, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Xavier Watkins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- British Heart Foundation, BHF Centre of Research Excellence, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences RILD Building, University of Exeter Medical School, Exeter, United Kingdom
| | - Roman A. Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Pedro Beltrao
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Emanuele Di Angelantonio
- British Heart Foundation, BHF Centre of Research Excellence, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Public Health and Primary Care, BHF Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Health Data Science Centre, Human Technopole, Milan, Italy
| | - Keith Gomez
- Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Mike Laffan
- Department of Haematology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University College London Hospitals NHS Trust, London, United Kingdom
| | - Andrew D. Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| | - Keren Carss
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge Genomics Laboratory, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nick Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Elspeth Bruford
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Dragana Vuckovic
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Hatayama M, Aruga J. Developmental control of noradrenergic system by SLITRK1 and its implications in the pathophysiology of neuropsychiatric disorders. Front Mol Neurosci 2023; 15:1080739. [PMID: 36683853 PMCID: PMC9846221 DOI: 10.3389/fnmol.2022.1080739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
SLITRK1 is a neuronal transmembrane protein with neurite development-and synaptic formation-controlling abilities. Several rare variants of SLITRK1 have been identified and implicated in the pathogenesis of Tourette's syndrome, trichotillomania, and obsessive-compulsive disorder, which can be collectively referred to as obsessive-compulsive-spectrum disorders. Recent studies have reported a possible association between bipolar disorder and schizophrenia, including a revertant of modern human-specific amino acid residues. Although the mechanisms underlying SLITRK1-associated neuropsychiatric disorders are yet to be fully clarified, rodent studies may provide some noteworthy clues. Slitrk1-deficient mice show neonatal dysregulation of the noradrenergic system, and later, anxiety-like behaviors that can be attenuated by an alpha 2 noradrenergic receptor agonist. The noradrenergic abnormality is characterized by the excessive growth of noradrenergic fibers and increased noradrenaline content in the medial prefrontal cortex, concomitant with enlarged serotonergic varicosities. Slitrk1 has both cell-autonomous and cell-non-autonomous functions in controlling noradrenergic fiber development, and partly alters Sema3a-mediated neurite control. These findings suggest that transiently enhanced noradrenergic signaling during the neonatal stage could cause neuroplasticity associated with neuropsychiatric disorders. Studies adopting noradrenergic signal perturbation via pharmacological or genetic means support this hypothesis. Thus, Slitrk1 is a potential candidate genetic linkage between the neonatal noradrenergic signaling and the pathophysiology of neuropsychiatric disorders involving anxiety-like or depression-like behaviors.
Collapse
|
3
|
Gao M, Lin H, Li B, Wen J, Wang Y, Zhang Z, Chen W. Lack of Association of FLT3 rs2504235 and Absence of SLITRK1 var321 in Patients with Tic Disorders from Guangdong Province, China. Neuropsychiatr Dis Treat 2022; 18:155-161. [PMID: 35140465 PMCID: PMC8818983 DOI: 10.2147/ndt.s340197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Tic disorders (TDs) are highly polygenic and heritable neurodevelopmental disorders characterized by the presence of movements (motor tics) and/or vocalizations (phonic tics). SLITRK1 is a pathogenic variation of TD, and in a recent genome-wide association study in those of European ancestry, a single-nucleotide polymorphism (rs2504235) in the FLT3 gene was significantly associated with TDs/Tourette's syndrome. However, these results need to be proved in different populations. This study aimed to determine whether these two genetic variants were also associated with TD patients in south China. METHODS A total of 116 child TD patients and 114 healthy controls were included. All children underwent peripheral blood sampling for genomic DNA extraction. Gene fragments with two single-nucleotide polymorphisms were amplified by PCR and sequenced by Sanger chain termination before genotype analysis. RESULTS SLITRK1 var321 was not observed in any of the TD patients or controls. No significant difference was observed in allelic frequencies or genotypic distributions of rs2504235 between TD patients and controls. CONCLUSION Our results provide no evidence to support the previous conclusion that SLITRK1 var321 plays a major role in TDs, and FLT3 rs2504235 was not significantly associated with TDs in our cohort.
Collapse
Affiliation(s)
- Ming Gao
- Department of Neurology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Haisheng Lin
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Bingxiao Li
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Junjie Wen
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Yingying Wang
- Department of Neurology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Zhanhui Zhang
- Clinical Medicine Research Institute, First Affiliated Hospital, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Wenxiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| |
Collapse
|
4
|
Levy AM, Paschou P, Tümer Z. Candidate Genes and Pathways Associated with Gilles de la Tourette Syndrome-Where Are We? Genes (Basel) 2021; 12:1321. [PMID: 34573303 PMCID: PMC8468358 DOI: 10.3390/genes12091321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a childhood-onset neurodevelopmental and -psychiatric tic-disorder of complex etiology which is often comorbid with obsessive-compulsive disorder (OCD) and/or attention deficit hyperactivity disorder (ADHD). Twin and family studies of GTS individuals have shown a high level of heritability suggesting, that genetic risk factors play an important role in disease etiology. However, the identification of major GTS susceptibility genes has been challenging, presumably due to the complex interplay between several genetic factors and environmental influences, low penetrance of each individual factor, genetic diversity in populations, and the presence of comorbid disorders. To understand the genetic components of GTS etiopathology, we conducted an extensive review of the literature, compiling the candidate susceptibility genes identified through various genetic approaches. Even though several strong candidate genes have hitherto been identified, none of these have turned out to be major susceptibility genes yet.
Collapse
Affiliation(s)
- Amanda M. Levy
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Abegaz F, Chaichoompu K, Génin E, Fardo DW, König IR, Mahachie John JM, Van Steen K. Principals about principal components in statistical genetics. Brief Bioinform 2020; 20:2200-2216. [PMID: 30219892 DOI: 10.1093/bib/bby081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/21/2018] [Accepted: 08/12/2018] [Indexed: 12/13/2022] Open
Abstract
Principal components (PCs) are widely used in statistics and refer to a relatively small number of uncorrelated variables derived from an initial pool of variables, while explaining as much of the total variance as possible. Also in statistical genetics, principal component analysis (PCA) is a popular technique. To achieve optimal results, a thorough understanding about the different implementations of PCA is required and their impact on study results, compared to alternative approaches. In this review, we focus on the possibilities, limitations and role of PCs in ancestry prediction, genome-wide association studies, rare variants analyses, imputation strategies, meta-analysis and epistasis detection. We also describe several variations of classic PCA that deserve increased attention in statistical genetics applications.
Collapse
|
6
|
Pagliaroli L, Vereczkei A, Padmanabhuni SS, Tarnok Z, Farkas L, Nagy P, Rizzo R, Wolanczyk T, Szymanska U, Kapisyzi M, Basha E, Koumoula A, Androutsos C, Tsironi V, Karagiannidis I, Paschou P, Barta C. Association of Genetic Variation in the 3'UTR of LHX6, IMMP2L, and AADAC With Tourette Syndrome. Front Neurol 2020; 11:803. [PMID: 32922348 PMCID: PMC7457023 DOI: 10.3389/fneur.2020.00803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Tourette Syndrome (TS) is a neurodevelopmental disorder that presents with motor and vocal tics early in childhood. The aim of this study was to investigate genetic variants in the 3' untranslated region (3'UTR) of TS candidate genes with a putative link to microRNA (miRNA) mediated regulation or gene expression. Methods: We used an in silico approach to identify 32 variants in the 3'UTR of 18 candidate genes putatively changing the binding site for miRNAs. In a sample composed of TS cases and controls (n = 290), as well as TS family trios (n = 148), we performed transmission disequilibrium test (TDT) and meta-analysis. Results: We found positive association of rs3750486 in the LIM homeobox 6 (LHX6) gene (p = 0.021) and rs7795011 in the inner mitochondrial membrane peptidase subunit 2 (IMMP2L) gene (p = 0.029) with TS in our meta-analysis. The TDT showed an over-transmission of the A allele of rs1042201 in the arylacetamide deacetylase (AADAC) gene in TS patients (p = 0.029). Conclusion: This preliminary study provides further support for the involvement of LHX6, IMMP2L, and AADAC genes, as well as epigenetic mechanisms, such as altered miRNA mediated gene expression regulation in the etiology of TS.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Andrea Vereczkei
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Zsanett Tarnok
- Vadaskert Clinic for Child and Adolescent Psychiatry, Budapest, Hungary
| | - Luca Farkas
- Vadaskert Clinic for Child and Adolescent Psychiatry, Budapest, Hungary
| | - Peter Nagy
- Vadaskert Clinic for Child and Adolescent Psychiatry, Budapest, Hungary
| | - Renata Rizzo
- Materno Infantile and Radiological Science Department, University of Catania, Catania, Italy
| | - Tomasz Wolanczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Szymanska
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Mira Kapisyzi
- University Hospital Center "Mother Theresa," Tirana, Albania
| | - Entela Basha
- University Hospital Center "Mother Theresa," Tirana, Albania
| | - Anastasia Koumoula
- Department of Child and Adolescent Psychiatry, Sismanoglio General Hospital of Attica, Athens, Greece
| | - Christos Androutsos
- Department of Child and Adolescent Psychiatry, Sismanoglio General Hospital of Attica, Athens, Greece
| | - Vaia Tsironi
- Department of Child and Adolescent Psychiatry, Sismanoglio General Hospital of Attica, Athens, Greece
| | - Iordanis Karagiannidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Hebbar P, Abu-Farha M, Mohammad A, Alkayal F, Melhem M, Abubaker J, Al-Mulla F, Thanaraj TA. FTO Variant rs1421085 Associates With Increased Body Weight, Soft Lean Mass, and Total Body Water Through Interaction With Ghrelin and Apolipoproteins in Arab Population. Front Genet 2020; 10:1411. [PMID: 32076432 PMCID: PMC7006511 DOI: 10.3389/fgene.2019.01411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
Association studies have implicated single nucleotide polymorphisms (SNPs), particularly rs1421085, from the fat mass and obesity-associated (FTO) gene with body composition phenotypes, obesity, dietary intake, and physical activity in European, East Asian, and African populations. However, the impact of the rs1421085 variant has not been sufficiently tested in ethnic populations (such as Arabs) with high levels of obesity. Further, there is a lack of studies identifying biomarkers that interact with FTO. Therefore, we investigated the association of rs1421085 with obesity and body composition traits and metabolic biomarkers in Arab population. We genotyped rs1421085 SNP in 278 Arab individuals, where multiple biomarkers relating to obesity, inflammation, and other metabolic pathways were quantified. We performed genetic association tests under additive mode of inheritance using linear regression models and found association of rs1421085_C allele with higher levels of body weight, soft lean mass (SLM), and total body water. Examination (using linear regression models under dominant mode of inheritance) of correlation among biomarkers and interaction with genotypes at the variant revealed that measures of these three body composition traits were found mediated by interaction between carrier genotypes (TC+CC) and measures of ghrelin, ApoA1, and ApoB48. Lean body mass (LBM), to which SLM contributes, is an important determinant of physical strength and is a focal point in studies on sarcopenia. Low LBM is known to be associated with higher risk of cardiometabolic disorders. Thus, the finding on the FTO variant as a genetic determinant of SLM via interaction with ghrelin, ApoA1, and ApoB48 is important.
Collapse
Affiliation(s)
| | | | - Anwar Mohammad
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fadi Alkayal
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Motasem Melhem
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Jehad Abubaker
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | | |
Collapse
|
8
|
Fernandez TV, State MW, Pittenger C. Tourette disorder and other tic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:343-354. [PMID: 29325623 DOI: 10.1016/b978-0-444-63233-3.00023-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tourette disorder is a developmental neuropsychiatric condition characterized by vocal and motor tics that can range in severity from mild to disabling. It represents one end of a spectrum of tic disorders and is estimated to affect 0.5-0.7% of the population. Accumulated evidence supports a substantial genetic contribution to disease risk, but the identification of genetic variants that confer risk has been challenging. Positive findings in candidate gene association studies have not replicated, and genomewide association studies have not generated signals of genomewide significance, in large part because of inadequate sample sizes. Rare mutations in several genes have been identified, but their causality is difficult to establish. As in other complex neuropsychiatric disorders, it is likely that Tourette disorder risk involves a combination of common, low-effect and rare, larger-effect variants in multiple genes acting together with environmental factors. With the ongoing collection of larger patient cohorts and the emergence of affordable high-throughput genomewide sequencing, progress is expected to accelerate in coming years.
Collapse
Affiliation(s)
- Thomas V Fernandez
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Matthew W State
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, United States
| | - Christopher Pittenger
- Child Study Center, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States.
| |
Collapse
|
9
|
Investigation of previously implicated genetic variants in chronic tic disorders: a transmission disequilibrium test approach. Eur Arch Psychiatry Clin Neurosci 2018; 268:301-316. [PMID: 28555406 PMCID: PMC5708161 DOI: 10.1007/s00406-017-0808-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/17/2017] [Indexed: 12/25/2022]
Abstract
Genetic studies in Tourette syndrome (TS) are characterized by scattered and poorly replicated findings. We aimed to replicate findings from candidate gene and genome-wide association studies (GWAS). Our cohort included 465 probands with chronic tic disorder (93% TS) and both parents from 412 families (some probands were siblings). We assessed 75 single nucleotide polymorphisms (SNPs) in 465 parent-child trios; 117 additional SNPs in 211 trios; and 4 additional SNPs in 254 trios. We performed SNP and gene-based transmission disequilibrium tests and compared nominally significant SNP results with those from a large independent case-control cohort. After quality control 71 SNPs were available in 371 trios; 112 SNPs in 179 trios; and 3 SNPs in 192 trios. 17 were candidate SNPs implicated in TS and 2 were implicated in obsessive-compulsive disorder (OCD) or autism spectrum disorder (ASD); 142 were tagging SNPs from eight monoamine neurotransmitter-related genes (including dopamine and serotonin); 10 were top SNPs from TS GWAS; and 13 top SNPs from attention-deficit/hyperactivity disorder, OCD, or ASD GWAS. None of the SNPs or genes reached significance after adjustment for multiple testing. We observed nominal significance for the candidate SNPs rs3744161 (TBCD) and rs4565946 (TPH2) and for five tagging SNPs; none of these showed significance in the independent cohort. Also, SLC1A1 in our gene-based analysis and two TS GWAS SNPs showed nominal significance, rs11603305 (intergenic) and rs621942 (PICALM). We found no convincing support for previously implicated genetic polymorphisms. Targeted re-sequencing should fully appreciate the relevance of candidate genes.
Collapse
|
10
|
Sedarsky J, Degon M, Srivastava S, Dobi A. Ethnicity and ERG frequency in prostate cancer. Nat Rev Urol 2017; 15:125-131. [PMID: 28872154 DOI: 10.1038/nrurol.2017.140] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Emerging observations emphasize a distinct biology of prostate cancer among men of different ethnicities and races, as demonstrated by remarkable differences in the frequency of ERG oncogenic activation, one of the most common and widely studied prostate cancer driver genes. Worldwide assessment of ERG alterations frequencies show consistent trends, with men of European ancestry having the highest rates of alteration and men of African or Asian ancestries having considerably lower alteration rates. However, data must be interpreted cautiously, owing to variations in assay platforms and specimen types, as well as ethnic and geographical classifications. Many opportunities and challenges remain in assessing cancer-associated molecular alterations at a global level, and these need to be addressed in order to realize the true potential of precision medicine for all cancer patients.
Collapse
Affiliation(s)
- Jason Sedarsky
- Urology Service, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889, USA
| | - Michael Degon
- Urology Service, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 4301 Jones Bridge Rd, Bethesda, Maryland 20814, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 4301 Jones Bridge Rd, Bethesda, Maryland 20814, USA
| |
Collapse
|
11
|
Song M, Mathews CA, Stewart SE, Shmelkov SV, Mezey JG, Rodriguez-Flores JL, Rasmussen SA, Britton JC, Oh YS, Walkup JT, Lee FS, Glatt CE. Rare Synaptogenesis-Impairing Mutations in SLITRK5 Are Associated with Obsessive Compulsive Disorder. PLoS One 2017; 12:e0169994. [PMID: 28085938 PMCID: PMC5234816 DOI: 10.1371/journal.pone.0169994] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/27/2016] [Indexed: 01/02/2023] Open
Abstract
Obsessive compulsive disorder (OCD) is substantially heritable, but few molecular genetic risk factors have been identified. Knockout mice lacking SLIT and NTRK-Like Family, Member 5 (SLITRK5) display OCD-like phenotypes including serotonin reuptake inhibitor-sensitive pathologic grooming, and corticostriatal dysfunction. Thus, mutations that impair SLITRK5 function may contribute to the genetic risk for OCD. We re-sequenced the protein-coding sequence of the human SLITRK5 gene (SLITRK5) in three hundred and seventy seven OCD subjects and compared rare non-synonymous mutations (RNMs) in that sample with similar mutations in the 1000 Genomes database. We also performed in silico assessments and in vitro functional synaptogenesis assays on the Slitrk5 mutations identified. We identified four RNM's among these OCD subjects. There were no significant differences in the prevalence or in silico effects of rare non-synonymous mutations in the OCD sample versus controls. Direct functional testing of recombinant SLITRK5 proteins found that all mutations identified in OCD subjects impaired synaptogenic activity whereas none of the pseudo-matched mutations identified in 1000 Genomes controls had significant effects on SLITRK5 function (Fisher's exact test P = 0.028). These results demonstrate that rare functional mutations in SLITRK5 contribute to the genetic risk for OCD in human populations. They also highlight the importance of biological characterization of allelic effects in understanding genotype-phenotype relationships as there were no statistical differences in overall prevalence or bioinformatically predicted effects of OCD case versus control mutations. Finally, these results converge with others to highlight the role of aberrant synaptic function in corticostriatal neurons in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Minseok Song
- Synaptic Circuit Plasticity Laboratory, Department of Structure & Function of Neural Network, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, Korea
| | - Carol A. Mathews
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - S. Evelyn Stewart
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Sergey V. Shmelkov
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States of America
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Jason G. Mezey
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY United States of America
- Department of Genetic Medicine, Weill Cornell Medical College, NY, NY United States of America
| | | | - Steven A. Rasmussen
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, United States of America
| | - Jennifer C. Britton
- Department of Psychology, University of Miami, Miami, FL, United States of America
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - John T. Walkup
- Department of Psychiatry, Weill Cornell Medical College, New York, New York, United States of America
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, New York, United States of America
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Charles E. Glatt
- Department of Psychiatry, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
12
|
Alexander J, Potamianou H, Xing J, Deng L, Karagiannidis I, Tsetsos F, Drineas P, Tarnok Z, Rizzo R, Wolanczyk T, Farkas L, Nagy P, Szymanska U, Androutsos C, Tsironi V, Koumoula A, Barta C, Sandor P, Barr CL, Tischfield J, Paschou P, Heiman GA, Georgitsi M. Targeted Re-Sequencing Approach of Candidate Genes Implicates Rare Potentially Functional Variants in Tourette Syndrome Etiology. Front Neurosci 2016; 10:428. [PMID: 27708560 PMCID: PMC5030307 DOI: 10.3389/fnins.2016.00428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022] Open
Abstract
Although the genetic basis of Tourette Syndrome (TS) remains unclear, several candidate genes have been implicated. Using a set of 382 TS individuals of European ancestry we investigated four candidate genes for TS (HDC, SLITRK1, BTBD9, and SLC6A4) in an effort to identify possibly causal variants using a targeted re-sequencing approach by next generation sequencing technology. Identification of possible disease causing variants under different modes of inheritance was performed using the algorithms implemented in VAAST. We prioritized variants using Variant ranker and validated five rare variants via Sanger sequencing in HDC and SLITRK1, all of which are predicted to be deleterious. Intriguingly, one of the identified variants is in linkage disequilibrium with a variant that is included among the top hits of a genome-wide association study for response to citalopram treatment, an antidepressant drug with off-label use also in obsessive compulsive disorder. Our findings provide additional evidence for the implication of these two genes in TS susceptibility and the possible role of these proteins in the pathobiology of TS should be revisited.
Collapse
Affiliation(s)
- John Alexander
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandroupoli, Greece
| | - Hera Potamianou
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandroupoli, Greece
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New JerseyPiscataway, NJ, USA; Human Genetics Institute of New Jersey, Rutgers, The State University of New JerseyPiscataway, NJ, USA
| | - Li Deng
- Department of Genetics, Rutgers, The State University of New JerseyPiscataway, NJ, USA; Human Genetics Institute of New Jersey, Rutgers, The State University of New JerseyPiscataway, NJ, USA
| | - Iordanis Karagiannidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandroupoli, Greece
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandroupoli, Greece
| | - Petros Drineas
- Computer Science Department, Purdue University West Lafayette, USA
| | - Zsanett Tarnok
- Vadaskert Clinic for Child and Adolescent Psychiatry Budapest, Hungary
| | - Renata Rizzo
- Department of Clinical and Experimental Medicine, University of Catania Catania, Italy
| | - Tomasz Wolanczyk
- Department of Child Psychiatry, Medical University of Warsaw Warsaw, Poland
| | - Luca Farkas
- Vadaskert Clinic for Child and Adolescent Psychiatry Budapest, Hungary
| | - Peter Nagy
- Vadaskert Clinic for Child and Adolescent Psychiatry Budapest, Hungary
| | - Urszula Szymanska
- Department of Child Psychiatry, Medical University of Warsaw Warsaw, Poland
| | - Christos Androutsos
- Child and Adolescent Psychiatry Clinic, Sismanoglio General Hospital of Attica Athens, Greece
| | - Vaia Tsironi
- Child and Adolescent Psychiatry Clinic, Sismanoglio General Hospital of Attica Athens, Greece
| | - Anastasia Koumoula
- Child and Adolescent Psychiatry Clinic, Sismanoglio General Hospital of Attica Athens, Greece
| | - Csaba Barta
- Molecular Biology and Pathobiochemistry, Institute of Medical Chemistry, Semmelweis University Budapest, Hungary
| | | | - Paul Sandor
- Department of Psychiatry, University of Toronto Toronto, ON, Canada
| | - Cathy L Barr
- Genetics and Development Division, Krembil Research Institute, University Health NetworkToronto, ON, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick ChildrenToronto, ON, Canada
| | - Jay Tischfield
- Department of Genetics, Rutgers, The State University of New JerseyPiscataway, NJ, USA; Human Genetics Institute of New Jersey, Rutgers, The State University of New JerseyPiscataway, NJ, USA
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandroupoli, Greece
| | - Gary A Heiman
- Department of Genetics, Rutgers, The State University of New JerseyPiscataway, NJ, USA; Human Genetics Institute of New Jersey, Rutgers, The State University of New JerseyPiscataway, NJ, USA
| | - Marianthi Georgitsi
- Department of Molecular Biology and Genetics, Democritus University of ThraceAlexandroupoli, Greece; Laboratory of General Biology, Department of Medicine, Aristotle University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
13
|
Rodent models of obsessive compulsive disorder: Evaluating validity to interpret emerging neurobiology. Neuroscience 2016; 345:256-273. [PMID: 27646291 DOI: 10.1016/j.neuroscience.2016.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/03/2016] [Accepted: 09/08/2016] [Indexed: 11/21/2022]
Abstract
Obsessive Compulsive Disorder (OCD) is a common neuropsychiatric disorder with unknown molecular underpinnings. Identification of genetic and non-genetic risk factors has largely been elusive, primarily because of a lack of power. In contrast, neuroimaging has consistently implicated the cortico-striatal-thalamo-cortical circuits in OCD. Pharmacological treatment studies also show specificity, with consistent response of OCD symptoms to chronic treatment with serotonin reuptake inhibitors; although most patients are left with residual impairment. In theory, animal models could provide a bridge from the neuroimaging and pharmacology data to an understanding of pathophysiology at the cellular and molecular level. Several mouse models have been proposed using genetic, immunological, pharmacological, and optogenetic tools. These experimental model systems allow testing of hypotheses about the origins of compulsive behavior. Several models have generated behavior that appears compulsive-like, particularly excessive grooming, and some have demonstrated response to chronic serotonin reuptake inhibitors, establishing both face validity and predictive validity. Construct validity is more difficult to establish in the context of a limited understanding of OCD risk factors. Our current models may help us to dissect the circuits and molecular pathways that can elicit OCD-relevant behavior in rodents. We can hope that this growing understanding, coupled with developing technology, will prepare us when robust OCD risk factors are better understood.
Collapse
|
14
|
Pagliaroli L, Vető B, Arányi T, Barta C. From Genetics to Epigenetics: New Perspectives in Tourette Syndrome Research. Front Neurosci 2016; 10:277. [PMID: 27462201 PMCID: PMC4940402 DOI: 10.3389/fnins.2016.00277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/06/2016] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette Syndrome (TS) is a neurodevelopmental disorder marked by the appearance of multiple involuntary motor and vocal tics. TS presents high comorbidity rates with other disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive compulsive disorder (OCD). TS is highly heritable and has a complex polygenic background. However, environmental factors also play a role in the manifestation of symptoms. Different epigenetic mechanisms may represent the link between these two causalities. Epigenetic regulation has been shown to have an impact in the development of many neuropsychiatric disorders, however very little is known about its effects on Tourette Syndrome. This review provides a summary of the recent findings in genetic background of TS, followed by an overview on different epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression. Epigenetic studies in other neurological and psychiatric disorders are discussed along with the TS-related epigenetic findings available in the literature to date. Moreover, we are proposing that some general epigenetic mechanisms seen in other neuropsychiatric disorders may also play a role in the pathogenesis of TS.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary; Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary
| | - Borbála Vető
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences Budapest, Hungary
| | - Tamás Arányi
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary; Centre National de la Recherche Scientifique UMR 6214, Institut National de la Santé et de la Recherche Médicale U1083, University of AngersAngers, France
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Hungary
| |
Collapse
|
15
|
Sun N, Tischfield JA, King RA, Heiman GA. Functional Evaluations of Genes Disrupted in Patients with Tourette's Disorder. Front Psychiatry 2016; 7:11. [PMID: 26903887 PMCID: PMC4746269 DOI: 10.3389/fpsyt.2016.00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/18/2016] [Indexed: 01/04/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable neurodevelopmental disorder with complex genetic architecture and unclear neuropathology. Disruptions of particular genes have been identified in subsets of TD patients. However, none of the findings have been replicated, probably due to the complex and heterogeneous genetic architecture of TD that involves both common and rare variants. To understand the etiology of TD, functional analyses are required to characterize the molecular and cellular consequences caused by mutations in candidate genes. Such molecular and cellular alterations may converge into common biological pathways underlying the heterogeneous genetic etiology of TD patients. Herein, we review specific genes implicated in TD etiology, discuss the functions of these genes in the mammalian central nervous system and the corresponding behavioral anomalies exhibited in animal models, and importantly, review functional analyses that can be performed to evaluate the role(s) that the genetic disruptions might play in TD. Specifically, the functional assays include novel cell culture systems, genome editing techniques, bioinformatics approaches, transcriptomic analyses, and genetically modified animal models applied or developed to study genes associated with TD or with other neurodevelopmental and neuropsychiatric disorders. By describing methods used to study diseases with genetic architecture similar to TD, we hope to develop a systematic framework for investigating the etiology of TD and related disorders.
Collapse
Affiliation(s)
- Nawei Sun
- Department of Genetics, Rutgers University, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Jay A Tischfield
- Department of Genetics, Rutgers University, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Robert A King
- Child Study Center, Yale School of Medicine , New Haven, CT , USA
| | - Gary A Heiman
- Department of Genetics, Rutgers University, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
16
|
Mersha TB. Mapping asthma-associated variants in admixed populations. Front Genet 2015; 6:292. [PMID: 26483834 PMCID: PMC4586512 DOI: 10.3389/fgene.2015.00292] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022] Open
Abstract
Admixed populations arise when two or more previously isolated populations interbreed. Mapping asthma susceptibility loci in an admixed population using admixture mapping (AM) involves screening the genome of individuals of mixed ancestry for chromosomal regions that have a higher frequency of alleles from a parental population with higher asthma risk as compared with parental population with lower asthma risk. AM takes advantage of the admixture created in populations of mixed ancestry to identify genomic regions where an association exists between genetic ancestry and asthma (in contrast to between the genotype of the marker and asthma). The theory behind AM is that chromosomal segments of affected individuals contain a significantly higher-than-average proportion of alleles from the high-risk parental population and thus are more likely to harbor disease-associated loci. Criteria to evaluate the applicability of AM as a gene mapping approach include: (1) the prevalence of the disease differences in ancestral populations from which the admixed population was formed; (2) a measurable difference in disease-causing alleles between the parental populations; (3) reduced linkage disequilibrium (LD) between unlinked loci across chromosomes and strong LD between neighboring loci; (4) a set of markers with noticeable allele-frequency differences between parental populations that contributes to the admixed population (single nucleotide polymorphisms (SNPs) are the markers of choice because they are abundant, stable, relatively cheap to genotype, and informative with regard to the LD structure of chromosomal segments); and (5) there is an understanding of the extent of segmental chromosomal admixtures and their interactions with environmental factors. Although genome-wide association studies have contributed greatly to our understanding of the genetic components of asthma, the large and increasing degree of admixture in populations across the world create many challenges for further efforts to map disease-causing genes. This review, summarizes the historical context of admixed populations and AM, and considers current opportunities to use AM to map asthma genes. In addition, we provide an overview of the potential limitations and future directions of AM in biomedical research, including joint admixture and association mapping for asthma and asthma-related disorders.
Collapse
Affiliation(s)
- Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
17
|
Richer P, Fernandez TV. Tourette Syndrome: Bridging the Gap between Genetics and Biology. MOLECULAR NEUROPSYCHIATRY 2015; 1:156-164. [PMID: 26509143 DOI: 10.1159/000439085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tourette syndrome is a childhood neuropsychiatric disorder, which presents with disruptive motor and vocal tics. The disease also has a high comorbidity with obsessive-compulsive disorder and attention deficit hyperactivity disorder, which may further increase the distress experienced by patients. Current treatments act with varying efficacies in alleviating symptoms, as the underlying biology of the disease is not fully understood to provide precise therapeutic targets. Moreover, the genetic complexity of the disorder presents a substantial challenge to the identification of genetic alterations that contribute to the Tourette's phenotype. Nevertheless, genetic studies have suggested involvement of dopaminergic, serotonergic, glutamatergic, and histaminergic pathways in the pathophysiology of at least some cases. In addition, genetic overlaps with other neuropsychiatric disorders may point toward a shared biology. The findings that are emerging from genetic studies will allow researchers to piece together the underlying components of the disease, in the hopes that a deeper understanding of Tourette's can lead to improved treatments for those affected by it.
Collapse
Affiliation(s)
- Petra Richer
- Sewanee: The University of the South, 735 University Avenue Sewanee, TN 37383
| | - Thomas V Fernandez
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
18
|
Mersha TB, Abebe T. Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities. Hum Genomics 2015; 9:1. [PMID: 25563503 PMCID: PMC4307746 DOI: 10.1186/s40246-014-0023-x] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 12/01/2014] [Indexed: 12/02/2022] Open
Abstract
This review explores the limitations of self-reported race, ethnicity, and genetic ancestry in biomedical research. Various terminologies are used to classify human differences in genomic research including race, ethnicity, and ancestry. Although race and ethnicity are related, race refers to a person's physical appearance, such as skin color and eye color. Ethnicity, on the other hand, refers to communality in cultural heritage, language, social practice, traditions, and geopolitical factors. Genetic ancestry inferred using ancestry informative markers (AIMs) is based on genetic/genomic data. Phenotype-based race/ethnicity information and data computed using AIMs often disagree. For example, self-reporting African Americans can have drastically different levels of African or European ancestry. Genetic analysis of individual ancestry shows that some self-identified African Americans have up to 99% of European ancestry, whereas some self-identified European Americans have substantial admixture from African ancestry. Similarly, African ancestry in the Latino population varies between 3% in Mexican Americans to 16% in Puerto Ricans. The implication of this is that, in African American or Latino populations, self-reported ancestry may not be as accurate as direct assessment of individual genomic information in predicting treatment outcomes. To better understand human genetic variation in the context of health disparities, we suggest using "ancestry" (or biogeographical ancestry) to describe actual genetic variation, "race" to describe health disparity in societies characterized by racial categories, and "ethnicity" to describe traditions, lifestyle, diet, and values. We also suggest using ancestry informative markers for precise characterization of individuals' biological ancestry. Understanding the sources of human genetic variation and the causes of health disparities could lead to interventions that would improve the health of all individuals.
Collapse
Affiliation(s)
- Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| | - Tilahun Abebe
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA.
| |
Collapse
|
19
|
|
20
|
Abstract
Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and an increased susceptibility to fractures. Evidence from genetic studies indicates that BMD, a complex quantitative trait with a normal distribution, is genetically controlled. Genome-wide association studies (GWAS) as well as studies using candidate gene approaches have identified single-nucleotide polymorphisms (SNPs) that are associated with BMD, osteoporosis and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding WNT/β-catenin signaling proteins. Understanding the genetics of osteoporosis will help to identify novel candidates for diagnostic and therapeutic targets. Genetic factors are also important for the development of sarcopenia, which is characterized by a loss of lean body mass, and obesity, which is characterized by high fat mass. Hence, in this review, we discuss the genetic factors, identified by genetic studies, which regulate the body components related to osteoporosis, sarcopenia, and obesity.
Collapse
Affiliation(s)
- Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | |
Collapse
|
21
|
Lord J, Lu AJ, Cruchaga C. Identification of rare variants in Alzheimer's disease. Front Genet 2014; 5:369. [PMID: 25389433 PMCID: PMC4211559 DOI: 10.3389/fgene.2014.00369] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
Much progress has been made in recent years in identifying genes involved in the risk of developing Alzheimer's disease (AD), the most common form of dementia. Yet despite the identification of over 20 disease associated loci, mainly through genome wide association studies (GWAS), a large proportion of the genetic component of the disorder remains unexplained. Recent evidence from the AD field, as with other complex diseases, suggests a large proportion of this "missing heritability" may be due to rare variants of moderate to large effect size, but the methodologies to detect such variants are still in their infancy. The latest studies in the field have been focused on the identification of coding variation associated with AD risk, through whole-exome or whole-genome sequencing. Such variants are expected to have larger effect sizes than GWAS loci, and are easier to functionally characterize, and develop cellular and animal models for. This review explores the issues involved in detecting rare variant associations in the context of AD, highlighting some successful approaches utilized to date.
Collapse
Affiliation(s)
- Jenny Lord
- Department of Psychiatry, Washington University School of MedicineSt. Louis, MO, USA
| | - Alexander J. Lu
- Department of Psychiatry, Washington University School of MedicineSt. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of MedicineSt. Louis, MO, USA
- Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of MedicineSt. Louis, MO, USA
| |
Collapse
|
22
|
Larsen K, Momeni J, Farajzadeh L, Bendixen C. Porcine SLITRK1: Molecular cloning and characterization. FEBS Open Bio 2014; 4:872-8. [PMID: 25379384 PMCID: PMC4215120 DOI: 10.1016/j.fob.2014.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/04/2014] [Accepted: 10/02/2014] [Indexed: 11/15/2022] Open
Abstract
Molecular cloning of the porcine SLITRK1 gene is reported. A SLITRK1 transcript variant encoding a truncated protein was identified. The SLITRK1 transcript was exclusively expressed in brain tissues. There was low methylation of both the SLITRK1 gene body and its promoter. SLITRK1 was mapped to pig chromosome 11.
The membrane protein SLITRK1 functions as a developmentally regulated stimulator of neurite outgrowth and variants in this gene have been implicated in Tourette syndrome. In the current study we have cloned and characterized the porcine SLITRK1 gene. The genomic organization of SLITRK1 lacks introns, as does its human and mouse counterparts. RT-PCR cloning revealed two SLITRK1 transcripts: a full-length mRNA and a transcript variant that results in a truncated protein. The encoded SLITRK1 protein, consisting of 695 amino acids, displays a very high homology to human SLITRK1 (99%). The porcine SLITRK1 gene is expressed exclusively in brain tissues.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Jamal Momeni
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| |
Collapse
|
23
|
Pauls DL, Fernandez TV, Mathews CA, State MW, Scharf JM. The Inheritance of Tourette Disorder: A review. J Obsessive Compuls Relat Disord 2014; 3:380-385. [PMID: 25506544 PMCID: PMC4260404 DOI: 10.1016/j.jocrd.2014.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Georges Gilles de la Tourette, in describing the syndrome that now bears his name, observed that the condition aggregated within families. Over the last three decades, numerous studies have confirmed this observation, and demonstrated that familial clustering is due in part to genetic factors. Recent studies are beginning to provide clues about the underlying genetic mechanisms important for the manifestation of some cases of Tourette Disorder (TD). Evidence has come from different study designs, such as nuclear families, twins, multigenerational families, and case-control samples, together examining the broad spectrum of genetic variation including cytogenetic abnormalities, copy number variants, genome-wide association of common variants, and sequencing studies targeting rare and/or de novo variation. Each of these classes of genetic variation holds promise for identifying the causative genes and biological pathways contributing to this paradigmatic neuropsychiatric disorder.
Collapse
Affiliation(s)
- David L Pauls
- Department of Psychiatry, Harvard Medical School, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114
| | - Thomas V Fernandez
- Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - Carol A Mathews
- Department of Psychiatry, University of California, San Francisco, CA 94143
| | - Matthew W State
- Department of Psychiatry, University of California, San Francisco, CA 94143
| | - Jeremiah M Scharf
- Department of Psychiatry, Harvard Medical School, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114 ; Department of Neurology, Harvard Medical School, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
24
|
Godar SC, Mosher LJ, Di Giovanni G, Bortolato M. Animal models of tic disorders: a translational perspective. J Neurosci Methods 2014; 238:54-69. [PMID: 25244952 DOI: 10.1016/j.jneumeth.2014.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA
| | - Laura J Mosher
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta; School of Biosciences, Cardiff University, Cardiff, UK
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
25
|
Abstract
Twin and family studies support a significant genetic contribution to obsessive-compulsive disorder (OCD) and related disorders, such as chronic tic disorders, trichotillomania, skin-picking disorder, body dysmorphic disorder, and hoarding disorder. Recently, population-based studies and novel laboratory-based methods have confirmed substantial heritability in OCD. Genome-wide association studies and candidate gene association studies have provided information on specific gene variations that may be involved in the pathobiology of OCD, though a substantial portion of the genetic risk architecture remains unknown.
Collapse
Affiliation(s)
- Heidi A Browne
- OCD and Related Disorders Program, Division of Tics, OCD, and Related Disorders, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Shannon L Gair
- OCD and Related Disorders Program, Division of Tics, OCD, and Related Disorders, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA
| | - Jeremiah M Scharf
- Movement Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, 6254, Boston, MA 02114, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, 6254, Boston, MA 02114, USA.
| | - Dorothy E Grice
- OCD and Related Disorders Program, Division of Tics, OCD, and Related Disorders, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
26
|
Urano T, Shiraki M, Sasaki N, Ouchi Y, Inoue S. Large-scale analysis reveals a functional single-nucleotide polymorphism in the 5'-flanking region of PRDM16 gene associated with lean body mass. Aging Cell 2014; 13:739-43. [PMID: 24863034 PMCID: PMC4326941 DOI: 10.1111/acel.12228] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 12/11/2022] Open
Abstract
Genetic factors are important for the development of sarcopenia, a geriatric disorder characterized by low lean body mass. The aim of this study was to search for novel genes that regulate lean body mass in humans. We performed a large-scale search for 250K single-nucleotide polymorphisms (SNPs) associated with bone mineral density (BMD) using SNP arrays in 1081 Japanese postmenopausal women. We focused on an SNP (rs12409277) located in the 5′-flanking region of the PRDM16 (PRD1-BF-1-RIZ1 homologous domain containing protein 16) gene that showed a significant P value in our screening. We demonstrated that PRDM16 gene polymorphisms were significantly associated with total body BMD in 1081 postmenopausal Japanese women. The rs12409277 SNP affected the transcriptional activity of PRDM16. The subjects with one or two minor allele(s) had a higher lean body mass than the subjects with two major alleles. Genetic analyses uncovered the importance of the PRDM16 gene in the regulation of lean body mass.
Collapse
Affiliation(s)
- Tomohiko Urano
- Geriatric Medicine Graduate School of Medicine The University of Tokyo Tokyo Japan
- Anti‐Aging Medicine Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Masataka Shiraki
- Research Institute and Practice for Involutional Diseases Nagano Japan
| | - Noriko Sasaki
- Geriatric Medicine Graduate School of Medicine The University of Tokyo Tokyo Japan
- Anti‐Aging Medicine Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Yasuyoshi Ouchi
- Geriatric Medicine Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Satoshi Inoue
- Geriatric Medicine Graduate School of Medicine The University of Tokyo Tokyo Japan
- Anti‐Aging Medicine Graduate School of Medicine The University of Tokyo Tokyo Japan
- Research Center for Genomic Medicine Saitama Medical School Saitama Japan
| |
Collapse
|
27
|
Seymour LA, Nourse JP, Crooks P, Wockner L, Bird R, Tran H, Gandhi MK. The presence of KIR2DS5 confers protection against adult immune thrombocytopenia. ACTA ACUST UNITED AC 2014; 83:154-60. [PMID: 24571473 DOI: 10.1111/tan.12295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/16/2013] [Accepted: 12/27/2013] [Indexed: 11/27/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder of unknown aetiology, characterised by an isolated low platelet count in the absence of other identifiable causes. Genes influencing activation of the immune system have been identified as influencing predisposition. Killer cell immunoglobulin-like receptors (KIR) control T-cell and natural killer (NK) cell function via inhibitory and activating signalling pathways. The inhibitory KIR2DL3, KIR3DL2 and KIR3DL1 are up-regulated in the T-cells of patients with ITP in remission relative to those with active disease, and an association of KIR2DS2 and KIR2DL2 with ITP has also been reported. No comprehensive KIR analysis in ITP has been reported. We performed genotyping of all currently known KIR genes using sequence specific primer polymerase chain reaction (SSP-PCR) on a cohort of 83 adult patients with ITP (chronic/persistent or relapsed primary ITP identified by defined criteria) and 106 age matched healthy white volunteers. Non-white patients were not included in the analysis. There was an over-representation of KIR2DS3 (known to be in linkage disequilibrium with KIR2DS2 and 2DL2) and under-representation of KIR2DS5 (also protective against other immune mediated disorders) in adult ITP [odds ratio (OR) = 0.16, confidence interval (CI) 0.08-0.32, P < 0.001]. By multivariable binary logistic regression to adjust for age, sex and the effects of other KIR genes, the presence of KIR2DS2/2DL2 with KIR2DS5 abrogated the risk of KIR2DS2/2DL2 and the protective benefit of KIR2DS5. Further studies are required to establish the mechanistic basis for these observations and their potential impact on ITP therapy.
Collapse
Affiliation(s)
- L A Seymour
- Experimental Haematology, School of Medicine, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Kawahara Y. Human diseases caused by germline and somatic abnormalities in microRNA and microRNA-related genes. Congenit Anom (Kyoto) 2014; 54:12-21. [PMID: 24330020 DOI: 10.1111/cga.12043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022]
Abstract
The human genome harbors approximately 2000 genes that encode microRNAs (miRNAs), small non-coding RNAs of approximately 20-22 nt that mediate post-transcriptional gene silencing. MiRNAs are generated from long transcripts through stepwise processing by the Drosha/DGCR8, Exportin-5/RanGTP and Dicer/TRBP complexes. Given that the expression of each individual miRNA is tightly regulated, the altered expression of certain miRNAs plays a pivotal role in human diseases. For instance, germline and somatic mutations in the genes encoding the miRNA processing machinery have been reported in different cancers. Furthermore, certain miRNA genes are encoded within regions that are deleted or duplicated in individuals with chromosomal abnormalities, and the fact that the knockout of these miRNAs in animal models results in lethality or the abnormal development of certain tissues indicates that these miRNA genes contribute to the disease phenotypes. It has also been reported that mutations in miRNA genes or in miRNA-binding sites, which result in the impairment of tight regulation of target mRNA expression, cause human genetic diseases, although these cases are rare. This is in contrast to the aberrant expression of certain miRNAs that results from the impairment of transcriptional or post-transcriptional regulation, which has been reported frequently in various human diseases. The present review focuses on human diseases caused by mutations in genes encoding miRNAs and the miRNA processing machinery as well as in miRNA-binding sites. Furthermore, human diseases caused by chromosomal abnormalities that involve the deletion or duplication of regions harboring genes that encode miRNAs or the miRNA processing machinery are also introduced.
Collapse
Affiliation(s)
- Yukio Kawahara
- Laboratory of RNA Function, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
29
|
Winther M, Walmod PS. Neural cell adhesion molecules belonging to the family of leucine-rich repeat proteins. ADVANCES IN NEUROBIOLOGY 2014; 8:315-95. [PMID: 25300143 DOI: 10.1007/978-1-4614-8090-7_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeats (LRRs) are motifs that form protein-ligand interaction domains. There are approximately 140 human genes encoding proteins with extracellular LRRs. These encode cell adhesion molecules (CAMs), proteoglycans, G-protein-coupled receptors, and other types of receptors. Here we give a brief description of 36 proteins with extracellular LRRs that all can be characterized as CAMs or putative CAMs expressed in the nervous system. The proteins are involved in multiple biological processes in the nervous system including the proliferation and survival of cells, neuritogenesis, axon guidance, fasciculation, myelination, and the formation and maintenance of synapses. Moreover, the proteins are functionally implicated in multiple diseases including cancer, hearing impairment, glaucoma, Alzheimer's disease, multiple sclerosis, Parkinson's disease, autism spectrum disorders, schizophrenia, and obsessive-compulsive disorders. Thus, LRR-containing CAMs constitute a large group of proteins of pivotal importance for the development, maintenance, and regeneration of the nervous system.
Collapse
|
30
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|
31
|
Sequence analysis of SLITRK1 for var321 in Danish patients with Tourette syndrome and review of the literature. Psychiatr Genet 2013; 23:130-3. [PMID: 23528612 DOI: 10.1097/ypg.0b013e328360c880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tourette syndrome (TS) is a complex neuropsychiatric disorder characterized by multiple motor and vocal tics and is often accompanied by comorbidities such as attention deficit hyperactivity disorder and obsessive-compulsive disorder. The complex etiology of TS and its co-occurrence with other disorders impedes linking genetic changes with disease segregation. One of the few genes that has been linked to TS is the SLITRK1 (Slit and Trk-like 1) gene, where four variations have been suggested as possible disease-associated changes. One of these variations, which has been reported in six unrelated TS patients, was a noncoding variant (var321) at the 3'-untranslated region of SLITRK1 within a conserved binding site for microRNA has-mir-189. To elucidate the potential role of var321 in disease pathogenesis, a cohort of 112 deeply phenotyped Danish TS patients was investigated for this variation. We could not detect var321 in the present cohort, suggesting that this is not a common variant among Danish TS patients.
Collapse
|
32
|
Characterization of SLITRK1 variation in obsessive-compulsive disorder. PLoS One 2013; 8:e70376. [PMID: 23990902 PMCID: PMC3749144 DOI: 10.1371/journal.pone.0070376] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 06/18/2013] [Indexed: 01/15/2023] Open
Abstract
Obsessive compulsive disorder (OCD) is a syndrome characterized by recurrent and intrusive thoughts and ritualistic behaviors or mental acts that a person feels compelled to perform. Twin studies, family studies, and segregation analyses provide compelling evidence that OCD has a strong genetic component. The SLITRK1 gene encodes a developmentally regulated stimulator of neurite outgrowth and previous studies have implicated rare variants in this gene in disorders in the OC spectrum, specifically Tourette syndrome (TS) and trichotillomania (TTM). The objective of the current study was to evaluate rare genetic variation in SLITRK1 in risk for OCD and to functionally characterize associated coding variants. We sequenced SLITRK1 coding exons in 381 individuals with OCD as well as in 356 control samples and identified three novel variants in seven individuals. We found that the combined mutation load in OCD relative to controls was significant (p = 0.036). We identified a missense N400I change in an individual with OCD, which was not found in more than 1000 control samples (P<0.05). In addition, we showed the the N400I variant failed to enhance neurite outgrowth in primary neuronal cultures, in contrast to wildtype SLITRK1, which enhanced neurite outgrowth in this assay. These important functional differences in the N400I variant, as compared to the wildtype SLITRK1 sequence, may contribute to OCD and OC spectrum symptoms. A synonymous L63L change identified in an individual with OCD and an additional missense change, T418S, was found in four individuals with OCD and in one individual without an OCD spectrum disorder. Examination of additional samples will help assess the role of rare SLITRK1 variation in OCD and in related psychiatric illness.
Collapse
|
33
|
Saba R, Booth SA. Polymorphisms affecting miRNA regulation: a new level of genetic variation affecting disorders and diseases of the human CNS. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The recognition of people and/or populations at a high risk for the development of various types of neurological disorders and diseases is not only key to improved screening programs and earlier detection, but it also provides hope for appropriate treatment and care. Genetic alterations that change gene-expression levels have long been investigated for association with the development of pathological neurological conditions. Gene regulation by miRNAs is a relatively new area of study, and published evidence suggests that alterations in this process may be associated with increased disease risk. Here, the authors review the current data for association between single nucleotide polymorphisms (SNPs) and miRNA-mediated gene regulation (miR-SNPs) in human neuropsychiatric and neurodegenerative diseases. Additionally, we present an approach to detect and identify functional miR-SNPs for the purpose of carrying out large-scale genetic association studies. The growing body of literature suggests that miR-SNPs are emerging as a powerful tool, both to study the pathobiology of diseases, as well as aiding in its diagnosis and prognosis.
Collapse
Affiliation(s)
- Reuben Saba
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Stephanie A Booth
- Department of Medical Microbiology & Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3B 1Y6, Canada
| |
Collapse
|
34
|
Paschou P. The genetic basis of Gilles de la Tourette Syndrome. Neurosci Biobehav Rev 2013; 37:1026-39. [DOI: 10.1016/j.neubiorev.2013.01.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/02/2013] [Accepted: 01/07/2013] [Indexed: 12/18/2022]
|
35
|
Pathogenetic model for Tourette syndrome delineates overlap with related neurodevelopmental disorders including Autism. Transl Psychiatry 2012; 2:e158. [PMID: 22948383 PMCID: PMC3565204 DOI: 10.1038/tp.2012.75] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Tourette syndrome (TS) is a highly heritable neuropsychiatric disorder characterised by motor and vocal tics. Despite decades of research, the aetiology of TS has remained elusive. Recent successes in gene discovery backed by rapidly advancing genomic technologies have given us new insights into the genetic basis of the disorder, but the growing collection of rare and disparate findings have added confusion and complexity to the attempts to translate these findings into neurobiological mechanisms resulting in symptom genesis. In this review, we explore a previously unrecognised genetic link between TS and a competing series of trans-synaptic complexes (neurexins (NRXNs), neuroligins (NLGNs), leucine-rich repeat transmembrane proteins (LRRTMs), leucine rich repeat neuronals (LRRNs) and cerebellin precursor 2 (CBLN2)) that links it with autism spectrum disorder through neurodevelopmental pathways. The emergent neuropathogenetic model integrates all five genes so far found to be uniquely disrupted in TS into a single pathogenetic chain of events described in context with clinical and research implications.
Collapse
|
36
|
Replication of association between a SLITRK1 haplotype and Tourette Syndrome in a large sample of families. Mol Psychiatry 2012; 17:665-8. [PMID: 22083730 DOI: 10.1038/mp.2011.151] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
Hai R, Zhang L, Pei Y, Zhao L, Ran S, Han Y, Zhu X, Shen H, Tian Q, Deng H. Bivariate genome-wide association study suggests that the DARC gene influences lean body mass and age at menarche. SCIENCE CHINA-LIFE SCIENCES 2012; 55:516-20. [DOI: 10.1007/s11427-012-4327-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/20/2012] [Indexed: 02/07/2023]
|
38
|
Statistical Challenges in Sequence-Based Association Studies with Population- and Family-Based Designs. STATISTICS IN BIOSCIENCES 2012. [DOI: 10.1007/s12561-012-9062-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Xu B, Hsu PK, Karayiorgou M, Gogos JA. MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis 2012; 46:291-301. [PMID: 22406400 PMCID: PMC3329786 DOI: 10.1016/j.nbd.2012.02.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/19/2012] [Accepted: 02/20/2012] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNA), a class of non-coding RNAs, are emerging as important modulators of neuronal development, structure and function. A connection has been established between abnormalities in miRNA expression and miRNA-mediated gene regulation and psychiatric and neurodevelopmental disorders as well as cognitive dysfunction. Establishment of this connection has been driven by progress in elucidating the genetic etiology of these phenotypes and has provided a context to interpret additional supporting evidence accumulating from parallel expression profiling studies in brains and peripheral blood of patients. Here we review relevant evidence that supports this connection and explore possible mechanisms that underlie the contribution of individual miRNAs and miRNA-related pathways to the pathogenesis and pathophysiology of these complex clinical phenotypes. The existing evidence provides useful hypotheses for further investigation as well as important clues for identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Bin Xu
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY
- Department of Psychiatry, Columbia University, New York, NY
| | - Pei-Ken Hsu
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY
| | | | - Joseph A. Gogos
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY
- Department of Neuroscience, Columbia University, New York, NY
| |
Collapse
|
40
|
|
41
|
Ladouceur M, Dastani Z, Aulchenko YS, Greenwood CMT, Richards JB. The empirical power of rare variant association methods: results from sanger sequencing in 1,998 individuals. PLoS Genet 2012; 8:e1002496. [PMID: 22319458 PMCID: PMC3271058 DOI: 10.1371/journal.pgen.1002496] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 12/08/2011] [Indexed: 01/09/2023] Open
Abstract
The role of rare genetic variation in the etiology of complex disease remains unclear. However, the development of next-generation sequencing technologies offers the experimental opportunity to address this question. Several novel statistical methodologies have been recently proposed to assess the contribution of rare variation to complex disease etiology. Nevertheless, no empirical estimates comparing their relative power are available. We therefore assessed the parameters that influence their statistical power in 1,998 individuals Sanger-sequenced at seven genes by modeling different distributions of effect, proportions of causal variants, and direction of the associations (deleterious, protective, or both) in simulated continuous trait and case/control phenotypes. Our results demonstrate that the power of recently proposed statistical methods depend strongly on the underlying hypotheses concerning the relationship of phenotypes with each of these three factors. No method demonstrates consistently acceptable power despite this large sample size, and the performance of each method depends upon the underlying assumption of the relationship between rare variants and complex traits. Sensitivity analyses are therefore recommended to compare the stability of the results arising from different methods, and promising results should be replicated using the same method in an independent sample. These findings provide guidance in the analysis and interpretation of the role of rare base-pair variation in the etiology of complex traits and diseases.
Collapse
Affiliation(s)
- Martin Ladouceur
- Department of Human Genetics, McGill University, Montreal, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Zari Dastani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Yurii S. Aulchenko
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia
| | - Celia M. T. Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - J. Brent Richards
- Department of Human Genetics, McGill University, Montreal, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
- Department of Medicine, Jewish General Hospital, McGill University, Montreal, Canada
- Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| |
Collapse
|
42
|
Casals F, Idaghdour Y, Hussin J, Awadalla P. Next-generation sequencing approaches for genetic mapping of complex diseases. J Neuroimmunol 2012; 248:10-22. [PMID: 22285396 DOI: 10.1016/j.jneuroim.2011.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/30/2011] [Accepted: 12/15/2011] [Indexed: 01/12/2023]
Abstract
The advent of next generation sequencing technologies has opened new possibilities in the analysis of human disease. In this review we present the main next-generation sequencing technologies, with their major contributions and possible applications to the study of the genetic etiology of complex diseases.
Collapse
Affiliation(s)
- Ferran Casals
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
43
|
Proenca CC, Gao KP, Shmelkov SV, Rafii S, Lee FS. Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends Neurosci 2012; 34:143-53. [PMID: 21315458 DOI: 10.1016/j.tins.2011.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 02/06/2023]
Abstract
Slitrks are a family of structurally related transmembrane proteins belonging to the leucine-rich repeat (LRR) superfamily. Six family members exist (Slitrk1-6) and all are highly expressed in the central nervous system (CNS). Slitrks have been implicated in mediating basic neuronal processes, ranging from neurite outgrowth and dendritic elaboration to neuronal survival. Recent studies in humans and genetic mouse models have led to the identification of Slitrks as candidate genes that might be involved in the development of neuropsychiatric conditions, such as obsessive compulsive spectrum disorders and schizophrenia. Although these system-level approaches have suggested that Slitrks play prominent roles in CNS development, key questions remain regarding the molecular mechanisms through which they mediate neuronal signaling and connectivity.
Collapse
Affiliation(s)
- Catia C Proenca
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
44
|
The KIR2DS2/DL2 genotype is associated with adult persistent/chronic and relapsed immune thrombocytopenia independently of FCGR3a-158 polymorphisms. Blood Coagul Fibrinolysis 2012; 23:45-50. [DOI: 10.1097/mbc.0b013e32834d7ce3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Genetic animal models of Tourette syndrome: The long and winding road from lab to clinic. Transl Neurosci 2012. [DOI: 10.2478/s13380-012-0020-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractTourette syndrome (TS) is a disabling neuropsychiatric disorder characterised by persistent motor and vocal tics. TS is a highly comorbid state, hence, patients might experience anxiety, obsessions, compulsions, sleep abnormalities, depression, emotional liability, learning problems, and attention deficits in addition to tics. In spite of its complex heterogeneous genetic aetiology, recent studies highlighted a strong link between TS and genetic lesions in the HDC (L-histidine decarboxylase) gene, which encodes the enzyme that synthetises histamine, and the SLITRK1 (SLIT and TRK-like family member 1) gene, which encodes a transmembrane protein that was found to regulate neurite outgrowth. In addition to validating the contribution of a specific genetic aberration to the development of a particular pathology, animal models are crucial to dissect the function of disease-linked proteins, expose disease pathways through examination of genetic modifiers and discover as well as assess therapeutic strategies. Mice with a knockout of either Hdc or Slitrk1 exhibit anxiety and those lacking Hdc, display dopamine agonist-triggered stereotypic movements. However, the mouse knockouts do not spontaneously display tics, which are recognised as the hallmark of TS. In this review, we explore the features of the present genetic animal models of TS and identify reasons for their poor resemblance to the human condition. Importantly, we highlight ways forward aimed at developing a valuable genetic model of TS or a model that has good predictive validity in developing therapeutic drugs for the treatment of tics, hence potentially accelerating the arduous journey from lab to clinic.
Collapse
|
46
|
Genome-wide association study of copy number variation identified gremlin1 as a candidate gene for lean body mass. J Hum Genet 2011; 57:33-7. [DOI: 10.1038/jhg.2011.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Molecular and cellular basis of obsessive-compulsive disorder-like behaviors: emerging view from mouse models. Curr Opin Neurol 2011; 24:114-8. [PMID: 21386675 DOI: 10.1097/wco.0b013e32834451fb] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This article reviews recent literature describing novel mouse genetic models of obsessive-compulsive disorder-like behaviors and neurobiological insights gained from analyses of such models. RECENT FINDINGS Obsessive-compulsive disorder is a common neuropsychiatric disorder characterized by recurrent intrusive thoughts (obsessions) and ritualistic (compulsive) behaviors. Although the cause of this disorder remains unclear, recent studies of novel mouse genetic models with excessive grooming behaviors have begun to shed light on the molecular and cellular mechanisms underlying the pathogenesis of 'obsessive-compulsive disorder-like' behaviors. Genetic deletion of three genes in mice, Hoxb8, Sapap3, and Slitrk5, leads to pathological behaviors including adult-onset excessive grooming with mild-to-severe hair loss and self-injury. In two of the models, the Sapap3-deficient and the Slitrk5-deficient mice, the abnormal grooming behaviors are associated with enhanced anxiety and these pathological behaviors can be curtailed with subchronic administration of a selective serotonin reuptake inhibitor, suggesting the predictive validity of such models. Molecular, pathophysiological, and genetic analyses of these models reveal several insights on the etiological basis of abnormal behaviors in these mice, including abnormal cortico-striatal synapse formation and function in Sapap3 mice, impaired development and function of bone marrow-derived microglia in Hoxb8 mice, and abnormal striatal neuronal differentiation and neurotransmission in Slitrk5 mice. SUMMARY Novel animal models provide powerful tools to investigate the molecular, cellular, and circuitry mechanisms of obsessive-compulsive disorder-like behaviors. Detailed analyses of these models may provide candidate molecules and mechanisms for the investigation of cause and therapy of obsessive-compulsive disorder.
Collapse
|
48
|
Galanter JM, Torgerson D, Gignoux CR, Sen S, Roth LA, Via M, Aldrich MC, Eng C, Huntsman S, Rodriguez-Santana J, Rodriguez-Cintrón W, Chapela R, Ford JG, Burchard EG. Cosmopolitan and ethnic-specific replication of genetic risk factors for asthma in 2 Latino populations. J Allergy Clin Immunol 2011; 128:37-43.e12. [PMID: 21621256 DOI: 10.1016/j.jaci.2011.03.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/26/2011] [Accepted: 03/31/2011] [Indexed: 01/23/2023]
Abstract
BACKGROUND Although Mexicans and Puerto Ricans are jointly classified as "Hispanic/Latino," there are significant differences in asthma prevalence, severity, and mortality between the 2 groups. We sought to examine the possibility that population-specific genetic risks contribute to this disparity. OBJECTIVES More than 100 candidate genes have been associated with asthma and replicated in an independent population, and 7 genome-wide association studies in asthma have been performed. We compared the pattern of replication of these associations in Puerto Ricans and Mexicans. METHODS We genotyped Mexican and Puerto Rican trios using an Affymetrix 6.0 GeneChip and used a family-based analysis to test for genetic associations in 124 genes previously associated with asthma. RESULTS We identified 32 single nucleotide polymorphisms (SNPs) in 17 genes associated with asthma in at least 1 of the 2 populations. Twenty-two of these SNPs in 11 genes were significantly associated with asthma in the combined population and showed no significant heterogeneity of association, whereas 5 SNPs were associated in only 1 population and showed statistically significant heterogeneity. In a gene-based approach 2 additional genes were associated with asthma in the combined population, and 3 additional genes displayed ethnic-specific associations with heterogeneity. CONCLUSIONS Our results show that only a minority of genetic association studies replicate in our population of Mexican and Puerto Rican asthmatic subjects. Among SNPs that were successfully replicated, most showed no significant heterogeneity across populations. However, we identified several population-specific genetic associations.
Collapse
Affiliation(s)
- Joshua M Galanter
- Department of Medicine, University of California, San Francisco, CA 94143-2911, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
State MW. The genetics of Tourette disorder. Curr Opin Genet Dev 2011; 21:302-9. [PMID: 21277193 DOI: 10.1016/j.gde.2011.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 12/21/2022]
Abstract
Tourette disorder (TD) is a childhood onset neuropsychiatric syndrome defined by persistent motor and vocal tics. Despite a long-standing consensus for a strong genetic contribution, the pace of discovery compared to other disorders of similar prevalence has been slow, due in part to a paucity of studies and both clinical heterogeneity and a complex genetic architecture. However, the potential for rapid progress is high. Recent rare variant findings have pointed to the importance of copy number variation, the overlap of risks among distinct diagnostic entities, the contribution of novel molecular mechanisms, and the value of family based studies. Finally, analysis of a cohort of sufficient size to identify common polymorphisms of plausible effect is underway, promising key information regarding the contribution of common alleles to TD.
Collapse
Affiliation(s)
- Matthew W State
- Department of Child Psychiatry, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
50
|
Bailey-Wilson JE, Brennan JS, Bull SB, Culverhouse R, Kim Y, Jiang Y, Jung J, Li Q, Lamina C, Liu Y, Mägi R, Niu YS, Simpson CL, Wang L, Yilmaz YE, Zhang H, Zhang Z. Regression and data mining methods for analyses of multiple rare variants in the Genetic Analysis Workshop 17 mini-exome data. Genet Epidemiol 2011; 35 Suppl 1:S92-100. [PMID: 22128066 PMCID: PMC3360949 DOI: 10.1002/gepi.20657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Group 14 of Genetic Analysis Workshop 17 examined several issues related to analysis of complex traits using DNA sequence data. These issues included novel methods for analyzing rare genetic variants in an aggregated manner (often termed collapsing rare variants), evaluation of various study designs to increase power to detect effects of rare variants, and the use of machine learning approaches to model highly complex heterogeneous traits. Various published and novel methods for analyzing traits with extreme locus and allelic heterogeneity were applied to the simulated quantitative and disease phenotypes. Overall, we conclude that power is (as expected) dependent on locus-specific heritability or contribution to disease risk, large samples will be required to detect rare causal variants with small effect sizes, extreme phenotype sampling designs may increase power for smaller laboratory costs, methods that allow joint analysis of multiple variants per gene or pathway are more powerful in general than analyses of individual rare variants, population-specific analyses can be optimal when different subpopulations harbor private causal mutations, and machine learning methods may be useful for selecting subsets of predictors for follow-up in the presence of extreme locus heterogeneity and large numbers of potential predictors.
Collapse
Affiliation(s)
- Joan E Bailey-Wilson
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|