1
|
Bonato A, Raparelli G, Caruso M. Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy. Front Physiol 2024; 15:1496870. [PMID: 39717824 PMCID: PMC11663947 DOI: 10.3389/fphys.2024.1496870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models. Therefore, remodeling skeletal muscle toward a slower, more oxidative phenotype may represent a relevant therapeutic approach to protect dystrophic muscles from deterioration and improve the effectiveness of gene and cell-based therapies. The resistance of slow, oxidative myofibers to DMD pathology is attributed, in part, to their higher expression of Utrophin; there are, however, other characteristics of slow, oxidative fibers that might contribute to their enhanced resistance to injury, including reduced contractile speed, resistance to fatigue, increased capillary density, higher mitochondrial activity, decreased cellular energy requirements. This review focuses on signaling pathways and regulatory factors whose genetic or pharmacologic modulation has been shown to ameliorate the dystrophic pathology in preclinical models of DMD while promoting skeletal muscle fiber transition towards a slower more oxidative phenotype.
Collapse
Affiliation(s)
| | | | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy
| |
Collapse
|
2
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
3
|
Zhang J, Li J, Liu Y, Liang R, Mao Y, Yang X, Zhang Y, Zhu L. Effect of resveratrol on skeletal slow-twitch muscle fiber expression via AMPK/PGC-1α signaling pathway in bovine myotubes. Meat Sci 2023; 204:109287. [PMID: 37490793 DOI: 10.1016/j.meatsci.2023.109287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
The purpose of this study was to evaluate the impact of resveratrol on slow-twitch muscle fiber expression in bovine myotubes. The results revealed that resveratrol enhanced slow myosin heavy chain (MyHC) and suppressed fast MyHC protein expression, accompanied by increased MyHC I/IIa and decreased MyHC IIx/IIb mRNA levels in bovine myotubes (P < 0.05). Resveratrol also enhanced the activities of succinic dehydrogenase (SDH), malate dehydrogenase (MDH) and the mitochondrial DNA (mtDNA) content, but reduced lactate dehydrogenase (LDH) activity (P < 0.05). Meanwhile, the protein and gene expression of AMPK, SIRT1 and PGC-1α were upregulated by resveratrol (P < 0.05). Furthermore, PGC-1α inhibitor SR-18292 could attenuate resveratrol-induced muscle fiber conversion from fast-twitch to slow-twitch. These results suggest that resveratrol might promote muscle fiber type transition from fast-twitch to slow-twitch through the AMPK/PGC-1α signaling pathway and mitochondrial biogenesis in bovine myotubes.
Collapse
Affiliation(s)
- Jingyue Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
4
|
Mikhail AI, Ng SY, Mattina SR, Ljubicic V. AMPK is mitochondrial medicine for neuromuscular disorders. Trends Mol Med 2023:S1471-4914(23)00070-9. [PMID: 37080889 DOI: 10.1016/j.molmed.2023.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1), and spinal muscular atrophy (SMA) are the most prevalent neuromuscular disorders (NMDs) in children and adults. Central to a healthy neuromuscular system are the processes that govern mitochondrial turnover and dynamics, which are regulated by AMP-activated protein kinase (AMPK). Here, we survey mitochondrial stresses that are common between, as well as unique to, DMD, DM1, and SMA, and which may serve as potential therapeutic targets to mitigate neuromuscular disease. We also highlight recent advances that leverage a mutation-agnostic strategy featuring physiological or pharmacological AMPK activation to enhance mitochondrial health in these conditions, as well as identify outstanding questions and opportunities for future pursuit.
Collapse
Affiliation(s)
- Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Sean Y Ng
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Stephanie R Mattina
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Vladimir Ljubicic
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
5
|
Gleneadie HJ, Fernandez-Ruiz B, Sardini A, Van de Pette M, Dimond A, Prinjha RK, McGinty J, French PMW, Bagci H, Merkenschlager M, Fisher AG. Endogenous bioluminescent reporters reveal a sustained increase in utrophin gene expression upon EZH2 and ERK1/2 inhibition. Commun Biol 2023; 6:318. [PMID: 36966198 PMCID: PMC10039851 DOI: 10.1038/s42003-023-04666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder caused by loss of function mutations in the dystrophin gene (Dmd), resulting in progressive muscle weakening. Here we modelled the longitudinal expression of endogenous Dmd, and its paralogue Utrn, in mice and in myoblasts by generating bespoke bioluminescent gene reporters. As utrophin can partially compensate for Dmd-deficiency, these reporters were used as tools to ask whether chromatin-modifying drugs can enhance Utrn expression in developing muscle. Myoblasts treated with different PRC2 inhibitors showed significant increases in Utrn transcripts and bioluminescent signals, and these responses were independently verified by conditional Ezh2 deletion. Inhibition of ERK1/2 signalling provoked an additional increase in Utrn expression that was also seen in Dmd-mutant cells, and maintained as myoblasts differentiate. These data reveal PRC2 and ERK1/2 to be negative regulators of Utrn expression and provide specialised molecular imaging tools to monitor utrophin expression as a therapeutic strategy for DMD.
Collapse
Affiliation(s)
- Hannah J Gleneadie
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Beatriz Fernandez-Ruiz
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging Facility, MRC LMS, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Mathew Van de Pette
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London, W12 0NN, UK
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Rab K Prinjha
- Immunology and Epigenetics Research Unit, Research, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - James McGinty
- Photonics Group, Department of Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK
| | - Paul M W French
- Photonics Group, Department of Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK
| | - Hakan Bagci
- Lymphocyte Development Group, MRC LMS, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC LMS, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London, W12 0NN, UK.
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK.
| |
Collapse
|
6
|
Molinari S, Imbriano C, Moresi V, Renzini A, Belluti S, Lozanoska-Ochser B, Gigli G, Cedola A. Histone deacetylase functions and therapeutic implications for adult skeletal muscle metabolism. Front Mol Biosci 2023; 10:1130183. [PMID: 37006625 PMCID: PMC10050567 DOI: 10.3389/fmolb.2023.1130183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Skeletal muscle is a highly adaptive organ that sustains continuous metabolic changes in response to different functional demands. Healthy skeletal muscle can adjust fuel utilization to the intensity of muscle activity, the availability of nutrients and the intrinsic characteristics of muscle fibers. This property is defined as metabolic flexibility. Importantly, impaired metabolic flexibility has been associated with, and likely contributes to the onset and progression of numerous pathologies, including sarcopenia and type 2 diabetes. Numerous studies involving genetic and pharmacological manipulations of histone deacetylases (HDACs) in vitro and in vivo have elucidated their multiple functions in regulating adult skeletal muscle metabolism and adaptation. Here, we briefly review HDAC classification and skeletal muscle metabolism in physiological conditions and upon metabolic stimuli. We then discuss HDAC functions in regulating skeletal muscle metabolism at baseline and following exercise. Finally, we give an overview of the literature regarding the activity of HDACs in skeletal muscle aging and their potential as therapeutic targets for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Viviana Moresi
- Institute of Nanotechnology, Department of Physics, National Research Council (CNR-NANOTEC), Sapienza University of Rome, Rome, Italy
- *Correspondence: Viviana Moresi,
| | - Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, Department of Physics, National Research Council (CNR-NANOTEC), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Hermes TDA, Mâncio RD, Mizobutti DS, Macedo AB, Kido LA, Cagnon Quitete VHA, Minatel E. Cilostazol attenuates oxidative stress and apoptosis in the quadriceps muscle of the dystrophic mouse experimental model. Int J Exp Pathol 2023; 104:13-22. [PMID: 36565167 PMCID: PMC9845609 DOI: 10.1111/iep.12461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most severe and frequent form of muscular dystrophy. The mdx mouse is one of the most widely used experimental models to understand aspects of the biology of dystrophic skeletal muscles and the mechanisms of DMD. Oxidative stress and apoptosis are present in early stages of the disease in mdx mice. The high production of reactive oxygen species (ROS) causes activation of apoptotic death regulatory proteins due to DNA damage and breakdown of nuclear and mitochondrial membranes. The quadriceps (QUA) muscle of the mdx mouse is a good tool to study oxidative events. Previous studies have demonstrated that cilostazol exerts an anti-oxidant effect by decreasing the production of reactive oxygen species (ROS). The present study aimed to evaluate the ability of cilostazol to modulate oxidative stress and apoptosis in the QUA muscle of mdx mice. Fourteen-day-old mdx mice received cilostazol or saline for 14 days. C57BL/10 mice were used as a control. In the QUA muscle of mdx mice, cilostazol treatment decreased ROS production (-74%), the number of lipofuscin granules (-47%), lipid peroxidation (-11%), and the number of apoptotic cells (-66%). Thus cilostazol showed anti-oxidant and anti-apoptotic action in the QUA muscle of mdx mice.
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
- Departament of Anatomy, Institute of Biomedical SciencesFederal University of Alfenas (UNIFAL‐MG)AlfenasBrazil
| | - Rafael Dias Mâncio
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Daniela Sayuri Mizobutti
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Aline Barbosa Macedo
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | | | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| |
Collapse
|
8
|
Péladeau C, Jasmin BJ. Identifying FDA-Approved Drugs that Upregulate Utrophin A as a Therapeutic Strategy for Duchenne Muscular Dystrophy. Methods Mol Biol 2023; 2587:495-510. [PMID: 36401046 DOI: 10.1007/978-1-0716-2772-3_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations and deletions within the DMD gene, which result in a lack of dystrophin protein at the sarcolemma of skeletal muscle fibers. The absence of dystrophin fragilizes the sarcolemma and compromises its integrity during cycles of muscle contraction, which, progressively, leads to reductions in muscle mass and function. DMD is thus a progressive muscle-wasting disease that results in a loss of ambulation, cardiomyopathy , respiratory impairment, and death. Although there is presently no cure for DMD, recent advances have led to many promising treatments. One such approach entails increasing expression of a homologous protein to dystrophin, named utrophin A, which is endogenously expressed in both healthy and DMD muscle fibers. Upregulation of utrophin A all along the sarcolemma of DMD muscle fibers can, in part, compensate for the absence of dystrophin. Over the years, our laboratory has focused a significant portion of our efforts in identifying and characterizing drugs and small molecules for their ability to target utrophin A and cause its overexpression. As part of these efforts, we have recently developed a novel ELISA-based high-throughput drug screen, to identify FDA-approved drugs that increase the expression of utrophin A in muscle cells in culture as well as in dystrophic mice. Here, we describe our overall strategy to identify and characterize several FDA-approved drugs that upregulate utrophin A expression and provide details on all experimental approaches. Such strategy has the potential to lead to the rapid development of novel therapeutics for DMD.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Dubuisson N, Versele R, Planchon C, Selvais CM, Noel L, Abou-Samra M, Davis-López de Carrizosa MA. Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:16080. [PMID: 36555721 PMCID: PMC9786356 DOI: 10.3390/ijms232416080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic and exon-skipping therapies are the most promising intervention, the safety and efficiency of which are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids assess to what extent the therapy has contributed to the regenerative process. In this regard, the later advances in microscopy and image acquisition systems and the current expansion of antibodies for immunohistological evaluation together with the development of different spectrum fluorescent dyes have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of the process, makes the histological assessment a challenging task. Therefore, here, we summarise and explain the rationale behind different histological techniques used in the literature to assess degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related to DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc (CUSL), Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
10
|
Saber J, Rudnicki MA. Carm1 and the Epigenetic Control of Stem Cell Function. Stem Cells Transl Med 2022; 11:1143-1150. [PMID: 36103286 PMCID: PMC9672848 DOI: 10.1093/stcltm/szac068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/13/2022] [Indexed: 06/06/2024] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a methyltransferase whose function has been highly studied in the context of nuclear receptor signaling. However, CARM1 is known to epigenetically regulate expression of several myogenic genes involved in differentiation such as Myog and MEF2C. CARM1 also acts to regulate myogenesis through its influence on various cellular processes from embryonic to adult myogenesis. First, CARM1 has a crucial role in establishing polarity-regulated gene expression during an asymmetric satellite cell division by methylating PAX7, leading to the expression of Myf5. Second, satellite cells express the CARM1-FL and CARM1-ΔE15 isoforms. The former has been shown to promote pre-mRNA splicing through its interaction with CA150 and U1C, leading to their methylation and increased activity, while the latter displays a reduction in both metrics, thus, modulating alternative pre-mRNA splice forms in muscle cells. Third, CARM1 is a regulator of autophagy through its positive reinforcement of AMPK activity and gene expression. Autophagy already has known implications in ageing and disease, and CARM1 could follow suite. Thus, CARM1 is a central regulator of several important processes impacting muscle stem cell function and myogenesis.
Collapse
Affiliation(s)
- John Saber
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Zumbaugh MD, Johnson SE, Shi TH, Gerrard DE. Molecular and biochemical regulation of skeletal muscle metabolism. J Anim Sci 2022; 100:6652332. [PMID: 35908794 PMCID: PMC9339271 DOI: 10.1093/jas/skac035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity. The plasticity of muscle permits continuous adaptations to changing intrinsic and extrinsic stimuli that can shift the classification of muscle fibers, which has implications on fiber size, nutrient utilization, and protein turnover rate. The purpose of this paper is to summarize the major metabolic pathways in skeletal muscle and the associated regulatory pathways.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Chao YP, Fang WH, Chen WL, Peng TC, Yang WS, Kao TW. Exploring Muscle Health Deterioration and Its Determinants Among Community-Dwelling Older Adults. Front Nutr 2022; 9:817044. [PMID: 35571885 PMCID: PMC9101463 DOI: 10.3389/fnut.2022.817044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/18/2022] [Indexed: 12/02/2022] Open
Abstract
Background Age-related muscle mass and function decline are critical issues that have gained attention in clinical practice and research. Nevertheless, little is known regarding the time course of muscle health progression, and its determinants during this transition should be estimated. Methods We enrolled community-dwelling adults aged ≥65 years during their regular health checkup. The participants’ body composition and muscle function were measured annually from 2015 to 2021. Presarcopenia was characterized by the loss of muscle mass only; dynapenia was defined as low muscle function without changes in muscle mass; and sarcopenia was indicated as a decline in both muscle mass and muscle function. We observed the natural course of muscle health progression during aging. The relationship between muscle health decline and different determinants among old adults was examined. Results Among 568 participants, there was 18.49%, 3.52%, and 1.06% of healthy individuals transited to dynapenia, presarcopenia, and sarcopenia, respectively. Significant positive correlations between age, fat-to-muscle ratio (FMR) and the dynapenia transition were existed [hazard ratio (HR) = 1.08 and HR = 1.73, all p < 0.05]. Serum albumin level had negative correlation with the dynapenia transition risk (HR = 0.30, p = 0.004). Participants with these three risk factors had the highest HR of dynapenia transition compared to those without (HR = 8.67, p = 0.001). A dose-response effect existed between risk factors numbers and the risk of dynapenia transition (p for trend < 0.001). This positive association and dose-response relationship remains after multiple covariates adjustment (HR = 7.74, p = 0.002, p for trend < 0.001). Participants with two or more than two risk factors had a higher risk of dynapenia transition than those with low risk factors (p = 0.0027), and the HR was 1.96 after multiple covariate adjustment (p = 0.029). Conclusion Healthy community-dwelling old adults tended to transit to dynapenia during muscle health deterioration. Individuals with older age, higher FMR, lower albumin level had a higher risk of dynapenia transition; and a positive dose-response effect existed among this population as well.
Collapse
Affiliation(s)
- Yuan-Ping Chao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Hui Fang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tao-Chun Peng
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Center for Obesity, Life Style and Metabolic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Wei Kao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Tung-Wei Kao,
| |
Collapse
|
13
|
The beneficial effect of chronic muscular exercise on muscle fragility is increased by Prox1 gene transfer in dystrophic mdx muscle. PLoS One 2022; 17:e0254274. [PMID: 35436319 PMCID: PMC9015141 DOI: 10.1371/journal.pone.0254274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/05/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Greater muscle fragility is thought to cause the exhaustion of the muscle stem cells during successive degeneration/repair cycles, leading to muscle wasting and weakness in Duchenne muscular dystrophy. Chronic voluntary exercise can partially reduce the susceptibility to contraction induced-muscle damage, i.e., muscle fragility, as shown by a reduced immediate maximal force drop following lengthening contractions, in the dystrophic mdx mice. Here, we studied the effect of Prospero-related homeobox factor 1 gene (Prox1) transfer (overexpression) using an AAV on fragility in chronically exercised mdx mice, because Prox1 promotes slower type fibres in healthy mice and slower fibres are less fragile in mdx muscle. Methods Both tibialis anterior muscles of the same mdx mouse received the transfer of Prox1 and PBS and the mice performed voluntary running into a wheel during 1 month. We also performed Prox1 transfer in sedentary mdx mice. In situ maximal force production of the muscle in response to nerve stimulation was assessed before, during and after 10 lengthening contractions. Molecular muscle parameters were also evaluated. Results Interestingly, Prox1 transfer reduced the isometric force drop following lengthening contractions in exercised mdx mice (p < 0.05 to 0.01), but not in sedentary mdx mice. It also increased the muscle expression of Myh7 (p < 0.001), MHC-2x (p < 0.01) and Trpc1 (p < 0.01), whereas it reduced that one of Myh4 (p < 0.001) and MHC-2b (p < 0.01) in exercised mdx mice. Moreover, Prox1 transfer decreased the absolute maximal isometric force (p < 0.01), but not the specific maximal isometric force, before lengthening contraction in exercised (p < 0.01) and sedentary mdx mice. Conclusion Our results indicate that Prox1 transfer increased the beneficial effect of chronic exercise on muscle fragility in mdx mice, but reduced absolute maximal force. Thus, the potential clinical benefit of the transfer of Prox1 into exercised dystrophic muscle can merit further investigation.
Collapse
|
14
|
Seebacher F, Beaman J. Evolution of plasticity: metabolic compensation for fluctuating energy demands at the origin of life. J Exp Biol 2022; 225:274636. [PMID: 35254445 DOI: 10.1242/jeb.243214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phenotypic plasticity of physiological functions enables rapid responses to changing environments and may thereby increase the resilience of organisms to environmental change. Here, we argue that the principal hallmarks of life itself, self-replication and maintenance, are contingent on the plasticity of metabolic processes ('metabolic plasticity'). It is likely that the Last Universal Common Ancestor (LUCA), 4 billion years ago, already possessed energy-sensing molecules that could adjust energy (ATP) production to meet demand. The earliest manifestation of metabolic plasticity, switching cells from growth and storage (anabolism) to breakdown and ATP production (catabolism), coincides with the advent of Darwinian evolution. Darwinian evolution depends on reliable translation of information from information-carrying molecules, and on cell genealogy where information is accurately passed between cell generations. Both of these processes create fluctuating energy demands that necessitate metabolic plasticity to facilitate replication of genetic material and (proto)cell division. We propose that LUCA possessed rudimentary forms of these capabilities. Since LUCA, metabolic networks have increased in complexity. Generalist founder enzymes formed the basis of many derived networks, and complexity arose partly by recruiting novel pathways from the untapped pool of reactions that are present in cells but do not have current physiological functions (the so-called 'underground metabolism'). Complexity may thereby be specific to environmental contexts and phylogenetic lineages. We suggest that a Boolean network analysis could be useful to model the transition of metabolic networks over evolutionary time. Network analyses can be effective in modelling phenotypic plasticity in metabolic functions for different phylogenetic groups because they incorporate actual biochemical regulators that can be updated as new empirical insights are gained.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Julian Beaman
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
15
|
Dietary beta-hydroxy-beta-methyl butyrate supplementation improves meat quality of Bama Xiang mini-pigs through manipulation of muscle fiber characteristics. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
16
|
Yedigaryan L, Sampaolesi M. Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells 2021; 10:cells10113035. [PMID: 34831256 PMCID: PMC8616481 DOI: 10.3390/cells10113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that are mainly involved in translational repression by binding to specific messenger RNAs. Recently, miRNAs have emerged as biomarkers, relevant for a multitude of pathophysiological conditions, and cells can selectively sort miRNAs into extracellular vesicles for paracrine and endocrine effects. In the overall context of muscle-wasting conditions, a multitude of miRNAs has been implied as being responsible for the typical dysregulation of anabolic and catabolic pathways. In general, chronic muscle disorders are associated with the main characteristic of a substantial loss in muscle mass. Muscular dystrophies (MDs) are a group of genetic diseases that cause muscle weakness and degeneration. Typically, MDs are caused by mutations in those genes responsible for upholding the integrity of muscle structure and function. Recently, the dysregulation of miRNA levels in such pathological conditions has been reported. This revelation is imperative for both MDs and other muscle-wasting conditions, such as sarcopenia and cancer cachexia. The expression levels of miRNAs have immense potential for use as potential diagnostic, prognostic and therapeutic biomarkers. Understanding the role of miRNAs in muscle-wasting conditions may lead to the development of novel strategies for the improvement of patient management.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Xue Y, Huang Z, Chen X, Jia G, Zhao H, Liu G. Naringin induces skeletal muscle fiber type transformation via AMPK/PGC-1α signaling pathway in mice and C2C12 myotubes. Nutr Res 2021; 92:99-108. [PMID: 34284270 DOI: 10.1016/j.nutres.2021.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023]
Abstract
A large number of studies have shown that polyphenols can regulate skeletal muscle fiber type transformation through AMPK signal. However, the effects and mechanism of naringin (a natural polyphenol) on muscle fiber type transformation still remains unclear. Thus, we hypothesized that naringin would induce the transformation of skeletal muscle fibers from type II to type I by AMPK signaling. C2C12 myotubes and BALB/c mice models were used to test this hypothesis. We found that naringin significantly increased the protein expression of slow myosin heavy chain (MyHC), myoglobin and troponin I type I slow skeletal (Troponin I-SS) and the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH), and significantly decreased fast MyHC protein expression and lactate dehydrogenase (LDH) activity, accompanied by the activation of AMPK and the activity of peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) in mice and C2C12 myotubes. Further inhibition of AMPK activity by compound C showed that the above effects were significantly inhibited in C2C12 myotubes. In conclusion, naringin promotes the transformation of skeletal muscle fibers from type II to type I through AMPK/PGC-1α signaling pathway, which not only enriches the nutritional and physiological functions of naringin, but also provides a theoretical basis for the regulation of muscle fiber type transformation by nutritional approaches.
Collapse
Affiliation(s)
- Yonghong Xue
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
18
|
Giovarelli M, Zecchini S, Catarinella G, Moscheni C, Sartori P, Barbieri C, Roux-Biejat P, Napoli A, Vantaggiato C, Cervia D, Perrotta C, Clementi E, Latella L, De Palma C. Givinostat as metabolic enhancer reverting mitochondrial biogenesis deficit in Duchenne Muscular Dystrophy. Pharmacol Res 2021; 170:105751. [PMID: 34197911 DOI: 10.1016/j.phrs.2021.105751] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a rare disorder characterized by progressive muscle wasting, weakness, and premature death. Remarkable progress has been made in genetic approaches, restoring dystrophin, or its function. However, the targeting of secondary pathological mechanisms, such as increasing muscle blood flow or stopping fibrosis, remains important to improve the therapeutic benefits, that depend on tackling both the genetic disease and the downstream consequences. Mitochondrial dysfunctions are one of the earliest deficits in DMD, arise from multiple cellular stressors and result in less than 50% of ATP content in dystrophic muscles. Here we establish that there are two temporally distinct phases of mitochondrial damage with depletion of mitochondrial mass at early stages and an accumulation of dysfunctional mitochondria at later stages, leading to a different oxidative fibers pattern, in young and adult mdx mice. We also observe a progressive mitochondrial biogenesis impairment associated with increased deacetylation of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) promoter. Such histone deacetylation is inhibited by givinostat that positively modifies the epigenetic profile of PGC-1α promoter, sustaining mitochondrial biogenesis and oxidative fiber type switch. We, therefore, demonstrate that givinostat exerts relevant effects at mitochondrial level, acting as a metabolic remodeling agent capable of efficiently promoting mitochondrial biogenesis in dystrophic muscle.
Collapse
MESH Headings
- Acetylation
- Animals
- Carbamates/pharmacology
- Disease Models, Animal
- Energy Metabolism/drug effects
- Epigenesis, Genetic
- Histone Deacetylase Inhibitors/pharmacology
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Organelle Biogenesis
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Promoter Regions, Genetic
- Mice
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Giorgia Catarinella
- IRCCS, Fondazione Santa Lucia, Rome 00142, Italy; DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy
| | - Cecilia Barbieri
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Alessandra Napoli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy; Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Lucia Latella
- IRCCS, Fondazione Santa Lucia, Rome 00142, Italy; Institute of Translational Pharmacology, National Research Council of Italy, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
19
|
Zumbaugh MD, Yen CN, Bodmer JS, Shi H, Gerrard DE. Skeletal Muscle O-GlcNAc Transferase Action on Global Metabolism Is Partially Mediated Through Interleukin-15. Front Physiol 2021; 12:682052. [PMID: 34326778 PMCID: PMC8313823 DOI: 10.3389/fphys.2021.682052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 01/11/2023] Open
Abstract
Besides its roles in locomotion and thermogenesis, skeletal muscle plays a significant role in global glucose metabolism and insulin sensitivity through complex nutrient sensing networks. Our previous work showed that the muscle-specific ablation of O-GlcNAc transferase (OGT) led to a lean phenotype through enhanced interleukin-15 (IL-15) expression. We also showed OGT epigenetically modified and repressed the Il15 promoter. However, whether there is a causal relationship between OGT ablation-induced IL-15 secretion and the lean phenotype remains unknown. To address this question, we generated muscle specific OGT and interleukin-15 receptor alpha subunit (IL-15rα) double knockout mice (mDKO). Deletion of IL-15rα in skeletal muscle impaired IL-15 secretion. When fed with a high-fat diet, mDKO mice were no longer protected against HFD-induced obesity compared to wild-type mice. After 22 weeks of HFD feeding, mDKO mice had an intermediate body weight and glucose sensitivity compared to wild-type and OGT knockout mice. Taken together, these data suggest that OGT action is partially mediated by muscle IL-15 production and provides some clarity into how disrupting the O-GlcNAc nutrient signaling pathway leads to a lean phenotype. Further, our work suggests that interfering with the OGT-IL15 nutrient sensing axis may provide a new avenue for combating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Con-Ning Yen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jocelyn S Bodmer
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
20
|
The Interplay of Mitophagy and Inflammation in Duchenne Muscular Dystrophy. Life (Basel) 2021; 11:life11070648. [PMID: 34357020 PMCID: PMC8307817 DOI: 10.3390/life11070648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a pathogenic disruption of the DYSTROPHIN gene that results in non-functional dystrophin protein. DMD patients experience loss of ambulation, cardiac arrhythmia, metabolic syndrome, and respiratory failure. At the molecular level, the lack of dystrophin in the muscle results in myofiber death, fibrotic infiltration, and mitochondrial dysfunction. There is no cure for DMD, although dystrophin-replacement gene therapies and exon-skipping approaches are being pursued in clinical trials. Mitochondrial dysfunction is one of the first cellular changes seen in DMD myofibers, occurring prior to muscle disease onset and progresses with disease severity. This is seen by reduced mitochondrial function, abnormal mitochondrial morphology and impaired mitophagy (degradation of damaged mitochondria). Dysfunctional mitochondria release high levels of reactive oxygen species (ROS), which can activate pro-inflammatory pathways such as IL-1β and IL-6. Impaired mitophagy in DMD results in increased inflammation and further aggravates disease pathology, evidenced by increased muscle damage and increased fibrosis. This review will focus on the critical interplay between mitophagy and inflammation in Duchenne muscular dystrophy as a pathological mechanism, as well as describe both candidate and established therapeutic targets that regulate these pathways.
Collapse
|
21
|
Eraky SM, Ramadan NM. Effects of omega-3 fatty acids and metformin combination on diabetic cardiomyopathy in rats through autophagic pathway. J Nutr Biochem 2021; 97:108798. [PMID: 34102283 DOI: 10.1016/j.jnutbio.2021.108798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Diabetic cardiomyopathy is a primary cause of increased morbidity and mortality in diabetics. Evidence has suggested a pivotal role for interrupted mitochondrial dynamics and quality control machinery in the onset and development of diabetic cardiomyopathy. Sequestosome 1 (SQSTM1) is a major reporter of selective autophagic activity. Other than controlling the expression of genes involved in mitochondrial biogenesis, recently peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) was reported to directly affect SQSTM1 gene expression. Calcineurin, a pivotal mediator of cardiac hypertrophy, has been also linked to enhanced expression of SQSTM1. This study aimed to test the cardioprotective effects of adding ω-3 polyunsaturated fatty acids (PUFAs) to metformin in a rat model of type 2 diabetes mellitus and to evaluate the molecular mechanisms underlying their effects on mitochondrial quality. Diabetes was induced in male Sprague Dawley rats by a high-fat diet for 6 weeks, followed by a low-dose streptozotocin (35 mg/kg). Diabetic rats were either treated with metformin (150 mg/kg/d), ω-3 PUFAs (300 mg/kg/d), or their combination in the same doses for further 8 weeks. Along with metabolic and pathological derangements, we report that correlating with electron microscopic evidence of mitochondrial degeneration, gene expression of the autophagic indicators SQSTM1, PGC-1α, and calcineurin were decreased in the hearts of diabetic rats. Independent of its anti-hyperglycemic effects, metformin successfully preserved mitochondrial integrity and upregulated myocardial PGC-1α, calcineurin, and SQSTM1 gene expression. ω-3 PUFAs possess synergistic cardioprotection when added to metformin, suggested by improvements in myocardial ultrastructure, autophagic activity, and SQSTM1 gene expression.
Collapse
Affiliation(s)
- Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
22
|
Soblechero-Martín P, López-Martínez A, de la Puente-Ovejero L, Vallejo-Illarramendi A, Arechavala-Gomeza V. Utrophin modulator drugs as potential therapies for Duchenne and Becker muscular dystrophies. Neuropathol Appl Neurobiol 2021; 47:711-723. [PMID: 33999469 PMCID: PMC8518368 DOI: 10.1111/nan.12735] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Utrophin is an autosomal paralogue of dystrophin, a protein whose deficit causes Duchenne and Becker muscular dystrophies (DMD/BMD). Utrophin is naturally overexpressed at the sarcolemma of mature dystrophin‐deficient fibres in DMD and BMD patients as well as in the mdx Duchenne mouse model. Dystrophin and utrophin can co‐localise in human foetal muscle, in the dystrophin‐competent fibres from DMD/BMD carriers, and revertant fibre clusters in biopsies from DMD patients. These findings suggest that utrophin overexpression could act as a surrogate, compensating for the lack of dystrophin, and, as such, it could be used in combination with dystrophin restoration therapies. Different strategies to overexpress utrophin are currently under investigation. In recent years, many compounds have been reported to modulate utrophin expression efficiently in preclinical studies and ameliorate the dystrophic phenotype in animal models of the disease. In this manuscript, we discuss the current knowledge on utrophin protein and the different mechanisms that modulate its expression in skeletal muscle. We also include a comprehensive review of compounds proposed as utrophin regulators and, as such, potential therapeutic candidates for these muscular dystrophies.
Collapse
Affiliation(s)
- Patricia Soblechero-Martín
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Laboratory Service, Osakidetza Basque Health Service, Bilbao-Basurto Integrated Health Organisation, Basurto University Hospital, Bilbao, Spain
| | - Andrea López-Martínez
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
23
|
Dong X, Hui T, Chen J, Yu Z, Ren D, Zou S, Wang S, Fei E, Jiao H, Lai X. Metformin Increases Sarcolemma Integrity and Ameliorates Neuromuscular Deficits in a Murine Model of Duchenne Muscular Dystrophy. Front Physiol 2021; 12:642908. [PMID: 34012406 PMCID: PMC8126699 DOI: 10.3389/fphys.2021.642908] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease characterized by progressive muscle weakness and wasting. Stimulation of AMP-activated protein kinase (AMPK) has been demonstrated to increase muscle function and protect muscle against damage in dystrophic mice. Metformin is a widely used anti-hyperglycemic drug and has been shown to be an indirect activator of AMPK. Based on these findings, we sought to determine the effects of metformin on neuromuscular deficits in mdx murine model of DMD. In this study, we found metformin treatment increased muscle strength accompanied by elevated twitch and tetanic force of tibialis anterior (TA) muscle in mdx mice. Immunofluorescence and electron microscopy analysis of metformin-treated mdx muscles revealed an improvement in muscle fiber membrane integrity. Electrophysiological studies showed the amplitude of miniature endplate potentials (mEPP) was increased in treated mice, indicating metformin also improved neuromuscular transmission of the mdx mice. Analysis of mRNA and protein levels from muscles of treated mice showed an upregulation of AMPK phosphorylation and dystrophin-glycoprotein complex protein expression. In conclusion, metformin can indeed improve muscle function and diminish neuromuscular deficits in mdx mice, suggesting its potential use as a therapeutic drug in DMD patients.
Collapse
Affiliation(s)
- Xia Dong
- School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Tiankun Hui
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Jie Chen
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Zheng Yu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Dongyan Ren
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Suqi Zou
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Shunqi Wang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Erkang Fei
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Huifeng Jiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Vuorinen A, Wilkinson IVL, Chatzopoulou M, Edwards B, Squire SE, Fairclough RJ, Bazan NA, Milner JA, Conole D, Donald JR, Shah N, Willis NJ, Martínez RF, Wilson FX, Wynne GM, Davies SG, Davies KE, Russell AJ. Discovery and mechanism of action studies of 4,6-diphenylpyrimidine-2-carbohydrazides as utrophin modulators for the treatment of Duchenne muscular dystrophy. Eur J Med Chem 2021; 220:113431. [PMID: 33915371 DOI: 10.1016/j.ejmech.2021.113431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/22/2023]
Abstract
Duchenne muscular dystrophy is a fatal disease with no cure, caused by lack of the cytoskeletal protein dystrophin. Upregulation of utrophin, a dystrophin paralogue, offers a potential therapy independent of mutation type. The failure of first-in-class utrophin modulator ezutromid/SMT C1100 in Phase II clinical trials necessitates development of compounds with better efficacy, physicochemical and ADME properties and/or complementary mechanisms. We have discovered and performed a preliminary optimisation of a novel class of utrophin modulators using an improved phenotypic screen, where reporter expression is derived from the full genomic context of the utrophin promoter. We further demonstrate through target deconvolution studies, including expression analysis and chemical proteomics, that this compound series operates via a novel mechanism of action, distinct from that of ezutromid.
Collapse
Affiliation(s)
- Aini Vuorinen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Isabel V L Wilkinson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Maria Chatzopoulou
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ben Edwards
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sir Henry Wellcome Building of Gene Function, South Parks Road, Oxford, OX1 3PT, UK
| | - Sarah E Squire
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sir Henry Wellcome Building of Gene Function, South Parks Road, Oxford, OX1 3PT, UK
| | - Rebecca J Fairclough
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sir Henry Wellcome Building of Gene Function, South Parks Road, Oxford, OX1 3PT, UK
| | - Noelia Araujo Bazan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Josh A Milner
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Daniel Conole
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - James R Donald
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Nandini Shah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sir Henry Wellcome Building of Gene Function, South Parks Road, Oxford, OX1 3PT, UK
| | - Nicky J Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - R Fernando Martínez
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Francis X Wilson
- Summit Therapeutics Plc, 136a Eastern Avenue, Milton Park, Abingdon, Oxfordshire, OX14 4SB, UK
| | - Graham M Wynne
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Stephen G Davies
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sir Henry Wellcome Building of Gene Function, South Parks Road, Oxford, OX1 3PT, UK.
| | - Angela J Russell
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3PQ, UK.
| |
Collapse
|
25
|
AKT2 regulates development and metabolic homeostasis via AMPK-depedent pathway in skeletal muscle. Clin Sci (Lond) 2021; 134:2381-2398. [PMID: 32880392 DOI: 10.1042/cs20191320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle is responsible for the majority of glucose disposal in the body. Insulin resistance in the skeletal muscle accounts for 85-90% of the impairment of total glucose disposal in patients with type 2 diabetes (T2D). However, the mechanism remains controversial. The present study aims to investigate whether AKT2 deficiency causes deficits in skeletal muscle development and metabolism, we analyzed the expression of molecules related to skeletal muscle development, glucose uptake and metabolism in mice of 3- and 8-months old. We found that AMP-activated protein kinase (AMPK) phosphorylation and myocyte enhancer factor 2 (MEF2) A (MEF2A) expression were down-regulated in AKT2 knockout (KO) mice, which can be inverted by AMPK activation. We also observed reduced mitochondrial DNA (mtDNA) abundance and reduced expression of genes involved in mitochondrial biogenesis in the skeletal muscle of AKT2 KO mice, which was prevented by AMPK activation. Moreover, AKT2 KO mice exhibited impaired AMPK signaling in response to insulin stimulation compared with WT mice. Our study establishes a new and important function of AKT2 in regulating skeletal muscle development and glucose metabolism via AMPK-dependent signaling.
Collapse
|
26
|
Hou Y, Su L, Zhao Y, Liu C, Yao D, Zhang M, Zhao L, Jin Y. Effect of chronic AICAR treatment on muscle fiber composition and enzyme activity in skeletal muscle of rats. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1889563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yanru Hou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yajuan Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Chang Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Duo Yao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
27
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
28
|
Angebault C, Panel M, Lacôte M, Rieusset J, Lacampagne A, Fauconnier J. Metformin Reverses the Enhanced Myocardial SR/ER-Mitochondria Interaction and Impaired Complex I-Driven Respiration in Dystrophin-Deficient Mice. Front Cell Dev Biol 2021; 8:609493. [PMID: 33569379 PMCID: PMC7868535 DOI: 10.3389/fcell.2020.609493] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Besides skeletal muscle dysfunction, Duchenne muscular dystrophy (DMD) exhibits a progressive cardiomyopathy characterized by an impaired calcium (Ca2+) homeostasis and a mitochondrial dysfunction. Here we aimed to determine whether sarco-endoplasmic reticulum (SR/ER)–mitochondria interactions and mitochondrial function were impaired in dystrophic heart at the early stage of the pathology. For this purpose, ventricular cardiomyocytes and mitochondria were isolated from 3-month-old dystrophin-deficient mice (mdx mice). The number of contacts points between the SR/ER Ca2+ release channels (IP3R1) and the porine of the outer membrane of the mitochondria, VDAC1, measured using in situ proximity ligation assay, was greater in mdx cardiomyocytes. Expression levels of IP3R1 as well as the mitochondrial Ca2+ uniporter (MCU) and its regulated subunit, MICU1, were also increased in mdx heart. MICU2 expression was however unchanged. Furthermore, the mitochondrial Ca2+ uptake kinetics and the mitochondrial Ca2+ content were significantly increased. Meanwhile, the Ca2+-dependent pyruvate dehydrogenase phosphorylation was reduced, and its activity significantly increased. In Ca2+-free conditions, pyruvate-driven complex I respiration was decreased whereas in the presence of Ca2+, complex I-mediated respiration was boosted. Further, impaired complex I-mediated respiration was independent of its intrinsic activity or expression, which remains unchanged but is accompanied by an increase in mitochondrial reactive oxygen species production. Finally, mdx mice were treated with the complex I modulator metformin for 1 month. Metformin normalized the SR/ER-mitochondria interaction, decreased MICU1 expression and mitochondrial Ca2+ content, and enhanced complex I-driven respiration. In summary, before any sign of dilated cardiomyopathy, the DMD heart displays an aberrant SR/ER-mitochondria coupling with an increase mitochondrial Ca2+ homeostasis and a complex I dysfunction. Such remodeling could be reversed by metformin providing a novel therapeutic perspective in DMD.
Collapse
Affiliation(s)
- Claire Angebault
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Mathieu Panel
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Mathilde Lacôte
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jennifer Rieusset
- CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1-Univ Lyon, Lyon, France
| | - Alain Lacampagne
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jérémy Fauconnier
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
29
|
Jahnke VE, Peterson JM, Van Der Meulen JH, Boehler J, Uaesoontrachoon K, Johnston HK, Defour A, Phadke A, Yu Q, Jaiswal JK, Nagaraju K. Mitochondrial dysfunction and consequences in calpain-3-deficient muscle. Skelet Muscle 2020; 10:37. [PMID: 33308300 PMCID: PMC7730798 DOI: 10.1186/s13395-020-00254-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/16/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Nonsense or loss-of-function mutations in the non-lysosomal cysteine protease calpain-3 result in limb-girdle muscular dystrophy type 2A (LGMD2A). While calpain-3 is implicated in muscle cell differentiation, sarcomere formation, and muscle cytoskeletal remodeling, the physiological basis for LGMD2A has remained elusive. METHODS Cell growth, gene expression profiling, and mitochondrial content and function were analyzed using muscle and muscle cell cultures established from healthy and calpain-3-deficient mice. Calpain-3-deficient mice were also treated with PPAR-delta agonist (GW501516) to assess mitochondrial function and membrane repair. The unpaired t test was used to assess the significance of the differences observed between the two groups or treatments. ANOVAs were used to assess significance over time. RESULTS We find that calpain-3 deficiency causes mitochondrial dysfunction in the muscles and myoblasts. Calpain-3-deficient myoblasts showed increased proliferation, and their gene expression profile showed aberrant mitochondrial biogenesis. Myotube gene expression analysis further revealed altered lipid metabolism in calpain-3-deficient muscle. Mitochondrial defects were validated in vitro and in vivo. We used GW501516 to improve mitochondrial biogenesis in vivo in 7-month-old calpain-3-deficient mice. This treatment improved satellite cell activity as indicated by increased MyoD and Pax7 mRNA expression. It also decreased muscle fatigability and reduced serum creatine kinase levels. The decreased mitochondrial function also impaired sarcolemmal repair in the calpain-3-deficient skeletal muscle. Improving mitochondrial activity by acute pyruvate treatment improved sarcolemmal repair. CONCLUSION Our results provide evidence that calpain-3 deficiency in the skeletal muscle is associated with poor mitochondrial biogenesis and function resulting in poor sarcolemmal repair. Addressing this deficit by drugs that improve mitochondrial activity offers new therapeutic avenues for LGMD2A.
Collapse
Affiliation(s)
- Vanessa E Jahnke
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, D.C., USA
| | - Jennifer M Peterson
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, OH, USA
| | - Jack H Van Der Meulen
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, D.C., USA
| | - Jessica Boehler
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, D.C., USA
| | - Kitipong Uaesoontrachoon
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, D.C., USA
| | - Helen K Johnston
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, D.C., USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Aurelia Defour
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, D.C., USA
| | - Aditi Phadke
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, D.C., USA
| | - Qing Yu
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, D.C., USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, D.C., USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, D.C., USA.
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, PO Box 6000, Binghamton, NY, 13902, USA.
| |
Collapse
|
30
|
Dao T, Green AE, Kim YA, Bae SJ, Ha KT, Gariani K, Lee MR, Menzies KJ, Ryu D. Sarcopenia and Muscle Aging: A Brief Overview. Endocrinol Metab (Seoul) 2020; 35:716-732. [PMID: 33397034 PMCID: PMC7803599 DOI: 10.3803/enm.2020.405] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
The world is facing the new challenges of an aging population, and understanding the process of aging has therefore become one of the most important global concerns. Sarcopenia is a condition which is defined by the gradual loss of skeletal muscle mass and function with age. In research and clinical practice, sarcopenia is recognized as a component of geriatric disease and is a current target for drug development. In this review we define this condition and provide an overview of current therapeutic approaches. We further highlight recent findings that describe key pathophysiological phenotypes of this condition, including alterations in muscle fiber types, mitochondrial function, nicotinamide adenine dinucleotide (NAD+) metabolism, myokines, and gut microbiota, in aged muscle compared to young muscle or healthy aged muscle. The last part of this review examines new therapeutic avenues for promising treatment targets. There is still no accepted therapy for sarcopenia in humans. Here we provide a brief review of the current state of research derived from various mouse models or human samples that provide novel routes for the development of effective therapeutics to maintain muscle health during aging.
Collapse
Affiliation(s)
- Tam Dao
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon,
Korea
| | - Alexander E. Green
- University of Ottawa Eric Poulin Centre for Neuromuscular Disease, Ottawa, ON,
Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences University of Ottawa, Ottawa, ON,
Canada
| | - Yun A Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon,
Korea
| | - Sung-Jin Bae
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan,
Korea
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan,
Korea
- Department of Korean Medical Science, Pusan National University School of Korean Medicine, Yangsan,
Korea
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals, Geneva,
Switzerland
- Faculty of Medicine, University of Geneva, Geneva,
Switzerland
| | - Mi-ra Lee
- Department of Social Welfare, Division of Public Service, Dong-Eui University, Busan,
Korea
- Mi-ra Lee, Department of Public Service, Dong-Eui University, 176 Eomgwang-ro, Busanjin-gu, Busan 47340, Korea, Tel: +82-51-890-2038, E-mail:
| | - Keir J. Menzies
- University of Ottawa Eric Poulin Centre for Neuromuscular Disease, Ottawa, ON,
Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences University of Ottawa, Ottawa, ON,
Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON,
Canada
- Keir J. Menzies, Eric Poulin Centre for Neuromuscular Disease, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada, Tel: +1-613-562-5800, E-mail:
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon,
Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon,
Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul,
Korea
- Corresponding authors: Dongryeol Ryu, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea, Tel: +82-31-299-6138, E-mail:
| |
Collapse
|
31
|
Segatto M, Szokoll R, Fittipaldi R, Bottino C, Nevi L, Mamchaoui K, Filippakopoulos P, Caretti G. BETs inhibition attenuates oxidative stress and preserves muscle integrity in Duchenne muscular dystrophy. Nat Commun 2020; 11:6108. [PMID: 33257646 PMCID: PMC7705749 DOI: 10.1038/s41467-020-19839-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects 1 in 3500 live male births. To date, there is no effective cure for DMD, and the identification of novel molecular targets involved in disease progression is important to design more effective treatments and therapies to alleviate DMD symptoms. Here, we show that protein levels of the Bromodomain and extra-terminal domain (BET) protein BRD4 are significantly increased in the muscle of the mouse model of DMD, the mdx mouse, and that pharmacological inhibition of the BET proteins has a beneficial outcome, tempering oxidative stress and muscle damage. Alterations in reactive oxygen species (ROS) metabolism are an early event in DMD onset and they are tightly linked to inflammation, fibrosis, and necrosis in skeletal muscle. By restoring ROS metabolism, BET inhibition ameliorates these hallmarks of the dystrophic muscle, translating to a beneficial effect on muscle function. BRD4 direct association to chromatin regulatory regions of the NADPH oxidase subunits increases in the mdx muscle and JQ1 administration reduces BRD4 and BRD2 recruitment at these regions. JQ1 treatment reduces NADPH subunit transcript levels in mdx muscles, isolated myofibers and DMD immortalized myoblasts. Our data highlight novel functions of the BET proteins in dystrophic skeletal muscle and suggest that BET inhibitors may ameliorate the pathophysiology of DMD.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.,Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche (Is), Italy
| | - Roberta Szokoll
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Raffaella Fittipaldi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Cinzia Bottino
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Lorenzo Nevi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, U974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Old Road Campus Research Building, Nuffield Department of Medicine, Oxford, OX3 7DQ, UK
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
32
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Banks GB, Chamberlain JS, Odom GL. Microutrophin expression in dystrophic mice displays myofiber type differences in therapeutic effects. PLoS Genet 2020; 16:e1009179. [PMID: 33175853 PMCID: PMC7682874 DOI: 10.1371/journal.pgen.1009179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/23/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022] Open
Abstract
Gene therapy approaches for DMD using recombinant adeno-associated viral (rAAV) vectors to deliver miniaturized (or micro) dystrophin genes to striated muscles have shown significant progress. However, concerns remain about the potential for immune responses against dystrophin in some patients. Utrophin, a developmental paralogue of dystrophin, may provide a viable treatment option. Here we examine the functional capacity of an rAAV-mediated microutrophin (μUtrn) therapy in the mdx4cv mouse model of DMD. We found that rAAV-μUtrn led to improvement in dystrophic histopathology & mostly restored the architecture of the neuromuscular and myotendinous junctions. Physiological studies of tibialis anterior muscles indicated peak force maintenance, with partial improvement of specific force. A fundamental question for μUtrn therapeutics is not only can it replace critical functions of dystrophin, but whether full-length utrophin impacts the therapeutic efficacy of the smaller, highly expressed μUtrn. As such, we found that μUtrn significantly reduced the spacing of the costameric lattice relative to full-length utrophin. Further, immunostaining suggested the improvement in dystrophic pathophysiology was largely influenced by favored correction of fast 2b fibers. However, unlike μUtrn, μdystrophin (μDys) expression did not show this fiber type preference. Interestingly, μUtrn was better able to protect 2a and 2d fibers in mdx:utrn-/- mice than in mdx4cv mice where the endogenous full-length utrophin was most prevalent. Altogether, these data are consistent with the role of steric hindrance between full-length utrophin & μUtrn within the sarcolemma. Understanding the stoichiometry of this effect may be important for predicting clinical efficacy.
Collapse
MESH Headings
- Animals
- Dependovirus/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Gene Transfer Techniques
- Genetic Therapy/methods
- Genetic Vectors/genetics
- HEK293 Cells
- Humans
- Mice
- Mice, Inbred mdx
- Microscopy, Electron
- Muscle Contraction
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Neuromuscular Junction/pathology
- Neuromuscular Junction/ultrastructure
- Sarcolemma/pathology
- Sarcolemma/ultrastructure
- Utrophin/genetics
- Utrophin/therapeutic use
Collapse
Affiliation(s)
- Glen B. Banks
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington, United States of America
- Department of BioChemistry, University of Washington, Seattle, Washington, United States of America
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
34
|
Lanza G, Pino M, Fisicaro F, Vagli C, Cantone M, Pennisi M, Bella R, Bellomo M. Motor activity and Becker's muscular dystrophy: lights and shadows. PHYSICIAN SPORTSMED 2020; 48:151-160. [PMID: 31646922 DOI: 10.1080/00913847.2019.1684810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Becker's disease is an inherited muscular dystrophy caused by mutations in the gene coding for the dystrophin protein that leads to quantitative and/or qualitative protein dysfunction and consequent muscle degeneration. Studies in animal models demonstrate that, while eccentric or high-intensity training are deleterious for dystrophic muscles, low-intensity aerobic training may slowdown the disease process and progression. Based on these preclinical data, the available studies in patients with Becker's muscular dystrophy undergoing workout on a cycle ergometer or on a treadmill, at a heart rate ≤65% of their maximal oxygen uptake, showed that aerobic exercise counteracts physical deterioration and loss of functional abilities. These findings suggest an improvement of physical performance through an increase of muscle strength, fatigue resistance, and dexterity capacities, without substantial evidence of acceleration of muscular damage progression. Therefore, individually tailored mild-to-moderate intensity aerobic exercise should be considered as part of the management of these patients. However, further research is necessary to define specific and standardized guidelines for the prescription of type, intensity, frequency, and duration of motor activities. In this review, we provided a summary of the impact of physical activity both in animal models and in patients with Becker's muscular dystrophy, with the intent to identify trends and gaps in knowledge. The potential therapeutic implications and future research directions have been also highlighted.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Marcello Pino
- School of Human and Social Science, University Kore of Enna, Enna, Italy
| | - Francesco Fisicaro
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Carla Vagli
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Mariagiovanna Cantone
- Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Maria Bellomo
- School of Human and Social Science, University Kore of Enna, Enna, Italy
| |
Collapse
|
35
|
Péladeau C, Adam N, Bronicki LM, Coriati A, Thabet M, Al-Rewashdy H, Vanstone J, Mears A, Renaud JM, Holcik M, Jasmin BJ. Identification of therapeutics that target eEF1A2 and upregulate utrophin A translation in dystrophic muscles. Nat Commun 2020; 11:1990. [PMID: 32332749 PMCID: PMC7181625 DOI: 10.1038/s41467-020-15971-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Up-regulation of utrophin in muscles represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy. We previously demonstrated that eEF1A2 associates with the 5’UTR of utrophin A to promote IRES-dependent translation. Here, we examine whether eEF1A2 directly regulates utrophin A expression and identify via an ELISA-based high-throughput screen, FDA-approved drugs that upregulate both eEF1A2 and utrophin A. Our results show that transient overexpression of eEF1A2 in mouse muscles causes an increase in IRES-mediated translation of utrophin A. Through the assessment of our screen, we reveal 7 classes of FDA-approved drugs that increase eEF1A2 and utrophin A protein levels. Treatment of mdx mice with the 2 top leads results in multiple improvements of the dystrophic phenotype. Here, we report that IRES-mediated translation of utrophin A via eEF1A2 is a critical mechanism of regulating utrophin A expression and reveal the potential of repurposed drugs for treating DMD via this pathway. One potential approach for the treatment of Duchenne muscular dysrophy is to increase expression of the dystrophin homolog utrophin. Here, the authors show that eEF1A2 regulates utrophin expression, and show that 2 FDA-approved drugs upregulate eEIF1A2 and utrophin level in mice, leading to improvement of the dystrophic phenotype.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Nadine Adam
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Lucas M Bronicki
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Adèle Coriati
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Mohamed Thabet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Hasanen Al-Rewashdy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jason Vanstone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 5B2, Canada
| | - Alan Mears
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 5B2, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada. .,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
36
|
Ono H, Suzuki N, Kanno SI, Kawahara G, Izumi R, Takahashi T, Kitajima Y, Osana S, Nakamura N, Akiyama T, Ikeda K, Shijo T, Mitsuzawa S, Nagatomi R, Araki N, Yasui A, Warita H, Hayashi YK, Miyake K, Aoki M. AMPK Complex Activation Promotes Sarcolemmal Repair in Dysferlinopathy. Mol Ther 2020; 28:1133-1153. [PMID: 32087766 PMCID: PMC7132631 DOI: 10.1016/j.ymthe.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/12/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in dysferlin are responsible for a group of progressive, recessively inherited muscular dystrophies known as dysferlinopathies. Using recombinant proteins and affinity purification methods combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that AMP-activated protein kinase (AMPK)γ1 was bound to a region of dysferlin located between the third and fourth C2 domains. Using ex vivo laser injury experiments, we demonstrated that the AMPK complex was vital for the sarcolemmal damage repair of skeletal muscle fibers. Injury-induced AMPK complex accumulation was dependent on the presence of Ca2+, and the rate of accumulation was regulated by dysferlin. Furthermore, it was found that the phosphorylation of AMPKα was essential for plasma membrane repair, and treatment with an AMPK activator rescued the membrane-repair impairment observed in immortalized human myotubes with reduced expression of dysferlin and dysferlin-null mouse fibers. Finally, it was determined that treatment with the AMPK activator metformin improved the muscle phenotype in zebrafish and mouse models of dysferlin deficiency. These findings indicate that the AMPK complex is essential for plasma membrane repair and is a potential therapeutic target for dysferlinopathy.
Collapse
Affiliation(s)
- Hiroya Ono
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Shin-Ichiro Kanno
- The Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Toshiaki Takahashi
- National Hospital Organization Sendai-Nishitaga Hospital, Sendai 982-8555, Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration, Division of Developmental Regulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Tomomi Shijo
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Shio Mitsuzawa
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Akira Yasui
- The Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Katsuya Miyake
- Department of Histology and Cell Biology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan; Center for Basic Medical Research, Narita Campus, International University of Health and Welfare, Narita 286-8686, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan.
| |
Collapse
|
37
|
Timpani CA, Goodman CA, Stathis CG, White JD, Mamchaoui K, Butler-Browne G, Gueven N, Hayes A, Rybalka E. Adenylosuccinic acid therapy ameliorates murine Duchenne Muscular Dystrophy. Sci Rep 2020; 10:1125. [PMID: 31980663 PMCID: PMC6981178 DOI: 10.1038/s41598-020-57610-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Arising from the ablation of the cytoskeletal protein dystrophin, Duchenne Muscular Dystrophy (DMD) is a debilitating and fatal skeletal muscle wasting disease underpinned by metabolic insufficiency. The inability to facilitate adequate energy production may impede calcium (Ca2+) buffering within, and the regenerative capacity of, dystrophic muscle. Therefore, increasing the metabogenic potential could represent an effective treatment avenue. The aim of our study was to determine the efficacy of adenylosuccinic acid (ASA), a purine nucleotide cycle metabolite, to stimulate metabolism and buffer skeletal muscle damage in the mdx mouse model of DMD. Dystrophin-positive control (C57BL/10) and dystrophin-deficient mdx mice were treated with ASA (3000 µg.mL−1) in drinking water. Following the 8-week treatment period, metabolism, mitochondrial density, viability and superoxide (O2−) production, as well as skeletal muscle histopathology, were assessed. ASA treatment significantly improved the histopathological features of murine DMD by reducing damage area, the number of centronucleated fibres, lipid accumulation, connective tissue infiltration and Ca2+ content of mdx tibialis anterior. These effects were independent of upregulated utrophin expression in the tibialis anterior. ASA treatment also increased mitochondrial viability in mdx flexor digitorum brevis fibres and concomitantly reduced O2− production, an effect that was also observed in cultured immortalised human DMD myoblasts. Our data indicates that ASA has a protective effect on mdx skeletal muscles.
Collapse
Affiliation(s)
- Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia
| | - Craig A Goodman
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia
| | - Christos G Stathis
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Jason D White
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Kamel Mamchaoui
- Institut de Myologie, Sorbonne University, INSERM UMRS974, Paris, France
| | | | - Nuri Gueven
- Pharmacy, School of Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia.,Department of Medicine-Western Health, The University of Melbourne, St Albans, Victoria, 3021, Australia
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia. .,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia.
| |
Collapse
|
38
|
Han SE, Kim SJ, Kim YI, Nam-Goong IS, Jung HW, Kim ES. Enhancing effects of anagliptin on myoblast differentiation and the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cells. Clin Exp Pharmacol Physiol 2020; 47:903-906. [PMID: 31943324 DOI: 10.1111/1440-1681.13255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Abstract
To investigate the regulatory effects of anagliptin, a DPP-IV inhibitor used to treat type 2 diabetes mellitus (T2DM), on myoblast differentiation and mitochondrial biogenesis in C2C12 mouse skeletal muscle cells. C2C12 myoblasts were differentiated into myotubes and then treated with anagliptin (10, 25, and 50 μmol/L) for 24 hours. In C2C12 myotubes, anagliptin treatment was significantly increased the expression of MHC, PGC1α, Sirt-1, NRF-1, and TFAM and the phosphorylation of AMPK and ACC in a concentration-dependent manner. Anagliptin also significantly increased the total ATP levels in the myotubes. These results suggest that anagliptin can help prevent skeletal muscle dysfunction in T2DM by promotion of myoblast differentiation and enhancement of energy production via upregulation of mitochondrial biogenetic factors and activation of the AMPK/ACC signalling pathway.
Collapse
Affiliation(s)
- Se Eun Han
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine, Ulsan University, Ulsan, Korea
| | - Su Jin Kim
- Department of Anesthesiology and Pain medicine, College of Medicine, Dongguk University, Gyeongju, Korea
| | - Young Il Kim
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine, Ulsan University, Ulsan, Korea
| | - Il Sung Nam-Goong
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine, Ulsan University, Ulsan, Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, Korea
| | - Eun Sook Kim
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine, Ulsan University, Ulsan, Korea
| |
Collapse
|
39
|
Juban G, Saclier M, Yacoub-Youssef H, Kernou A, Arnold L, Boisson C, Ben Larbi S, Magnan M, Cuvellier S, Théret M, Petrof BJ, Desguerre I, Gondin J, Mounier R, Chazaud B. AMPK Activation Regulates LTBP4-Dependent TGF-β1 Secretion by Pro-inflammatory Macrophages and Controls Fibrosis in Duchenne Muscular Dystrophy. Cell Rep 2019; 25:2163-2176.e6. [PMID: 30463013 DOI: 10.1016/j.celrep.2018.10.077] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation and fibrosis characterize Duchenne muscular dystrophy (DMD). We show that pro-inflammatory macrophages are associated with fibrosis in mouse and human DMD muscle. DMD-derived Ly6Cpos macrophages exhibit a profibrotic activity by sustaining fibroblast production of collagen I. This is mediated by the high production of latent-TGF-β1 due to the higher expression of LTBP4, for which polymorphisms are associated with the progression of fibrosis in DMD patients. Skewing macrophage phenotype via AMPK activation decreases ltbp4 expression by Ly6Cpos macrophages, blunts the production of latent-TGF-β1, and eventually reduces fibrosis and improves DMD muscle force. Moreover, fibro-adipogenic progenitors are the main providers of TGF-β-activating enzymes in mouse and human DMD, leading to collagen production by fibroblasts. In vivo pharmacological inhibition of TGF-β-activating enzymes improves the dystrophic phenotype. Thus, an AMPK-LTBP4 axis in inflammatory macrophages controls the production of TGF-β1, which is further activated by and acts on fibroblastic cells, leading to fibrosis in DMD.
Collapse
Affiliation(s)
- Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Marielle Saclier
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Houda Yacoub-Youssef
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Amel Kernou
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Ludovic Arnold
- Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Université Pierre et Marie Curie, Sorbonne Universités, Paris 75013, France
| | - Camille Boisson
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Sabrina Ben Larbi
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Mélanie Magnan
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Sylvain Cuvellier
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marine Théret
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Basil J Petrof
- Meakins-Christie Laboratories, McGill University, Montreal, QC H4A3J1, Canada; Research Institute of the McGill University Health Centre, Montreal, QC H4A3J1, Canada
| | - Isabelle Desguerre
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Julien Gondin
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France.
| |
Collapse
|
40
|
Purohit G, Dhawan J. Adult Muscle Stem Cells: Exploring the Links Between Systemic and Cellular Metabolism. Front Cell Dev Biol 2019; 7:312. [PMID: 31921837 PMCID: PMC6915107 DOI: 10.3389/fcell.2019.00312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that metabolites are important regulators of skeletal muscle stem cell (MuSC) function and fate. While highly proliferative in early life, MuSCs reside in adult skeletal muscle tissue in a quiescent and metabolically depressed state, but are critical for the homeostatic maintenance and regenerative response of the tissue to damage. It is well established that metabolic activity in MuSC changes with their functional activation, but the spatiotemporal links between physiological metabolism and stem cell metabolism require explicit delineation. The quiescent MuSC is defined by a specific metabolic state, which is controlled by intrinsic and extrinsic factors during physiological and pathological tissue dynamics. However, the extent of tissue and organismal level changes driven by alteration in metabolic state of quiescent MuSC is currently not well defined. In addition to their role as biosynthetic precursors and signaling molecules, metabolites are key regulators of epigenetic mechanisms. Emerging evidence points to metabolic control of epigenetic mechanisms in MuSC and their impact on muscle regenerative capacity. In this review, we explore the links between cell-intrinsic, tissue level, and systemic metabolic state in the context of MuSC metabolic state, quiescence, and tissue homeostasis to highlight unanswered questions.
Collapse
Affiliation(s)
- Gunjan Purohit
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Hyderabad, India
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India
| |
Collapse
|
41
|
BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proc Natl Acad Sci U S A 2019; 116:16111-16120. [PMID: 31320589 DOI: 10.1073/pnas.1900544116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) influences the differentiation, plasticity, and survival of central neurons and likewise, affects the development of the neuromuscular system. Besides its neuronal origin, BDNF is also a member of the myokine family. However, the role of skeletal muscle-derived BDNF in regulating neuromuscular physiology in vivo remains unclear. Using gain- and loss-of-function animal models, we show that muscle-specific ablation of BDNF shifts the proportion of muscle fibers from type IIB to IIX, concomitant with elevated slow muscle-type gene expression. Furthermore, BDNF deletion reduces motor end plate volume without affecting neuromuscular junction (NMJ) integrity. These morphological changes are associated with slow muscle function and a greater resistance to contraction-induced fatigue. Conversely, BDNF overexpression promotes a fast muscle-type gene program and elevates glycolytic fiber number. These findings indicate that BDNF is required for fiber-type specification and provide insights into its potential modulation as a therapeutic target in muscle diseases.
Collapse
|
42
|
Sanarica F, Mantuano P, Conte E, Cozzoli A, Capogrosso RF, Giustino A, Cutrignelli A, Cappellari O, Rolland JF, De Bellis M, Denora N, Camerino GM, De Luca A. Proof-of-concept validation of the mechanism of action of Src tyrosine kinase inhibitors in dystrophic mdx mouse muscle: in vivo and in vitro studies. Pharmacol Res 2019; 145:104260. [PMID: 31059789 DOI: 10.1016/j.phrs.2019.104260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Src tyrosine kinase (TK), a redox-sensitive protein overexpressed in dystrophin-deficient muscles, can contribute to damaging signaling by phosphorylation and degradation of β-dystroglycan (β-DG). We performed a proof-of-concept preclinical study to validate this hypothesis and the benefit-safety ratio of a pharmacological inhibition of Src-TK in Duchenne muscular dystrophy (DMD). Src-TK inhibitors PP2 and dasatinib were administered for 5 weeks to treadmill-exercised mdx mice. The outcome was evaluated in vivo and ex vivo on functional, histological and biochemical disease-related parameters. Considering the importance to maintain a proper myogenic program, the potential cytotoxic effects of both compounds, as well as their cytoprotection against oxidative stress-induced damage, was also assessed in C2C12 cells. In line with the hypothesis, both compounds restored the level of β-DG and reduced its phosphorylated form without changing basal expression of genes of interest, corroborating a mechanism at post-translational level. The histological profile of gastrocnemius muscle was slightly improved as well as the level of plasma biomarkers. However, amelioration of in vivo and ex vivo functional parameters was modest, with PP2 being more effective than dasatinib. Both compounds reached appreciable levels in skeletal muscle and liver, supporting proper animal exposure. Dasatinib exerted a greater concentration-dependent cytotoxic effect on C2C12 cells than the more selective PP2, while being less protective against H2O2 cytotoxicity, even though at concentrations higher than those experienced during in vivo treatments. Our results support the interest of Src-TK as drug target in dystrophinopathies, although further studies are necessary to assess the therapeutic potential of inhibitors in DMD.
Collapse
Affiliation(s)
- F Sanarica
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - P Mantuano
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - E Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - A Cozzoli
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - R F Capogrosso
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy; Department of Chemical, Toxicological and Pharmacological Drug Studies, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - A Giustino
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - A Cutrignelli
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - O Cappellari
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester Academic Health Science Centre, UK
| | - J F Rolland
- AXXAM S.p.A., Openzone, 20091, Bresso, Milan, Italy
| | - M De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - N Denora
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - G M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - A De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy.
| |
Collapse
|
43
|
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by a dystrophin protein deficiency. Dystrophin functions to stabilize and protect the muscle fiber during muscle contraction; thus, the absence of functional dystrophin protein leads to muscle injury. DMD patients experience progressive muscle necrosis, loss of function, and ultimately succumb to respiratory failure or cardiomyopathy. Exercise is known to improve muscle health and strength in healthy individuals as well as positively affect other systems. Because of this, exercise has been investigated as a potential therapeutic approach for DMD. METHODS This review aims to provide a concise presentation of the exercise literature with a focus on dystrophin-deficient muscle. Our intent was to identify trends and gaps in knowledge with an appreciation of exercise modality. RESULTS After compiling data from mouse and human studies, it became apparent that endurance exercises such as a swimming and voluntary wheel running have therapeutic potential in limb muscles of mice and respiratory training was beneficial in humans. However, in the comparatively few long-term investigations, the effect of low-intensity training on cardiac and respiratory muscles was contradictory. In addition, the effect of exercise on other systems is largely unknown. CONCLUSIONS To safely prescribe exercise as a therapy to DMD patients, multisystemic investigations are needed including the evaluation of respiratory and cardiac muscle.
Collapse
|
44
|
Boyer JG, Prasad V, Song T, Lee D, Fu X, Grimes KM, Sargent MA, Sadayappan S, Molkentin JD. ERK1/2 signaling induces skeletal muscle slow fiber-type switching and reduces muscular dystrophy disease severity. JCI Insight 2019; 5:127356. [PMID: 30964448 PMCID: PMC6542606 DOI: 10.1172/jci.insight.127356] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling consists of an array of successively acting kinases. The extracellular signal-regulated kinases 1/2 (ERK1/2) are major components of the greater MAPK cascade that transduce growth factor signaling at the cell membrane. Here we investigated ERK1/2 signaling in skeletal muscle homeostasis and disease. Using mouse genetics, we observed that the muscle-specific expression of a constitutively active MEK1 mutant promotes greater ERK1/2 signaling that mediates fiber-type switching to a slow, oxidative phenotype with type I myosin heavy chain expression. Using a conditional and temporally regulated Cre strategy as well as Mapk1 (ERK2) and Mapk3 (ERK1) genetically targeted mice, MEK1-ERK2 signaling was shown to underlie this fast-to-slow fiber type switching in adult skeletal muscle as well as during development. Physiologic assessment of these activated MEK1-ERK1/2 mice showed enhanced metabolic activity and oxygen consumption with greater muscle fatigue resistance. Moreover, induction of MEK1-ERK1/2 signaling increased dystrophin and utrophin protein expression in a mouse model of limb-girdle muscle dystrophy and protected myofibers from damage. In summary, sustained MEK1-ERK1/2 activity in skeletal muscle produces a fast-to-slow fiber-type switch that protects from muscular dystrophy, suggesting a therapeutic approach to enhance the metabolic effectiveness of muscle and protect from dystrophic disease.
Collapse
Affiliation(s)
- Justin G Boyer
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Vikram Prasad
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Taejeong Song
- Heart Lung Vascular Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Donghoon Lee
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xing Fu
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kelly M Grimes
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michelle A Sargent
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Heart Lung Vascular Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeffery D Molkentin
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio, USA
| |
Collapse
|
45
|
Ravel-Chapuis A, Al-Rewashdy A, Bélanger G, Jasmin BJ. Pharmacological and physiological activation of AMPK improves the spliceopathy in DM1 mouse muscles. Hum Mol Genet 2019; 27:3361-3376. [PMID: 29982462 DOI: 10.1093/hmg/ddy245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a triplet repeat expansion in the 3' untranslated region of dystrophia myotonica protein kinase mRNAs. Mutant mRNAs accumulate in the nucleus of affected cells and misregulate RNA-binding proteins, thereby promoting characteristic missplicing events. However, little is known about the signaling pathways that may be affected in DM1. Here, we investigated the status of activated protein kinase (AMPK) signaling in DM1 skeletal muscle and found that the AMPK pathway is markedly repressed in a DM1 mouse model (human skeletal actin-long repeat, HSALR) and patient-derived DM1 myoblasts. Chronic pharmacological activation of AMPK signaling in DM1 mice with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) has multiple beneficial effects on the DM1 phenotype. Indeed, a 6-week AICAR treatment of DM1 mice promoted expression of a slower, more oxidative phenotype, improved muscle histology and corrected several events associated with RNA toxicity. Importantly, AICAR also had a dose-dependent positive effect on the spliceopathy in patient-derived DM1 myoblasts. In separate experiments, we also show that chronic treatment of DM1 mice with resveratrol as well as voluntary wheel running also rescued missplicing events in muscle. Collectively, our findings demonstrate the therapeutic potential of chronic AMPK stimulation both physiologically and pharmacologically for DM1 patients.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ali Al-Rewashdy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
46
|
Rymut SM, Lu B, Perez A, Corey DA, Lamb K, Cotton CU, Kelley TJ. Acetyl-CoA carboxylase inhibition regulates microtubule dynamics and intracellular transport in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1081-L1093. [PMID: 30892081 DOI: 10.1152/ajplung.00369.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The use of high-dose ibuprofen as an anti-inflammatory therapy in cystic fibrosis (CF) has been shown to be an effective intervention although use is limited due to potential adverse events. Identifying the mechanism of ibuprofen efficacy would aid in the development of new therapies that avoid these adverse events. Previous findings demonstrated that ibuprofen treatment restores the regulation of microtubule dynamics in CF epithelial cells through a 5'-adenosine monophosphate-activated protein kinase (AMPK)-dependent mechanism. The goal of this study is to define the AMPK pathway that leads to microtubule regulation. Here, it is identified that inhibition of acetyl-CoA carboxylase (ACC) is the key step in mediating the AMPK effect. ACC inhibition with 5-(tetradecyloxy)-2-furoic acid (TOFA) increases microtubule reformation rates in cultured and primary CF epithelial cells to wild-type (WT) rates. TOFA treatment also restores microtubule-dependent distribution of cholesterol and Rab7-positive organelles, as well as reduces expression of the proinflammatory signaling molecule RhoA to WT levels. ACC activation with citrate replicates these CF phenotypes in WT cells further supporting the role of AMPK signaling through ACC as a key mediator in CF cell signaling. It is concluded that ACC inhibition is the key step in the efficacy of AMPK activation at the cellular level and could represent a novel site of therapeutic intervention to address inflammation in CF.
Collapse
Affiliation(s)
- Sharon M Rymut
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Binyu Lu
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Aura Perez
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Deborah A Corey
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Kata Lamb
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Calvin U Cotton
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| | - Thomas J Kelley
- Department of Pediatrics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
47
|
Wang CL, Kung HN, Wu CH, Huang CJ. Dietary wild bitter gourd displays selective androgen receptor modulator like activity and improves the muscle decline of orchidectomized mice. Food Funct 2019; 10:125-139. [PMID: 30600821 DOI: 10.1039/c8fo01777h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Loss of skeletal muscle mass and strength is often associated with disability and poor quality of life. Selective Androgen Receptor Modulators (SARMs) are under development as potential treatment. This study aims at examining the potential of wild bitter gourd (BG) as a SARM and its effects on the muscle decline induced by orchiectomy. In the cell-based androgen receptor (AR) transactivation assay, the BGP extract showed weak agonistic and antagonistic activities, resembling those of some SARMs. Male C57BL/6J mice were sham-operated (Sham group) or castrated (Cast groups) and fed a modified AIN-93G high sucrose diet supplemented without (Cast group) or with 5% lyophilized BG powder (Cast + BGP) or with testosterone propionate (7 mg TP per kg diet, Cast + TP) for 23 weeks. In contrast to the Cast + TP group, the BGP supplementation did not affect the serum testosterone concentration, and prostate and seminal vesicle mass. Both TP and BGP supplementation increased the weight of androgen responsive muscles, bulbocavernosus (BC) and levator ani (LA) (p < 0.05). The grip strength and the performance on a rotarod of the Cast + BGP group were comparable to those of the Cast + TP group (p > 0.05). The number of succinate dehydrogenase (SDH)-positive fibers of the Cast + BGP group was not significantly different from that of the Sham and Cast + TP groups (p > 0.05). The BGP supplementation up-regulated the Pgc1α, Ucp2 or Ucp3 gene expressions in skeletal muscles of castrated mice (p < 0.05). BGP showed some characteristics of the SARM and might improve skeletal muscle function through the up-regulation of mitochondrial biogenic genes and oxidative capacity, and ameliorated the castration-induced decline of skeletal muscle function in mice.
Collapse
Affiliation(s)
- Chih-Ling Wang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
48
|
Changes in Redox Signaling in the Skeletal Muscle with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4617801. [PMID: 30800208 PMCID: PMC6360032 DOI: 10.1155/2019/4617801] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
Abstract
Reduction in muscle strength with aging is due to both loss of muscle mass (quantity) and intrinsic force production (quality). Along with decreased functional capacity of the muscle, age-related muscle loss is associated with corresponding comorbidities and healthcare costs. Mitochondrial dysfunction and increased oxidative stress are the central driving forces for age-related skeletal muscle abnormalities. The increased oxidative stress in the aged muscle can lead to altered excitation-contraction coupling and calcium homeostasis. Furthermore, apoptosis-mediated fiber loss, atrophy of the remaining fibers, dysfunction of the satellite cells (muscle stem cells), and concomitant impaired muscle regeneration are also the consequences of increased oxidative stress, leading to a decrease in muscle mass, strength, and function of the aged muscle. Here we summarize the possible effects of oxidative stress in the aged muscle and the benefits of physical activity and antioxidant therapy.
Collapse
|
49
|
Fappi A, Neves JDC, Kawasaki KA, Bacelar L, Sanches LN, P. da Silva F, Larina‐Neto R, Chadi G, Zanoteli E. Omega-3 multiple effects increasing glucocorticoid-induced muscle atrophy: autophagic, AMPK and UPS mechanisms. Physiol Rep 2019; 7:e13966. [PMID: 30648357 PMCID: PMC6333722 DOI: 10.14814/phy2.13966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Muscle atrophy occurs in many conditions, including use of glucocorticoids. N-3 (omega-3) is widely consumed due its healthy properties; however, concomitant use with glucocorticoids can increase its side effects. We evaluated the influences of N-3 on glucocorticoid atrophy considering IGF-1, Myostatin, MEK/ERK, AMPK pathways besides the ubiquitin-proteasome system (UPS) and autophagic/lysosomal systems. Sixty animals constituted six groups: CT, N-3 (EPA 100 mg/kg/day for 40 days), DEXA 1.25 (DEXA 1.25 mg/kg/day for 10 days), DEXA 1.25 + N3 (EPA for 40 days + DEXA 1.25 mg/kg/day for the last 10 days), DEXA 2.5 (DEXA 2.5 mg/kg/day for 10 days), and DEXA 2.5 + N3 (EPA for 40 days + DEXA 2.5 mg/kg/day for 10 days). Results: N-3 associated with DEXA increases atrophy (fibers 1 and 2A), FOXO3a, P-SMAD2/3, Atrogin-1/MAFbx (mRNA) expression, and autophagic protein markers (LC3II, LC3II/LC3I, LAMP-1 and acid phosphatase). Additionally, N-3 supplementation alone decreased P-FOXO3a, PGC1-alpha, and type 1 muscle fiber area. Conclusion: N-3 supplementation increases muscle atrophy caused by DEXA in an autophagic, AMPK and UPS process.
Collapse
Affiliation(s)
- Alan Fappi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Juliana de C. Neves
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Karine A. Kawasaki
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Luana Bacelar
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Leandro N. Sanches
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Felipe P. da Silva
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Rubens Larina‐Neto
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Gerson Chadi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Edmar Zanoteli
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| |
Collapse
|
50
|
Amin S, Lux A, O'Callaghan F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br J Clin Pharmacol 2018; 85:37-46. [PMID: 30290005 DOI: 10.1111/bcp.13780] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of the effect of metformin on human health is increasing. In addition to its ability to improve the control of hyperglycaemia, metformin has been shown to reduce the burden o,f ageing via effects on damaged DNA and the process of apoptosis. Studies have shown that metformin may reduce the risk of cardiovascular disease through influences on body weight, blood pressure, cholesterol levels and the progression of atherosclerosis. Studies also suggest that metformin may be beneficial for neuro-psychiatric disorders, cognitive impairment and in reducing the risk of dementia, erectile dysfunction and Duchenne muscular dystrophy. In vivo and in vitro studies have shown that metformin has anti-cancer properties, and population studies have suggested that metformin may reduce the risk of cancer or improve cancer prognosis. It is thought that it exerts its anti-cancer effect through the inhibition of the mammalian target of rapamycin (mTOR) signalling pathway. Because of its effect on the mTOR pathway, there may be a role for metformin in slowing or reversing growth of life-threatening hamartomas in tuberous sclerosis complex.
Collapse
Affiliation(s)
- Sam Amin
- Paediatric Neurologist, University Hospitals Bristol, Upper Maudlin Street Centre Level 6, Bristol, BS28AE, UK
| | - Andrew Lux
- Paediatric Neurologist, University Hospitals Bristol, Upper Maudlin Street Centre Level 6, Bristol, BS28AE, UK
| | - Finbar O'Callaghan
- Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|