1
|
Ding Y, Yang H, Gao J, Tang C, Peng YY, Ma XM, Li S, Wang HY, Lu XM, Wang YT. Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration. Mol Cell Biochem 2025:10.1007/s11010-025-05209-y. [PMID: 39841406 DOI: 10.1007/s11010-025-05209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria. Mitochondrial transport proteins regulate the positioning and movement of mitochondria to maintain normal energy metabolism. Recent studies have shown a close relationship between mitochondrial transport proteins and synaptic plasticity, providing a new direction for the study of adaptive changes in the central nervous system and new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Ni P, Ma Y, Chung S. Mitochondrial dysfunction in psychiatric disorders. Schizophr Res 2024; 273:62-77. [PMID: 36175250 DOI: 10.1016/j.schres.2022.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Psychiatric disorders are a heterogeneous group of mental disorders with abnormal mental or behavioral patterns, which severely distress or disable affected individuals and can have a grave socioeconomic burden. Growing evidence indicates that mitochondrial function plays an important role in developing psychiatric disorders. This review discusses the neuropsychiatric consequences of mitochondrial abnormalities in both animal models and patients. We also discuss recent studies associated with compromised mitochondrial function in various psychiatric disorders, such as schizophrenia (SCZ), major depressive disorder (MD), and bipolar disorders (BD). These studies employ various approaches including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cells (iPSCs) studies. We also summarize the evidence from animal models and clinical trials to support mitochondrial function as a potential therapeutic target to treat various psychiatric disorders. This review will contribute to furthering our understanding of the metabolic etiology of various psychiatric disorders, and help guide the development of optimal therapies.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Yao Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
3
|
Samardžija B, Petrović M, Zaharija B, Medija M, Meštrović A, Bradshaw NJ, Filošević Vujnović A, Andretić Waldowski R. Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS- hflDISC1) Showing Effects on Social Interaction Networks. Curr Issues Mol Biol 2024; 46:8526-8549. [PMID: 39194719 DOI: 10.3390/cimb46080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a scaffold protein implicated in major mental illnesses including schizophrenia, with a significant negative impact on social life. To investigate if DISC1 affects social interactions in Drosophila melanogaster, we created transgenic flies with second or third chromosome insertions of the human full-length DISC1 (hflDISC1) gene fused to a UAS promotor (UAS-hflDISC1). Initial characterization of the insertion lines showed unexpected endogenous expression of the DISC1 protein that led to various behavioral and neurochemical phenotypes. Social interaction network (SIN) analysis showed altered social dynamics and organizational structures. This was in agreement with the altered levels of the locomotor activity of individual flies monitored for 24 h. Together with a decreased ability to climb vertical surfaces, the observed phenotypes indicate altered motor functions that could be due to a change in the function of the motor neurons and/or central brain. The changes in social behavior and motor function suggest that the inserted hflDISC1 gene influences nervous system functioning that parallels symptoms of DISC1-related mental diseases in humans. Furthermore, neurochemical analyses of transgenic lines revealed increased levels of hydrogen peroxide and decreased levels of glutathione, indicating an impact of DISC1 on the dynamics of redox regulation, similar to that reported in transgenic mammals. Future studies are needed to address the localization of DISC1 expression and to address how the redox parameter changes correlate with the observed behavioral changes.
Collapse
Affiliation(s)
- Bobana Samardžija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Milan Petrović
- Faculty of Informatics and Digital Technologies, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Beti Zaharija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Marta Medija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Ana Meštrović
- Faculty of Informatics and Digital Technologies, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Ana Filošević Vujnović
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Rozi Andretić Waldowski
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| |
Collapse
|
4
|
Li Y, Yang Z, Zhang S, Li J. Miro-mediated mitochondrial transport: A new dimension for disease-related abnormal cell metabolism? Biochem Biophys Res Commun 2024; 705:149737. [PMID: 38430606 DOI: 10.1016/j.bbrc.2024.149737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Mitochondria are versatile and highly dynamic organelles found in eukaryotic cells that play important roles in a variety of cellular processes. The importance of mitochondrial transport in cell metabolism, including variations in mitochondrial distribution within cells and intercellular transfer, has grown in recent years. Several studies have demonstrated that abnormal mitochondrial transport represents an early pathogenic alteration in a variety of illnesses, emphasizing its significance in disease development and progression. Mitochondrial Rho GTPase (Miro) is a protein found on the outer mitochondrial membrane that is required for cytoskeleton-dependent mitochondrial transport, mitochondrial dynamics (fusion and fission), and mitochondrial Ca2+ homeostasis. Miro, as a critical regulator of mitochondrial transport, has yet to be thoroughly investigated in illness. This review focuses on recent developments in recognizing Miro as a crucial molecule in controlling mitochondrial transport and investigates its roles in diverse illnesses. It also intends to shed light on the possibilities of targeting Miro as a therapeutic method for a variety of diseases.
Collapse
Affiliation(s)
- Yanxing Li
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Zhen Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Shumei Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jianjun Li
- Department of Cardiology, Jincheng People's Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi, People's Republic of China.
| |
Collapse
|
5
|
Dias MS, Pedrosa VB, Rocha da Cruz VA, Silva MR, Batista Pinto LF. Genome-wide association and functional annotation analysis for the calving interval in Nellore cattle. Theriogenology 2024; 218:214-222. [PMID: 38350227 DOI: 10.1016/j.theriogenology.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Calving interval (CI) measures the number of days between two consecutive calves of the same cow, and previous studies based on phenotype and pedigree data reported low heritability for this trait. However, the genetic architecture of CI in the Nellore breed was not evaluated based on genomic data. Thus, this study aimed to estimate the heritability based on genomic data and carry out a genome-wide association study (GWAS) for CI in the Nellore breed, using 12,599 pedigree records, 5078 CI records, and 3818 animals genotyped with 50k SNPchip panel. Both quality control and GWAS were performed in BLUPF90 family packages, which use the single-step genomic best linear unbiased predictor (ssGBLUP) method. The average CI was 427.6 days, with a standard deviation of 106.9 and a total range of 270-730 days. The heritability estimate was 0.04 ± 0.04. The p-values of GWAS analysis resulted in a genomic inflation factor (lambda) of 1.08. The only significant SNP (rs136725686) at the genome-wide level (p-value = 1.53E-06) was located on BTA13. Other 19 SNPs were significant at the chromosome-wide level, distributed on BTA1, 2, 3, 6, 10, 13, 14, 17, 18, 22, and 26. Functional annotation analysis found thirty-six protein-coding genes, including genes related to cell cycle (RAD21, BCAR3), oocyte function (LHX8, CLPX, UTP23), immune system (TXK, TEC, NFATC2), endocrine function (LRRFIP2, GPR158), estrous cycle (SLC38A7), and female fertility (CCK, LYZL4, TRAK1, FOXP1, STAC). Therefore, CI is a complex trait with small heritability in Nellore cattle, and various biological processes may be involved with the genetic architecture of CI in Nellore cattle.
Collapse
Affiliation(s)
- Mayra Silva Dias
- Federal University of Bahia, Animal Science Department, Av. Milton Santos, 500, Ondina, Salvador, BA, 40170-110, Brazil.
| | | | | | - Marcio Ribeiro Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes, SP, 16700-000, Brazil.
| | - Luis Fernando Batista Pinto
- Federal University of Bahia, Animal Science Department, Av. Milton Santos, 500, Ondina, Salvador, BA, 40170-110, Brazil.
| |
Collapse
|
6
|
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92:101193. [PMID: 37331129 DOI: 10.1016/j.mam.2023.101193] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Glaucoma is a common, complex, multifactorial neurodegenerative disease characterized by progressive dysfunction and then loss of retinal ganglion cells, the output neurons of the retina. Glaucoma is the most common cause of irreversible blindness and affects ∼80 million people worldwide with many more undiagnosed. The major risk factors for glaucoma are genetics, age, and elevated intraocular pressure. Current strategies only target intraocular pressure management and do not directly target the neurodegenerative processes occurring at the level of the retinal ganglion cell. Despite strategies to manage intraocular pressure, as many as 40% of glaucoma patients progress to blindness in at least one eye during their lifetime. As such, neuroprotective strategies that target the retinal ganglion cell and these neurodegenerative processes directly are of great therapeutic need. This review will cover the recent advances from basic biology to on-going clinical trials for neuroprotection in glaucoma covering degenerative mechanisms, metabolism, insulin signaling, mTOR, axon transport, apoptosis, autophagy, and neuroinflammation. With an increased understanding of both the basic and clinical mechanisms of the disease, we are closer than ever to a neuroprotective strategy for glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Katharina Bell
- NHMRC Clinical Trials Centre, University of Sydney, Australia; Eye ACP Duke-NUS, Singapore
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Canty JT, Hensley A, Aslan M, Jack A, Yildiz A. TRAK adaptors regulate the recruitment and activation of dynein and kinesin in mitochondrial transport. Nat Commun 2023; 14:1376. [PMID: 36914620 PMCID: PMC10011603 DOI: 10.1038/s41467-023-36945-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondrial transport along microtubules is mediated by Miro1 and TRAK adaptors that recruit kinesin-1 and dynein-dynactin. To understand how these opposing motors are regulated during mitochondrial transport, we reconstitute the bidirectional transport of Miro1/TRAK along microtubules in vitro. We show that the coiled-coil domain of TRAK activates dynein-dynactin and enhances the motility of kinesin-1 activated by its cofactor MAP7. We find that TRAK adaptors that recruit both motors move towards kinesin-1's direction, whereas kinesin-1 is excluded from binding TRAK transported by dynein-dynactin, avoiding motor tug-of-war. We also test the predictions of the models that explain how mitochondrial transport stalls in regions with elevated Ca2+. Transport of Miro1/TRAK by kinesin-1 is not affected by Ca2+. Instead, we demonstrate that the microtubule docking protein syntaphilin induces resistive forces that stall kinesin-1 and dynein-driven motility. Our results suggest that mitochondrial transport stalls by Ca2+-mediated recruitment of syntaphilin to the mitochondrial membrane, not by disruption of the transport machinery.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Cancer Immunology, Genentech Inc., 1 DNA Way, 94080, South San Francisco, CA, USA.
| | - Andrew Hensley
- Physics Department, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Merve Aslan
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Amanda Jack
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Physics Department, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Tomita Y, Suzuki K, Yamasaki S, Toriumi K, Miyashita M, Ando S, Endo K, Yoshikawa A, Tabata K, Usami S, Hiraiwa-Hasegawa M, Itokawa M, Kawaji H, Kasai K, Nishida A, Arai M. Urinary exosomal microRNAs as predictive biomarkers for persistent psychotic-like experiences. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:14. [PMID: 36906656 PMCID: PMC10008540 DOI: 10.1038/s41537-023-00340-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Psychotic-like experiences (PLEs) occur occasionally in adolescence and mostly disappear with increasing age. Their presence, if persistent, is considered a robust risk factor for subsequent psychiatric disorders. To date, only a few biological markers have been investigated for persistent PLE prediction. This study identified urinary exosomal microRNAs that can serve as predictive biomarkers for persistent PLEs. This study was part of a population-based biomarker subsample study of the Tokyo Teen Cohort Study. A total of 345 participants aged 13 (baseline) and 14 (follow-up) years underwent PLE assessments by experienced psychiatrists using semi-structured interviews. We defined remitted and persistent PLEs based on longitudinal profiles. We obtained urine at baseline and the expression levels of urinary exosomal miRNAs were compared between 15 individuals with persistent PLEs and 15 age- and sex-matched individuals with remitted PLEs. We constructed a logistic regression model to examine whether miRNA expression levels could predict persistent PLEs. We identified six significant differentially expressed microRNAs, namely hsa-miR-486-5p, hsa-miR-199a-3p, hsa-miR-144-5p, hsa-miR-451a, hsa-miR-143-3p, and hsa-miR-142-3p. The predictive model showed an area under the curve of 0.860 (95% confidence interval: 0.713-0.993) for five-fold cross-validation. We found a subset of urinary exosomal microRNAs that were differentially expressed in persistent PLEs and presented the likelihood that a microRNA-based statistical model could predict them with high accuracy. Therefore, urine exosomal miRNAs may serve as novel biomarkers for the risk of psychiatric disorders.
Collapse
Affiliation(s)
- Yasufumi Tomita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Community Mental Health, Shinshu University School of Medicine, Matsumoto, Japan
| | - Syudo Yamasaki
- Unit for Mental Health Promotion, Research Center for Social Science and Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Unit for Mental Health Promotion, Research Center for Social Science and Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Endo
- Unit for Mental Health Promotion, Research Center for Social Science and Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akane Yoshikawa
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Usami
- Center for Research and Development on Transition from Secondary to Higher Education, The University of Tokyo, Tokyo, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, The Graduate University for the Advanced Studies, SOKENDAI, Hayama, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, University of Tokyo, Tokyo, Japan
| | - Atsushi Nishida
- Unit for Mental Health Promotion, Research Center for Social Science and Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
9
|
Davis K, Basu H, Izquierdo-Villalba I, Shurberg E, Schwarz TL. Miro GTPase domains regulate the assembly of the mitochondrial motor-adaptor complex. Life Sci Alliance 2023; 6:6/1/e202201406. [PMID: 36302649 PMCID: PMC9615026 DOI: 10.26508/lsa.202201406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial transport relies on a motor-adaptor complex containing Miro1, a mitochondrial outer membrane protein with two GTPase domains, and TRAK1/2, kinesin-1, and dynein. Using a peroxisome-directed Miro1, we quantified the ability of GTPase mutations to influence the peroxisomal recruitment of complex components. Miro1 whose N-GTPase is locked in the GDP state does not recruit TRAK1/2, kinesin, or P135 to peroxisomes, whereas the GTP state does. Similarly, the expression of the MiroGAP VopE dislodges TRAK1 from mitochondria. Miro1 C-GTPase mutations have little influence on complex recruitment. Although Miro2 is thought to support mitochondrial motility, peroxisome-directed Miro2 did not recruit the other complex components regardless of the state of its GTPase domains. Neurons expressing peroxisomal Miro1 with the GTP-state form of the N-GTPase had markedly increased peroxisomal transport to growth cones, whereas the GDP-state caused their retention in the soma. Thus, the N-GTPase domain of Miro1 is critical for regulating Miro1's interaction with the other components of the motor-adaptor complex and thereby for regulating mitochondrial motility.
Collapse
Affiliation(s)
- Kayla Davis
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Himanish Basu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Ismael Izquierdo-Villalba
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ethan Shurberg
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Thomas L Schwarz
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA .,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
11
|
Chatterjee D, Beaulieu JM. Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Front Mol Neurosci 2022; 15:1028963. [PMID: 36504683 PMCID: PMC9731798 DOI: 10.3389/fnmol.2022.1028963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Glycogen synthase kinase 3 (GSK3) is a popular explanation for the effects of lithium ions on mood regulation in bipolar disorder and other mental illnesses, including major depression, cyclothymia, and schizophrenia. Contribution of GSK3 is supported by evidence obtained from animal and patient derived model systems. However, the two GSK3 enzymes, GSK3α and GSK3β, have more than 100 validated substrates. They are thus central hubs for major biological functions, such as dopamine-glutamate neurotransmission, synaptic plasticity (Hebbian and homeostatic), inflammation, circadian regulation, protein synthesis, metabolism, inflammation, and mitochondrial functions. The intricate contributions of GSK3 to several biological processes make it difficult to identify specific mechanisms of mood stabilization for therapeutic development. Identification of GSK3 substrates involved in lithium therapeutic action is thus critical. We provide an overview of GSK3 biological functions and substrates for which there is evidence for a contribution to lithium effects. A particular focus is given to four of these: the transcription factor cAMP response element-binding protein (CREB), the RNA-binding protein FXR1, kinesin subunits, and the cytoskeletal regulator CRMP2. An overview of how co-regulation of these substrates may result in shared outcomes is also presented. Better understanding of how inhibition of GSK3 contributes to the therapeutic effects of lithium should allow for identification of more specific targets for future drug development. It may also provide a framework for the understanding of how lithium effects overlap with those of other drugs such as ketamine and antipsychotics, which also inhibit brain GSK3.
Collapse
Affiliation(s)
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Role of Tunneling Nanotubes in the Nervous System. Int J Mol Sci 2022; 23:ijms232012545. [PMID: 36293396 PMCID: PMC9604327 DOI: 10.3390/ijms232012545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/20/2022] Open
Abstract
Cellular communication and the transfer of information from one cell to another is crucial for cell viability and homeostasis. During the last decade, tunneling nanotubes (TNTs) have attracted scientific attention, not only as a means of direct intercellular communication, but also as a possible system to transport biological cargo between distant cells. Peculiar TNT characteristics make them both able to increase cellular survival capacities, as well as a potential target of neurodegenerative disease progression. Despite TNT formation having been documented in a number of cell types, the exact mechanisms triggering their formation are still not completely known. In this review, we will summarize and highlight those studies focusing on TNT formation in the nervous system, as well as their role in neurodegenerative diseases. Moreover, we aim to stress some possible mechanisms and important proteins probably involved in TNT formation in the nervous system.
Collapse
|
13
|
Quintero H, Shiga Y, Belforte N, Alarcon-Martinez L, El Hajji S, Villafranca-Baughman D, Dotigny F, Di Polo A. Restoration of mitochondria axonal transport by adaptor Disc1 supplementation prevents neurodegeneration and rescues visual function. Cell Rep 2022; 40:111324. [PMID: 36103832 DOI: 10.1016/j.celrep.2022.111324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Deficits in mitochondrial transport are a common feature of neurodegenerative diseases. We investigated whether loss of components of the mitochondrial transport machinery impinge directly on metabolic stress, neuronal death, and circuit dysfunction. Using multiphoton microscope live imaging, we showed that ocular hypertension, a major risk factor in glaucoma, disrupts mitochondria anterograde axonal transport leading to energy decline in vulnerable neurons. Gene- and protein-expression analysis revealed loss of the adaptor disrupted in schizophrenia 1 (Disc1) in retinal neurons subjected to high intraocular pressure. Disc1 gene delivery was sufficient to rescue anterograde transport and replenish axonal mitochondria. A genetically encoded ATP sensor combined with longitudinal live imaging showed that Disc1 supplementation increased ATP production in stressed neurons. Disc1 gene therapy promotes neuronal survival, reverses abnormal single-cell calcium dynamics, and restores visual responses. Our study demonstrates that enhancing anterograde mitochondrial transport is an effective strategy to alleviate metabolic stress and neurodegeneration.
Collapse
Affiliation(s)
- Heberto Quintero
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Yukihiro Shiga
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
14
|
Lee D, Woo Y, Lim JS, Park I, Park SK, Park JW. Quantification of a Neurological Protein in a Single Cell Without Amplification. ACS OMEGA 2022; 7:20165-20171. [PMID: 35722002 PMCID: PMC9201896 DOI: 10.1021/acsomega.2c02009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Proteins are key biomolecules that not only play various roles in the living body but also are used as biomarkers. If these proteins can be quantified at the level of a single cell, understanding the role of proteins will be deepened and diagnosing diseases and abnormality will be further upgraded. In this study, we quantified a neurological protein in a single cell using atomic force microscopy (AFM). After capturing specifically disrupted-in-schizophrenia 1 (DISC1) in a single cell onto a microspot immobilizing the corresponding antibody on the surface, force mapping with AFM was followed to visualize individual DISC1. Although a large variation of the number of DISC1 in a cell was observed, the average number is 4.38 × 103, and the number agrees with the ensemble-averaged value. The current AFM approach for the quantitative analysis of proteins in a single cell should be useful to study molecular behavior of proteins in depth and to follow physiological change of individual cells in response to external stimuli.
Collapse
Affiliation(s)
- Donggyu Lee
- Department
of Life Sciences, Pohang University of Science
and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Youngsik Woo
- Department
of Life Sciences, Pohang University of Science
and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Ji-seon Lim
- Department
of Chemistry, Pohang University of Science
and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, Republic of Korea
| | - Ikbum Park
- Analysis
and Assessment Research Center, Research
Institute of Industrial Science and Technology, 67 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic
of Korea
| | - Sang Ki Park
- Department
of Life Sciences, Pohang University of Science
and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Joon Won Park
- Department
of Chemistry, Pohang University of Science
and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, Republic of Korea
- Institute
of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic
of Korea
| |
Collapse
|
15
|
Markovinovic A, Greig J, Martín-Guerrero SM, Salam S, Paillusson S. Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci 2022; 135:274270. [PMID: 35129196 DOI: 10.1242/jcs.248534] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Jenny Greig
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093, Nantes, France
| | - Sandra María Martín-Guerrero
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Shaakir Salam
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, 1 rue Gaston Veil, 44035, Nantes, France
| |
Collapse
|
16
|
Korsching E, Matschke J, Hotfilder M. Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells. Int J Mol Med 2022; 49:39. [PMID: 35088879 PMCID: PMC8815407 DOI: 10.3892/ijmm.2022.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/06/2022] Open
Abstract
Ewing sarcoma is a challenging cancer entity, which, besides the characteristic presence of a fusion gene, is driven by multiple alternative splicing events. So far, splice variants in Ewing sarcoma cells were mainly analyzed for EWSR1‑FLI1. The present study provided a comprehensive alternative splicing study on CADO‑ES1, an Ewing model cell line for an EWSR1‑ERG fusion gene. Based on a well‑-characterized RNA‑sequencing dataset with extensive control mechanisms across all levels of analysis, the differential spliced genes in Ewing cancer stem cells were ATP13A3 and EPB41, while the main population was defined by ACADVL, NOP58 and TSPAN3. All alternatively spliced genes were further characterized by their Gene Ontology (GO) terms and by their membership in known protein complexes. These results confirm and extend previous studies towards a systematic whole‑transcriptome analysis. A highlight is the striking segregation of GO terms associated with five basic splice events. This mechanistic insight, together with a coherent integration of all observations with prior knowledge, indicates that EWSR1‑ERG is truly a close twin to EWSR1‑FLI1, but still exhibits certain individuality. Thus, the present study provided a measure of variability in Ewing sarcoma, whose understanding is essential both for clinical procedures and basic mechanistic insight.
Collapse
Affiliation(s)
- Eberhard Korsching
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, D‑48149 Münster, Germany
| | - Julian Matschke
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, D‑48149 Münster, Germany
| | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Hospital Münster, D‑48149 Münster, Germany
| |
Collapse
|
17
|
Woodbury-Smith M, Lamoureux S, Begum G, Nassir N, Akter H, O’Rielly DD, Rahman P, Wintle RF, Scherer SW, Uddin M. Mutational Landscape of Autism Spectrum Disorder Brain Tissue. Genes (Basel) 2022; 13:genes13020207. [PMID: 35205252 PMCID: PMC8871846 DOI: 10.3390/genes13020207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Rare post-zygotic mutations in the brain are now known to contribute to several neurodevelopmental disorders, including autism spectrum disorder (ASD). However, due to the limited availability of brain tissue, most studies rely on estimates of mosaicism from peripheral samples. In this study, we undertook whole exome sequencing on brain tissue from 26 ASD brain donors from the Harvard Brain Tissue Resource Center (HBTRC) and ascertained the presence of post-zygotic and germline mutations categorized as pathological, including those impacting known ASD-implicated genes. Although quantification did not reveal enrichment for post-zygotic mutations compared with the controls (n = 15), a small number of pathogenic, potentially ASD-implicated mutations were identified, notably in TRAK1 and CLSTN3. Furthermore, germline mutations were identified in the same tissue samples in several key ASD genes, including PTEN, SC1A, CDH13, and CACNA1C. The establishment of tissue resources that are available to the scientific community will facilitate the discovery of new mutations for ASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marc Woodbury-Smith
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Sylvia Lamoureux
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.L.); (R.F.W.); (S.W.S.)
| | - Ghausia Begum
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (G.B.); (N.N.)
| | - Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (G.B.); (N.N.)
| | - Hosneara Akter
- Genetics and Genomics Medicine Centre, NeuroGen Healthcare, Dhaka 1205, Bangladesh;
| | - Darren D. O’Rielly
- Faculty of Medicine, Memorial University, St. John’s, NL A1B 3V6, Canada; (D.D.O.); (P.R.)
| | - Proton Rahman
- Faculty of Medicine, Memorial University, St. John’s, NL A1B 3V6, Canada; (D.D.O.); (P.R.)
| | - Richard F. Wintle
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.L.); (R.F.W.); (S.W.S.)
| | - Stephen W. Scherer
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.L.); (R.F.W.); (S.W.S.)
- Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (G.B.); (N.N.)
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON M5G 0A4, Canada
- Correspondence:
| |
Collapse
|
18
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
19
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
20
|
Zinsmaier KE. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 2021; 12:372-398. [PMID: 33183150 PMCID: PMC8583064 DOI: 10.1080/21541248.2020.1843957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Konrad E. Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
21
|
Fenton AR, Jongens TA, Holzbaur ELF. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. Nat Commun 2021; 12:4578. [PMID: 34321481 PMCID: PMC8319186 DOI: 10.1038/s41467-021-24862-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/01/2021] [Indexed: 02/03/2023] Open
Abstract
Mitochondria are transported along microtubules by opposing kinesin and dynein motors. Kinesin-1 and dynein-dynactin are linked to mitochondria by TRAK proteins, but it is unclear how TRAKs coordinate these motors. We used single-molecule imaging of cell lysates to show that TRAK2 robustly activates kinesin-1 for transport toward the microtubule plus-end. TRAK2 is also a novel dynein activating adaptor that utilizes a conserved coiled-coil motif to interact with dynein to promote motility toward the microtubule minus-end. However, dynein-mediated TRAK2 transport is minimal unless the dynein-binding protein LIS1 is present at a sufficient level. Using co-immunoprecipitation and co-localization experiments, we demonstrate that TRAK2 forms a complex containing both kinesin-1 and dynein-dynactin. These motors are functionally linked by TRAK2 as knockdown of either kinesin-1 or dynein-dynactin reduces the initiation of TRAK2 transport toward either microtubule end. We propose that TRAK2 coordinates kinesin-1 and dynein-dynactin as an interdependent motor complex, providing integrated control of opposing motors for the proper transport of mitochondria. Mitochondrial transport toward both the plus- and minus-ends of microtubules is mediated by motor proteins linked to mitochondria by TRAK adaptor proteins. Here the authors investigate the role of TRAK2 as a bidirectional motor adaptor, and propose a model where TRAK2 coordinates the activities of opposing kinesin-1 and cytoplasmic dynein motors as a single interdependent motor complex.
Collapse
Affiliation(s)
- Adam R Fenton
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas A Jongens
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, Monsalve M. Mitophagy in Human Diseases. Int J Mol Sci 2021; 22:ijms22083903. [PMID: 33918863 PMCID: PMC8069949 DOI: 10.3390/ijms22083903] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.
Collapse
Affiliation(s)
- Laura Doblado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Lueck
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Rey
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Alejandro K. Samhan-Arias
- Department of Biochemistry, Universidad Autónoma de Madrid e Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Ignacio Prieto
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Isaac Peral 42, 28015 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, Universita’ Degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
- Correspondence: (A.S.); (M.M.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
- Correspondence: (A.S.); (M.M.)
| |
Collapse
|
23
|
Wu H, Liu Y, Li H, Du C, Li K, Dong S, Meng Q, Zhang H. TRAK1-Mediated Abnormality of Mitochondrial Fission Increases Seizure Susceptibility in Temporal Lobe Epilepsy. Mol Neurobiol 2021; 58:1237-1247. [PMID: 33119838 DOI: 10.1007/s12035-020-02175-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Mitochondrial dysfunction is closely related to the occurrence of epilepsy. Homeostasis of mitochondrial fusion and division can alleviate mitochondrial dysfunction. The trafficking kinesin protein 1 (TRAK1) is a key regulator of mitochondrial movement and regulates mitochondrial fusion-fission balance. The pathogenic variants in TRAK1 result in the severe neurodevelopmental disorders. However, the role of TRAK1 in epilepsy remains unclear. In the present study, we report that TRAK1 has a crucial function in regulation of epileptogenesis in temporal lobe epilepsy (TLE). TRAK1 expression is decreased in the patient specimens and animal model of TLE. Knockdown of TRAK1 causes an increase in mitochondrial fission factor (MFF) in vitro and the susceptibility to seizures in vivo. Exogenous overexpression of TRAK1 can rescue the dysfunction caused by TRAK1 knockdown. These findings provide new insights into the fundamental mechanisms of TRAK1 in TLE and have important implications for understanding and treating TLE via targeting mitochondrion.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shanxi, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shanxi, China
| | - Yong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shanxi, China
| | - Huanfa Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shanxi, China
| | - Changwang Du
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shanxi, China
| | - Kuo Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shanxi, China
| | - Shan Dong
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shanxi, China
| | - Qiang Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shanxi, China.
| | - Hua Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shanxi, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
24
|
Functional brain defects in a mouse model of a chromosomal t(1;11) translocation that disrupts DISC1 and confers increased risk of psychiatric illness. Transl Psychiatry 2021; 11:135. [PMID: 33608504 PMCID: PMC7895946 DOI: 10.1038/s41398-021-01256-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
A balanced t(1;11) translocation that directly disrupts DISC1 is linked to schizophrenia and affective disorders. We previously showed that a mutant mouse, named Der1, recapitulates the effect of the translocation upon DISC1 expression. Here, RNAseq analysis of Der1 mouse brain tissue found enrichment for dysregulation of the same genes and molecular pathways as in neuron cultures generated previously from human t(1;11) translocation carriers via the induced pluripotent stem cell route. DISC1 disruption therefore apparently accounts for a substantial proportion of the effects of the t(1;11) translocation. RNAseq and pathway analysis of the mutant mouse predicts multiple Der1-induced alterations converging upon synapse function and plasticity. Synaptosome proteomics confirmed that the Der1 mutation impacts synapse composition, and electrophysiology found reduced AMPA:NMDA ratio in hippocampal neurons, indicating changed excitatory signalling. Moreover, hippocampal parvalbumin-positive interneuron density is increased, suggesting that the Der1 mutation affects inhibitory control of neuronal circuits. These phenotypes predict that neurotransmission is impacted at many levels by DISC1 disruption in human t(1;11) translocation carriers. Notably, genes implicated in schizophrenia, depression and bipolar disorder by large-scale genetic studies are enriched among the Der1-dysregulated genes, just as we previously observed for the t(1;11) translocation carrier-derived neurons. Furthermore, RNAseq analysis predicts that the Der1 mutation primarily targets a subset of cell types, pyramidal neurons and interneurons, previously shown to be vulnerable to the effects of common schizophrenia-associated genetic variants. In conclusion, DISC1 disruption by the t(1;11) translocation may contribute to the psychiatric disorders of translocation carriers through commonly affected pathways and processes in neurotransmission.
Collapse
|
25
|
Panchal K, Tiwari AK. Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion 2020; 56:118-135. [PMID: 33127590 DOI: 10.1016/j.mito.2020.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Miro (mitochondrial Rho GTPases) a mitochondrial outer membrane protein, plays a vital role in the microtubule-based mitochondrial axonal transport, mitochondrial dynamics (fusion and fission) and Mito-Ca2+ homeostasis. It forms a major protein complex with Milton (an adaptor protein), kinesin and dynein (motor proteins), and facilitates bidirectional mitochondrial axonal transport such as anterograde and retrograde transport. By forming this protein complex, Miro facilitates the mitochondrial axonal transport and fulfills the neuronal energy demand, maintain the mitochondrial homeostasis and neuronal survival. It has been demonstrated that altered mitochondrial biogenesis, improper mitochondrial axonal transport, and mitochondrial dynamics are the early pathologies associated with most of the neurodegenerative diseases (NDs). Being the sole mitochondrial outer membrane protein associated with mitochondrial axonal transport-related processes, Miro proteins can be one of the key players in various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). Thus, in the current review, we have discussed the evolutionarily conserved Miro proteins and its role in the pathogenesis of the various NDs. From this, we indicated that Miro proteins may act as a potential target for a novel therapeutic intervention for the treatment of various NDs.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
26
|
Shevelkin AV, Terrillion CE, Hasegawa Y, Mychko OA, Jouroukhin Y, Sawa A, Kamiya A, Pletnikov MV. Astrocyte DISC1 contributes to cognitive function in a brain region-dependent manner. Hum Mol Genet 2020; 29:2936-2950. [PMID: 32803234 PMCID: PMC8248941 DOI: 10.1093/hmg/ddaa180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the contribution of genetic risk factors to neuropsychiatric diseases is limited to abnormal neurodevelopment and neuronal dysfunction. Much less is known about the mechanisms whereby risk variants could affect the physiology of glial cells. Our prior studies have shown that a mutant (dominant-negative) form of a rare but highly penetrant psychiatric risk factor, Disrupted-In-Schizophrenia-1 (DISC1), impairs metabolic functions of astrocytes and leads to cognitive dysfunction. In order to overcome the limitations of the mutant DISC1 model and understand the putative regional properties of astrocyte DISC1, we assessed whether knockdown of Disc1 (Disc1-KD) in mature mouse astrocytes of the prefrontal cortex (PFC) or the hippocampus would produce behavioral abnormalities that could be attributed to astrocyte bioenergetics. We found that Disc1-KD in the hippocampus but not PFC impaired trace fear conditioning in adult mice. Using the innovative deep learning approach and convolutional deep neural networks (cDNNs), ResNet50 or ResNet18, and single cell-based analysis, we found that Disc1-KD decreased the spatial density of astrocytes associated with abnormal levels and distribution of the mitochondrial markers and the glutamate transporter, GLAST. Disc1-KD in astrocytes also led to decreased expression of the glutamatergic and increased expression of the GABA-ergic synaptic markers, possibly via non-apoptotic activation of caspase 3 in neurons located within the individual territories of Disc1-KD astrocytes. Our results indicate that altered expression of DISC1 in astrocytes could impair astrocyte bioenergetics, leading to abnormalities in synaptic neurotransmission and cognitive function in a region-dependent fashion.
Collapse
Affiliation(s)
| | | | | | | | | | - Akira Sawa
- Departments of Psychiatry and Behavioral Sciences
- Solomon H. Snyder Department of Neuroscience
- Department of Biomedical Engineering
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Atsushi Kamiya
- Departments of Psychiatry and Behavioral Sciences
- Solomon H. Snyder Department of Neuroscience
| | - Mikhail V Pletnikov
- Departments of Psychiatry and Behavioral Sciences
- Solomon H. Snyder Department of Neuroscience
| |
Collapse
|
27
|
Norkett R, Lesept F, Kittler JT. DISC1 Regulates Mitochondrial Trafficking in a Miro1-GTP-Dependent Manner. Front Cell Dev Biol 2020; 8:449. [PMID: 32637409 PMCID: PMC7317294 DOI: 10.3389/fcell.2020.00449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
The disrupted in schizophrenia 1 (DISC1) protein is implicated in major mental illnesses including schizophrenia and bipolar disorder. A key feature of psychiatric disease is aberrant synaptic communication. Correct synaptic transmission is dependent on spatiotemporally regulated energy provision and calcium buffering. This can be achieved by precise distribution of mitochondria throughout the elaborate architecture of the neuron. Central to this process is the calcium sensor and GTPase Miro1, which allows mitochondrial trafficking by molecular motors. While the role of Miro1-calcium binding in mitochondrial transport is well described, far less is known regarding the functions of the two GTPase domains. Here, we investigate the effects of a psychiatric disease-associated mutation in DISC1 on mitochondrial trafficking. We show that this DISC1 mutation impairs Miro1’s ability to transport mitochondria. We also demonstrate the necessity of the first Miro1 GTPase domain in determining direction of mitochondrial transport and the involvement of DISC1 in this process. Finally, we describe the effects of mutant DISC1 on positioning of mitochondria at synapses.
Collapse
Affiliation(s)
- Rosalind Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Flavie Lesept
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
28
|
Zhang H, Lian Y, Xie N, Cheng X, Chen C, Xu H, Zheng Y. Antagomirs targeting miR-142-5p attenuate pilocarpine-induced status epilepticus in mice. Exp Cell Res 2020; 393:112089. [PMID: 32439493 DOI: 10.1016/j.yexcr.2020.112089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/11/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are reported to involve in pathogenesis of temporal lobe epilepsy (TLE). miR-142-5p is found increased in TLE, but its role remains unknown. In the study, we established a mouse model of status epilepticus (SE) with pilocarpine and a cell model of TLE. Quantitative real-time PCR revealed an up-regulation of miR-142-5p and down-regulation of mitochondrial Rho 1 (Miro1) in the mouse mode of SE. Administration of miR-142-5p antagomirs via intracerebroventricular injection attenuated pilocarpine-induced SE and hippocampal damage, and alleviated mitochondrial dysfunction along with increased mitochondrial membrane potential and intracellular ATP and Ca (2+) levels. The expression of mitochondrial trafficking kinesin protein (Trak) 1 and Trak2 was up-regulated by inhibiting miR-142-5p. Antagomirs targeting miR-142-5p suppressed pilocarpine-induced oxidative stress as evidenced by decreased ROS generation and MPO activity, and increased SOD activity. Silencing miR-142-5p reduced neuronal death in pilocarpine-treated hippocampus and magnesium-free (MGF)-treated neurons. Inhibition of miR-142-5p decreased cytoplasmic Cytochrome C and increased mitochondrial Cytochrome C, reduced cleaved-caspase3 and Bax levels, and elevated Bcl2 in vivo and in vitro. Further, dual-luciferase assay verified Miro1 as a target of miR-142-5p, suggesting that miR-142-5p might function via targeting Mrio1. Depletion of Miro1 inhibited the protective effect of silencing miR-142-5p on hippocampal neurons in vitro. Taken together, down-regulation of miR-142-5p via targeting Miro1 inhibits neuronal death and mitochondrial dysfunction, and thus attenuates pilocarpine-induced SE, suggesting the potential involvement of miR-142-5p in the pathogenesis of TLE.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Xuan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Hongliang Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Yake Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| |
Collapse
|
29
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|
30
|
Palikaras K, Tavernarakis N. Regulation and roles of mitophagy at synapses. Mech Ageing Dev 2020; 187:111216. [PMID: 32084458 DOI: 10.1016/j.mad.2020.111216] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/28/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Maintenance of synaptic homeostasis is a challenging task, due to the intricate spatial organization and intense activity of synapses. Typically, synapses are located far away from the neuronal cell body, where they orchestrate neuronal signalling and communication, through neurotransmitter release. Stationary mitochondria provide energy required for synaptic vesicle cycling, and preserve ionic balance by buffering intercellular calcium at synapses. Thus, synaptic homeostasis is critically dependent on proper mitochondrial function. Indeed, defective mitochondrial metabolism is a common feature of several neurodegenerative and psychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), bipolar disorders and schizophrenia among others, which are also accompanied by excessive synaptic abnormalities. Specialized and compartmentalized quality control mechanisms have evolved to restore and maintain synaptic energy metabolism. Here, we survey recent advances towards the elucidation of the pivotal role of mitochondria in neurotransmission and implicating mitophagy in the maintenance of synaptic homeostasis during ageing.
Collapse
Affiliation(s)
- Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 70013, Crete, Greece.
| |
Collapse
|
31
|
Bentea E, Depasquale EA, O’Donovan SM, Sullivan CR, Simmons M, Meador-Woodruff JH, Zhou Y, Xu C, Bai B, Peng J, Song H, Ming GL, Meller J, Wen Z, McCullumsmith RE. Kinase network dysregulation in a human induced pluripotent stem cell model of DISC1 schizophrenia. Mol Omics 2019; 15:173-188. [PMID: 31106784 PMCID: PMC6563817 DOI: 10.1039/c8mo00173a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein kinases orchestrate signal transduction pathways involved in central nervous system functions ranging from neurodevelopment to synaptic transmission and plasticity. Abnormalities in kinase-mediated signaling are involved in the pathophysiology of neurological disorders, including neuropsychiatric disorders. Here, we expand on the hypothesis that kinase networks are dysregulated in schizophrenia. We investigated changes in serine/threonine kinase activity in cortical excitatory neurons differentiated from induced pluripotent stem cells (iPSCs) from a schizophrenia patient presenting with a 4 bp mutation in the disrupted in schizophrenia 1 (DISC1) gene and a corresponding control. Using kinome peptide arrays, we demonstrate large scale abnormalities in DISC1 cells, including a global depression of serine/threonine kinase activity, and changes in activity of kinases, including AMP-activated protein kinase (AMPK), extracellular signal-regulated kinases (ERK), and thousand-and-one amino acid (TAO) kinases. Using isogenic cell lines in which the DISC1 mutation is either introduced in the control cell line, or rescued in the schizophrenia cell line, we ascribe most of these changes to a direct effect of the presence of the DISC1 mutation. Investigating the gene expression signatures downstream of the DISC1 kinase network, and mapping them on perturbagen signatures obtained from the Library of Integrated Network-based Cellular Signatures (LINCS) database, allowed us to propose novel drug targets able to reverse the DISC1 kinase dysregulation gene expression signature. Altogether, our findings provide new insight into abnormalities of kinase networks in schizophrenia and suggest possible targets for disease intervention.
Collapse
Affiliation(s)
- Eduard Bentea
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Erica A.K. Depasquale
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | | | - Micah Simmons
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ying Zhou
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chongchong Xu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Bai
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, P. R. China
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jarek Meller
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Departments of Environmental Health, Electrical Engineering & Computing Systems and Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
32
|
Son T, Lee D, Lee C, Moon G, Ha GE, Lee H, Kwak H, Cheong E, Kim D. Superlocalized Three-Dimensional Live Imaging of Mitochondrial Dynamics in Neurons Using Plasmonic Nanohole Arrays. ACS NANO 2019; 13:3063-3074. [PMID: 30802028 DOI: 10.1021/acsnano.8b08178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigated the transport of neuronal mitochondria using superlocalized near-fields with plasmonic nanohole arrays (PNAs). Compared to traditional imaging techniques, PNAs create a massive array of superlocalized light beams and allow 3D mitochondrial dynamics to be sampled and extracted almost in real time. In this work, mitochondrial fluorescence excited by the PNAs was captured by an optical microscope using dual objective lenses, which produced superlocalized dynamics while minimizing light scattering by the plasmonic substrate. It was found that mitochondria move with an average velocity 0.33 ± 0.26 μm/s, a significant part of which, by almost 50%, was contributed by the movement along the depth axis ( z-axis). Mitochondrial positions were acquired with superlocalized precision (σ x = 5.7 nm and σ y = 11.8 nm) in the lateral plane and σ z = 78.7 nm in the z-axis, which presents an enhancement by 12.7-fold in resolution compared to confocal fluorescence microscopy. The approach is expected to serve as a way to provide 3D information on molecular dynamics in real time.
Collapse
|
33
|
Zheng YR, Zhang XN, Chen Z. Mitochondrial transport serves as a mitochondrial quality control strategy in axons: Implications for central nervous system disorders. CNS Neurosci Ther 2019; 25:876-886. [PMID: 30900394 PMCID: PMC6566064 DOI: 10.1111/cns.13122] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal mitochondrial quality is essential for neuronal health and functions. Compromised mitochondrial quality, reflected by loss of membrane potential, collapse of ATP production, abnormal morphology, burst of reactive oxygen species generation, and impaired Ca2+ buffering capacity, can alter mitochondrial transport. Mitochondrial transport in turn maintains axonal mitochondrial homeostasis in several ways. Newly generated mitochondria are anterogradely transported along with axon from soma to replenish axonal mitochondrial pool, while damaged mitochondria undergo retrograde transport for repair or degradation. Besides, mitochondria are also arrested in axon to quarantine damages locally. Accumulating evidence suggests abnormal mitochondrial transport leads to mitochondrial dysfunction and axon degeneration in a variety of neurological and psychiatric disorders. Further investigations into the details of this process would help to extend our understanding of various neurological diseases and shed light on the corresponding therapies.
Collapse
Affiliation(s)
- Yan-Rong Zheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Malavasi ELV, Economides KD, Grünewald E, Makedonopoulou P, Gautier P, Mackie S, Murphy LC, Murdoch H, Crummie D, Ogawa F, McCartney DL, O'Sullivan ST, Burr K, Torrance HS, Phillips J, Bonneau M, Anderson SM, Perry P, Pearson M, Constantinides C, Davidson-Smith H, Kabiri M, Duff B, Johnstone M, Polites HG, Lawrie SM, Blackwood DH, Semple CA, Evans KL, Didier M, Chandran S, McIntosh AM, Price DJ, Houslay MD, Porteous DJ, Millar JK. DISC1 regulates N-methyl-D-aspartate receptor dynamics: abnormalities induced by a Disc1 mutation modelling a translocation linked to major mental illness. Transl Psychiatry 2018; 8:184. [PMID: 30190480 PMCID: PMC6127284 DOI: 10.1038/s41398-018-0228-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023] Open
Abstract
The neuromodulatory gene DISC1 is disrupted by a t(1;11) translocation that is highly penetrant for schizophrenia and affective disorders, but how this translocation affects DISC1 function is incompletely understood. N-methyl-D-aspartate receptors (NMDAR) play a central role in synaptic plasticity and cognition, and are implicated in the pathophysiology of schizophrenia through genetic and functional studies. We show that the NMDAR subunit GluN2B complexes with DISC1-associated trafficking factor TRAK1, while DISC1 interacts with the GluN1 subunit and regulates dendritic NMDAR motility in cultured mouse neurons. Moreover, in the first mutant mouse that models DISC1 disruption by the translocation, the pool of NMDAR transport vesicles and surface/synaptic NMDAR expression are increased. Since NMDAR cell surface/synaptic expression is tightly regulated to ensure correct function, these changes in the mutant mouse are likely to affect NMDAR signalling and synaptic plasticity. Consistent with these observations, RNASeq analysis of the translocation carrier-derived human neurons indicates abnormalities of excitatory synapses and vesicle dynamics. RNASeq analysis of the human neurons also identifies many differentially expressed genes previously highlighted as putative schizophrenia and/or depression risk factors through large-scale genome-wide association and copy number variant studies, indicating that the translocation triggers common disease pathways that are shared with unrelated psychiatric patients. Altogether, our findings suggest that translocation-induced disease mechanisms are likely to be relevant to mental illness in general, and that such disease mechanisms include altered NMDAR dynamics and excitatory synapse function. This could contribute to the cognitive disorders displayed by translocation carriers.
Collapse
Affiliation(s)
- Elise L V Malavasi
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | | | - Ellen Grünewald
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Paraskevi Makedonopoulou
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Shaun Mackie
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Laura C Murphy
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Hannah Murdoch
- Molecular Pharmacology Group, Wolfson Building, Institute of Neuroscience and Psychology, The University of Glasgow, University Avenue, Glasgow, UK
| | - Darragh Crummie
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Fumiaki Ogawa
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Shane T O'Sullivan
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Helen S Torrance
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Jonathan Phillips
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Marion Bonneau
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Susan M Anderson
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Paul Perry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Matthew Pearson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Costas Constantinides
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Hazel Davidson-Smith
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Mostafa Kabiri
- Translational In Vivo Models at Sanofi, Frankfurt, Germany
| | - Barbara Duff
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - Mandy Johnstone
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | | | - Stephen M Lawrie
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | | | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Michel Didier
- Translational Sciences at Sanofi, Chilly-Mazarin, France
| | | | | | - David J Price
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, UK
| | - Miles D Houslay
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - J Kirsty Millar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
35
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
36
|
Kay LJ, Sangal V, Black GW, Soundararajan M. Proteomics and bioinformatics analyses identify novel cellular roles outside mitochondrial function for human miro GTPases. Mol Cell Biochem 2018; 451:21-35. [PMID: 29943371 PMCID: PMC6342832 DOI: 10.1007/s11010-018-3389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/16/2018] [Indexed: 12/03/2022]
Abstract
The human Miro GTPases (hMiros) have recently emerged as important mediators of mitochondrial transport and may significantly contribute to the development of disorders such as Alzheimer’s and schizophrenia. The hMiros represent two highly atypical members of the Ras superfamily, and exhibit several unique features: the presence of a GTPase domain at both the N-terminus and C-terminus, the presence of two calcium-binding EF-hand domains and localisation to the mitochondrial outer membrane. Here, elucidation of Miro GTPase signalling pathway components was achieved through the use of molecular biology, cell culture techniques and proteomics. An investigation of this kind has not been performed previously; we hoped, through these techniques, to enable the profiling and identification of pathways regulated by the human Miro GTPases. The results indicate several novel putative interaction partners for hMiro1 and hMiro2, including numerous proteins previously implicated in neurodegenerative pathways and the development of schizophrenia. Furthermore, we show that the N-terminal GTPase domain appears to fine-tune hMiro signalling, with GTP-bound versions of this domain associated with a diverse range of interaction partners in comparison to corresponding GDP-bound versions. Recent evidences suggest that human Miros participate in host–pathogen interactions with Vibrio Cholerae type III secretion proteins. We have undertaken a bioinformatics investigation to identify novel pathogenic effectors that might interact with Miros.
Collapse
Affiliation(s)
- Laura J Kay
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| | - Vartul Sangal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| | - Gary W Black
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| | - Meera Soundararajan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK.
| |
Collapse
|
37
|
Moore AS, Holzbaur ELF. Mitochondrial-cytoskeletal interactions: dynamic associations that facilitate network function and remodeling. CURRENT OPINION IN PHYSIOLOGY 2018; 3:94-100. [PMID: 30555978 PMCID: PMC6289269 DOI: 10.1016/j.cophys.2018.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mitochondria are dynamic organelles that can form complex networks in the cell. These networks can be rapidly remodeled in response to environmental changes or to support cellular needs. Mitochondrial dynamics are dependent on interactions with the cellular cytoskeleton - both microtubules and actin filaments. Mitochondrial-cytoskeletal interactions have a well-established role in mitochondrial motility. Recent progress indicates that these interactions also regulate the balance of mitochondrial fission/fusion, as well as mitochondria turnover and mitochondrial inheritance during cell division. We review these advances, and how this work has deepened our understanding of mitochondrial dynamics in the cell.
Collapse
Affiliation(s)
- Andrew S Moore
- Department of Physiology, University of Pennsylvania Perelman School of Medicine 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104-6085
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104-6085
| |
Collapse
|
38
|
Yalla K, Elliott C, Day JP, Findlay J, Barratt S, Hughes ZA, Wilson L, Whiteley E, Popiolek M, Li Y, Dunlop J, Killick R, Adams DR, Brandon NJ, Houslay MD, Hao B, Baillie GS. FBXW7 regulates DISC1 stability via the ubiquitin-proteosome system. Mol Psychiatry 2018; 23:1278-1286. [PMID: 28727686 PMCID: PMC5984089 DOI: 10.1038/mp.2017.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/27/2023]
Abstract
Disrupted in schizophrenia 1 (DISC1) is a multi-functional scaffolding protein that has been associated with neuropsychiatric disease. The role of DISC1 is to assemble protein complexes that promote neural development and signaling, hence tight control of the concentration of cellular DISC1 in neurons is vital to brain function. Using structural and biochemical techniques, we show for we believe the first time that not only is DISC1 turnover elicited by the ubiquitin proteasome system (UPS) but that it is orchestrated by the F-Box protein, FBXW7. We present the structure of FBXW7 bound to the DISC1 phosphodegron motif and exploit this information to prove that disruption of the FBXW7-DISC1 complex results in a stabilization of DISC1. This action can counteract DISC1 deficiencies observed in neural progenitor cells derived from induced pluripotent stem cells from schizophrenia patients with a DISC1 frameshift mutation. Thus manipulation of DISC1 levels via the UPS may provide a novel method to explore DISC1 function.
Collapse
Affiliation(s)
- K Yalla
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - C Elliott
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - J P Day
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - J Findlay
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - S Barratt
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Z A Hughes
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - L Wilson
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - E Whiteley
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Popiolek
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Y Li
- Department of Molecular Biology and Biophysics, University of Connecticut Health Centre, Farmington, CT, USA
| | - J Dunlop
- AstraZeneca, Neuroscience, Innovative Medicines & Early Development, Waltham, MA, USA
| | - R Killick
- Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - D R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
| | - N J Brandon
- AstraZeneca, Neuroscience, Innovative Medicines & Early Development, Waltham, MA, USA
| | - M D Houslay
- Institute of Pharmaceutical Science, King’s College, London, UK
| | - B Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Health Centre, Farmington, CT, USA
| | - G S Baillie
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
39
|
DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Transl Psychiatry 2018; 8:76. [PMID: 29643356 PMCID: PMC5895599 DOI: 10.1038/s41398-018-0123-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/11/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022] Open
Abstract
Our knowledge of how genetic risk variants contribute to psychiatric disease is mainly limited to neurons. However, the mechanisms whereby the same genetic risk factors could affect the physiology of glial cells remain poorly understood. We studied the role of a psychiatric genetic risk factor, Disrupted-In-Schizophrenia-1 (DISC1), in metabolic functions of astrocytes. We evaluated the effects of knockdown of mouse endogenous DISC1 (DISC1-KD) and expression of a dominant-negative, C-terminus truncated human DISC1 (DN-DISC1) on the markers of energy metabolism, including glucose uptake and lactate production, in primary astrocytes and in mice with selective expression of DN-DISC1 in astrocytes. We also assessed the effects of lactate treatment on altered affective behaviors and impaired spatial memory in DN-DISC1 mice. Both DISC1-KD and DN-DISC1 comparably decreased mRNA and protein levels of glucose transporter 4 and glucose uptake by primary astrocytes. Decreased glucose uptake was associated with reduced oxidative phosphorylation and glycolysis as well as diminished lactate production in vitro and in vivo. No significant effects of DISC1 manipulations in astrocytes were observed on expression of the subunits of the electron transport chain complexes or mitofilin, a neuronal DISC1 partner. Lactate treatment rescued the abnormal behaviors in DN-DISC1 male and female mice. Our results suggest that DISC1 may be involved in the regulation of lactate production in astrocytes to support neuronal activity and associated behaviors. Abnormal expression of DISC1 in astrocytes and resulting abnormalities in energy supply may be responsible for aspects of mood and cognitive disorders observed in patients with major psychiatric illnesses.
Collapse
|
40
|
Babenko VA, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Plotnikov EY, Sukhikh GT, Zorov DB. Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. Molecules 2018; 23:molecules23030687. [PMID: 29562677 PMCID: PMC6017474 DOI: 10.3390/molecules23030687] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 01/08/2023] Open
Abstract
A recently discovered key role of reactive oxygen species (ROS) in mitochondrial traffic has opened a wide alley for studying the interactions between cells, including stem cells. Since its discovery in 2006, intercellular mitochondria transport has been intensively studied in different cellular models as a basis for cell therapy, since the potential of replacing malfunctioning organelles appears to be very promising. In this study, we explored the transfer of mitochondria from multipotent mesenchymal stem cells (MMSC) to neural cells and analyzed its efficacy under normal conditions and upon induction of mitochondrial damage. We found that mitochondria were transferred from the MMSC to astrocytes in a more efficient manner when the astrocytes were exposed to ischemic damage associated with elevated ROS levels. Such transport of mitochondria restored the bioenergetics of the recipient cells and stimulated their proliferation. The introduction of MMSC with overexpressed Miro1 in animals that had undergone an experimental stroke led to significantly improved recovery of neurological functions. Our data suggest that mitochondrial impairment in differentiated cells can be compensated by receiving healthy mitochondria from MMSC. We demonstrate a key role of Miro1, which promotes the mitochondrial transfer from MMSC and suggest that the genetic modification of stem cells can improve the therapies for the injured brain.
Collapse
Affiliation(s)
- Valentina A Babenko
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Denis N Silachev
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Vasily A Popkov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Ljubava D Zorova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Irina B Pevzner
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Egor Y Plotnikov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Gennady T Sukhikh
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
- Department of obstetrics, gynecology, perinatology and reproduction, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Dmitry B Zorov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| |
Collapse
|
41
|
Disrupted in schizophrenia 1 (DISC1) inhibits glioblastoma development by regulating mitochondria dynamics. Oncotarget 2018; 7:85963-85974. [PMID: 27852062 PMCID: PMC5349889 DOI: 10.18632/oncotarget.13290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma(GBM) is one of the most common and aggressive malignant primary tumors of the central nervous system and mitochondria have been proposed to participate in GBM tumorigenesis. Previous studies have identified a potential role of Disrupted in Schizophrenia 1 (DISC1), a multi-compartmentalized protein, in mitochondria. But whether DISC1 could regulate GBM tumorigenesis via mitochondria is still unknown. We determined the expression level of DISC1 by both bioinformatics analysis and tissue analysis, and found that DISC1 was highly expressed in GBM. Knocking down of DISC1 by shRNA in GBM cells significantly inhibited cell proliferation both in vitro and in vivo. In addition, down-regulation of DISC1 decreased cell migration and invasion of GBM and self renewal capacity of glioblastoma stem-like cells. Furthermore, multiple independent rings or spheres could be observed in mitochondria in GBM depleted of DISC1, while normal filamentous morphology was observed in control cells, demonstrating that DISC1 affected the mitochondrial dynamic. Dynamin-related protein 1 (Drp1) was reported to contribute to mitochondrial dynamic regulation and influence glioma cells proliferation and invasion by RHOA/ ROCK1 pathway. Our data showed a significant decrease of Drp1 both in mRNA and protein level in GBM lack of DISC1, indicating that DISC1 maybe affect the mitochondrial dynamic by regulating Drp1. Taken together, our findings reveal that DISC1 affects glioblastoma cell development via mitochondria dynamics partly by down regulation of Drp1.
Collapse
|
42
|
Understanding Miro GTPases: Implications in the Treatment of Neurodegenerative Disorders. Mol Neurobiol 2018; 55:7352-7365. [PMID: 29411264 PMCID: PMC6096957 DOI: 10.1007/s12035-018-0927-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
Abstract
The Miro GTPases represent an unusual subgroup of the Ras superfamily and have recently emerged as important mediators of mitochondrial dynamics and for maintaining neuronal health. It is now well-established that these enzymes act as essential components of a Ca2+-sensitive motor complex, facilitating the transport of mitochondria along microtubules in several cell types, including dopaminergic neurons. The Miros appear to be critical for both anterograde and retrograde mitochondrial transport in axons and dendrites, both of which are considered essential for neuronal health. Furthermore, the Miros may be significantly involved in the development of several serious pathological processes, including the development of neurodegenerative and psychiatric disorders. In this review, we discuss the molecular structure and known mitochondrial functions of the Miro GTPases in humans and other organisms, in the context of neurodegenerative disease. Finally, we consider the potential human Miros hold as novel therapeutic targets for the treatment of such disease.
Collapse
|
43
|
Johnsson M, Henriksen R, Höglund A, Fogelholm J, Jensen P, Wright D. Genetical genomics of growth in a chicken model. BMC Genomics 2018; 19:72. [PMID: 29361907 PMCID: PMC5782384 DOI: 10.1186/s12864-018-4441-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The genetics underlying body mass and growth are key to understanding a wide range of topics in biology, both evolutionary and developmental. Body mass and growth traits are affected by many genetic variants of small effect. This complicates genetic mapping of growth and body mass. Experimental intercrosses between individuals from divergent populations allows us to map naturally occurring genetic variants for selected traits, such as body mass by linkage mapping. By simultaneously measuring traits and intermediary molecular phenotypes, such as gene expression, one can use integrative genomics to search for potential causative genes. RESULTS In this study, we use linkage mapping approach to map growth traits (N = 471) and liver gene expression (N = 130) in an advanced intercross of wild Red Junglefowl and domestic White Leghorn layer chickens. We find 16 loci for growth traits, and 1463 loci for liver gene expression, as measured by microarrays. Of these, the genes TRAK1, OSBPL8, YEATS4, CEP55, and PIP4K2B are identified as strong candidates for growth loci in the chicken. We also show a high degree of sex-specific gene-regulation, with almost every gene expression locus exhibiting sex-interactions. Finally, several trans-regulatory hotspots were found, one of which coincides with a major growth locus. CONCLUSIONS These findings not only serve to identify several strong candidates affecting growth, but also show how sex-specificity and local gene-regulation affect growth regulation in the chicken.
Collapse
Affiliation(s)
- Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK.,Department of Animal Breeding and Genetics, The Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden.,AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
44
|
DISC1 Modulates Neuronal Stress Responses by Gate-Keeping ER-Mitochondria Ca 2+ Transfer through the MAM. Cell Rep 2017; 21:2748-2759. [DOI: 10.1016/j.celrep.2017.11.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/21/2017] [Accepted: 11/12/2017] [Indexed: 12/21/2022] Open
|
45
|
Norkett R, Modi S, Kittler JT. Mitochondrial roles of the psychiatric disease risk factor DISC1. Schizophr Res 2017; 187:47-54. [PMID: 28087269 DOI: 10.1016/j.schres.2016.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
Ion transport during neuronal signalling utilizes the majority of the brain's energy supply. Mitochondria are key sites for energy provision through ATP synthesis and play other important roles including calcium buffering. Thus, tightly regulated distribution and function of these organelles throughout the intricate architecture of the neuron is essential for normal synaptic communication. Therefore, delineating mechanisms coordinating mitochondrial transport and function is essential for understanding nervous system physiology and pathology. While aberrant mitochondrial transport and dynamics have long been associated with neurodegenerative disease, they have also more recently been linked to major mental illness including schizophrenia, autism and depression. However, the underlying mechanisms have yet to be elucidated, due to an incomplete understanding of the combinations of genetic and environmental factors contributing to these conditions. Consequently, the DISC1 gene has undergone intense study since its discovery at the site of a balanced chromosomal translocation, segregating with mental illness in a Scottish pedigree. The precise molecular functions of DISC1 remain elusive. Reported functions of DISC1 include regulation of intracellular signalling pathways, neuronal migration and dendritic development. Intriguingly, a role for DISC1 in mitochondrial homeostasis and transport is fast emerging. Therefore, a major function of DISC1 in regulating mitochondrial distribution, ATP synthesis and calcium buffering may be disrupted in psychiatric disease. In this review, we discuss the links between DISC1 and mitochondria, considering both trafficking of these organelles and their function, and how, via these processes, DISC1 may contribute to the regulation of neuronal behavior in normal and psychiatric disease states.
Collapse
Affiliation(s)
- R Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - S Modi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - J T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK.
| |
Collapse
|
46
|
An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res 2017; 187:26-32. [PMID: 28526279 PMCID: PMC5646380 DOI: 10.1016/j.schres.2017.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/27/2022]
Abstract
Abnormal brain development has long been thought to contribute to the pathophysiology of schizophrenia. Impaired dendritic arborization, synaptogenesis, and long term potentiation and memory have been demonstrated in animal models of schizophrenia. In addition to aberrant nervous system development, altered brain metabolism and mitochondrial function has long been observed in schizophrenic patients. Single nucleotide polymorphisms in the mitochondrial genome as well as impaired mitochondrial function have both been associated with increased risk for developing schizophrenia. Mitochondrial function in neurons is highly dependent on fission, fusion, and transport of the organelle, collectively referred to as mitochondrial dynamics. Indeed, there is mounting evidence that mitochondrial dynamics strongly influences neuron development and synaptic transmission. While there are a few studies describing altered mitochondrial shape in schizophrenic patients, as well as in animal and in vitro models of schizophrenia, the precise role of mitochondrial dynamics in the pathophysiology of schizophrenia is all but unexplored. Here we discuss the influence of mitochondrial dynamics and mitochondrial function on nervous system development, and highlight recent work suggesting a link between aberrant mitochondrial dynamics and schizophrenia.
Collapse
|
47
|
De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis 2017; 105:283-299. [PMID: 28235672 PMCID: PMC5536153 DOI: 10.1016/j.nbd.2017.02.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Kurt J De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Majid Hafezparast
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
48
|
Murphy LC, Millar JK. Regulation of mitochondrial dynamics by DISC1, a putative risk factor for major mental illness. Schizophr Res 2017; 187:55-61. [PMID: 28082141 DOI: 10.1016/j.schres.2016.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Mitochondria are dynamic organelles that are essential to power the process of neurotransmission. Neurons must therefore ensure that mitochondria maintain their functional integrity and are efficiently transported along the full extent of the axons and dendrites, from soma to synapses. Mitochondrial dynamics (trafficking, fission and fusion) co-ordinately regulate mitochondrial quality control and function. DISC1 is a component of the mitochondrial transport machinery and regulates mitochondrial dynamics. DISC1's role in this is adversely affected by sequence variants connected to brain structure/function and disease risk, and by mutant truncation. The DISC1 interactors NDE1 and GSK3β are also involved, indicating a convergence of putative risk factors for psychiatric illness upon mitochondrial dynamics.
Collapse
Affiliation(s)
- Laura C Murphy
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - J Kirsty Millar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
49
|
Liu YN, Lu SY, Yao J. Application of induced pluripotent stem cells to understand neurobiological basis of bipolar disorder and schizophrenia. Psychiatry Clin Neurosci 2017; 71:579-599. [PMID: 28393474 DOI: 10.1111/pcn.12528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
The etiology of neuropsychiatric disorders, such as schizophrenia and bipolar disorder, usually involves complex combinations of genetic defects/variations and environmental impacts, which hindered, for a long time, research efforts based on animal models and patients' non-neuronal cells or post-mortem tissues. However, the development of human induced pluripotent stem cell (iPSC) technology by the Yamanaka group was immediately applied to establish cell research models for neuronal disorders. Since then, techniques to achieve highly efficient differentiation of different types of neural cells following iPSC modeling have made much progress. The fast-growing iPSC and neural differentiation techniques have brought valuable insights into the pathology and neurobiology of neuropsychiatric disorders. In this article, we first review the application of iPSC technology in modeling neuronal disorders and discuss the progress in the accompanying neural differentiation. Then, we summarize the progress in iPSC-based research that has been accomplished so far regarding schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Yao-Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Si-Yao Lu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| |
Collapse
|
50
|
Tomoda T, Hikida T, Sakurai T. Role of DISC1 in Neuronal Trafficking and its Implication in Neuropsychiatric Manifestation and Neurotherapeutics. Neurotherapeutics 2017; 14:623-629. [PMID: 28664299 PMCID: PMC5509643 DOI: 10.1007/s13311-017-0556-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) was initially identified as a gene disrupted by a translocation mutation co-segregating with a variety of psychotic and mood disorders in a Scottish pedigree. In agreement with this original finding, mouse models that perturb Disc1 display deficits of behaviors in specific dimensions, such as cognition and emotion, but not a motor dimension. Although DISC1 is not a risk gene for sporadic cases of specific psychiatric disorders defined by categorical diagnostic criteria (e.g., schizophrenia and major depressive disorder), DISC1 is now regarded as an important molecular lead to decipher molecular pathology for specific dimensions relevant to major mental illnesses. Emerging evidence points to the role of DISC1 in the regulation of intracellular trafficking of a wide range of neuronal cargoes. We will review recent progress in this aspect of DISC1 biology and discuss how we could utilize this body of knowledge to better understand the pathophysiology of mental illnesses.
Collapse
Affiliation(s)
- Toshifumi Tomoda
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|