1
|
Yin L, Xu Y, Mu J, Leng Y, Ma L, Zheng Y, Li R, Wang Y, Li P, Zhu H, Wang D, Li J. CNKSR2 interactome analysis indicates its association with the centrosome/microtubule system. Neural Regen Res 2025; 20:2420-2432. [PMID: 39359098 DOI: 10.4103/nrr.nrr-d-23-01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00031/figure1/v/2024-09-30T120553Z/r/image-tiff The protein connector enhancer of kinase suppressor of Ras 2 (CNKSR2), present in both the postsynaptic density and cytoplasm of neurons, is a scaffolding protein with several protein-binding domains. Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders, particularly intellectual disability, although the precise mechanism involved has not yet been fully understood. Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane, thereby influencing synaptic signaling and the morphogenesis of dendritic spines. However, the function of CNKSR2 in the cytoplasm remains to be elucidated. In this study, we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2. Through a combination of bioinformatic analysis and cytological experiments, we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome. We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290. Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2. When we downregulated CNKSR2 expression in mouse neuroblastoma cells (Neuro 2A), we observed significant changes in the expression of numerous centrosomal genes. This manipulation also affected centrosome-related functions, including cell size and shape, cell proliferation, and motility. Furthermore, we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder. Our findings establish a connection between CNKSR2 and the centrosome, and offer new insights into the underlying mechanisms of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lin Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Jie Mu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yu Zheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - Ruizhi Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
3
|
Jaiswal A, Boring A, Mukherjee A, Avidor-Reiss T. Fly Fam161 is an essential centriole and cilium transition zone protein with unique and diverse cell type-specific localizations. Open Biol 2024; 14:240036. [PMID: 39255847 PMCID: PMC11500687 DOI: 10.1098/rsob.240036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 09/12/2024] Open
Abstract
Family with sequence similarity 161 (Fam161) is an ancient family of microtubule-binding proteins located at the centriole and cilium transition zone (TZ) lumen that exhibit rapid evolution in mice. However, their adaptive role is unclear. Here, we used flies to gain insight into their cell type-specific adaptations. Fam161 is the sole orthologue of FAM161A and FAM161B found in flies. Mutating Fam161 results in reduced male reproduction and abnormal geotaxis behaviour. Fam161 localizes to sensory neuron centrioles and their specialized TZ (the connecting cilium) in a cell type-specific manner, sometimes labelling only the centrioles, sometimes labelling the centrioles and cilium TZ and sometimes labelling the TZ with varying lengths that are longer than other TZ proteins, defining a new ciliary compartment, the extra distal TZ. These findings suggest that Fam161 is an essential centriole and TZ protein with a unique cell type-specific localization in fruit flies that can produce cell type-specific adaptations.
Collapse
Affiliation(s)
- Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
| | - Andrew Boring
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH43614, USA
| | - Avik Mukherjee
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH43614, USA
| |
Collapse
|
4
|
Stanbury K, Schofield EC, McLaughlin B, Forman OP, Mellersh CS. Exonic Short Interspersed Nuclear Element Insertion in FAM161A Is Associated with Autosomal Recessive Progressive Retinal Atrophy in the English Shepherd. Genes (Basel) 2024; 15:952. [PMID: 39062732 PMCID: PMC11275866 DOI: 10.3390/genes15070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Progressive retinal atrophies (PRAs) are a genetically heterogeneous group of inherited eye diseases that affect over 100 breeds of dog. The initial clinical sign is visual impairment in scotopic conditions, as a consequence of rod photoreceptor cell degeneration. Photopic vision degeneration then follows, due to progression of the disease to the cone photoreceptors, and ultimately results in complete blindness. Two full-sibling English Shepherds were diagnosed with PRA at approximately 5 years old and tested clear of all published PRA genetic variants. This study sought to identify the novel PRA-associated variant segregating in the breed. We utilised a combined approach of whole genome sequencing of the probands and homozygosity mapping of four cases and 22 controls and identified a short interspersed nuclear element within an alternatively spliced exon in FAM161A. The XP_005626197.1 c.17929_ins210 variant was homozygous in six PRA cases and heterozygous or absent in control dogs, consistent with a recessive mode of inheritance. The insertion is predicted to extend exon 4 by 39 aberrant amino acids followed by an early termination stop codon. PRA is intractable to treatment, so the development of a genetic screening test, based on the associated variant, is significant, because it provides dog breeders/owners with a means of reducing the frequency of the disease variant within this breed as well as minimising the risk of breeding puppies that will develop this blinding disease.
Collapse
Affiliation(s)
- Katherine Stanbury
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ellen C. Schofield
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bryan McLaughlin
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Oliver P. Forman
- Wisdom Panel, Mars Petcare (Science and Diagnostics Division), Freeby Lane, Waltham on the Wolds, Leicestershire LE14 4RS, UK
| | - Cathryn S. Mellersh
- Canine Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
5
|
Huang R, Kratka CE, Pea J, McCann C, Nelson J, Bryan JP, Zhou LT, Russo DD, Zaniker EJ, Gandhi AH, Shalek AK, Cleary B, Farhi SL, Duncan FE, Goods BA. Single-cell and spatiotemporal profile of ovulation in the mouse ovary. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594719. [PMID: 38826447 PMCID: PMC11142086 DOI: 10.1101/2024.05.20.594719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ovulation is a spatiotemporally coordinated process that involves several tightly controlled events, including oocyte meiotic maturation, cumulus expansion, follicle wall rupture and repair, and ovarian stroma remodeling. To date, no studies have detailed the precise window of ovulation at single-cell resolution. Here, we performed parallel single-cell RNA-seq and spatial transcriptomics on paired mouse ovaries across an ovulation time course to map the spatiotemporal profile of ovarian cell types. We show that major ovarian cell types exhibit time-dependent transcriptional states enriched for distinct functions and have specific localization profiles within the ovary. We also identified gene markers for ovulation-dependent cell states and validated these using orthogonal methods. Finally, we performed cell-cell interaction analyses to identify ligand-receptor pairs that may drive ovulation, revealing previously unappreciated interactions. Taken together, our data provides a rich and comprehensive resource of murine ovulation that can be mined for discovery by the scientific community.
Collapse
|
6
|
Arsenijevic Y, Chang N, Mercey O, El Fersioui Y, Koskiniemi-Kuendig H, Joubert C, Bemelmans AP, Rivolta C, Banin E, Sharon D, Guichard P, Hamel V, Kostic C. Fine-tuning FAM161A gene augmentation therapy to restore retinal function. EMBO Mol Med 2024; 16:805-822. [PMID: 38504136 PMCID: PMC11018783 DOI: 10.1038/s44321-024-00053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
For 15 years, gene therapy has been viewed as a beacon of hope for inherited retinal diseases. Many preclinical investigations have centered around vectors with maximal gene expression capabilities, yet despite efficient gene transfer, minimal physiological improvements have been observed in various ciliopathies. Retinitis pigmentosa-type 28 (RP28) is the consequence of bi-allelic null mutations in the FAM161A, an essential protein for the structure of the photoreceptor connecting cilium (CC). In its absence, cilia become disorganized, leading to outer segment collapses and vision impairment. Within the human retina, FAM161A has two isoforms: the long one with exon 4, and the short one without it. To restore CC in Fam161a-deficient mice shortly after the onset of cilium disorganization, we compared AAV vectors with varying promoter activities, doses, and human isoforms. While all vectors improved cell survival, only the combination of both isoforms using the weak FCBR1-F0.4 promoter enabled precise FAM161A expression in the CC and enhanced retinal function. Our investigation into FAM161A gene replacement for RP28 emphasizes the importance of precise therapeutic gene regulation, appropriate vector dosing, and delivery of both isoforms. This precision is pivotal for secure gene therapy involving structural proteins like FAM161A.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.
| | - Ning Chang
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Olivier Mercey
- University of Geneva, Department of Molecular and Cellular Biology, Sciences III, Geneva, Switzerland
| | - Younes El Fersioui
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Hanna Koskiniemi-Kuendig
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Caroline Joubert
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexis-Pierre Bemelmans
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, Fontenay-aux-Roses, France
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Faculty of Medicine, The Hebrew of Jerusalem, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Faculty of Medicine, The Hebrew of Jerusalem, Jerusalem, Israel
| | - Paul Guichard
- University of Geneva, Department of Molecular and Cellular Biology, Sciences III, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Molecular and Cellular Biology, Sciences III, Geneva, Switzerland
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.
| |
Collapse
|
7
|
Arslanhan MD, Cengiz-Emek S, Odabasi E, Steib E, Hamel V, Guichard P, Firat-Karalar EN. CCDC15 localizes to the centriole inner scaffold and controls centriole length and integrity. J Cell Biol 2023; 222:e202305009. [PMID: 37934472 PMCID: PMC10630097 DOI: 10.1083/jcb.202305009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 11/08/2023] Open
Abstract
Centrioles are microtubule-based organelles responsible for forming centrosomes and cilia, which serve as microtubule-organizing, signaling, and motility centers. Biogenesis and maintenance of centrioles with proper number, size, and architecture are vital for their functions during development and physiology. While centriole number control has been well-studied, less is understood about their maintenance as stable structures with conserved size and architecture during cell division and ciliary motility. Here, we identified CCDC15 as a centriole protein that colocalizes with and interacts with the inner scaffold, a crucial centriolar subcompartment for centriole size control and integrity. Using ultrastructure expansion microscopy, we found that CCDC15 depletion affects centriole length and integrity, leading to defective cilium formation, maintenance, and response to Hedgehog signaling. Moreover, loss-of-function experiments showed CCDC15's role in recruiting both the inner scaffold protein POC1B and the distal SFI1/Centrin-2 complex to centrioles. Our findings reveal players and mechanisms of centriole architectural integrity and insights into diseases linked to centriolar defects.
Collapse
Affiliation(s)
- Melis D. Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Cengiz-Emek
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Emmanuelle Steib
- Department of Bioengineering, Imperial College London, London, UK
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
Elati K, Tajeri S, Obara I, Mhadhbi M, Zweygarth E, Darghouth MA, Nijhof AM. Dual RNA-seq to catalogue host and parasite gene expression changes associated with virulence of T. annulata-transformed bovine leukocytes: towards identification of attenuation biomarkers. Sci Rep 2023; 13:18202. [PMID: 37875584 PMCID: PMC10598219 DOI: 10.1038/s41598-023-45458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
The apicomplexan parasite Theileria annulata is transmitted by Hyalomma ticks and causes an acute lymphoproliferative disease that is invariably lethal in exotic cattle breeds. The unique ability of the schizont stage of T. annulata to transform infected leukocytes to a cancer-like phenotype and the simplicity of culturing and passaging T. annulata-transformed cells in vitro have been explored for live vaccine development by attenuating the transformed cells using lengthy serial propagation in vitro. The empirical in vivo evaluation of attenuation required for each batch of long-term cultured cells is a major constraint since it is resource intensive and raises ethical issues regarding animal welfare. As yet, the molecular mechanisms underlying attenuation are not well understood. Characteristic changes in gene expression brought about by attenuation are likely to aid in the identification of novel biomarkers for attenuation. We set out to undertake a comparative transcriptome analysis of attenuated (passage 296) and virulent (passage 26) bovine leukocytes infected with a Tunisian strain of T. annulata termed Beja. RNA-seq was used to analyse gene expression profiles and the relative expression levels of selected genes were verified by real-time quantitative PCR (RT-qPCR) analysis. Among the 3538 T. annulata genes analysed, 214 were significantly differentially expressed, of which 149 genes were up-regulated and 65 down-regulated. Functional annotation of differentially expressed T. annulata genes revealed four broad categories of metabolic pathways: carbon metabolism, oxidative phosphorylation, protein processing in the endoplasmic reticulum and biosynthesis of secondary metabolites. It is interesting to note that of the top 40 genes that showed altered expression, 13 were predicted to contain a signal peptide and/or at least one transmembrane domain, suggesting possible involvement in host-parasite interaction. Of the 16,514 bovine transcripts, 284 and 277 showed up-regulated and down-regulated expression, respectively. These were assigned to functional categories relevant to cell surface, tissue morphogenesis and regulation of cell adhesion, regulation of leucocyte, lymphocyte and cell activation. The genetic alterations acquired during attenuation that we have catalogued herein, as well as the accompanying in silico functional characterization, do not only improve understanding of the attenuation process, but can also be exploited by studies aimed at identifying attenuation biomarkers across different cell lines focusing on some host and parasite genes that have been highlighted in this study, such as bovine genes (CD69, ZNF618, LPAR3, and APOL3) and parasite genes such as TA03875.
Collapse
Affiliation(s)
- Khawla Elati
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia.
| | - Shahin Tajeri
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Isaiah Obara
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Moez Mhadhbi
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia
| | - Erich Zweygarth
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mohamed Aziz Darghouth
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia
| | - Ard Menzo Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
| |
Collapse
|
9
|
Wang X, Zhang Z, Zuo W, Wang D, Yang F, Liu Q, Xiao Y. Case Report: Identification of microduplication in the chromosomal 2p16.1p15 region in an infant suffering from pulmonary arterial hypertension. Front Cardiovasc Med 2023; 10:1219480. [PMID: 37937284 PMCID: PMC10626460 DOI: 10.3389/fcvm.2023.1219480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
This study reports the first case of a patient with chromosomal 2p16.1p15 microduplication syndrome complicated by pulmonary arterial hypertension (PAH). A female infant was admitted to the hospital suffering from dyskinesia and developmental delay, and conventional echocardiography revealed an atrial septal defect (ASD), which was not taken seriously or treated at that time. Two years later, preoperative right heart catheterization for ASD closure revealed a mean pulmonary artery pressure (mPAP) of 45 mmHg. The mPAP was reduced, and the condition was stabilized after drug therapy. A genomic copy number duplication (3×) of at least 2.58 Mb in the 2p16.1p15 region on the paternal chromosome was revealed. Multiple Online Mendelian Inheritance in Man (OMIM) genes are involved in this genomic region, such as BCL11A, EHBP1, FAM161A, PEX13, and REL. EHBP1 promotes a molecular phenotypic transformation of pulmonary vascular endothelial cells and is thought to be involved in the rapidly developing PAH of this infant. Collectively, our findings contribute to the knowledge of the genes involved and the clinical manifestations of the 2p16.1p15 microduplication syndrome. Moreover, clinicians should be alert to the possibility of PAH and take early drug intervention when facing patients with 2p16.1p15 microduplications.
Collapse
Affiliation(s)
- Xun Wang
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| | - Zeying Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wanyun Zuo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dan Wang
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| | - Fan Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| |
Collapse
|
10
|
Sahel JA, Marazova K, Dalkara D. Gene augmentation in FAM161A ciliopathy: Toward functional vision rescue. Mol Ther 2023; 31:2820-2822. [PMID: 37729904 PMCID: PMC10556216 DOI: 10.1016/j.ymthe.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- José-Alain Sahel
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; National Eye Hospital Quinze-Vingts, 75012 Paris, France; Hôpital Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France.
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| |
Collapse
|
11
|
Greither T, Dejung M, Behre HM, Butter F, Herlyn H. The human sperm proteome-Toward a panel for male fertility testing. Andrology 2023; 11:1418-1436. [PMID: 36896575 DOI: 10.1111/andr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Although male factor accounts for 40%-50% of unintended childlessness, we are far from fully understanding the detailed causes. Usually, affected men cannot even be provided with a molecular diagnosis. OBJECTIVES We aimed at a higher resolution of the human sperm proteome for better understanding of the molecular causes of male infertility. We were particularly interested in why reduced sperm count decreases fertility despite many normal-looking spermatozoa and which proteins might be involved. MATERIAL AND METHODS Applying mass spectrometry analysis, we qualitatively and quantitatively examined the proteomic profiles of spermatozoa from 76 men differing in fertility. Infertile men had abnormal semen parameters and were involuntarily childless. Fertile subjects exhibited normozoospermia and had fathered children without medical assistance. RESULTS We discovered proteins from about 7000 coding genes in the human sperm proteome. These were mainly known for involvements in cellular motility, response to stimuli, adhesion, and reproduction. Numbers of sperm proteins showing at least threefold deviating abundances increased from oligozoospermia (N = 153) and oligoasthenozoospermia (N = 154) to oligoasthenoteratozoospermia (N = 368). Deregulated sperm proteins primarily engaged in flagellar assembly and sperm motility, fertilization, and male gametogenesis. Most of these participated in a larger network of male infertility genes and proteins. DISCUSSION We expose 31 sperm proteins displaying deviant abundances under infertility, which already were known before to have fertility relevance, including ACTL9, CCIN, CFAP47, CFAP65, CFAP251 (WDR66), DNAH1, and SPEM1. We propose 18 additional sperm proteins with at least eightfold differential abundance for further testing of their diagnostic potential, such as C2orf16, CYLC1, SPATA31E1, SPATA31D1, SPATA48, EFHB (CFAP21), and FAM161A. CONCLUSION Our results shed light on the molecular background of the dysfunctionality of the fewer spermatozoa produced in oligozoospermia and syndromes including it. The male infertility network presented may prove useful in further elucidating the molecular mechanism of male infertility.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Falk Butter
- Department of Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Liu Y, Chen J, Sager R, Sasaki E, Hu H. Interactions between C8orf37 and FAM161A, Two Ciliary Proteins Essential for Photoreceptor Survival. Int J Mol Sci 2022; 23:12033. [PMID: 36233334 PMCID: PMC9570145 DOI: 10.3390/ijms231912033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in C8orf37 cause Bardet-Biedl syndrome (BBS), retinitis pigmentosa (RP), and cone-rod dystrophy (CRD), all manifest in photoreceptor degeneration. Little is known about which proteins C8orf37 interacts with to contribute to photoreceptor survival. To determine the proteins that potentially interact with C8orf37, we carried out a yeast two-hybrid (Y2H) screen using C8orf37 as a bait. FAM161A, a microtubule-binding protein localized at the photoreceptor cilium required for photoreceptor survival, was identified as one of the preys. Double immunofluorescence staining and proximity ligation assay (PLA) of marmoset retinal sections showed that C8orf37 was enriched and was co-localized with FAM161A at the ciliary base of photoreceptors. Epitope-tagged C8orf37 and FAM161A, expressed in HEK293 cells, were also found to be co-localized by double immunofluorescence staining and PLA. Furthermore, interaction domain mapping assays identified that the N-terminal region of C8orf37 and amino acid residues 341-517 within the PFAM UPF0564 domain of FAM161A were critical for C8orf37-FAM161A interaction. These data suggest that the two photoreceptor survival proteins, C8orf37 and FAM161A, interact with each other which may contribute to photoreceptor health.
Collapse
Affiliation(s)
- Yu Liu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jinjun Chen
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rachel Sager
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Tonomachi, Kawasaki 210-0821, Kanagawa, Japan
| | - Huaiyu Hu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
13
|
Retinal Structure and Function in a Knock-In Mouse Model for the FAM161A-p.Arg523* Human Nonsense Pathogenic Variant. OPHTHALMOLOGY SCIENCE 2022; 3:100229. [DOI: 10.1016/j.xops.2022.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
14
|
Mercey O, Kostic C, Bertiaux E, Giroud A, Sadian Y, Gaboriau DCA, Morrison CG, Chang N, Arsenijevic Y, Guichard P, Hamel V. The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration. PLoS Biol 2022; 20:e3001649. [PMID: 35709082 PMCID: PMC9202906 DOI: 10.1371/journal.pbio.3001649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. These cells possess a photosensitive outer segment linked to the cell body through the connecting cilium (CC). While structural defects of the CC have been associated with retinal degeneration, its nanoscale molecular composition, assembly, and function are barely known. Here, using expansion microscopy and electron microscopy, we reveal the molecular architecture of the CC and demonstrate that microtubules are linked together by a CC inner scaffold containing POC5, CENTRIN, and FAM161A. Dissecting CC inner scaffold assembly during photoreceptor development in mouse revealed that it acts as a structural zipper, progressively bridging microtubule doublets and straightening the CC. Furthermore, we show that Fam161a disruption in mouse leads to specific CC inner scaffold loss and triggers microtubule doublet spreading, prior to outer segment collapse and photoreceptor degeneration, suggesting a molecular mechanism for a subtype of retinitis pigmentosa. Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. Ultrastructure expansion microscopy on mouse retina reveals the presence of a novel structure inside the photoreceptor connecting cilium, the inner scaffold, that protects the outer segment against degeneration.
Collapse
Affiliation(s)
- Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Eloïse Bertiaux
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Alexia Giroud
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Yashar Sadian
- CryoGenic Facility, University of Geneva, Geneva, Switzerland
| | - David C. A. Gaboriau
- Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Ning Chang
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (PG); (VH)
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (PG); (VH)
| |
Collapse
|
15
|
Ren ZL, Zhang HB, Li L, Yang ZL, Jiang L. Characterization of two novel knock-in mouse models of syndromic retinal ciliopathy carrying hypomorphic Sdccag8 mutations. Zool Res 2022; 43:442-456. [PMID: 35503560 PMCID: PMC9113982 DOI: 10.24272/j.issn.2095-8137.2021.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022] Open
Abstract
Mutations in serologically defined colon cancer autoantigen protein 8 ( SDCCAG8) were first identified in retinal ciliopathy families a decade ago with unknown function. To investigate the pathogenesis of SDCCAG8-associated retinal ciliopathies in vivo, we employed CRISPR/Cas9-mediated homology-directed recombination (HDR) to generate two knock-in mouse models, Sdccag8Y236X/Y236X and Sdccag8E451GfsX467/E451GfsX467 , which carry truncating mutations of the mouse Sdccag8, corresponding to mutations that cause Bardet-Biedl syndrome (BBS) and Senior-Løken syndrome (SLS) (c.696T>G p.Y232X and c.1339-1340insG p.E447GfsX463) in humans, respectively. The two mutant Sdccag8 knock-in mice faithfully recapitulated human SDCCAG8-associated BBS phenotypes such as rod-cone dystrophy, cystic renal disorder, polydactyly, infertility, and growth retardation, with varied age of onset and severity depending on the hypomorphic strength of the Sdccag8 mutations. To the best of our knowledge, these knock-in mouse lines are the first BBS mouse models to present with the polydactyly phenotype. Major phototransduction protein mislocalization was also observed outside the outer segment after initiation of photoreceptor degeneration. Impaired cilia were observed in the mutant photoreceptors, renal epithelial cells, and mouse embryonic fibroblasts derived from the knock-in mouse embryos, suggesting that SDCCAG8 plays an essential role in ciliogenesis, and cilium defects are a primary driving force of SDCCAG8-associated retinal ciliopathies.
Collapse
Affiliation(s)
- Zhi-Lin Ren
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Hou-Bin Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Zheng-Lin Yang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China. E-mail:
| | - Li Jiang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China . E-mail:
| |
Collapse
|
16
|
Patal R, Banin E, Batash T, Sharon D, Levy J. Ultra-widefield fundus autofluorescence imaging in patients with autosomal recessive retinitis pigmentosa reveals a genotype-phenotype correlation. Graefes Arch Clin Exp Ophthalmol 2022; 260:3471-3478. [PMID: 35501492 DOI: 10.1007/s00417-022-05683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To analyze the genotype-phenotype correlation in patients with retinitis pigmentosa (RP) caused by mutations in the FAM161A, DHDDS, or MAK genes using ultra-widefield fundus autofluorescence (UWF-FAF) imaging. METHODS Retrospective case series of patients with autosomal recessive RP (ARRP) with confirmed causative genetic mutations and available UWF-FAF imaging data. The UWF-FAF data were graded in a blinded fashion using the following criteria: the pattern of macular abnormalities on FAF, the presence or absence of horizontal linear hyperautofluorescence, the extent of decreased autofluorescence (DAF), the shape of DAF, and the presence of hyperautofluorescence at the optic disk. RESULTS A total of 43 patients (mean age of 47 ± 16 years, ranging from 17 to 79 years) with ARRP (86 eyes) were included in our analysis. Genotyping data revealed biallelic mutations in the FAM161A, DHDDS, and MAK genes in 20, 12, and 11 patients, respectively. We found significant differences between the three groups with respect to the pattern of macular abnormalities on FAF (p = 0.001), DAF configuration (p = 0.007), and extent of DAF (p = 0.037). The largest difference between groups was found for macular abnormalities on FAF, with DHDDS patients differing significantly from the MAK and FAM161A groups (p = 0.001). Specifically, DHDDS patients had a more abnormal macular FAF pattern and more widespread decrease in peripheral autofluorescence. No other parameters differed significantly between the three groups. CONCLUSIONS Patients with ARRP can present with specific UWF-FAF patterns based on the underlying causative gene. Future studies are warranted in order to expand this analysis to include additional genes, mutations, and patients as well as assessment of disease progression by following patients over longer periods of time.
Collapse
Affiliation(s)
- Rani Patal
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Tomer Batash
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Jaime Levy
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
17
|
Karademir D, Todorova V, Ebner LJA, Samardzija M, Grimm C. Single-cell RNA sequencing of the retina in a model of retinitis pigmentosa reveals early responses to degeneration in rods and cones. BMC Biol 2022; 20:86. [PMID: 35413909 PMCID: PMC9006580 DOI: 10.1186/s12915-022-01280-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background In inherited retinal disorders such as retinitis pigmentosa (RP), rod photoreceptor-specific mutations cause primary rod degeneration that is followed by secondary cone death and loss of high-acuity vision. Mechanistic studies of retinal degeneration are challenging because of retinal heterogeneity. Moreover, the detection of early cone responses to rod death is especially difficult due to the paucity of cones in the retina. To resolve heterogeneity in the degenerating retina and investigate events in both types of photoreceptors during primary rod degeneration, we utilized droplet-based single-cell RNA sequencing in an RP mouse model, rd10. Results Using trajectory analysis, we defined two consecutive phases of rod degeneration at P21, characterized by the early transient upregulation of Egr1 and the later induction of Cebpd. EGR1 was the transcription factor most significantly associated with the promoters of differentially regulated genes in Egr1-positive rods in silico. Silencing Egr1 affected the expression levels of two of these genes in vitro. Degenerating rods exhibited changes associated with metabolism, neuroprotection, and modifications to synapses and microtubules. Egr1 was also the most strongly upregulated transcript in cones. Its upregulation in cones accompanied potential early respiratory dysfunction and changes in signaling pathways. The expression pattern of EGR1 in the retina was dynamic during degeneration, with a transient increase of EGR1 immunoreactivity in both rods and cones during the early stages of their degenerative processes. Conclusion Our results identify early and late changes in degenerating rd10 rod photoreceptors and reveal early responses to rod degeneration in cones not expressing the disease-causing mutation, pointing to mechanisms relevant for secondary cone degeneration. In addition, our data implicate EGR1 as a potential key regulator of early degenerative events in rods and cones, providing a potential broad target for modulating photoreceptor degeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01280-9.
Collapse
Affiliation(s)
- Duygu Karademir
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | - Vyara Todorova
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Lynn J A Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Holzer E, Rumpf-Kienzl C, Falk S, Dammermann A. A modified TurboID approach identifies tissue-specific centriolar components in C. elegans. PLoS Genet 2022; 18:e1010150. [PMID: 35442950 PMCID: PMC9020716 DOI: 10.1371/journal.pgen.1010150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/15/2022] [Indexed: 01/26/2023] Open
Abstract
Proximity-dependent labeling approaches such as BioID have been a great boon to studies of protein-protein interactions in the context of cytoskeletal structures such as centrosomes which are poorly amenable to traditional biochemical approaches like immunoprecipitation and tandem affinity purification. Yet, these methods have so far not been applied extensively to invertebrate experimental models such as C. elegans given the long labeling times required for the original promiscuous biotin ligase variant BirA*. Here, we show that the recently developed variant TurboID successfully probes the interactomes of both stably associated (SPD-5) and dynamically localized (PLK-1) centrosomal components. We further develop an indirect proximity labeling method employing a GFP nanobody-TurboID fusion, which allows the identification of protein interactors in a tissue-specific manner in the context of the whole animal. Critically, this approach utilizes available endogenous GFP fusions, avoiding the need to generate multiple additional strains for each target protein and the potential complications associated with overexpressing the protein from transgenes. Using this method, we identify homologs of two highly conserved centriolar components, Cep97 and BLD10/Cep135, which are present in various somatic tissues of the worm. Surprisingly, neither protein is expressed in early embryos, likely explaining why these proteins have escaped attention until now. Our work expands the experimental repertoire for C. elegans and opens the door for further studies of tissue-specific variation in centrosome architecture.
Collapse
Affiliation(s)
- Elisabeth Holzer
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | | | - Sebastian Falk
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | | |
Collapse
|
19
|
Beryozkin A, Samanta A, Gopalakrishnan P, Khateb S, Banin E, Sharon D, Nagel-Wolfrum K. Translational Read-Through Drugs (TRIDs) Are Able to Restore Protein Expression and Ciliogenesis in Fibroblasts of Patients with Retinitis Pigmentosa Caused by a Premature Termination Codon in FAM161A. Int J Mol Sci 2022; 23:ijms23073541. [PMID: 35408898 PMCID: PMC8998412 DOI: 10.3390/ijms23073541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Ataluren and Gentamicin are translational readthrough drugs (TRIDs) that induce premature termination codon (PTC) readthrough, resulting in the production of full-length proteins that usually harbor a single missense substitution. FAM161A is a ciliary protein which is expressed in photoreceptors, and pathogenic variants in this gene cause retinitis pigmentosa (RP). Applying TRIDs on fibroblasts from RP patients due to PTC in the FAM161A (p.Arg523*) gene may uncover whether TRIDs can restore expression, localization and function of this protein. Fibroblasts from six patients and five age-matched controls were starved prior to treatment with ataluren or gentamicin, and later FAM161A expression, ciliogenesis and cilia length were analyzed. In contrast to control cells, fibroblasts of patients did not express the FAM161A protein, showed a lower percentage of ciliated cells and grew shorter cilia after starvation. Ataluren and Gentamicin treatment were able to restore FAM161A expression, localization and co-localization with α-tubulin. Ciliogenesis and cilia length were restored following Ataluren treatment almost up to a level which was observed in control cells. Gentamicin was less efficient in ciliogenesis compared to Ataluren. Our results provide a proof-of-concept that PTCs in FAM161A can be effectively suppressed by Ataluren or Gentamicin, resulting in a full-length functional protein.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Ananya Samanta
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
- Institute of Development Biology and Neurobiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Prakadeeswari Gopalakrishnan
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Samer Khateb
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Eyal Banin
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Dror Sharon
- Hadassah Medical Center, Department of Ophthalmology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (A.B.); (P.G.); (S.K.); (E.B.); (D.S.)
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
- Institute of Development Biology and Neurobiology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
- Correspondence:
| |
Collapse
|
20
|
Beryozkin A, Matsevich C, Obolensky A, Kostic C, Arsenijevic Y, Wolfrum U, Banin E, Sharon D. A new mouse model for retinal degeneration due to Fam161a deficiency. Sci Rep 2021; 11:2030. [PMID: 33479377 PMCID: PMC7820261 DOI: 10.1038/s41598-021-81414-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
FAM161A mutations are the most common cause of inherited retinal degenerations in Israel. We generated a knockout (KO) mouse model, Fam161atm1b/tm1b, lacking the major exon #3 which was replaced by a construct that include LacZ under the expression of the Fam161a promoter. LacZ staining was evident in ganglion cells, inner and outer nuclear layers and inner and outer-segments of photoreceptors in KO mice. No immunofluorescence staining of Fam161a was evident in the KO retina. Visual acuity and electroretinographic (ERG) responses showed a gradual decrease between the ages of 1 and 8 months. Optical coherence tomography (OCT) showed thinning of the whole retina. Hypoautofluorescence and hyperautofluorescence pigments was observed in retinas of older mice. Histological analysis revealed a progressive degeneration of photoreceptors along time and high-resolution transmission electron microscopy (TEM) analysis showed that photoreceptor outer segment disks were disorganized in a perpendicular orientation and outer segment base was wider and shorter than in WT mice. Molecular degenerative markers, such as microglia and CALPAIN-2, appear already in a 1-month old KO retina. These results indicate that a homozygous Fam161a frameshift mutation affects retinal function and causes retinal degeneration. This model will be used for gene therapy treatment in the future.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Chen Matsevich
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Corinne Kostic
- Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, 1004, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, 1004, Lausanne, Switzerland
| | - Uwe Wolfrum
- Institute for Molecular Physiology, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
21
|
Levine TP. Structural bioinformatics predicts that the Retinitis Pigmentosa-28 protein of unknown function FAM161A is a homologue of the microtubule nucleation factor Tpx2. F1000Res 2020; 9:1052. [PMID: 33093951 PMCID: PMC7551519 DOI: 10.12688/f1000research.25870.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2020] [Indexed: 11/20/2022] Open
Abstract
Background: FAM161A is a microtubule-associated protein conserved widely across eukaryotes, which is mutated in the inherited blinding disease Retinitis Pigmentosa-28. FAM161A is also a centrosomal protein, being a core component of a complex that forms an internal skeleton of centrioles. Despite these observations about the importance of FAM161A, current techniques used to examine its sequence reveal no homologies to other proteins. Methods: Sequence profiles derived from multiple sequence alignments of FAM161A homologues were constructed by PSI-BLAST and HHblits, and then used by the profile-profile search tool HHsearch, implemented online as HHpred, to identify homologues. These in turn were used to create profiles for reverse searches and pair-wise searches. Multiple sequence alignments were also used to identify amino acid usage in functional elements. Results: FAM161A has a single homologue: the targeting protein for
Xenopus kinesin-like protein-2 (Tpx2), which is a strong hit across more than 200 residues. Tpx2 is also a microtubule-associated protein, and it has been shown previously by a cryo-EM molecular structure to nucleate microtubules through two small elements: an extended loop and a short helix. The homology between FAM161A and Tpx2 includes these elements, as FAM161A has three copies of the loop, and one helix that has many, but not all, properties of the one in Tpx2. Conclusions: FAM161A and its homologues are predicted to be a previously unknown variant of Tpx2, and hence bind microtubules in the same way. This prediction allows precise, testable molecular models to be made of FAM161A-microtubule complexes.
Collapse
Affiliation(s)
- Timothy P Levine
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| |
Collapse
|
22
|
Beryozkin A, Khateb S, Idrobo-Robalino CA, Khan MI, Cremers FPM, Obolensky A, Hanany M, Mezer E, Chowers I, Newman H, Ben-Yosef T, Sharon D, Banin E. Unique combination of clinical features in a large cohort of 100 patients with retinitis pigmentosa caused by FAM161A mutations. Sci Rep 2020; 10:15156. [PMID: 32938956 PMCID: PMC7495424 DOI: 10.1038/s41598-020-72028-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023] Open
Abstract
FAM161A mutations are the most common cause of autosomal recessive retinitis pigmentosa in the Israeli-Jewish population. We aimed to characterize the spectrum of FAM161A-associated phenotypes and identify characteristic clinical features. We identified 114 bi-allelic FAM161A patients and obtained clinical records of 100 of these patients. The most frequent initial symptom was night blindness. Best-corrected visual acuity was largely preserved through the first three decades of life and severely deteriorated during the 4th–5th decades. Most patients manifest moderate-high myopia. Visual fields were markedly constricted from early ages, but maintained for decades. Bone spicule-like pigmentary changes appeared relatively late, accompanied by nummular pigmentation. Full-field electroretinography responses were usually non-detectable at first testing. Fundus autofluorescence showed a hyper-autofluorescent ring around the fovea in all patients already at young ages. Macular ocular coherence tomography showed relative preservation of the outer nuclear layer and ellipsoid zone in the fovea, and frank cystoid macular changes were very rare. Interestingly, patients with a homozygous nonsense mutation manifest somewhat more severe disease. Our clinical analysis is one of the largest ever reported for RP caused by a single gene allowing identification of characteristic clinical features and may be relevant for future application of novel therapies.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Carlos Alberto Idrobo-Robalino
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Eedy Mezer
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Hadas Newman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Ophthalmology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel.
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel.
| |
Collapse
|
23
|
Lin Y, Xu CL, Breazzano MP, Tanaka AJ, Ryu J, Levi SR, Yao K, Sparrow JR, Tsang SH. Progressive RPE atrophy and photoreceptor death in KIZ-associated autosomal recessive retinitis pigmentosa. Ophthalmic Genet 2020; 41:26-30. [PMID: 32052671 PMCID: PMC9070555 DOI: 10.1080/13816810.2020.1723116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 10/25/2022]
Abstract
Background: To evaluate the long-term progression of autosomal recessive retinitis pigmentosa (RP) due to mutations in KIZ using multimodal imaging and a quantitative analytical approach.Methods: Whole exome sequencing (WES) and targeted capture sequencing were used to identify mutation. Fundus photography, short-wavelength autofluorescence (SW-AF), spectral-domain optical coherence tomography (SD-OCT) imaging, and electroretinography (ERG) were analyzed. Serial measurements of peripheral retinal pigment epithelium (RPE) atrophy area with SW-AF, as well as the ellipsoid zone (EZ) width using SD-OCT were performed.Results: Two homozygous variants in KIZ-a c.226C>T mutation as well as a previously unreported c.119_122delAACT mutation-were identified in four unrelated patients. Fundus examination and ERG revealed classic rod-cone dysfunction, and SD-OCT demonstrated outer retinal atrophy with centrally preserved EZ line. SW-AF imaging revealed hyperautofluorescent rings with surrounding parafoveal, mid-peripheral and widespread loss of autofluorescence. The RPE atrophy area increased annually by 4.9%. Mean annual exponential rates of decline for KIZ patients were 8.5% for visual acuity and 15.9% for 30 Hz Flicker amplitude. The average annual reduction distance of the EZ distance was 66.5 μm per year.Conclusions: RPE atrophy progresses along with a loss of photoreceptors, and parafoveal RPE hypoautofluorescence is commonly seen in KIZ-associated RP patients. KIZ-associated RP is an early-onset severe rod-cone dystrophy.
Collapse
Affiliation(s)
- Yuchen Lin
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Christine L. Xu
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
| | - Mark P. Breazzano
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York University School of Medicine, New York, New York, USA
| | - Akemi J. Tanaka
- Department of Pathology & Cell Biology, Institute of Human Nutrition, and Columbia Stem Cell Initiative, Columbia University, New York, New York, USA
| | - Joseph Ryu
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
| | - Sarah R. Levi
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Janet R. Sparrow
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
- Department of Pathology & Cell Biology, Institute of Human Nutrition, and Columbia Stem Cell Initiative, Columbia University, New York, New York, USA
| | - Stephen H. Tsang
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
- Department of Pathology & Cell Biology, Institute of Human Nutrition, and Columbia Stem Cell Initiative, Columbia University, New York, New York, USA
| |
Collapse
|
24
|
Hu YS, Song H, Li Y, Xiao ZY, Li T. Whole-exome sequencing identifies novel mutations in genes responsible for retinitis pigmentosa in 2 nonconsanguineous Chinese families. Int J Ophthalmol 2019; 12:915-923. [PMID: 31236346 DOI: 10.18240/ijo.2019.06.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
AIM To detect the pathogenetic mutations responsible for nonsyndromic autosomal recessive retinitis pigmentosa (RP) in 2 nonconsanguineous Chinese families. METHODS The clinical data, including detailed medical history, best corrected visual acuity (BCVA), slit-lamp biomicroscope examination, fundus photography, optical coherence tomography, static perimetry, and full field electroretinogram, were collected from the members of 2 nonconsanguineous Chinese families preliminarily diagnosed with RP. Genomic DNA was extracted from the probands and other available family members; whole-exome sequencing was conducted with the DNA samples provided by the probands, and all mutations detected by whole-exome sequencing were verified using Sanger sequencing in the probands and the other available family members. The verified novel mutations were further sequenced in 192 ethnicity matched healthy controls. RESULTS The patients from the 2 families exhibited the typical symptoms of RP, including night blindness and progressive constriction of the visual field, and the fundus examinations showed attenuated retinal arterioles, peripheral bone spicule pigment deposits, and waxy optic discs. Whole-exome sequencing revealed a novel nonsense mutation in FAM161A (c.943A>T, p.Lys315*) and compound heterozygous mutations in RP1L1 (c.56C>A, p.Pro19His; c.5470C>T, p.Gln1824*). The nonsense c.5470C>T, p.Gln1824* mutation was novel. All mutations were verified by Sanger sequencing. The mutation p.Lys315* in FAM161A co-segregated with the phenotype, and all the nonsense mutations were absent from the ethnicity matched healthy controls and all available databases. CONCLUSION We identify 2 novel mutations in genes responsible for autosomal recessive RP, and the mutation in FAM161A is reported for the first time in a Chinese population. Our result not only enriches the knowledge of the mutation frequency and spectrum in the genes responsible for nonsyndromic RP but also provides a new target for future gene therapy.
Collapse
Affiliation(s)
- Yan-Shan Hu
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Hui Song
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Yin Li
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Zi-Yun Xiao
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Tuo Li
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| |
Collapse
|
25
|
Kovács IA, Luck K, Spirohn K, Wang Y, Pollis C, Schlabach S, Bian W, Kim DK, Kishore N, Hao T, Calderwood MA, Vidal M, Barabási AL. Network-based prediction of protein interactions. Nat Commun 2019; 10:1240. [PMID: 30886144 PMCID: PMC6423278 DOI: 10.1038/s41467-019-09177-y] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Despite exceptional experimental efforts to map out the human interactome, the continued data incompleteness limits our ability to understand the molecular roots of human disease. Computational tools offer a promising alternative, helping identify biologically significant, yet unmapped protein-protein interactions (PPIs). While link prediction methods connect proteins on the basis of biological or network-based similarity, interacting proteins are not necessarily similar and similar proteins do not necessarily interact. Here, we offer structural and evolutionary evidence that proteins interact not if they are similar to each other, but if one of them is similar to the other's partners. This approach, that mathematically relies on network paths of length three (L3), significantly outperforms all existing link prediction methods. Given its high accuracy, we show that L3 can offer mechanistic insights into disease mechanisms and can complement future experimental efforts to complete the human interactome.
Collapse
Affiliation(s)
- István A Kovács
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, 02115, USA.
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, H-1525, Budapest, P.O.Box 49, Hungary.
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang Wang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Carl Pollis
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sadie Schlabach
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenting Bian
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Dae-Kyum Kim
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Donnelly Centre, Toronto, Ontario, Canada, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Nishka Kishore
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Donnelly Centre, Toronto, Ontario, Canada, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, 02115, USA.
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Division of Network Medicine and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Network and Data Science, Central European University, Budapest, H-1051, Hungary.
| |
Collapse
|
26
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
27
|
Namburi P, Ratnapriya R, Khateb S, Lazar CH, Kinarty Y, Obolensky A, Erdinest I, Marks-Ohana D, Pras E, Ben-Yosef T, Newman H, Gross M, Swaroop A, Banin E, Sharon D. Bi-allelic Truncating Mutations in CEP78, Encoding Centrosomal Protein 78, Cause Cone-Rod Degeneration with Sensorineural Hearing Loss. Am J Hum Genet 2016; 99:777-784. [PMID: 27588452 PMCID: PMC5011076 DOI: 10.1016/j.ajhg.2016.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/07/2016] [Indexed: 12/22/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a diverse group of genetically and clinically heterogeneous retinal abnormalities. The present study was designed to identify genetic defects in individuals with an uncommon combination of autosomal recessive progressive cone-rod degeneration accompanied by sensorineural hearing loss (arCRD-SNHL). Homozygosity mapping followed by whole-exome sequencing (WES) and founder mutation screening revealed two truncating rare variants (c.893-1G>A and c.534delT) in CEP78, which encodes centrosomal protein 78, in six individuals of Jewish ancestry with CRD and SNHL. RT-PCR analysis of CEP78 in blood leukocytes of affected individuals revealed that the c.893-1G>A mutation causes exon 7 skipping leading to deletion of 65bp, predicted to result in a frameshift and therefore a truncated protein (p.Asp298Valfs(∗)17). RT-PCR analysis of 17 human tissues demonstrated ubiquitous expression of different CEP78 transcripts. RNA-seq analysis revealed three transcripts in the human retina and relatively higher expression in S-cone-like photoreceptors of Nrl-knockout retina compared to rods. Immunohistochemistry studies in the human retina showed intense labeling of cone inner segments compared to rods. CEP78 was reported previously to interact with c-nap1, encoded by CEP250 that we reported earlier to cause atypical Usher syndrome. We conclude that truncating mutations in CEP78 result in a phenotype involving both the visual and auditory systems but different from typical Usher syndrome.
Collapse
Affiliation(s)
- Prasanthi Namburi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-0610, USA
| | - Samer Khateb
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-0610, USA; Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, 400271, Cluj-Napoca, Romania
| | - Yael Kinarty
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel; Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Inbar Erdinest
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Devorah Marks-Ohana
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Eran Pras
- Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin, 70300, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Tamar Ben-Yosef
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Hadas Newman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel; Department of Ophthalmology, Tel-Aviv Medical Center, Tel-Aviv, 64239, Israel
| | - Menachem Gross
- Department of Otolaryngology-Head and Neck Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-0610, USA
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel.
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel.
| |
Collapse
|
28
|
Nikopoulos K, Farinelli P, Giangreco B, Tsika C, Royer-Bertrand B, Mbefo M, Bedoni N, Kjellström U, El Zaoui I, Di Gioia S, Balzano S, Cisarova K, Messina A, Decembrini S, Plainis S, Blazaki S, Khan M, Micheal S, Boldt K, Ueffing M, Moulin A, Cremers F, Roepman R, Arsenijevic Y, Tsilimbaris M, Andréasson S, Rivolta C. Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects. Am J Hum Genet 2016; 99:770-776. [PMID: 27588451 DOI: 10.1016/j.ajhg.2016.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023] Open
Abstract
Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa.
Collapse
|
29
|
Wang J, Chen X, Wang F, Zhang J, Li P, Li Z, Xu J, Gao F, Jin C, Tian H, Zhang J, Li W, Lu L, Xu GT. OFD1, as a Ciliary Protein, Exhibits Neuroprotective Function in Photoreceptor Degeneration Models. PLoS One 2016; 11:e0155860. [PMID: 27196396 PMCID: PMC4873209 DOI: 10.1371/journal.pone.0155860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Ofd1 is a newly identified causative gene for Retinitis pigmentosa (RP), a photoreceptor degenerative disease. This study aimed to examine Ofd1 localization in retina and further to investigate its function in photoreceptor degeneration models. Ofd1 localization in rat retina was examined using immunofluorescence. N-methyl-N-nitrosourea (MNU)-induced rats and Royal College of Surgeons (RCS) rats were used as photoreceptor degeneration models. The expression pattern of Ofd1, other ciliary associated genes and Wnt signaling pathway genes were examined in rat models. Furthermore, pEGFP-Ofd1-CDS and pSUPER-Ofd1-shRNA were constructed to overexpress and knockdown the expression level in 661W and R28 cells. MNU was also used to induce cell death. Cilia formation was observed using immunocytochemistry (ICC). Reactive oxygen species (ROS) were detected using the 2', 7'-Dichlorofluorescin diacetate (DCFH-DA) assay. Apoptosis genes expression was examined using qRT-PCR, Western blotting and fluorescence-activated cell sorting (FACS). Ofd1 localized to outer segments of rat retina photoreceptors. Ofd1 and other ciliary proteins expression levels increased from the 1st and 4th postnatal weeks and decreased until the 6th week in the RCS rats, while their expression consistently decreased from the 1st and 7th day in the MNU rats. Moreover, Wnt signaling pathway proteins expression was significantly up-regulated in both rat models. Knockdown of Ofd1 expression resulted in a smaller population, shorter length of cell cilia, and lower cell viability. Ofd1 overexpression partially attenuated MNU toxic effects by reducing ROS levels and mitigating apoptosis. To the best of our knowledge, this is the first study demonstrating Ofd1 localization and its function in rat retina and in retinal degeneration rat models. Ofd1 plays a role in controlling photoreceptor cilium length and number. Importantly, it demonstrates a neuroprotective function by protecting the photoreceptor from oxidative stress and apoptosis. These data have expanded our understanding of Ofd1 function beyond cilia, and we concluded that ofd1 neuroprotection could be a potential treatment strategy in retina degeneration models.
Collapse
Affiliation(s)
- Juan Wang
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Xin Chen
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Zongyi Li
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Weiye Li
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
- * E-mail: (G-TX); (LXL)
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
- Institute for Nutritional Sciences, Tongji University, Shanghai, China
- * E-mail: (G-TX); (LXL)
| |
Collapse
|
30
|
Boldt K, van Reeuwijk J, Lu Q, Koutroumpas K, Nguyen TMT, Texier Y, van Beersum SEC, Horn N, Willer JR, Mans DA, Dougherty G, Lamers IJC, Coene KLM, Arts HH, Betts MJ, Beyer T, Bolat E, Gloeckner CJ, Haidari K, Hetterschijt L, Iaconis D, Jenkins D, Klose F, Knapp B, Latour B, Letteboer SJF, Marcelis CL, Mitic D, Morleo M, Oud MM, Riemersma M, Rix S, Terhal PA, Toedt G, van Dam TJP, de Vrieze E, Wissinger Y, Wu KM, Apic G, Beales PL, Blacque OE, Gibson TJ, Huynen MA, Katsanis N, Kremer H, Omran H, van Wijk E, Wolfrum U, Kepes F, Davis EE, Franco B, Giles RH, Ueffing M, Russell RB, Roepman R. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun 2016; 7:11491. [PMID: 27173435 PMCID: PMC4869170 DOI: 10.1038/ncomms11491] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/01/2016] [Indexed: 01/12/2023] Open
Abstract
Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. Mutations in proteins that localize to primary cilia cause devastating diseases, yet the primary cilium is a poorly understood organelle. Here the authors use interaction proteomics to identify a network of human ciliary proteins that provides new insights into several biological processes and diseases.
Collapse
Affiliation(s)
- Karsten Boldt
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Jeroen van Reeuwijk
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Qianhao Lu
- Biochemie Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.,Cell Networks, Bioquant, Ruprecht-Karl University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Konstantinos Koutroumpas
- Institute of Systems and Synthetic Biology, Genopole, CNRS, Université d'Evry, 91030 Evry, France
| | - Thanh-Minh T Nguyen
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Yves Texier
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany.,Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science, 81377 Munich, Germany
| | - Sylvia E C van Beersum
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Nicola Horn
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Jason R Willer
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27701, USA
| | - Dorus A Mans
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gerard Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Ideke J C Lamers
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Karlien L M Coene
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Heleen H Arts
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Matthew J Betts
- Biochemie Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.,Cell Networks, Bioquant, Ruprecht-Karl University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Tina Beyer
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Emine Bolat
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholz Association, Otfried-Müller Strasse 23, 72076 Tuebingen, Germany
| | - Khatera Haidari
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Lisette Hetterschijt
- Department of Otorhinolaryngology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Daniela Iaconis
- Telethon Institute of Genetics and Medicine, TIGEM 80078, Italy
| | - Dagan Jenkins
- Molecular Medicine Unit and Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Franziska Klose
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Barbara Knapp
- Cell and Matrix Biology, Inst. of Zoology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Brooke Latour
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Stef J F Letteboer
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Carlo L Marcelis
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Dragana Mitic
- Cambridge Cell Networks Ltd, St John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, TIGEM 80078, Italy.,Department of Translational Medicine Federico II University, 80131 Naples, Italy
| | - Machteld M Oud
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Moniek Riemersma
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Susan Rix
- Molecular Medicine Unit and Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Grischa Toedt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Teunis J P van Dam
- Centre for Molecular and Biomolecular Informatics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Yasmin Wissinger
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Ka Man Wu
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gordana Apic
- Cambridge Cell Networks Ltd, St John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Philip L Beales
- Molecular Medicine Unit and Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Oliver E Blacque
- School of Biomolecular &Biomed Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27701, USA
| | - Hannie Kremer
- Department of Otorhinolaryngology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Erwin van Wijk
- Department of Otorhinolaryngology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Uwe Wolfrum
- Cell and Matrix Biology, Inst. of Zoology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - François Kepes
- Institute of Systems and Synthetic Biology, Genopole, CNRS, Université d'Evry, 91030 Evry, France
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27701, USA
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, TIGEM 80078, Italy.,Department of Translational Medicine Federico II University, 80131 Naples, Italy
| | - Rachel H Giles
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Marius Ueffing
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Robert B Russell
- Biochemie Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.,Cell Networks, Bioquant, Ruprecht-Karl University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | | |
Collapse
|
31
|
Abstract
In human cells, the basal body (BB) core comprises a ninefold microtubule-triplet cylindrical structure. Distal and subdistal appendages are located at the distal end of BB, where they play indispensable roles in cilium formation and function. Most cells that arrest in the G0 stage of the cell cycle initiate BB docking at the plasma membrane followed by BB-mediated growth of a solitary primary cilium, a structure required for sensing the extracellular environment and cell signaling. In addition to the primary cilium, motile cilia are present in specialized cells, such as sperm and airway epithelium. Mutations that affect BB function result in cilia dysfunction. This can generate syndromic disorders, collectively called ciliopathies, for which there are no effective treatments. In this review, we focus on the features and functions of BBs and centrosomes in Homo sapiens.
Collapse
Affiliation(s)
- Anastassiia Vertii
- />Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| | - Hui-Fang Hung
- />Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| | - Heidi Hehnly
- />Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY USA
| | - Stephen Doxsey
- />Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| |
Collapse
|
32
|
FAM161A and TTC8 are Differentially Expressed in Non-Allelelic Early Onset Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:201-7. [PMID: 26427412 DOI: 10.1007/978-3-319-17121-0_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ciliary genes FAM161A and TTC8 have been implicated in retinal degeneration (RD) in humans and in dogs. The identification of FAM161A and TTC8 mutations in canine RD is exciting as there is the potential to develop novel large animal models for RD. However, the disease phenotypes in the dog and the roles of abnormal genes in disease pathology have yet to be fully characterized. The present study evaluated the expression patterns of FAM161A and TTC8 during normal retinal development in dogs, and in three non-allelic, early onset canine RD models at critical time points of the disease: RCD1, XLPRA2 and ERD. Both genes were differentially expressed in RCD1 and ERD, but not in XLPRA2. These results add evidence to the hypothesis that (a) mutations in many retinal genes have a cascade effect on the expression of multiple, possibly unrelated genes and (b) a large number and wide range of genes probably contribute to RD in general.
Collapse
|
33
|
Maranhao B, Biswas P, Gottsch ADH, Navani M, Naeem MA, Suk J, Chu J, Khan SN, Poleman R, Akram J, Riazuddin S, Lee P, Riazuddin SA, Hejtmancik JF, Ayyagari R. Investigating the Molecular Basis of Retinal Degeneration in a Familial Cohort of Pakistani Decent by Exome Sequencing. PLoS One 2015; 10:e0136561. [PMID: 26352687 PMCID: PMC4564165 DOI: 10.1371/journal.pone.0136561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To define the molecular basis of retinal degeneration in consanguineous Pakistani pedigrees with early onset retinal degeneration. METHODS A cohort of 277 individuals representing 26 pedigrees from the Punjab province of Pakistan was analyzed. Exomes were captured with commercial kits and sequenced on an Illumina HiSeq 2500. Candidate variants were identified using standard tools and analyzed using exomeSuite to detect all potentially pathogenic changes in genes implicated in retinal degeneration. Segregation analysis was performed by dideoxy sequencing and novel variants were additionally investigated for their presence in ethnicity-matched controls. RESULTS We identified a total of nine causal mutations, including six novel variants in RPE65, LCA5, USH2A, CNGB1, FAM161A, CERKL and GUCY2D as the underlying cause of inherited retinal degenerations in 13 of 26 pedigrees. In addition to the causal variants, a total of 200 variants each observed in five or more unrelated pedigrees investigated in this study that were absent from the dbSNP, HapMap, 1000 Genomes, NHLBI ESP6500, and ExAC databases were identified, suggesting that they are common in, and unique to the Pakistani population. CONCLUSIONS We identified causal mutations associated with retinal degeneration in nearly half of the pedigrees investigated in this study through next generation whole exome sequencing. All novel variants detected in this study through exome sequencing have been cataloged providing a reference database of variants common in, and unique to the Pakistani population.
Collapse
Affiliation(s)
- Bruno Maranhao
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Pooja Biswas
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Alexander D. H. Gottsch
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Mili Navani
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - John Suk
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Justin Chu
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Sheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rachel Poleman
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Pauline Lee
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - J. Fielding Hejtmancik
- OGVF branch, National Eye Institute, NIH, Bethesda, MD, United States of America
- * E-mail: (RA); (JFH)
| | - Radha Ayyagari
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
- * E-mail: (RA); (JFH)
| |
Collapse
|
34
|
Zhang C, Zhang Q, Wang F, Liu Q. Knockdown of poc1b causes abnormal photoreceptor sensory cilium and vision impairment in zebrafish. Biochem Biophys Res Commun 2015; 465:651-7. [PMID: 26188096 DOI: 10.1016/j.bbrc.2015.06.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/12/2015] [Indexed: 01/26/2023]
Abstract
Proteomic analysis of the mouse photoreceptor sensory cilium identified a set of cilia proteins, including Poc1 centriolar protein b (Poc1b). Previous functional studies in human cells and zebrafish embryos implicated that Poc1b plays important roles in centriole duplication and length control, as well as ciliogenesis. To study the function of Poc1b in photoreceptor sensory cilia and other primary cilia, we expressed a tagged recombinant Poc1b protein in cultured renal epithelial cells and rat retina. Poc1b was localized to the centrioles and spindle bundles during cell cycle progression, and to the basal body of photoreceptor sensory cilia. A morpholino knockdown and complementation assay of poc1b in zebrafish showed that loss of poc1b led to a range of morphological anomalies of cilia commonly associated with human ciliopathies. In the retina, the development of retinal laminae was significantly delayed and the length of photoreceptor outer segments was shortened. Visual behavior studies revealed impaired visual function in the poc1b morphants. In addition, ciliopathy-associated developmental defects, such as small eyes, curved body axis, heart defects, and shortened cilia in Kupffer's vesicle, were observed as well. These data suggest that poc1b is required for normal development and ciliogenesis of retinal photoreceptor sensory cilia and other cilia. Furthermore, this conclusion is supported by recent findings that mutations in POC1B gene have been identified in patients with inherited retinal dystrophy and syndromic retinal ciliopathy.
Collapse
Affiliation(s)
- Conghui Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Qi Zhang
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Qin Liu
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA; Berman-Gund Laboratory for the Study of Retinal Degenerations, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Diverse clinical phenotypes associated with a nonsense mutation in FAM161A. Eye (Lond) 2015; 29:1226-32. [PMID: 26113502 DOI: 10.1038/eye.2015.93] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/09/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Mutations in the FAM161A gene have been reported in association with autosomal recessive retinitis pigmentosa (arRP) in several ethnic populations. This study aimed to assess the prevalence of FAM161A-related retinopathy in a British cohort and to characterise the phenotype associated with mutations in this gene. METHODS The FAM161A coding region and intron-exon boundaries were screened by Sanger sequencing in 120 retinitis pigmentosa (RP) patients (with likely autosomal recessive inheritance) in whom mutations in other known major RP genes have been ruled out by commercially available testing. Homozygosity mapping was performed in one consanguineous family, and high-throughput sequencing of candidate genes was performed to identify disease-associated changes. Clinical assessment of affected individuals included perimetry testing, fundus autofluorescence imaging, and optical coherence tomography. RESULTS Two patients of British origin with a homozygous mutation in FAM161A (c.1309A>T, p.Arg437*) were identified by Sanger sequencing. Homozygosity mapping and subsequent high-throughput sequencing analysis identified a further family of Pakistani origin with the same genotype. Clinical examination of affected members of these families revealed that this mutation was associated with a diverse clinical phenotype, ranging from mild disease with preservation of central acuity to severe visual impairment. CONCLUSIONS Homozygosity for the c.1309A>T, p.Arg437* variant in FAM161A is a relatively common cause of arRP. The mutation occurs in diverse ethnic populations, associated with typical retinitis pigmentosa with disease onset usually in the second or third decade of life.
Collapse
|
36
|
Di Gioia SA, Farinelli P, Letteboer SJF, Arsenijevic Y, Sharon D, Roepman R, Rivolta C. Interactome analysis reveals that FAM161A, deficient in recessive retinitis pigmentosa, is a component of the Golgi-centrosomal network. Hum Mol Genet 2015; 24:3359-71. [PMID: 25749990 DOI: 10.1093/hmg/ddv085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
Defects in FAM161A, a protein of unknown function localized at the cilium of retinal photoreceptor cells, cause retinitis pigmentosa, a form of hereditary blindness. By using different fragments of this protein as baits to screen cDNA libraries of human and bovine retinas, we defined a yeast two-hybrid-based FAM161A interactome, identifying 53 bona fide partners. In addition to statistically significant enrichment in ciliary proteins, as expected, this interactome revealed a substantial bias towards proteins from the Golgi apparatus, the centrosome and the microtubule network. Validation of interaction with key partners by co-immunoprecipitation and proximity ligation assay confirmed that FAM161A is a member of the recently recognized Golgi-centrosomal interactome, a network of proteins interconnecting Golgi maintenance, intracellular transport and centrosome organization. Notable FAM161A interactors included AKAP9, FIP3, GOLGA3, KIFC3, KLC2, PDE4DIP, NIN and TRIP11. Furthermore, analysis of FAM161A localization during the cell cycle revealed that this protein followed the centrosome during all stages of mitosis, likely reflecting a specific compartmentalization related to its role at the ciliary basal body during the G0 phase. Altogether, these findings suggest that FAM161A's activities are probably not limited to ciliary tasks but also extend to more general cellular functions, highlighting possible novel mechanisms for the molecular pathology of retinal disease.
Collapse
Affiliation(s)
| | - Pietro Farinelli
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Stef J F Letteboer
- Department of Human Genetics and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands and
| | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronald Roepman
- Department of Human Genetics and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands and
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetically heterogeneous disorder caused by the abnormal structure and/or function of motile cilia. The PCD diagnosis is challenging and requires a well-described clinical phenotype combined with the identification of abnormalities in ciliary ultrastructure and/or beating pattern as well as the recognition of genetic cause of the disease. Regarding the pace of identification of PCD-related genes, a rapid acceleration during the last 2-3 years is notable. This is the result of new technologies, such as whole-exome sequencing, that have been recently applied in genetic research. To date, PCD-causative mutations in 29 genes are known and the number of causative genes is bound to rise. Even though the genetic causes of approximately one-third of PCD cases still remain to be found, the current knowledge can already be used to create new, accurate genetic tests for PCD that can accelerate the correct diagnosis and reduce the proportion of unexplained cases. This review aims to present the latest data on the relations between ciliary structure aberrations and their genetic basis.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Ziętkiewicz
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Witt
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
38
|
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetically heterogeneous disorder caused by the abnormal structure and/or function of motile cilia. The PCD diagnosis is challenging and requires a well-described clinical phenotype combined with the identification of abnormalities in ciliary ultrastructure and/or beating pattern as well as the recognition of genetic cause of the disease. Regarding the pace of identification of PCD-related genes, a rapid acceleration during the last 2–3 years is notable. This is the result of new technologies, such as whole-exome sequencing, that have been recently applied in genetic research. To date, PCD-causative mutations in 29 genes are known and the number of causative genes is bound to rise. Even though the genetic causes of approximately one-third of PCD cases still remain to be found, the current knowledge can already be used to create new, accurate genetic tests for PCD that can accelerate the correct diagnosis and reduce the proportion of unexplained cases. This review aims to present the latest data on the relations between ciliary structure aberrations and their genetic basis.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Ziętkiewicz
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Witt
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
39
|
Roosing S, Lamers IJC, de Vrieze E, van den Born LI, Lambertus S, Arts HH, Peters TA, Hoyng CB, Kremer H, Hetterschijt L, Letteboer SJF, van Wijk E, Roepman R, den Hollander AI, Cremers FPM. Disruption of the basal body protein POC1B results in autosomal-recessive cone-rod dystrophy. Am J Hum Genet 2014; 95:131-42. [PMID: 25018096 PMCID: PMC4129401 DOI: 10.1016/j.ajhg.2014.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/19/2014] [Indexed: 12/11/2022] Open
Abstract
Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ideke J C Lamers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Erik de Vrieze
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | | | - Stanley Lambertus
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Heleen H Arts
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Theo A Peters
- Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Lisette Hetterschijt
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Stef J F Letteboer
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
40
|
Duncan JL, Biswas P, Kozak I, Navani M, Syed R, Soudry S, Menghini M, Caruso RC, Jeffrey BG, Heckenlively JR, Reddy GB, Lee P, Roorda A, Ayyagari R. Ocular Phenotype of a Family with FAM161A-associated Retinal Degeneration. Ophthalmic Genet 2014; 37:44-52. [PMID: 25007332 DOI: 10.3109/13816810.2014.929716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Characterization of retinal degeneration (RD) using high-resolution retinal imaging and exome sequencing may identify phenotypic features that correspond with specific genetic defects. MATERIALS AND METHODS Six members from a non-consanguineous Indian family (three affected siblings, their asymptomatic parents and an asymptomatic child) were characterized clinically, using visual acuity, perimetry, full-field electroretinography (ERG), optical coherence tomography and cone structure as outcome measures. Cone photoreceptors were imaged in the proband using adaptive optics scanning laser ophthalmoscopy. The exome was captured using Nimblegen SeqCap EZ V3.0 probes and sequenced using lllumina HiSeq. Reads were mapped to reference hg19. Confirmation of variants and segregation analysis was performed using dideoxy sequencing. RESULTS Analysis of exome variants using exomeSuite identified five homozygous variants in four genes known to be associated with RD. Further analysis revealed a homozygous nonsense mutation, c.1105 C > T, p.Arg335Ter, in the FAM161A gene segregating with RD. Three additional variants were found to occur at high frequency. Affected members showed a range of disease severity beginning at different ages, but all developed severe visual field and outer retinal loss. CONCLUSIONS Exome analysis revealed a nonsense homozygous mutation in FAM161A segregating with RD with severe vision loss and a range of disease onset and progression. Loss of outer retinal structures demonstrated with high-resolution retinal imaging suggests FAM161A is important for normal photoreceptor structure and survival. Exome sequencing may identify causative genetic variants in autosomal recessive RD families when other genetic test strategies fail to identify a mutation.
Collapse
Affiliation(s)
- Jacque L Duncan
- a Department of Ophthalmology , University of California , San Francisco , CA , USA
| | - Pooja Biswas
- b Shiley Eye Center, University of California , San Diego , La Jolla , CA , USA
| | - Igor Kozak
- b Shiley Eye Center, University of California , San Diego , La Jolla , CA , USA
| | - Mili Navani
- b Shiley Eye Center, University of California , San Diego , La Jolla , CA , USA
| | - Reema Syed
- a Department of Ophthalmology , University of California , San Francisco , CA , USA
| | - Shiri Soudry
- a Department of Ophthalmology , University of California , San Francisco , CA , USA
| | - Moreno Menghini
- a Department of Ophthalmology , University of California , San Francisco , CA , USA
| | - Rafael C Caruso
- c National Eye Institute, NIH , Bethesda , MD , USA .,d Princeton Neuroscience Institute, Princeton University , Princeton , NJ , USA
| | | | - John R Heckenlively
- e Department of Ophthalmology , University of Michigan , Ann Arbor , MI , USA
| | - G Bhanuprakash Reddy
- f National Institute of Nutrition, Indian Council of Medical Research , Hyderabad , India
| | - Pauline Lee
- b Shiley Eye Center, University of California , San Diego , La Jolla , CA , USA .,g Department of Molecular and Experimental Medicine , The Scripps Research Institute , La Jolla , CA , USA , and
| | - Austin Roorda
- h School of Optometry and Vision Science Graduate Group, University of California , Berkeley , CA , USA
| | - Radha Ayyagari
- b Shiley Eye Center, University of California , San Diego , La Jolla , CA , USA
| |
Collapse
|
41
|
Emerling CA, Springer MS. Eyes underground: regression of visual protein networks in subterranean mammals. Mol Phylogenet Evol 2014; 78:260-70. [PMID: 24859681 DOI: 10.1016/j.ympev.2014.05.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/26/2014] [Accepted: 05/05/2014] [Indexed: 11/26/2022]
Abstract
Regressive evolution involves the degeneration of formerly useful structures in a lineage over time, and may be accompanied by the molecular decay of phenotype-specific genes. The mammalian eye has repeatedly undergone degeneration in taxa that occupy dim-light environments including subterranean habitats. Here we assess whether a decrease in the amount of light that reaches the retina is associated with increased regression of retinal genes, whether the phototransduction and visual cycle pathways degrade in a predictable pattern, and if the timing of retinal gene loss is associated with the entrance of mammalian lineages into subterranean environments. Sequence data were obtained from the publically available genomes of the Cape golden mole (Chrysochloris asiatica), naked mole-rat (Heterocephalus glaber) and star-nosed mole (Condylura cristata) for 65 genes associated with phototransduction, the visual cycle, and other retinal functions. Gene sequences were inspected for inactivating mutations and, when present, pseudogene sequences were compared to sequences from subaerial outgroup species. To test whether retinal degeneration is correlated with historical entrances into subterranean environments, estimated dates of retinal gene inactivation were compared to the fossil record and phylogenetic inferences of ancestral fossoriality. Our results show that (1) lower levels of light available to the retina correspond with an increase in the number of retinal pseudogenes, (2) retinal protein networks generally degrade in a predictable manner, although the extensive loss of cone phototransduction genes in Heterocephalus raises further questions regarding SWS1-cone monochromacy versus functional rod monochromacy in this species, and (3) inactivation dates of retinal genes usually post-date inferred entrances into subterranean habitats.
Collapse
Affiliation(s)
- Christopher A Emerling
- Department of Biology, University of California Riverside, 900 University Ave, Riverside, CA 92521, United States.
| | - Mark S Springer
- Department of Biology, University of California Riverside, 900 University Ave, Riverside, CA 92521, United States.
| |
Collapse
|
42
|
Karlstetter M, Sorusch N, Caramoy A, Dannhausen K, Aslanidis A, Fauser S, Boesl MR, Nagel-Wolfrum K, Tamm ER, Jägle H, Stoehr H, Wolfrum U, Langmann T. Disruption of the retinitis pigmentosa 28 gene Fam161a in mice affects photoreceptor ciliary structure and leads to progressive retinal degeneration. Hum Mol Genet 2014; 23:5197-210. [DOI: 10.1093/hmg/ddu242] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
43
|
Airik R, Slaats GG, Guo Z, Weiss AC, Khan N, Ghosh A, Hurd TW, Bekker-Jensen S, Schrøder JM, Elledge SJ, Andersen JS, Kispert A, Castelli M, Boletta A, Giles RH, Hildebrandt F. Renal-retinal ciliopathy gene Sdccag8 regulates DNA damage response signaling. J Am Soc Nephrol 2014; 25:2573-83. [PMID: 24722439 DOI: 10.1681/asn.2013050565] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8(gt/gt) mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration. These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to progressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys. Instead, renal pathology was associated with elevated levels of DNA damage response signaling activity. Cell culture studies confirmed the aberrant activation of DNA damage response in Sdccag8(gt/gt)-derived cells, characterized by elevated levels of γH2AX and phosphorylated ATM and cell cycle profile abnormalities. Our analysis of Sdccag8(gt/gt) mice indicates that the pleiotropic phenotypes in these mice may arise through multiple tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Rannar Airik
- Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Gisela G Slaats
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhi Guo
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Naheed Khan
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Amiya Ghosh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Toby W Hurd
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Simon Bekker-Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob M Schrøder
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Steve J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Maddalena Castelli
- Division of Genetics and Cell Biology, Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy; and
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy; and
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
44
|
Downs LM, Mellersh CS. An Intronic SINE insertion in FAM161A that causes exon-skipping is associated with progressive retinal atrophy in Tibetan Spaniels and Tibetan Terriers. PLoS One 2014; 9:e93990. [PMID: 24705771 PMCID: PMC3976383 DOI: 10.1371/journal.pone.0093990] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
Progressive retinal atrophy (PRA) in dogs is characterised by the degeneration of the photoreceptor cells of the retina, resulting in vision loss and eventually complete blindness. The condition affects more than 100 dog breeds and is known to be genetically heterogeneous between breeds. Around 19 mutations have now been identified that are associated with PRA in around 49 breeds, but for the majority of breeds the mutation(s) responsible have yet to be identified. Using genome-wide association with 22 Tibetan Spaniel PRA cases and 10 controls, we identified a novel PRA locus, PRA3, on CFA10 (praw = 2.01×10−5, pgenome = 0.014), where a 3.8 Mb region was homozygous within 12 cases. Using targeted next generation sequencing, a short interspersed nuclear element insertion was identified near a splice acceptor site in an intron of a provocative gene, FAM161A. Analysis of mRNA from an affected dog revealed that the SINE causes exon skipping, resulting in a frame shift, leading to a downstream premature termination codon and possibly a truncated protein product. This mutation segregates with the disease in 22 out of 35 cases tested (63%). Of the PRA controls, none are homozygous for the mutation, 15% carry the mutation and 85% are homozygous wildtype. This mutation was also identified in Tibetan Terriers, although our results indicate that PRA is genetically heterogeneous in both Tibetan Spaniels and Tibetan Terriers.
Collapse
Affiliation(s)
- Louise M. Downs
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Cathryn S. Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Molecular genetics of FAM161A in North American patients with early-onset retinitis pigmentosa. PLoS One 2014; 9:e92479. [PMID: 24651477 PMCID: PMC3961368 DOI: 10.1371/journal.pone.0092479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/22/2014] [Indexed: 11/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary disease that leads to the progressive degeneration of retinal photoreceptor cells and to blindness. It is caused by mutations in several distinct genes, including the ciliary gene FAM161A, which is associated with a recessive form of this disorder. Recent investigations have revealed that defects in FAM161A represent a rather prevalent cause of hereditary blindness in Israel and the Palestinian territories, whereas they seem to be rarely present within patients from Germany. Genetic or clinical data are currently not available for other countries. In this work, we screened a cohort of patients with recessive RP from North America to determine the frequency of FAM161A mutations in this ethnically-mixed population and to assess the phenotype of positive cases. Out of 273 unrelated patients, only 3 subjects had defects in FAM161A. A fourth positive patient, the sister of one of these index cases, was also identified following pedigree analysis. They were all homozygous for the p.T452Sfx3 mutation, which was previously reported as a founder DNA variant in the Israeli and Palestinian populations. Analysis of cultured lymphoblasts from patients revealed that mutant FAM161A transcripts were actively degraded by nonsense-mediated mRNA decay. Electroretinographic testing showed 30 Hz cone flicker responses in the range of 0.10 to 0.60 microvolts in all cases at their first visit (age 12 to 23) (lower norm = 50 μV) and of 0.06 to 0.32 microvolts at their most recent examination (age 27 to 43), revealing an early-onset of this progressive disease. Our data indicate that mutations in FAM161A are responsible for 1% of recessive RP cases in North America, similar to the prevalence detected in Germany and unlike the data from Israel and the Palestinian territories. We also show that, at the molecular level, the disease is likely caused by FAM161A protein deficiency.
Collapse
|
46
|
Wheway G, Parry DA, Johnson CA. The role of primary cilia in the development and disease of the retina. Organogenesis 2014; 10:69-85. [PMID: 24162842 PMCID: PMC4049897 DOI: 10.4161/org.26710] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023] Open
Abstract
The normal development and function of photoreceptors is essential for eye health and visual acuity in vertebrates. Mutations in genes encoding proteins involved in photoreceptor development and function are associated with a suite of inherited retinal dystrophies, often as part of complex multi-organ syndromic conditions. In this review, we focus on the role of the photoreceptor outer segment, a highly modified and specialized primary cilium, in retinal health and disease. We discuss the many defects in the structure and function of the photoreceptor primary cilium that can cause a class of inherited conditions known as ciliopathies, often characterized by retinal dystrophy and degeneration, and highlight the recent insights into disease mechanisms.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Section of Ophthalmology and Neurosciences; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| | - David A Parry
- Section of Genetics; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| |
Collapse
|
47
|
Zach F, Stöhr H. FAM161A, a novel centrosomal-ciliary protein implicated in autosomal recessive retinitis pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:185-90. [PMID: 24664697 DOI: 10.1007/978-1-4614-3209-8_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is an inherited disease of the retina leading to vision impairment due to progressive photoreceptor cell death. Homozygous and compound heterozygous null mutations in the CRX-regulated FAM161A gene of unknown function were identified as a cause for autosomal recessive RP (RP28) in patients from India, Germany, Israel, the Palestinian territories, and the USA. The FAM161A protein has been found to be localized to the connecting cilium, the basal body, and the adjacent centriole in mammalian photoreceptors and was also present in synaptic layers and ganglion cells of the retina. In addition, FAM161A was shown to be part of microtubule-organizing centers in cultured cells and associates with the intracellular microtubule network. Moreover, FAM161A directly binds to microtubules and increases the acetylation of α-tubulin. An evolutionary highly conserved, C-terminal protein domain (UPF0564) of FAM161A was shown to mediate microtubule association, homo- and heterotypic interaction among UPF0564-containing proteins and binding to several ciliopathy-associated proteins. In summary, FAM161A is a novel centrosomal-ciliary protein that likely is implicated in the regulation of microtubule-based cellular processes in the retina.
Collapse
Affiliation(s)
- Frank Zach
- Institute of Human Genetics, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany,
| | | |
Collapse
|