1
|
Dinkel L, Hummel S, Zenatti V, Malara M, Tillmann Y, Colombo A, Monasor LS, Suh JH, Logan T, Roth S, Paeger L, Hoffelner P, Bludau O, Schmidt A, Müller SA, Schifferer M, Nuscher B, Njavro JR, Prestel M, Bartos LM, Wind-Mark K, Slemann L, Hoermann L, Kunte ST, Gnörich J, Lindner S, Simons M, Herms J, Paquet D, Lichtenthaler SF, Bartenstein P, Franzmeier N, Liesz A, Grosche A, Bremova-Ertl T, Catarino C, Beblo S, Bergner C, Schneider SA, Strupp M, Di Paolo G, Brendel M, Tahirovic S. Myeloid cell-specific loss of NPC1 in mice recapitulates microgliosis and neurodegeneration in patients with Niemann-Pick type C disease. Sci Transl Med 2024; 16:eadl4616. [PMID: 39630885 DOI: 10.1126/scitranslmed.adl4616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/12/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Niemann-Pick type C (NPC) disease is an inherited lysosomal storage disorder mainly driven by mutations in the NPC1 gene, causing lipid accumulation within late endosomes/lysosomes and resulting in progressive neurodegeneration. Although microglial activation precedes neuronal loss, it remains elusive whether loss of the membrane protein NPC1 in microglia actively contributes to NPC pathology. In a mouse model with depletion of NPC1 in myeloid cells, we report severe alterations in microglial lipidomic profiles, including the enrichment of bis(monoacylglycero)phosphate, increased cholesterol, and a decrease in cholesteryl esters. Lipid dyshomeostasis was associated with microglial hyperactivity, marked by an increase in translocator protein 18 kDa (TSPO). These hyperactive microglia initiated a pathological cascade resembling NPC-like phenotypes, including a shortened life span, motor impairments, astrogliosis, neuroaxonal pathology, and increased neurofilament light chain (NF-L), a neuronal injury biomarker. As observed in the mouse model, patients with NPC showed increased NF-L in the blood and microglial hyperactivity, as visualized by TSPO-PET imaging. Reduced TSPO expression in blood-derived macrophages of patients with NPC was measured after N-acetyl-l-leucine treatment, which has been recently shown to have beneficial effects in patients with NPC, suggesting that TSPO is a potential marker to monitor therapeutic interventions for NPC. Conclusively, these results demonstrate that myeloid dysfunction, driven by the loss of NPC1, contributes to NPC disease and should be further investigated for therapeutic targeting and disease monitoring.
Collapse
Affiliation(s)
- Lina Dinkel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Selina Hummel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Valerio Zenatti
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Mariagiovanna Malara
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Yannik Tillmann
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | | | - Jung H Suh
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Todd Logan
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Patricia Hoffelner
- Department of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University, 82152 Planegg-Martinsried, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University, 82152 Planegg-Martinsried, Germany
- Neuroproteomics School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Neuroproteomics School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Brigitte Nuscher
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jasenka Rudan Njavro
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Matthias Prestel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Karin Wind-Mark
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Luna Slemann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Leonie Hoermann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian T Kunte
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute of Neuronal Cell Biology (TUM-NZB), Technical University of Munich, 80802 Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University München, 81377 Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Neuroproteomics School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience and Physiology, SE-413 90 Mölndal and Gothenburg, Sweden
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatiana Bremova-Ertl
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Neurology, University Hospital Bern, 3010 Bern, Switzerland
| | - Claudia Catarino
- Friedrich Baur Institute, Department of Neurology, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Skadi Beblo
- Center for Pediatric Research Leipzig, Department of Women and Child Health, Hospital for Children and Adolescents, University Hospital Leipzig; Leipzig University Center for Rare Diseases, 04103 Leipzig, Germany
| | - Caroline Bergner
- Department of Neurology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Susanne A Schneider
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Strupp
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | | | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| |
Collapse
|
2
|
Qiao L, Han X, Ding R, Shang X, Xiao L, Gao G, Zhang C, Kang J, Su X, Liu Y, Luo J, Yan X, Lin J. Npc1 deficiency impairs microglia function via TREM2-mTOR signaling in Niemann-Pick disease type C. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167478. [PMID: 39173891 DOI: 10.1016/j.bbadis.2024.167478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Niemann-Pick disease Type C (NPC) is a neurodegenerative disease mainly caused by the mutation in NPC1 gene, leading to massive accumulation of unesterified cholesterol in the late endosome/lysosome of cells. Impaired phenotype of microglia is a hallmark in Npc1 mutant mice (Npc1-/- mice). However, the mechanism of Npc1 in regulating microglial function is still unclear. Here, we showed that the reactive microglia in the neonatal Npc1-/- mice indicated by the increased lysosome protein CD68 and phagocytic activity were associated with disrupted TREM2-mTOR signaling in microglia. Furthermore, in Npc1-deficient BV2 cells, genetic deletion of Trem2 partially restored microglial function, probably via restored mTOR signaling. Taken together, our findings indicated that loss of Npc1 in microglia caused changes of their morphologies and the impairment of lysosomal function, which were linked to the TREM2-mTOR signaling pathway.
Collapse
Affiliation(s)
- Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaojing Han
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China; Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Ru Ding
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaodi Shang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lulu Xiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Ge Gao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Chu Zhang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jing Kang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xi Su
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jiankai Luo
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Xin Yan
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany.
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
3
|
Guo A, Wu Q, Yan X, Chen K, Liu Y, Liang D, Yang Y, Luo Q, Xiong M, Yu Y, Fei E, Chen F. Differential roles of lysosomal cholesterol transporters in the development of C. elegans NMJs. Life Sci Alliance 2024; 7:e202402584. [PMID: 39084875 PMCID: PMC11291935 DOI: 10.26508/lsa.202402584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Cholesterol homeostasis in neurons is critical for synapse formation and maintenance. Neurons with impaired cholesterol uptake undergo progressive synapse loss and eventual degeneration. To investigate the molecular mechanisms of neuronal cholesterol homeostasis and its role during synapse development, we studied motor neurons of Caenorhabditis elegans because these neurons rely on dietary cholesterol. Combining lipidomic analysis, we discovered that NCR-1, a lysosomal cholesterol transporter, promotes cholesterol absorption and synapse development. Loss of ncr-1 causes smaller synapses, and low cholesterol exacerbates the deficits. Moreover, NCR-1 deficiency hinders the increase in synapses under high cholesterol. Unexpectedly, NCR-2, the NCR-1 homolog, increases the use of cholesterol and sphingomyelins and impedes synapse formation. NCR-2 deficiency causes an increase in synapses regardless of cholesterol concentration. Inhibiting the degradation or synthesis of sphingomyelins can induce or suppress the synaptic phenotypes in ncr-2 mutants. Our findings indicate that neuronal cholesterol homeostasis is differentially controlled by two lysosomal cholesterol transporters and highlight the importance of neuronal cholesterol homeostasis in synapse development.
Collapse
Affiliation(s)
- Amin Guo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin Yan
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Kanghua Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dingfa Liang
- Queen Mary School of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yuxiao Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qunfeng Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Mingtao Xiong
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Erkang Fei
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fei Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Azaria RD, Correia AB, Schache KJ, Zapata M, Pathmasiri KC, Mohanty V, Nannapaneni DT, Ashfeld BL, Helquist P, Wiest O, Ohgane K, Li Q, Fredenburg RA, Blagg BS, Cologna SM, Schultz ML, Lieberman AP. Mutant induced neurons and humanized mice enable identification of Niemann-Pick type C1 proteostatic therapies. JCI Insight 2024; 9:e179525. [PMID: 39207850 PMCID: PMC11530122 DOI: 10.1172/jci.insight.179525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Therapeutics that rescue folding, trafficking, and function of disease-causing missense mutants are sought for a host of human diseases, but efforts to leverage model systems to test emerging strategies have met with limited success. Such is the case for Niemann-Pick type C1 disease, a lysosomal disorder characterized by impaired intracellular cholesterol trafficking, progressive neurodegeneration, and early death. NPC1, a multipass transmembrane glycoprotein, is synthesized in the endoplasmic reticulum and traffics to late endosomes/lysosomes, but this process is often disrupted in disease. We sought to identify small molecules that promote folding and enable lysosomal localization and functional recovery of mutant NPC1. We leveraged a panel of isogenic human induced neurons expressing distinct NPC1 missense mutations. We used this panel to rescreen compounds that were reported previously to correct NPC1 folding and trafficking. We established mo56-hydroxycholesterol (mo56Hc) as a potent pharmacological chaperone for several NPC1 mutants. Furthermore, we generated mice expressing human I1061T NPC1, a common mutation in patients. We demonstrated that this model exhibited disease phenotypes and recapitulated the protein trafficking defects, lipid storage, and response to mo56Hc exhibited by human cells expressing I1061T NPC1. These tools established a paradigm for testing and validation of proteostatic therapeutics as an important step toward the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Ruth D. Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Adele B. Correia
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kylie J. Schache
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Manuela Zapata
- Department of Chemistry, University of Illinois Chicago, Illinois, USA
| | | | | | | | - Brandon L. Ashfeld
- Department of Chemistry & Biochemistry and
- Warren Family Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - Olaf Wiest
- Department of Chemistry & Biochemistry and
| | - Kenji Ohgane
- Department of Chemistry, Ochanomizu University, Tokyo, Japan
| | | | - Ross A. Fredenburg
- Ara Parseghian Medical Research Fund at Notre Dame University, Notre Dame, Indiana, USA
| | - Brian S.J. Blagg
- Department of Chemistry & Biochemistry and
- Warren Family Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - Mark L. Schultz
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Andrew P. Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
6
|
Mandolfo O, Parker H, Aguado È, Ishikawa Learmonth Y, Liao AY, O'Leary C, Ellison S, Forte G, Taylor J, Wood S, Searle R, Holley RJ, Boutin H, Bigger BW. Systemic immune challenge exacerbates neurodegeneration in a model of neurological lysosomal disease. EMBO Mol Med 2024; 16:1579-1602. [PMID: 38890537 PMCID: PMC11251277 DOI: 10.1038/s44321-024-00092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is a rare paediatric lysosomal storage disorder, caused by the progressive accumulation of heparan sulphate, resulting in neurocognitive decline and behavioural abnormalities. Anecdotal reports from paediatricians indicate a more severe neurodegeneration in MPS IIIA patients, following infection, suggesting inflammation as a potential driver of neuropathology. To test this hypothesis, we performed acute studies in which WT and MPS IIIA mice were challenged with the TLR3-dependent viral mimetic poly(I:C). The challenge with an acute high poly(I:C) dose exacerbated systemic and brain cytokine expression, especially IL-1β in the hippocampus. This was accompanied by an increase in caspase-1 activity within the brain of MPS IIIA mice with concomitant loss of hippocampal GFAP and NeuN expression. Similar levels of cell damage, together with exacerbation of gliosis, were also observed in MPS IIIA mice following low chronic poly(I:C) dosing. While further investigation is warranted to fully understand the extent of IL-1β involvement in MPS IIIA exacerbated neurodegeneration, our data robustly reinforces our previous findings, indicating IL-1β as a pivotal catalyst for neuropathological processes in MPS IIIA.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Helen Parker
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Èlia Aguado
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Yuko Ishikawa Learmonth
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Ai Yin Liao
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Claire O'Leary
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Stuart Ellison
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Gabriella Forte
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Jessica Taylor
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Shaun Wood
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Rachel Searle
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Rebecca J Holley
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Hervé Boutin
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- INSERM, UMR 1253, iBrain, Université de Tours, Tours, France
| | - Brian W Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK.
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Wang Y, Yang J. ER-organelle contacts: A signaling hub for neurological diseases. Pharmacol Res 2024; 203:107149. [PMID: 38518830 DOI: 10.1016/j.phrs.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
8
|
Yin Q, Yang C. Exploring lysosomal biology: current approaches and methods. BIOPHYSICS REPORTS 2024; 10:111-120. [PMID: 38774350 PMCID: PMC11103719 DOI: 10.52601/bpr.2023.230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/04/2024] [Indexed: 05/24/2024] Open
Abstract
Lysosomes are the degradation centers and signaling hubs in the cell. Lysosomes undergo adaptation to maintain cell homeostasis in response to a wide variety of cues. Dysfunction of lysosomes leads to aging and severe diseases including lysosomal storage diseases (LSDs), neurodegenerative disorders, and cancer. To understand the complexity of lysosome biology, many research approaches and tools have been developed to investigate lysosomal functions and regulatory mechanisms in diverse experimental systems. This review summarizes the current approaches and tools adopted for studying lysosomes, and aims to provide a methodological overview of lysosomal research and related fields.
Collapse
Affiliation(s)
- Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
9
|
Malara M, Prestel M, Tahirovic S. Endo-lysosomal dysfunction and neuronal-glial crosstalk in Niemann-Pick type C disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220388. [PMID: 38368932 PMCID: PMC10874755 DOI: 10.1098/rstb.2022.0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
Niemann-Pick type C (NPC) disease is a rare progressive lysosomal lipid storage disorder that manifests with a heterogeneous spectrum of clinical syndromes, including visceral, neurological and psychiatric symptoms. This monogenetic autosomal recessive disease is largely caused by mutations in the NPC1 gene, which controls intracellular lipid homeostasis. Vesicle-mediated endo-lysosomal lipid trafficking and non-vesicular lipid exchange via inter-organelle membrane contact sites are both regulated by the NPC1 protein. Loss of NPC1 function therefore triggers intracellular accumulation of diverse lipid species, including cholesterol, glycosphingolipids, sphingomyelin and sphingosine. The NPC1-mediated dysfunction of lipid transport has severe consequences for all brain cells, leading to neurodegeneration. Besides the cell-autonomous contribution of neuronal NPC1, aberrant NPC1 signalling in other brain cells is critical for the pathology. We discuss here the importance of endo-lysosomal dysfunction and a tight crosstalk between neurons, oligodendrocytes, astrocytes and microglia in NPC pathology. We strongly believe that a cell-specific rescue may not be sufficient to counteract the severity of the NPC pathology, but targeting common mechanisms, such as endo-lysosomal and lipid trafficking dysfunction, may ameliorate NPC pathology. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Mariagiovanna Malara
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Matthias Prestel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| |
Collapse
|
10
|
Cooper O, Hallett P, Isacson O. Upstream lipid and metabolic systems are potential causes of Alzheimer's disease, Parkinson's disease and dementias. FEBS J 2024; 291:632-645. [PMID: 36165619 PMCID: PMC10040476 DOI: 10.1111/febs.16638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Brain health requires circuits, cells and molecular pathways to adapt when challenged and to promptly reset once the challenge has resolved. Neurodegeneration occurs when adaptability becomes confined, causing challenges to overwhelm neural circuitry. Studies of rare and common neurodegenerative diseases suggest that the accumulation of lipids can compromise circuit adaptability. Using microglia as an example, we review data that suggest increased lipid concentrations cause dysfunctional inflammatory responses to immune challenges, leading to Alzheimer's disease, Parkinson's disease and dementia. We highlight current approaches to treat lipid metabolic and clearance pathways and identify knowledge gaps towards restoring adaptive homeostasis in individuals who are at-risk of losing cognition.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Penny Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
11
|
Wang A, Chen C, Mei C, Liu S, Xiang C, Fang W, Zhang F, Xu Y, Chen S, Zhang Q, Bai X, Lin A, Neculai D, Xia B, Ye C, Zou J, Liang T, Feng XH, Li X, Shen C, Xu P. Innate immune sensing of lysosomal dysfunction drives multiple lysosomal storage disorders. Nat Cell Biol 2024; 26:219-234. [PMID: 38253667 DOI: 10.1038/s41556-023-01339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Lysosomal storage disorders (LSDs), which are characterized by genetic and metabolic lysosomal dysfunctions, constitute over 60 degenerative diseases with considerable health and economic burdens. However, the mechanisms driving the progressive death of functional cells due to lysosomal defects remain incompletely understood, and broad-spectrum therapeutics against LSDs are lacking. Here, we found that various gene abnormalities that cause LSDs, including Hexb, Gla, Npc1, Ctsd and Gba, all shared mutual properties to robustly autoactivate neuron-intrinsic cGAS-STING signalling, driving neuronal death and disease progression. This signalling was triggered by excessive cytoplasmic congregation of the dsDNA and DNA sensor cGAS in neurons. Genetic ablation of cGAS or STING, digestion of neuronal cytosolic dsDNA by DNase, and repair of neuronal lysosomal dysfunction alleviated symptoms of Sandhoff disease, Fabry disease and Niemann-Pick disease, with substantially reduced neuronal loss. We therefore identify a ubiquitous mechanism mediating the pathogenesis of a variety of LSDs, unveil an inherent connection between lysosomal defects and innate immunity, and suggest a uniform strategy for curing LSDs.
Collapse
Affiliation(s)
- Ailian Wang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Chen
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Mei
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Cong Xiang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wen Fang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fei Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifan Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shasha Chen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Xia
- Department of Thoracic Cancer, Affiliated Hangzhou Cancer Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, Institutes of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinran Li
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| | - Chengyong Shen
- Department of Neurobiology of The First Affiliated Hospital, Institute of Translational Medicine, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Picker-Minh S, Luperi I, Ravindran E, Kraemer N, Zaqout S, Stoltenburg-Didinger G, Ninnemann O, Hernandez-Miranda LR, Mani S, Kaindl AM. PTRH2 is Necessary for Purkinje Cell Differentiation and Survival and its Loss Recapitulates Progressive Cerebellar Atrophy and Ataxia Seen in IMNEPD Patients. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1137-1151. [PMID: 36219306 PMCID: PMC10657312 DOI: 10.1007/s12311-022-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Hom ozygous variants in the peptidyl-tRNA hydrolase 2 gene (PTRH2) cause infantile-onset multisystem neurologic, endocrine, and pancreatic disease. The objective is to delineate the mechanisms underlying the core cerebellar phenotype in this disease. For this, we generated constitutive (Ptrh2LoxPxhCMVCre, Ptrh2-/- mice) and Purkinje cell (PC) specific (Ptrh2LoxPxPcp2Cre, Ptrh2ΔPCmice) Ptrh2 mutant mouse models and investigated the effect of the loss of Ptrh2 on cerebellar development. We show that Ptrh2-/- knockout mice had severe postnatal runting and lethality by postnatal day 14. Ptrh2ΔPC PC specific knockout mice survived until adult age; however, they showed progressive cerebellar atrophy and functional cerebellar deficits with abnormal gait and ataxia. PCs of Ptrh2ΔPC mice had reduced cell size and density, stunted dendrites, and lower levels of ribosomal protein S6, a readout of the mammalian target of rapamycin pathway. By adulthood, there was a marked loss of PCs. Thus, we identify a cell autonomous requirement for PTRH2 in PC maturation and survival. Loss of PTRH2 in PCs leads to downregulation of the mTOR pathway and PC atrophy. This suggests a molecular mechanism underlying the ataxia and cerebellar atrophy seen in patients with PTRH2 mutations leading to infantile-onset multisystem neurologic, endocrine, and pancreatic disease.
Collapse
Affiliation(s)
- Sylvie Picker-Minh
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Ilaria Luperi
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ethiraj Ravindran
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nadine Kraemer
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sami Zaqout
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Gisela Stoltenburg-Didinger
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Olaf Ninnemann
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Shyamala Mani
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
13
|
Eberwein AE, Kulkarni SS, Rushton E, Broadie K. Glycosphingolipids are linked to elevated neurotransmission and neurodegeneration in a Drosophila model of Niemann Pick type C. Dis Model Mech 2023; 16:dmm050206. [PMID: 37815467 PMCID: PMC10581387 DOI: 10.1242/dmm.050206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
The lipid storage disease Niemann Pick type C (NPC) causes neurodegeneration owing primarily to loss of NPC1. Here, we employed a Drosophila model to test links between glycosphingolipids, neurotransmission and neurodegeneration. We found that Npc1a nulls had elevated neurotransmission at the glutamatergic neuromuscular junction (NMJ), which was phenocopied in brainiac (brn) mutants, impairing mannosyl glucosylceramide (MacCer) glycosylation. Npc1a; brn double mutants had the same elevated synaptic transmission, suggesting that Npc1a and brn function within the same pathway. Glucosylceramide (GlcCer) synthase inhibition with miglustat prevented elevated neurotransmission in Npc1a and brn mutants, further suggesting epistasis. Synaptic MacCer did not accumulate in the NPC model, but GlcCer levels were increased, suggesting that GlcCer is responsible for the elevated synaptic transmission. Null Npc1a mutants had heightened neurodegeneration, but no significant motor neuron or glial cell death, indicating that dying cells are interneurons and that elevated neurotransmission precedes neurodegeneration. Glycosphingolipid synthesis mutants also had greatly heightened neurodegeneration, with similar neurodegeneration in Npc1a; brn double mutants, again suggesting that Npc1a and brn function in the same pathway. These findings indicate causal links between glycosphingolipid-dependent neurotransmission and neurodegeneration in this NPC disease model.
Collapse
Affiliation(s)
- Anna E. Eberwein
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Swarat S. Kulkarni
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| |
Collapse
|
14
|
Rasmussen CLM, Thomsen LB, Heegaard CW, Moos T, Burkhart A. The Npc2 Gt(LST105)BygNya mouse signifies pathological changes comparable to human Niemann-Pick type C2 disease. Mol Cell Neurosci 2023; 126:103880. [PMID: 37454976 DOI: 10.1016/j.mcn.2023.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION Niemann-Pick type C2 disease (NP-C2) is a fatal neurovisceral disorder caused by defects in the lysosomal cholesterol transporter protein NPC2. Consequently, cholesterol and other lipids accumulate within the lysosomes, causing a heterogeneous spectrum of clinical manifestations. Murine models are essential for increasing the understanding of the complex pathology of NP-C2. This study, therefore, aims to describe the neurovisceral pathology in the NPC2-deficient mouse model to evaluate its correlation to human NP-C2. METHODS Npc2-/- mice holding the LST105 mutation were used in the present study (Npc2Gt(LST105)BygNya). Body and organ weight and histopathological evaluations were carried out in six and 12-week-old Npc2-/- mice, with a special emphasis on neuropathology. The Purkinje cell (PC) marker calbindin, the astrocytic marker GFAP, and the microglia marker IBA1 were included to assess PC degeneration and neuroinflammation, respectively. In addition, the pathology of the liver, lungs, and spleen was assessed using hematoxylin and eosin staining. RESULTS Six weeks old pre-symptomatic Npc2-/- mice showed splenomegaly and obvious neuropathological changes, especially in the cerebellum, where initial PC loss and neuroinflammation were evident. The Npc2-/- mice developed neurological symptoms at eight weeks of age, severely progressing until the end-stage of the disease at 12 weeks. At the end-stage of the disease, Npc2-/- mice were characterized by growth retardation, tremor, cerebellar ataxia, splenomegaly, foam cell accumulation in the lungs, liver, and spleen, brain atrophy, pronounced PC degeneration, and severe neuroinflammation. CONCLUSION The Npc2Gt(LST105)BygNya mouse model resembles the pathology seen in NP-C2 patients and denotes a valuable model for increasing the understanding of the complex disease manifestation and is relevant for testing the efficacies of new treatment strategies.
Collapse
Affiliation(s)
| | - Louiza Bohn Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Denmark
| | | | - Torben Moos
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Denmark
| | - Annette Burkhart
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
15
|
Yasuda T, Uchiyama T, Watanabe N, Ito N, Nakabayashi K, Mochizuki H, Onodera M. Peripheral immune system modulates Purkinje cell degeneration in Niemann-Pick disease type C1. Life Sci Alliance 2023; 6:e202201881. [PMID: 37369603 PMCID: PMC10300197 DOI: 10.26508/lsa.202201881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a fatal lysosomal storage disorder characterized by progressive neuronal degeneration. Its key pathogenic events remain largely unknown. We have, herein, found that neonatal BM-derived cell transplantation can ameliorate Purkinje cell degeneration in NPC1 mice. We subsequently addressed the impact of the peripheral immune system on the neuropathogenesis observed in NPC1 mice. The depletion of mature lymphocytes promoted NPC1 phenotypes, thereby suggesting a neuroprotective effect of lymphocytes. Moreover, the peripheral infusion of CD4-positive cells (specifically, of regulatory T cells) from normal healthy donor ameliorated the cerebellar ataxic phenotype and enhanced the survival of Purkinje cells. Conversely, the depletion of regulatory T cells enhanced the onset of the neurological phenotype. On the other hand, circulating inflammatory monocytes were found to be involved in the progression of Purkinje cell degeneration, whereas the depletion of resident microglia had little effect. Our findings reveal a novel role of the adaptive and the innate immune systems in NPC1 neuropathology.
Collapse
Affiliation(s)
- Toru Yasuda
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Noriko Ito
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
16
|
Las Heras M, Szenfeld B, Ballout RA, Buratti E, Zanlungo S, Dardis A, Klein AD. Understanding the phenotypic variability in Niemann-Pick disease type C (NPC): a need for precision medicine. NPJ Genom Med 2023; 8:21. [PMID: 37567876 PMCID: PMC10421955 DOI: 10.1038/s41525-023-00365-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease (LSD) characterized by the buildup of endo-lysosomal cholesterol and glycosphingolipids due to loss of function mutations in the NPC1 and NPC2 genes. NPC patients can present with a broad phenotypic spectrum, with differences at the age of onset, rate of progression, severity, organs involved, effects on the central nervous system, and even response to pharmacological treatments. This article reviews the phenotypic variation of NPC and discusses its possible causes, such as the remaining function of the defective protein, modifier genes, sex, environmental cues, and splicing factors, among others. We propose that these factors should be considered when designing or repurposing treatments for this disease. Despite its seeming complexity, this proposition is not far-fetched, considering the expanding interest in precision medicine and easier access to multi-omics technologies.
Collapse
Affiliation(s)
- Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Benjamín Szenfeld
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Rami A Ballout
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center and Children's Health, Dallas, TX, 75235, USA
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330033, Chile
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100, Udine, Italy
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile.
| |
Collapse
|
17
|
Kunkel TJ, Townsend A, Sullivan KA, Merlet J, Schuchman EH, Jacobson DA, Lieberman AP. The cholesterol transporter NPC1 is essential for epigenetic regulation and maturation of oligodendrocyte lineage cells. Nat Commun 2023; 14:3964. [PMID: 37407594 DOI: 10.1038/s41467-023-39733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
The intracellular cholesterol transporter NPC1 functions in late endosomes and lysosomes to efflux unesterified cholesterol, and its deficiency causes Niemann-Pick disease Type C, an autosomal recessive lysosomal disorder characterized by progressive neurodegeneration and early death. Here, we use single-nucleus RNA-seq on the forebrain of Npc1-/- mice at P16 to identify cell types and pathways affected early in pathogenesis. Our analysis uncovers significant transcriptional changes in the oligodendrocyte lineage during developmental myelination, accompanied by diminished maturation of myelinating oligodendrocytes. We identify upregulation of genes associated with neurogenesis and synapse formation in Npc1-/- oligodendrocyte lineage cells, reflecting diminished gene silencing by H3K27me3. Npc1-/- oligodendrocyte progenitor cells reproduce impaired maturation in vitro, and this phenotype is rescued by treatment with GSK-J4, a small molecule inhibitor of H3K27 demethylases. Moreover, mobilizing stored cholesterol in Npc1-/- mice by a single administration of 2-hydroxypropyl-β-cyclodextrin at P7 rescues myelination, epigenetic marks, and oligodendrocyte gene expression. Our findings highlight an important role for NPC1 in oligodendrocyte lineage maturation and epigenetic regulation, and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alice Townsend
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Kyle A Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jean Merlet
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel A Jacobson
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Manke MC, Roslan A, Walker B, Münzer P, Kollotzek F, Peng B, Mencl S, Coman C, Szepanowski RD, Schulze H, Lieberman AP, Lang F, Gawaz M, Kleinschnitz C, Lukowski R, Ahrends R, Bobe R, Borst O. Niemann-Pick C1 protein regulates platelet membrane-associated calcium ion signaling in thrombo-occlusive diseases in mice. J Thromb Haemost 2023; 21:1957-1966. [PMID: 37054918 DOI: 10.1016/j.jtha.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Pathophysiologic platelet activation leads to thrombo-occlusive diseases such as myocardial infarction or ischemic stroke. Niemann-Pick C1 protein (NPC1) is involved in the regulation of lysosomal lipid trafficking and calcium ion (Ca2+) signaling, and its genetic mutation causes a lysosomal storage disorder. Lipids and Ca2+ are key players in the complex orchestration of platelet activation. OBJECTIVES The present study aimed to determine the impact of NPC1 on Ca2+ mobilization during platelet activation in thrombo-occlusive diseases. METHODS Using MK/platelet-specific knockout mice of Npc1 (Npc1Pf4∆/Pf4∆), ex vivo and in vitro approaches as well as in vivo models of thrombosis, we investigated the effect of Npc1 on platelet function and thrombus formation. RESULTS We showed that Npc1Pf4∆/Pf4∆ platelets display increased sphingosine levels and a locally impaired membrane-associated and SERCA3-dependent Ca2+ mobilisation compared to platelets from wildtype littermates (Npc1lox/lox). Further, we observed decreased platelet. CONCLUSION Our findings highlight that NPC1 regulates membrane-associated and SERCA3-dependent Ca2+ mobilization during platelet activation and that MK/platelet-specific ablation of Npc1 protects against experimental models of arterial thrombosis and myocardial or cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Mailin-Christin Manke
- DFG Heisenberg Group Thrombocardiology; Department of Cardiology, Angiology and Cardiovascular Medicine, University of Tübingen, Germany
| | - Anna Roslan
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Germany
| | | | - Patrick Münzer
- DFG Heisenberg Group Thrombocardiology; Department of Cardiology, Angiology and Cardiovascular Medicine, University of Tübingen, Germany
| | - Ferdinand Kollotzek
- DFG Heisenberg Group Thrombocardiology; Department of Cardiology, Angiology and Cardiovascular Medicine, University of Tübingen, Germany
| | - Bing Peng
- Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund, Germany; Division of Rheumatology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Stine Mencl
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cristina Coman
- Department of Analytical Chemistry, University of Vienna, Austria
| | - Rebecca D Szepanowski
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| | | | - Florian Lang
- Department of Physiology, University of Tübingen, Germany
| | | | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund, Germany; Department of Analytical Chemistry, University of Vienna, Austria
| | - Régis Bobe
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, France
| | - Oliver Borst
- DFG Heisenberg Group Thrombocardiology; Department of Cardiology, Angiology and Cardiovascular Medicine, University of Tübingen, Germany.
| |
Collapse
|
19
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
20
|
Fiorenza MT, La Rosa P, Canterini S, Erickson RP. The Cerebellum in Niemann-Pick C1 Disease: Mouse Versus Man. CEREBELLUM (LONDON, ENGLAND) 2023; 22:102-119. [PMID: 35040097 PMCID: PMC7617266 DOI: 10.1007/s12311-021-01347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/01/2023]
Abstract
Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| |
Collapse
|
21
|
Schultz ML, Schache KJ, Azaria RD, Kuiper EQ, Erwood S, Ivakine EA, Farhat NY, Porter FD, Pathmasiri KC, Cologna SM, Uhler MD, Lieberman AP. Species-specific differences in NPC1 protein trafficking govern therapeutic response in Niemann-Pick type C disease. JCI Insight 2022; 7:160308. [PMID: 36301667 PMCID: PMC9746915 DOI: 10.1172/jci.insight.160308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/26/2022] [Indexed: 01/12/2023] Open
Abstract
The folding and trafficking of transmembrane glycoproteins are essential for cellular homeostasis and are compromised in many diseases. In Niemann-Pick type C disease, a lysosomal disorder characterized by impaired intracellular cholesterol trafficking, the transmembrane glycoprotein NPC1 misfolds due to disease-causing missense mutations. While mutant NPC1 has emerged as a robust target for proteostasis modulators, drug development efforts have been unsuccessful in mouse models. Here, we demonstrated unexpected differences in trafficking through the medial Golgi between mouse and human I1061T-NPC1, a common disease-causing mutant. We established that these distinctions are governed by differences in the NPC1 protein sequence rather than by variations in the endoplasmic reticulum-folding environment. Moreover, we demonstrated direct effects of mutant protein trafficking on the response to small molecules that modulate the endoplasmic reticulum-folding environment by affecting Ca++ concentration. Finally, we developed a panel of isogenic human NPC1 iNeurons expressing WT, I1061T-, and R934L-NPC1 and demonstrated their utility in testing these candidate therapeutics. Our findings identify important rules governing mutant NPC1's response to proteostatic modulators and highlight the importance of species- and mutation-specific responses for therapy development.
Collapse
Affiliation(s)
- Mark L. Schultz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kylie J. Schache
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ruth D. Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Esmée Q. Kuiper
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven Erwood
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Molecular Genetics and
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Y. Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Forbes D. Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | - Michael D. Uhler
- Michigan Neuroscience Institute and,Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew P. Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Del Grosso A, Parlanti G, Mezzena R, Cecchini M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114464. [PMID: 35878795 DOI: 10.1016/j.addr.2022.114464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Lysosomal storage disorders (LSDs) are a vast group of more than 50 clinically identified metabolic diseases. They are singly rare, but they affect collectively 1 on 5,000 live births. They result in most of the cases from an enzymatic defect within lysosomes, which causes the subsequent augmentation of unwanted substrates. This accumulation process leads to plenty of clinical signs, determined by the specific substrate and accumulation area. The majority of LSDs present a broad organ and tissue engagement. Brain, connective tissues, viscera and bones are usually afflicted. Among them, brain disease is markedly frequent (two-thirds of LSDs). The most clinically employed approach to treat LSDs is enzyme replacement therapy (ERT), which is practiced by administering systemically the missed or defective enzyme. It represents a healthful strategy for 11 LSDs at the moment, but it solves the pathology only in the case of Gaucher disease. This approach, in fact, is not efficacious in the case of LSDs that have an effect on the central nervous system (CNS) due to the existence of the blood-brain barrier (BBB). Additionally, ERT suffers from several other weak points, such as low penetration of the exogenously administered enzyme to poorly vascularized areas, the development of immunogenicity and infusion-associated reactions (IARs), and, last but not least, the very high cost and lifelong needed. To ameliorate these weaknesses lot of efforts have been recently spent around the development of innovative nanotechnology-driven ERT strategies. They may boost the power of ERT and minimize adverse reactions by loading enzymes into biodegradable nanomaterials. Enzyme encapsulation into biocompatible liposomes, micelles, and polymeric nanoparticles, for example, can protect enzymatic activity, eliminating immunologic reactions and premature enzyme degradation. It can also permit a controlled release of the payload, ameliorating pharmacokinetics and pharmacodynamics of the drug. Additionally, the potential to functionalize the surface of the nanocarrier with targeting agents (antibodies or peptides), could promote the passage through biological barriers. In this review we examined the clinically applied ERTs, highlighting limitations that do not allow to completely cure the specific LSD. Later, we critically consider the nanotechnology-based ERT strategies that have beenin-vitroand/orin-vivotested to improve ERT efficacy.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberta Mezzena
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
23
|
Bushart DD, Shakkottai VG. Vulnerability of Human Cerebellar Neurons to Degeneration in Ataxia-Causing Channelopathies. Front Syst Neurosci 2022; 16:908569. [PMID: 35757096 PMCID: PMC9219590 DOI: 10.3389/fnsys.2022.908569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in ion channel genes underlie a number of human neurological diseases. Historically, human mutations in ion channel genes, the so-called channelopathies, have been identified to cause episodic disorders. In the last decade, however, mutations in ion channel genes have been demonstrated to result in progressive neurodegenerative and neurodevelopmental disorders in humans, particularly with ion channels that are enriched in the cerebellum. This was unexpected given prior rodent ion channel knock-out models that almost never display neurodegeneration. Human ataxia-causing channelopathies that result in even haploinsufficiency can result in cerebellar atrophy and cerebellar Purkinje neuron loss. Rodent neurons with ion channel loss-of-function appear to, therefore, be significantly more resistant to neurodegeneration compared to human neurons. Fundamental differences in susceptibility of human and rodent cerebellar neurons in ataxia-causing channelopathies must therefore be present. In this review, we explore the properties of human neurons that may contribute to their vulnerability to cerebellar degeneration secondary to ion channel loss-of-function mutations. We present a model taking into account the known allometric scaling of neuronal ion channel density in humans and other mammals that may explain the preferential vulnerability of human cerebellar neurons to degeneration in ataxia-causing channelopathies. We also speculate on the vulnerability of cerebellar neurons to degeneration in mouse models of spinocerebellar ataxia (SCA) where ion channel transcript dysregulation has recently been implicated in disease pathogenesis.
Collapse
Affiliation(s)
- David D. Bushart
- Ohio State University College of Medicine, Columbus, OH, United States
| | - Vikram G. Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States,*Correspondence: Vikram G. Shakkottai,
| |
Collapse
|
24
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
25
|
Groenen AG, La Rose AM, Li M, Bazioti V, Svendsen AF, Kloosterhuis NJ, Ausema A, Pranger A, Heiner-Fokkema MR, Niezen-Koning KE, Houben T, Shiri-Sverdlov R, Westerterp M. Elevated granulocyte-colony stimulating factor and hematopoietic stem cell mobilization in Niemann-Pick type C1 disease. J Lipid Res 2022; 63:100167. [PMID: 35007562 PMCID: PMC8953690 DOI: 10.1016/j.jlr.2021.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.
Collapse
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk M La Rose
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mengying Li
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur F Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertina Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alle Pranger
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
26
|
Zhang H, Hong Y, Yang W, Wang R, Yao T, Wang J, Liu K, Yuan H, Xu C, Zhou Y, Li G, Zhang L, Luo H, Zhang X, Du D, Sun H, Zheng Q, Zhang YW, Zhao Y, Zhou Y, Xu H, Wang X. SNX14 deficiency-induced defective axonal mitochondrial transport in Purkinje cells underlies cerebellar ataxia and can be reversed by valproate. Natl Sci Rev 2021; 8:nwab024. [PMID: 34691693 PMCID: PMC8310771 DOI: 10.1093/nsr/nwab024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Loss-of-function mutations in sorting nexin 14 (SNX14) cause autosomal recessive spinocerebellar ataxia 20, which is a form of early-onset cerebellar ataxia that lacks molecular mechanisms and mouse models. We generated Snx14-deficient mouse models and observed severe motor deficits and cell-autonomous Purkinje cell degeneration. SNX14 deficiency disrupted microtubule organization and mitochondrial transport in axons by destabilizing the microtubule-severing enzyme spastin, which is implicated in dominant hereditary spastic paraplegia with cerebellar ataxia, and compromised axonal integrity and mitochondrial function. Axonal transport disruption and mitochondrial dysfunction further led to degeneration of high-energy-demanding Purkinje cells, which resulted in the pathogenesis of cerebellar ataxia. The antiepileptic drug valproate ameliorated motor deficits and cerebellar degeneration in Snx14-deficient mice via the restoration of mitochondrial transport and function in Purkinje cells. Our study revealed an unprecedented role for SNX14-dependent axonal transport in cerebellar ataxia, demonstrated the convergence of SNX14 and spastin in mitochondrial dysfunction, and suggested valproate as a potential therapeutic agent.
Collapse
Affiliation(s)
- Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weijie Yang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ruimin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ting Yao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jian Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ke Liu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Huilong Yuan
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chaoqun Xu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuanyuan Zhou
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guanxian Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lishan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Dan Du
- Cancer Research Center, Department of Stomatology, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yun-Wu Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yingjun Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
27
|
Davidson CD, Gibson AL, Gu T, Baxter LL, Deverman BE, Beadle K, Incao AA, Rodriguez-Gil JL, Fujiwara H, Jiang X, Chandler RJ, Ory DS, Gradinaru V, Venditti CP, Pavan WJ. Improved systemic AAV gene therapy with a neurotrophic capsid in Niemann-Pick disease type C1 mice. Life Sci Alliance 2021; 4:e202101040. [PMID: 34407999 PMCID: PMC8380657 DOI: 10.26508/lsa.202101040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Niemann-Pick C1 disease (NPC1) is a rare, fatal neurodegenerative disease caused by mutations in NPC1, which encodes the lysosomal cholesterol transport protein NPC1. Disease pathology involves lysosomal accumulation of cholesterol and lipids, leading to neurological and visceral complications. Targeting the central nervous system (CNS) from systemic circulation complicates treatment of neurological diseases with gene transfer techniques. Selected and engineered capsids, for example, adeno-associated virus (AAV)-PHP.B facilitate peripheral-to-CNS transfer and hence greater CNS transduction than parental predecessors. We report that systemic delivery to Npc1 m1N/m1N mice using an AAV-PHP.B vector ubiquitously expressing NPC1 led to greater disease amelioration than an otherwise identical AAV9 vector. In addition, viral copy number and biodistribution of GFP-expressing reporters showed that AAV-PHP.B achieved more efficient, albeit variable, CNS transduction than AAV9 in Npc1 m1N/m1N mice. This variability was associated with segregation of two alleles of the putative AAV-PHP.B receptor Ly6a in Npc1 m1N/m1N mice. Our data suggest that robust improvements in NPC1 disease phenotypes occur even with modest CNS transduction and that improved neurotrophic capsids have the potential for superior NPC1 AAV gene therapy vectors.
Collapse
Affiliation(s)
- Cristin D Davidson
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alana L Gibson
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tansy Gu
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Keith Beadle
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Arturo A Incao
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jorge L Rodriguez-Gil
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Han S, Ren M, Kuang T, Pang M, Guan D, Liu Y, Wang Y, Zhang W, Ye Z. Cerebellar Long Noncoding RNA Expression Profile in a Niemann-Pick C Disease Mouse Model. Mol Neurobiol 2021; 58:5826-5836. [PMID: 34410604 PMCID: PMC8599378 DOI: 10.1007/s12035-021-02526-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Niemann-Pick type C (NP-C) disease is a neurodegenerative lysosomal storage disorder primarily caused by mutations in NPC1. However, its pathogenesis remains poorly understood. While mounting evidence has demonstrated the involvement of long noncoding RNAs (lncRNAs) in the pathogenesis of neurodegenerative disorders, the lncRNA expression profile in NP-C has not been determined. Here, we used RNA-seq analysis to determine lncRNA and mRNA expression profiles of the cerebella of NPC1−/− mice. We found that 272 lncRNAs and 856 mRNAs were significantly dysregulated in NPC1−/− mice relative to controls (≥ 2.0-fold, p < 0.05). Quantitative real-time PCR (qRT‐PCR) was utilized to validate the expression of selected lncRNAs and mRNAs. Next, a lncRNA-mRNA coexpression network was employed to examine the potential roles of the differentially expressed (DE) lncRNAs. Functional analysis revealed that mRNAs coexpressed with lncRNAs are mainly linked to immune system–related processes and neuroinflammation. Moreover, knockdown of the lncRNA H19 ameliorated changes in ROS levels and cell viability and suppressed the lipopolysaccharide (LPS)–induced inflammatory response in vitro. Our findings indicate that dysregulated lncRNA expression patterns are associated with NP-C pathogenesis and offer insight into the development of novel therapeutics based on lncRNAs.
Collapse
Affiliation(s)
- Shiqian Han
- Department of Tropical Medicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Meng Ren
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, 400044, China
| | - Tianyin Kuang
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, 400044, China
| | - Mao Pang
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, 400044, China
| | - Dongwei Guan
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, 400044, China
| | - Yesong Liu
- Cornell University, Ithaca, NY, 14853, USA
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wengeng Zhang
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhijia Ye
- Department of Tropical Medicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China. .,Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, 400044, China.
| |
Collapse
|
29
|
Chu TT, Tu X, Yang K, Wu J, Repa JJ, Yan N. Tonic prime-boost of STING signalling mediates Niemann-Pick disease type C. Nature 2021; 596:570-575. [PMID: 34290407 PMCID: PMC8859990 DOI: 10.1038/s41586-021-03762-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. Here, through a spatiotemporally resolved proximity labelling screen followed by quantitative proteomics, we identify the lysosomal membrane protein Niemann-Pick type C1 (NPC1) as a cofactor in the trafficking of STING. NPC1 interacts with STING and recruits it to the lysosome for degradation in both human and mouse cells. Notably, we find that knockout of Npc1 'primes' STING signalling by physically linking or 'tethering' STING to SREBP2 trafficking. Loss of NPC1 protein also 'boosts' STING signalling by blocking lysosomal degradation. Both priming and boosting of STING signalling are required for severe neurological disease in the Npc1-/- mouse. Genetic deletion of Sting1 (the gene that encodes STING) or Irf3, but not that of Cgas, significantly reduced the activation of microglia and relieved the loss of Purkinje neurons in the cerebellum of Npc1-/- mice, leading to improved motor function. Our study identifies a cGAS- and cGAMP-independent mode of STING activation that affects neuropathology and provides a therapeutic target for the treatment of Niemann-Pick disease type C.
Collapse
Affiliation(s)
- Ting-Ting Chu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xintao Tu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jianjun Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joyce J Repa
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Cariati I, Masuelli L, Bei R, Tancredi V, Frank C, D’Arcangelo G. Neurodegeneration in Niemann-Pick Type C Disease: An Updated Review on Pharmacological and Non-Pharmacological Approaches to Counteract Brain and Cognitive Impairment. Int J Mol Sci 2021; 22:ijms22126600. [PMID: 34202978 PMCID: PMC8234817 DOI: 10.3390/ijms22126600] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Niemann–Pick type C (NPC) disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol in the late endo-lysosomal system of cells. Progressive neurological deterioration and the onset of symptoms, such as ataxia, seizures, cognitive decline, and severe dementia, are pathognomonic features of the disease. In addition, different pathological similarities, including degeneration of hippocampal and cortical neurons, hyperphosphorylated tau, and neurofibrillary tangle formation, have been identified between NPC disease and other neurodegenerative pathologies. However, the underlying pathophysiological mechanisms are not yet well understood, and even a real cure to counteract neurodegeneration has not been identified. Therefore, the combination of current pharmacological therapies, represented by miglustat and cyclodextrin, and non-pharmacological approaches, such as physical exercise and appropriate diet, could represent a strategy to improve the quality of life of NPC patients. Based on this evidence, in our review we focused on the neurodegenerative aspects of NPC disease, summarizing the current knowledge on the molecular and biochemical mechanisms responsible for cognitive impairment, and suggesting physical exercise and nutritional treatments as additional non-pharmacologic approaches to reduce the progression and neurodegenerative course of NPC disease.
Collapse
Affiliation(s)
- Ida Cariati
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
31
|
Liu EA, Mori E, Hamasaki F, Lieberman AP. TDP-43 proteinopathy occurs independently of autophagic substrate accumulation and underlies nuclear defects in Niemann-Pick C disease. Neuropathol Appl Neurobiol 2021; 47:1019-1032. [PMID: 34048071 DOI: 10.1111/nan.12738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
AIMS Neuronal cytoplasmic inclusions of TAR-DNA binding protein of 43 kDa (TDP-43) are a pathological hallmark of diverse neurodegenerative disorders, yet the processes that mediate their formation and their functional significance remain incompletely understood. Both dysfunction in autophagy and neuroinflammation have been linked to TDP-43 mislocalisation. Here, we investigate TDP-43 proteinopathy in Niemann-Pick type C disease (NPC), an autosomal recessive lysosomal storage disease (LSD) distinguished by the accumulation of unesterified cholesterol within late endosomes and lysosomes. NPC is characterised by neurodegeneration, neuroinflammation and multifocal disruption of the autophagy pathway. METHODS We utilised immunohistochemistry, confocal microscopy, electron microscopy and biochemical and gene expression studies to characterise TDP-43 pathology and autophagic substrate accumulation in Npc1-deficient mice. RESULTS In the NPC brain, cytoplasmic TDP-43 mislocalisation was independent of autophagic substrate accumulation. These pathologies occurred in distinct neuronal subtypes, as brainstem cholinergic neurons were more susceptible to TDP-43 mislocalisation, whereas glutamatergic neurons exhibited hallmarks of autophagic dysfunction. Furthermore, TDP-43 mislocalisation did not co-localise with markers of stress granules or progress to ubiquitinated aggregates over months in vivo, indicating a stable, early stage in the aggregation process. Neither microgliosis nor neuroinflammation were sufficient to drive TDP-43 proteinopathy in the NPC brain. Notably, cytoplasmic TDP-43 co-localised with the nuclear import factor importin α, and TDP-43 mislocalised neurons demonstrated nuclear membrane abnormalities and disruption of nucleocytoplasmic transport. CONCLUSION Our findings highlight the relationship between LSDs and TDP-43 proteinopathy, define its functional importance in NPC by triggering nuclear dysfunction, and expand the spectrum of TDP-43 pathology in the diseased brain.
Collapse
Affiliation(s)
- Elaine A Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Erika Mori
- Yamaguchi University School of Medicine, Ube, Japan
| | | | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Wiweger M, Majewski L, Adamek-Urbanska D, Wasilewska I, Kuznicki J. npc2-Deficient Zebrafish Reproduce Neurological and Inflammatory Symptoms of Niemann-Pick Type C Disease. Front Cell Neurosci 2021; 15:647860. [PMID: 33986646 PMCID: PMC8111220 DOI: 10.3389/fncel.2021.647860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disease that is caused by a mutation of the NPC1 or NPC2 gene, in which un-esterified cholesterol and sphingolipids accumulate mainly in the liver, spleen, and brain. Abnormal lysosomal storage leads to cell damage, neurological problems, and premature death. The time of onset and severity of symptoms of NPC disease are highly variable. The molecular mechanisms that are responsible for NPC disease pathology are far from being understood. The present study generated and characterized a zebrafish mutant that lacks Npc2 protein that may be useful for studies at the organismal, cellular, and molecular levels and both small-scale and high-throughput screens. Using CRISPR/Cas9 technology, we knocked out the zebrafish homolog of NPC2. Five-day-old npc2 mutants were morphologically indistinguishable from wildtype larvae. We found that live npc2-/- larvae exhibited stronger Nile blue staining. The npc2-/- larvae exhibited low mobility and a high anxiety-related response. These behavioral changes correlated with downregulation of the mcu (mitochondrial calcium uniporter) gene, ppp3ca (calcineurin) gene, and genes that are involved in myelination (mbp and mpz). Histological analysis of adult npc2-/- zebrafish revealed that pathological changes in the nervous system, kidney, liver, and pancreas correlated with inflammatory responses (i.e., the upregulation of il1, nfκβ, and mpeg; i.e., hallmarks of NPC disease). These findings suggest that the npc2 mutant zebrafish may be a model of NPC disease.
Collapse
Affiliation(s)
- Malgorzata Wiweger
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Lukasz Majewski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Dobrochna Adamek-Urbanska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iga Wasilewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
33
|
Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in microglia. Nat Commun 2021; 12:1158. [PMID: 33627648 PMCID: PMC7904859 DOI: 10.1038/s41467-021-21428-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Niemann-Pick type C disease is a rare neurodegenerative disorder mainly caused by mutations in NPC1, resulting in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is a prominent pathological feature, direct consequences of NPC1 loss on microglial function remain not fully characterized. We discovered pathological proteomic signatures and phenotypes in NPC1-deficient murine models and demonstrate a cell autonomous function of NPC1 in microglia. Loss of NPC1 triggers enhanced phagocytic uptake and impaired myelin turnover in microglia that precede neuronal death. Npc1−/− microglia feature a striking accumulation of multivesicular bodies and impaired trafficking of lipids to lysosomes while lysosomal degradation function remains preserved. Molecular and functional defects were also detected in blood-derived macrophages of NPC patients that provide a potential tool for monitoring disease. Our study underscores an essential cell autonomous role for NPC1 in immune cells and implies microglial therapeutic potential. Niemann-Pick type C disease is a rare childhood neurodegenerative disorder predominantly caused by mutations in NPC1, resulting in abnormal late endosomal and lysosomal defects. Here the authors show that NPC1 disruption largely impairs microglial function.
Collapse
|
34
|
Intracerebroventricular Treatment with 2-Hydroxypropyl-β-Cyclodextrin Decreased Cerebellar and Hepatic Glycoprotein Nonmetastatic Melanoma Protein B (GPNMB) Expression in Niemann-Pick Disease Type C Model Mice. Int J Mol Sci 2021; 22:ijms22010452. [PMID: 33466390 PMCID: PMC7795151 DOI: 10.3390/ijms22010452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Niemann–Pick disease type C (NPC) is a recessive hereditary disease caused by mutation of the NPC1 or NPC2 gene. It is characterized by abnormality of cellular cholesterol trafficking with severe neuronal and hepatic injury. In this study, we investigated the potential of glycoprotein nonmetastatic melanoma protein B (GPNMB) to act as a biomarker reflecting the therapeutic effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in an NPC mouse model. We measured serum, brain, and liver expression levels of GPNMB, and evaluated their therapeutic effects on NPC manifestations in the brain and liver after the intracerebroventricular administration of HP-β-CD in Npc1 gene-deficient (Npc1−/−) mice. Intracerebroventricular HP-β-CD inhibited cerebellar Purkinje cell damage in Npc1−/− mice and significantly reduced serum and cerebellar GPNMB levels. Interestingly, we also observed that the intracerebral administration significantly reduced hepatic GPNMB expression and elevated serum ALT in Npc1−/− mice. Repeated doses of intracerebroventricular HP-β-CD (30 mg/kg, started at 4 weeks of age and repeated every 2 weeks) drastically extended the lifespan of Npc1−/− mice compared with saline treatment. In summary, our results suggest that GPNMB level in serum is a potential biomarker for evaluating the attenuation of NPC pathophysiology by intracerebroventricular HP-β-CD treatment.
Collapse
|
35
|
Meneses-Salas E, Garcia-Forn M, Castany-Pladevall C, Lu A, Fajardo A, Jose J, Wahba M, Bosch M, Pol A, Tebar F, Klein AD, Zanlungo S, Pérez-Navarro E, Grewal T, Enrich C, Rentero C. Lack of Annexin A6 Exacerbates Liver Dysfunction and Reduces Lifespan of Niemann-Pick Type C Protein-Deficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:475-486. [PMID: 33345999 DOI: 10.1016/j.ajpath.2020.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by cholesterol accumulation caused by loss-of-function mutations in the Npc1 gene. NPC disease primarily affects the brain, causing neuronal damage and affecting motor coordination. In addition, considerable liver malfunction in NPC disease is common. Recently, we found that the depletion of annexin A6 (ANXA6), which is most abundant in the liver and involved in cholesterol transport, ameliorated cholesterol accumulation in Npc1 mutant cells. To evaluate the potential contribution of ANXA6 in the progression of NPC disease, double-knockout mice (Npc1-/-/Anxa6-/-) were generated and examined for lifespan, neurologic and hepatic functions, as well as liver histology and ultrastructure. Interestingly, lack of ANXA6 in NPC1-deficient animals did not prevent the cerebellar degeneration phenotype, but further deteriorated their compromised hepatic functions and reduced their lifespan. Moreover, livers of Npc1-/-/Anxa6-/- mice contained a significantly elevated number of foam cells congesting the sinusoidal space, a feature commonly associated with inflammation. We hypothesize that ANXA6 deficiency in Npc1-/- mice not only does not reverse neurologic and motor dysfunction, but further worsens overall liver function, exacerbating hepatic failure in NPC disease.
Collapse
Affiliation(s)
- Elsa Meneses-Salas
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Garcia-Forn
- Institut de Neurociències, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carla Castany-Pladevall
- Institut de Neurociències, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Lu
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Alba Fajardo
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Marta Bosch
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Pol
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Universidad del Desarrollo, Clínica Alemana de Santiago, Chile
| | - Francesc Tebar
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Andrés D Klein
- Centro de Genética y Genómica, Universidad del Desarrollo, Clínica Alemana de Santiago, Chile
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esther Pérez-Navarro
- Institut de Neurociències, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Carlos Enrich
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Carles Rentero
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
36
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
37
|
Liu EA, Schultz ML, Mochida C, Chung C, Paulson HL, Lieberman AP. Fbxo2 mediates clearance of damaged lysosomes and modifies neurodegeneration in the Niemann-Pick C brain. JCI Insight 2020; 5:136676. [PMID: 32931479 PMCID: PMC7605537 DOI: 10.1172/jci.insight.136676] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
A critical response to lysosomal membrane permeabilization (LMP) is the clearance of damaged lysosomes through a selective form of macroautophagy known as lysophagy. Although regulators of this process are emerging, whether organ- and cell-specific components contribute to the control of lysophagy remains incompletely understood. Here, we examined LMP and lysophagy in Niemann-Pick type C (NPC) disease, an autosomal recessive disorder characterized by the accumulation of unesterified cholesterol within late endosomes and lysosomes, leading to neurodegeneration and early death. We demonstrated that NPC human fibroblasts show enhanced sensitivity to lysosomal damage as a consequence of lipid storage. Moreover, we described a role for the glycan-binding F-box protein 2 (Fbxo2) in CNS lysophagy. Fbxo2 functions as a component of the S phase kinase-associated protein 1–cullin 1–F-box protein (SKP1-CUL1-SCF) ubiquitin ligase complex. Loss of Fbxo2 in mouse primary cortical cultures delayed clearance of damaged lysosomes and decreased viability after lysosomal damage. Moreover, Fbxo2 deficiency in a mouse model of NPC exacerbated deficits in motor function, enhanced neurodegeneration, and reduced survival. Collectively, our data identified a role for Fbxo2 in CNS lysophagy and establish its functional importance in NPC. Glycan binding protein Fbxo2 regulates lysophagy in the brain, and its deficiency exacerbates neuronal deficits in a mouse model of Niemann-Pick type C disease.
Collapse
Affiliation(s)
- Elaine A Liu
- Department of Pathology.,Cellular and Molecular Biology Graduate Program, and.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Chisaki Mochida
- Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | | | - Henry L Paulson
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
38
|
Single Cell Transcriptome Analysis of Niemann-Pick Disease, Type C1 Cerebella. Int J Mol Sci 2020; 21:ijms21155368. [PMID: 32731618 PMCID: PMC7432835 DOI: 10.3390/ijms21155368] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by endolysosomal storage of unesterified cholesterol and decreased cellular cholesterol bioavailability. A cardinal symptom of NPC1 is cerebellar ataxia due to Purkinje neuron loss. To gain an understanding of the cerebellar neuropathology we obtained single cell transcriptome data from control (Npc1+/+) and both three-week-old presymptomatic and seven-week-old symptomatic mutant (Npc1-/-) mice. In seven-week-old Npc1-/- mice, differential expression data was obtained for neuronal, glial, vascular, and myeloid cells. As anticipated, we observed microglial activation and increased expression of innate immunity genes. We also observed increased expression of innate immunity genes by other cerebellar cell types, including Purkinje neurons. Whereas neuroinflammation mediated by microglia may have both neuroprotective and neurotoxic components, the contribution of increased expression of these genes by non-immune cells to NPC1 pathology is not known. It is possible that dysregulated expression of innate immunity genes by non-immune cells is neurotoxic. We did not anticipate a general lack of transcriptomic changes in cells other than microglia from presymptomatic three-week-old Npc1-/- mice. This observation suggests that microglia activation precedes neuronal dysfunction. The data presented in this paper will be useful for generating testable hypotheses related to disease progression and Purkinje neurons loss as well as providing insight into potential novel therapeutic interventions.
Collapse
|
39
|
Subramanian K, Hutt DM, Scott SM, Gupta V, Mao S, Balch WE. Correction of Niemann-Pick type C1 trafficking and activity with the histone deacetylase inhibitor valproic acid. J Biol Chem 2020; 295:8017-8035. [PMID: 32354745 DOI: 10.1074/jbc.ra119.010524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is primarily caused by mutations in the NPC1 gene and is characterized by the accumulation of unesterified cholesterol and lipids in the late endosomal (LE) and lysosomal (Ly) compartments. The most prevalent disease-linked mutation is the I1061T variant of NPC1, which exhibits defective folding and trafficking from the endoplasmic reticulum to the LE/Ly compartments. We now show that the FDA-approved histone deacetylase inhibitor (HDACi) valproic acid (VPA) corrects the folding and trafficking defect associated with I1061T-NPC1 leading to restoration of cholesterol homeostasis, an effect that is largely driven by a reduction in HDAC7 expression. The VPA-mediated trafficking correction is in part associated with an increase in the acetylation of lysine residues in the cysteine-rich domain of NPC1. The HDACi-mediated correction is synergistically improved by combining it with the FDA-approved anti-malarial, chloroquine, a known lysosomotropic compound, which improved the stability of the LE/Ly-localized fraction of the I1061T variant. We posit that combining the activity of VPA, to modulate epigenetically the cellular acetylome, with chloroquine, to alter the lysosomal environment to favor stability of the trafficked I1061T variant protein can have a significant therapeutic benefit in patients carrying at least one copy of the I1061T variant of NPC1, the most common disease-associated mutation leading to NPC disease. Given its ability to cross the blood-brain barrier, we posit VPA provides a potential mechanism to improve the response to 2-hydroxypropyl-β-cyclodextrin, by restoring a functional NPC1 to the cholesterol managing compartment as an adjunct therapy.
Collapse
Affiliation(s)
| | - Darren M Hutt
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Samantha M Scott
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Vijay Gupta
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Shu Mao
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
40
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
41
|
Rodriguez-Gil JL, Watkins-Chow DE, Baxter LL, Elliot G, Harper UL, Wincovitch SM, Wedel JC, Incao AA, Huebecker M, Boehm FJ, Garver WS, Porter FD, Broman KW, Platt FM, Pavan WJ. Genetic background modifies phenotypic severity and longevity in a mouse model of Niemann-Pick disease type C1. Dis Model Mech 2020; 13:dmm042614. [PMID: 31996359 PMCID: PMC7075069 DOI: 10.1242/dmm.042614] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare, fatal neurodegenerative disorder characterized by lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. NPC1 is extremely heterogeneous in the timing of clinical presentation and is associated with a wide spectrum of causative NPC1 mutations. To study the genetic architecture of NPC1, we have generated a new NPC1 mouse model, Npc1em1PavNpc1em1Pav/em1Pav mutants showed notably reduced NPC1 protein compared to controls and displayed the pathological and biochemical hallmarks of NPC1. Interestingly, Npc1em1Pav/em1Pav mutants on a C57BL/6J genetic background showed more severe visceral pathology and a significantly shorter lifespan compared to Npc1em1Pav/em1Pav mutants on a BALB/cJ background, suggesting that strain-specific modifiers contribute to disease severity and survival. QTL analysis for lifespan of 202 backcross N2 mutants on a mixed C57BL/6J and BALB/cJ background detected significant linkage to markers on chromosomes 1 and 7. The discovery of these modifier regions demonstrates that mouse models are powerful tools for analyzing the genetics underlying rare human diseases, which can be used to improve understanding of the variability in NPC1 phenotypes and advance options for patient diagnosis and therapy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
- Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gene Elliot
- Embryonic Stem Cell and Transgenic Mouse Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ursula L Harper
- Genomics Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen M Wincovitch
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia C Wedel
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arturo A Incao
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Frederick J Boehm
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William S Garver
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Forbes D Porter
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 2020. [PMID: 31937940 DOI: 10.1038/s41551-019-0501-5.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The success of base editors for the study and treatment of genetic diseases depends on the ability to deliver them in vivo to the relevant cell types. Delivery via adeno-associated viruses (AAVs) is limited by AAV packaging capacity, which precludes the use of full-length base editors. Here, we report the application of dual AAVs for the delivery of split cytosine and adenine base editors that are then reconstituted by trans-splicing inteins. Optimized dual AAVs enable in vivo base editing at therapeutically relevant efficiencies and dosages in the mouse brain (up to 59% of unsorted cortical tissue), liver (38%), retina (38%), heart (20%) and skeletal muscle (9%). We also show that base editing corrects, in mouse brain tissue, a mutation that causes Niemann-Pick disease type C (a neurodegenerative ataxia), slowing down neurodegeneration and increasing lifespan. The optimized delivery vectors should facilitate the efficient introduction of targeted point mutations into multiple tissues of therapeutic interest.
Collapse
|
43
|
Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, Koblan LW, Comander J, Liu Q, Liu DR. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 2020; 4:97-110. [PMID: 31937940 PMCID: PMC6980783 DOI: 10.1038/s41551-019-0501-5] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022]
Abstract
The success of base editors for the study and treatment of genetic diseases depends on the ability to deliver them in vivo to the relevant cell types. Delivery via adeno-associated viruses (AAVs) is limited by AAV packaging capacity, which precludes the use of full-length base editors. Here, we report the application of dual AAVs for the delivery of split cytosine and adenine base editors that are then reconstituted by trans-splicing inteins. Optimized dual AAVs enable in vivo base editing at therapeutically relevant efficiencies and dosages in the mouse brain (up to 59% of unsorted cortical tissue), liver (38%), retina (38%), heart (20%) and skeletal muscle (9%). We also show that base editing corrects, in mouse brain tissue, a mutation that causes Niemann-Pick disease type C (a neurodegenerative ataxia), slowing down neurodegeneration and increasing lifespan. The optimized delivery vectors should facilitate the efficient introduction of targeted point mutations into multiple tissues of therapeutic interest.
Collapse
Affiliation(s)
- Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Wei-Hsi Yeh
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Nachiket Pendse
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Erin Hennessey
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rossano Butcher
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jason Comander
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
44
|
Identification of Novel Pathways Associated with Patterned Cerebellar Purkinje Neuron Degeneration in Niemann-Pick Disease, Type C1. Int J Mol Sci 2019; 21:ijms21010292. [PMID: 31906248 PMCID: PMC6981888 DOI: 10.3390/ijms21010292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 01/22/2023] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by progressive cerebellar ataxia. In NPC1, a defect in cholesterol transport leads to endolysosomal storage of cholesterol and decreased cholesterol bioavailability. Purkinje neurons are sensitive to the loss of NPC1 function. However, degeneration of Purkinje neurons is not uniform. They are typically lost in an anterior-to-posterior gradient with neurons in lobule X being resistant to neurodegeneration. To gain mechanistic insight into factors that protect or potentiate Purkinje neuron loss, we compared RNA expression in cerebellar lobules III, VI, and X from control and mutant mice. An unexpected finding was that the gene expression differences between lobules III/VI and X were more pronounced than those observed between mutant and control mice. Functional analysis of genes with anterior to posterior gene expression differences revealed an enrichment of genes related to neuronal cell survival within the posterior cerebellum. This finding is consistent with the observation, in multiple diseases, that posterior Purkinje neurons are, in general, resistant to neurodegeneration. To our knowledge, this is the first study to evaluate anterior to posterior transcriptome-wide changes in gene expression in the cerebellum. Our data can be used to not only explore potential pathological mechanisms in NPC1, but also to further understand cerebellar biology.
Collapse
|
45
|
Nicotinamide Pathway-Dependent Sirt1 Activation Restores Calcium Homeostasis to Achieve Neuroprotection in Spinocerebellar Ataxia Type 7. Neuron 2019; 105:630-644.e9. [PMID: 31859031 DOI: 10.1016/j.neuron.2019.11.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Sirtuin 1 (Sirt1) is a NAD+-dependent deacetylase capable of countering age-related neurodegeneration, but the basis of Sirt1 neuroprotection remains elusive. Spinocerebellar ataxia type 7 (SCA7) is an inherited CAG-polyglutamine repeat disorder. Transcriptome analysis of SCA7 mice revealed downregulation of calcium flux genes accompanied by abnormal calcium-dependent cerebellar membrane excitability. Transcription-factor binding-site analysis of downregulated genes yielded Sirt1 target sites, and we observed reduced Sirt1 activity in the SCA7 mouse cerebellum with NAD+ depletion. SCA7 patients displayed increased poly(ADP-ribose) in cerebellar neurons, supporting poly(ADP-ribose) polymerase-1 upregulation. We crossed Sirt1-overexpressing mice with SCA7 mice and noted rescue of neurodegeneration and calcium flux defects. NAD+ repletion via nicotinamide riboside ameliorated disease phenotypes in SCA7 mice and patient stem cell-derived neurons. Sirt1 thus achieves neuroprotection by promoting calcium regulation, and NAD+ dysregulation underlies Sirt1 dysfunction in SCA7, indicating that cerebellar ataxias exhibit altered calcium homeostasis because of metabolic dysregulation, suggesting shared therapy targets.
Collapse
|
46
|
Schultz ML, Fawaz MV, Azaria RD, Hollon TC, Liu EA, Kunkel TJ, Halseth TA, Krus KL, Ming R, Morin EE, McLoughlin HS, Bushart DD, Paulson HL, Shakkottai VG, Orringer DA, Schwendeman AS, Lieberman AP. Synthetic high-density lipoprotein nanoparticles for the treatment of Niemann-Pick diseases. BMC Med 2019; 17:200. [PMID: 31711490 PMCID: PMC6849328 DOI: 10.1186/s12916-019-1423-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/10/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Niemann-Pick disease type C is a fatal and progressive neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in late endosomes and lysosomes. We sought to develop new therapeutics for this disorder by harnessing the body's endogenous cholesterol scavenging particle, high-density lipoprotein (HDL). METHODS Here we design, optimize, and define the mechanism of action of synthetic HDL (sHDL) nanoparticles. RESULTS We demonstrate a dose-dependent rescue of cholesterol storage that is sensitive to sHDL lipid and peptide composition, enabling the identification of compounds with a range of therapeutic potency. Peripheral administration of sHDL to Npc1 I1061T homozygous mice mobilizes cholesterol, reduces serum bilirubin, reduces liver macrophage size, and corrects body weight deficits. Additionally, a single intraventricular injection into adult Npc1 I1061T brains significantly reduces cholesterol storage in Purkinje neurons. Since endogenous HDL is also a carrier of sphingomyelin, we tested the same sHDL formulation in the sphingomyelin storage disease Niemann-Pick type A. Utilizing stimulated Raman scattering microscopy to detect endogenous unlabeled lipids, we show significant rescue of Niemann-Pick type A lipid storage. CONCLUSIONS Together, our data establish that sHDL nanoparticles are a potential new therapeutic avenue for Niemann-Pick diseases.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Maria V Fawaz
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ruth D Azaria
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Todd C Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Elaine A Liu
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Troy A Halseth
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelsey L Krus
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ran Ming
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Emily E Morin
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - David D Bushart
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Daniel A Orringer
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anna S Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
47
|
Kerner-Rossi M, Gulinello M, Walkley S, Dobrenis K. Pathobiology of Christianson syndrome: Linking disrupted endosomal-lysosomal function with intellectual disability and sensory impairments. Neurobiol Learn Mem 2019; 165:106867. [PMID: 29772390 PMCID: PMC6235725 DOI: 10.1016/j.nlm.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 11/18/2022]
Abstract
Christianson syndrome (CS) is a recently described rare neurogenetic disorder presenting early in life with a broad range of neurological symptoms, including severe intellectual disability with nonverbal status, hyperactivity, epilepsy, and progressive ataxia due to cerebellar atrophy. CS is due to loss-of-function mutations in SLC9A6, encoding NHE6, a sodium-hydrogen exchanger involved in the regulation of early endosomal pH. Here we review what is currently known about the neuropathogenesis of CS, based on insights from experimental models, which to date have focused on mechanisms that affect the CNS, specifically the brain. In addition, parental reports of sensory disturbances in their children with CS, including an apparent insensitivity to pain, led us to explore sensory function and related neuropathology in Slc9a6 KO mice. We present new data showing sensory deficits in Slc9a6 KO mice, which had reduced behavioral responses to noxious thermal and mechanical stimuli (Hargreaves and Von Frey assays, respectively) compared to wild type (WT) littermates. Immunohistochemical and ultrastructural analysis of the spinal cord and peripheral nervous system revealed intracellular accumulation of the glycosphingolipid GM2 ganglioside in KO but not WT mice. This cellular storage phenotype was most abundant in neurons of lamina I-II of the dorsal horn, a major relay site in the processing of painful stimuli. Spinal cords of KO mice also exhibited changes in astroglial and microglial populations throughout the gray matter suggestive of a neuroinflammatory process. Our findings establish the Slc9a6 KO mouse as a relevant tool for studying the sensory deficits in CS, and highlight selective vulnerabilities in relevant cell populations that may contribute to this phenotype. How NHE6 loss of function leads to such a multifaceted neurological syndrome is still undefined, and it is likely that NHE6 is involved with many cellular processes critical to normal nervous system development and function. In addition, the sensory issues exhibited by Slc9a6 KO mice, in combination with our neuropathological findings, are consistent with NHE6 loss of function impacting the entire nervous system. Sensory dysfunction in intellectually disabled individuals is challenging to assess and may impair patient safety and quality of life. Further mechanistic studies of the neurological impairments underlying CS and other genetic intellectual disability disorders must also take into account mechanisms affecting broader nervous system function in order to understand the full range of associated disabilities.
Collapse
Affiliation(s)
- Mallory Kerner-Rossi
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Gulinello
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven Walkley
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Kostantin Dobrenis
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
48
|
Kavetsky L, Green KK, Boyle BR, Yousufzai FAK, Padron ZM, Melli SE, Kuhnel VL, Jackson HM, Blanco RE, Howell GR, Soto I. Increased interactions and engulfment of dendrites by microglia precede Purkinje cell degeneration in a mouse model of Niemann Pick Type-C. Sci Rep 2019; 9:14722. [PMID: 31605022 PMCID: PMC6788982 DOI: 10.1038/s41598-019-51246-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Niemann Pick Type-C disease (NPC) is an inherited lysosomal storage disease (LSD) caused by pathogenic variants in the Npc1 or Npc2 genes that lead to the accumulation of cholesterol and lipids in lysosomes. NPC1 deficiency causes neurodegeneration, dementia and early death. Cerebellar Purkinje cells (PCs) are particularly hypersensitive to NPC1 deficiency and degenerate earlier than other neurons in the brain. Activation of microglia is an important contributor to PCs degeneration in NPC. However, the mechanisms by which activated microglia promote PCs degeneration in NPC are not completely understood. Here, we are demonstrating that in the Npc1nmf164 mouse cerebellum, microglia in the molecular layer (ML) are activated and contacting dendrites at early stages of NPC, when no loss of PCs is detected. During the progression of PCs degeneration in Npc1nmf164 mice, accumulation of phagosomes and autofluorescent material in microglia at the ML coincided with the degeneration of dendrites and PCs. Feeding Npc1nmf164 mice a western diet (WD) increased microglia activation and corresponded with a more extensive degeneration of dendrites but not PC somata. Together our data suggest that microglia contribute to the degeneration of PCs by interacting, engulfing and phagocytosing their dendrites while the cell somata are still present.
Collapse
Affiliation(s)
- Larisa Kavetsky
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Kayla K Green
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Bridget R Boyle
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Fawad A K Yousufzai
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Zachary M Padron
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Sierra E Melli
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Victoria L Kuhnel
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | | | - Rosa E Blanco
- The Institute of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | | | - Ileana Soto
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|
49
|
Park MH, Choi BJ, Jeong MS, Lee JY, Jung IK, Park KH, Lee HW, Yamaguchi T, Marti HH, Lee BH, Schuchman EH, Jin HK, Bae JS. Characterization of the Subventricular-Thalamo-Cortical Circuit in the NP-C Mouse Brain, and New Insights Regarding Treatment. Mol Ther 2019; 27:1507-1526. [PMID: 31138511 PMCID: PMC6697385 DOI: 10.1016/j.ymthe.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/17/2023] Open
Abstract
Gliosis in Niemann-Pick type C (NP-C) disease is characterized by marked changes in microglia and astrocytes. However, the gliosis onset and progression in NP-C has not been systematically studied, nor has the mechanism underlying this finding. Here, we found early gliosis in the subventricular zone (SVZ) of NP-C mice. Neural progenitor damage by Npc1 mutation suppressed vascular endothelial growth factor (VEGF) expression and further induced microglia activation followed by astrogliosis. Interestingly, excessive astrogliosis in the SVZ induced neural progenitor retention and/or migration into thalamus via astrocyte-derived VEGF, resulting in acceleration of thalamic and cortical gliosis through thalamo-cortical pathways. Transplantation of VEGF-overexpressing neural stem cells into the SVZ improved whole-brain pathology of NP-C mice. Overall, our data provide a new pathological perspective on NP-C neural pathology, revealing abnormalities in the subventricular-thalamo-cortical circuit of NP-C mouse brain and highlighting the importance of the SVZ microenvironment as a therapeutic target for NP-C disease.
Collapse
Affiliation(s)
- Min Hee Park
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Byung Jo Choi
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Min Seock Jeong
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Ju Youn Lee
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - In Kyung Jung
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Kang Ho Park
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Hye Won Lee
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hee Kyung Jin
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea.
| | - Jae-Sung Bae
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
50
|
Mass spectrometry imaging reveals ganglioside and ceramide localization patterns during cerebellar degeneration in the Npc1−/− mouse model. Anal Bioanal Chem 2019; 411:5659-5668. [DOI: 10.1007/s00216-019-01989-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/01/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
|