1
|
Nateghi B, Keraudren R, Boulay G, Bazin M, Goupil C, Canet G, Loiselle A, St-Amour I, Planel E, Soulet D, Hébert SS. Beneficial effects of miR-132/212 deficiency in the zQ175 mouse model of Huntington's disease. Front Neurosci 2024; 18:1421680. [PMID: 39170678 PMCID: PMC11337869 DOI: 10.3389/fnins.2024.1421680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Huntington's disease (HD) is a rare genetic neurodegenerative disorder caused by an expansion of CAG repeats in the Huntingtin (HTT) gene. One hypothesis suggests that the mutant HTT gene contributes to HD neuropathology through transcriptional dysregulation involving microRNAs (miRNAs). In particular, the miR-132/212 cluster is strongly diminished in the HD brain. This study explores the effects of miR-132/212 deficiency specifically in adult HD zQ175 mice. The absence of miR-132/212 did not impact body weight, body temperature, or survival rates. Surprisingly, miR-132/212 loss seemed to alleviate, in part, the effects on endogenous Htt expression, HTT inclusions, and neuronal integrity in HD zQ175 mice. Additionally, miR-132/212 depletion led to age-dependent improvements in certain motor functions. Transcriptomic analysis revealed alterations in HD-related networks in WT- and HD zQ175-miR-132/212-deficient mice, including significant overlap in BDNF and Creb1 signaling pathways. Interestingly, however, a higher number of miR-132/212 gene targets was observed in HD zQ175 mice lacking the miR-132/212 cluster, especially in the striatum. These findings suggest a nuanced interplay between miR-132/212 expression and HD pathogenesis, providing potential insights into therapeutic interventions. Further investigation is needed to fully understand the underlying mechanisms and therapeutic potential of modulating miR-132/212 expression during HD progression.
Collapse
Affiliation(s)
- Behnaz Nateghi
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Remi Keraudren
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Gabriel Boulay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marc Bazin
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Geoffrey Canet
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Andréanne Loiselle
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Isabelle St-Amour
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Denis Soulet
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Sébastien S. Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Pengo M, Squitieri F. Beyond CAG Repeats: The Multifaceted Role of Genetics in Huntington Disease. Genes (Basel) 2024; 15:807. [PMID: 38927742 PMCID: PMC11203031 DOI: 10.3390/genes15060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG expansion on the huntingtin (HTT) gene and is characterized by progressive motor, cognitive, and neuropsychiatric decline. Recently, new genetic factors besides CAG repeats have been implicated in the disease pathogenesis. Most genetic modifiers are involved in DNA repair pathways and, as the cause of the loss of CAA interruption in the HTT gene, they exert their main influence through somatic expansion. However, this mechanism might not be the only driver of HD pathogenesis, and future studies are warranted in this field. The aim of the present review is to dissect the many faces of genetics in HD pathogenesis, from cis- and trans-acting genetic modifiers to RNA toxicity, mitochondrial DNA mutations, and epigenetics factors. Exploring genetic modifiers of HD onset and progression appears crucial to elucidate not only disease pathogenesis, but also to improve disease prediction and prevention, develop biomarkers of disease progression and response to therapies, and recognize new therapeutic opportunities. Since the same genetic mechanisms are also described in other repeat expansion diseases, their implications might encompass the whole spectrum of these disorders.
Collapse
Affiliation(s)
- Marta Pengo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Ferdinando Squitieri
- Centre for Neurological Rare Diseases (CMNR), Fondazione Lega Italiana Ricerca Huntington (LIRH), 00161 Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
3
|
Temgire P, Arthur R, Kumar P. Neuroinflammation and the role of epigenetic-based therapies for Huntington's disease management: the new paradigm. Inflammopharmacology 2024; 32:1791-1804. [PMID: 38653938 DOI: 10.1007/s10787-024-01477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Huntington's disease (HD) is an inherited, autosomal, neurodegenerative ailment that affects the striatum of the brain. Despite its debilitating effect on its patients, there is no proven cure for HD management as of yet. Neuroinflammation, excitotoxicity, and environmental factors have been reported to influence the regulation of gene expression by modifying epigenetic mechanisms. Aside focusing on the etiology, changes in epigenetic mechanisms have become a crucial factor influencing the interaction between HTT protein and epigenetically transcribed genes involved in neuroinflammation and HD. This review presents relevant literature on epigenetics with special emphasis on neuroinflammation and HD. It summarizes pertinent research on the role of neuroinflammation and post-translational modifications of chromatin, including DNA methylation, histone modification, and miRNAs. To achieve this about 1500 articles were reviewed via databases like PubMed, ScienceDirect, Google Scholar, and Web of Science. They were reduced to 534 using MeSH words like 'epigenetics, neuroinflammation, and HD' coupled with Boolean operators. Results indicated that major contributing factors to the development of HD such as mitochondrial dysfunction, excitotoxicity, neuroinflammation, and apoptosis are affected by epigenetic alterations. However, the association between neuroinflammation-altered epigenetics and the reported transcriptional changes in HD is unknown. Also, the link between epigenetically dysregulated genomic regions and specific DNA sequences suggests the likelihood that transcription factors, chromatin-remodeling proteins, and enzymes that affect gene expression are all disrupted simultaneously. Hence, therapies that target pathogenic pathways in HD, including neuroinflammation, transcriptional dysregulation, triplet instability, vesicle trafficking dysfunction, and protein degradation, need to be developed.
Collapse
Affiliation(s)
- Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
4
|
Gaudet ID, Xu H, Gordon E, Cannestro GA, Lu ML, Wei J. Elevated SLC7A2 expression is associated with an abnormal neuroinflammatory response and nitrosative stress in Huntington's disease. J Neuroinflammation 2024; 21:59. [PMID: 38419038 PMCID: PMC10900710 DOI: 10.1186/s12974-024-03038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
We previously identified solute carrier family 7 member 2 (SLC7A2) as one of the top upregulated genes when normal Huntingtin was deleted. SLC7A2 has a high affinity for L-arginine. Arginine is implicated in inflammatory responses, and SLC7A2 is an important regulator of innate and adaptive immunity in macrophages. Although neuroinflammation is clearly demonstrated in animal models and patients with Huntington's disease (HD), the question of whether neuroinflammation actively participates in HD pathogenesis is a topic of ongoing research and debate. Here, we studied the role of SLC7A2 in mediating the neuroinflammatory stress response in HD cells. RNA sequencing (RNA-seq), quantitative RT-PCR and data mining of publicly available RNA-seq datasets of human patients were performed to assess the levels of SLC7A2 mRNA in different HD cellular models and patients. Biochemical studies were then conducted on cell lines and primary mouse astrocytes to investigate arginine metabolism and nitrosative stress in response to neuroinflammation. The CRISPR-Cas9 system was used to knock out SLC7A2 in STHdhQ7 and Q111 cells to investigate its role in mediating the neuroinflammatory response. Live-cell imaging was used to measure mitochondrial dynamics. Finally, exploratory studies were performed using the Enroll-HD periodic human patient dataset to analyze the effect of arginine supplements on HD progression. We found that SLC7A2 is selectively upregulated in HD cellular models and patients. HD cells exhibit an overactive response to neuroinflammatory challenges, as demonstrated by abnormally high iNOS induction and NO production, leading to increased protein nitrosylation. Depleting extracellular Arg or knocking out SLC7A2 blocked iNOS induction and NO production in STHdhQ111 cells. We further examined the functional impact of protein nitrosylation on a well-documented protein target, DRP-1, and found that more mitochondria were fragmented in challenged STHdhQ111 cells. Last, analysis of Enroll-HD datasets suggested that HD patients taking arginine supplements progressed more rapidly than others. Our data suggest a novel pathway that links arginine uptake to nitrosative stress via upregulation of SLC7A2 in the pathogenesis and progression of HD. This further implies that arginine supplements may potentially pose a greater risk to HD patients.
Collapse
Affiliation(s)
- Ian D Gaudet
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Hongyuan Xu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Emily Gordon
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Gianna A Cannestro
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Michael L Lu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Jianning Wei
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
5
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
6
|
Speidell A, Bin Abid N, Yano H. Brain-Derived Neurotrophic Factor Dysregulation as an Essential Pathological Feature in Huntington's Disease: Mechanisms and Potential Therapeutics. Biomedicines 2023; 11:2275. [PMID: 37626771 PMCID: PMC10452871 DOI: 10.3390/biomedicines11082275] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a major neurotrophin whose loss or interruption is well established to have numerous intersections with the pathogenesis of progressive neurological disorders. There is perhaps no greater example of disease pathogenesis resulting from the dysregulation of BDNF signaling than Huntington's disease (HD)-an inherited neurodegenerative disorder characterized by motor, psychiatric, and cognitive impairments associated with basal ganglia dysfunction and the ultimate death of striatal projection neurons. Investigation of the collection of mechanisms leading to BDNF loss in HD highlights this neurotrophin's importance to neuronal viability and calls attention to opportunities for therapeutic interventions. Using electronic database searches of existing and forthcoming research, we constructed a literature review with the overarching goal of exploring the diverse set of molecular events that trigger BDNF dysregulation within HD. We highlighted research that investigated these major mechanisms in preclinical models of HD and connected these studies to those evaluating similar endpoints in human HD subjects. We also included a special focus on the growing body of literature detailing key transcriptomic and epigenetic alterations that affect BDNF abundance in HD. Finally, we offer critical evaluation of proposed neurotrophin-directed therapies and assessed clinical trials seeking to correct BDNF expression in HD individuals.
Collapse
Affiliation(s)
- Andrew Speidell
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Noman Bin Abid
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Li K, Wang Z. lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res Rev 2023; 86:101878. [PMID: 36738893 DOI: 10.1016/j.arr.2023.101878] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Neurodegenerative diseases are the most common causes of disability worldwide. Given their high prevalence, devastating symptoms, and lack of definitive diagnostic tests, there is an urgent need to identify potential biomarkers and new therapeutic targets. Long non-coding RNAs (lncRNAs) have recently emerged as powerful regulatory molecules in neurodegenerative diseases. Among them, lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be upregulated in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). However, whether this is part of a protective or harmful mechanism is still unclear. This review summarizes our current knowledge of the role of NEAT1 in neurodegenerative diseases and its association with the characteristic aggregation of misfolded proteins: amyloid-β and tau in AD, α-synuclein in PD, mutant huntingtin in HD, and TAR DNA-binding protein-43 fused in sarcoma/translocated in liposarcoma in ALS. The aim of this review is to stimulate further research on more precise and effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China.
| |
Collapse
|
8
|
Bhat SA, Ahamad S, Dar NJ, Siddique YH, Nazir A. The Emerging Landscape of Natural Small-molecule Therapeutics for Huntington's Disease. Curr Neuropharmacol 2023; 21:867-889. [PMID: 36797612 PMCID: PMC10227909 DOI: 10.2174/1570159x21666230216104621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023] Open
Abstract
Huntington's disease (HD) is a rare and fatal neurodegenerative disorder with no diseasemodifying therapeutics. HD is characterized by extensive neuronal loss and is caused by the inherited expansion of the huntingtin (HTT) gene that encodes a toxic mutant HTT (mHTT) protein having expanded polyglutamine (polyQ) residues. Current HD therapeutics only offer symptomatic relief. In fact, Food and Drug Administration (FDA) approved two synthetic small-molecule VMAT2 inhibitors, tetrabenazine (1) and deutetrabenazine (2), for managing HD chorea and various other diseases in clinical trials. Therefore, the landscape of drug discovery programs for HD is evolving to discover disease- modifying HD therapeutics. Likewise, numerous natural products are being evaluated at different stages of clinical development and have shown the potential to ameliorate HD pathology. The inherent anti-inflammatory and antioxidant properties of natural products mitigate the mHTT-induced oxidative stress and neuroinflammation, improve mitochondrial functions, and augment the anti-apoptotic and pro-autophagic mechanisms for increased survival of neurons in HD. In this review, we have discussed HD pathogenesis and summarized the anti-HD clinical and pre-clinical natural products, focusing on their therapeutic effects and neuroprotective mechanism/s.
Collapse
Affiliation(s)
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India
| | - Nawab John Dar
- School of Medicine, UT Health San Antonio, Texas, TX, USA
| | | | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
9
|
Younesian S, Yousefi AM, Momeny M, Ghaffari SH, Bashash D. The DNA Methylation in Neurological Diseases. Cells 2022; 11:3439. [PMID: 36359835 PMCID: PMC9657829 DOI: 10.3390/cells11213439] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
DNA methylation is critical for the normal development and functioning of the human brain, such as the proliferation and differentiation of neural stem cells, synaptic plasticity, neuronal reparation, learning, and memory. Despite the physical stability of DNA and methylated DNA compared to other epigenetic modifications, some DNA methylation-based biomarkers have translated into clinical practice. Increasing reports indicate a strong association between DNA methylation profiles and various clinical outcomes in neurological diseases, making DNA methylation profiles valuable as novel clinical markers. In this review, we aim to discuss the latest evidence concerning DNA methylation alterations in the development of neurodegenerative, neurodevelopmental, and neuropsychiatric diseases. We also highlighted the relationship of DNA methylation alterations with the disease progression and outcome in many neurological diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and autism.
Collapse
Affiliation(s)
- Samareh Younesian
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seyed H. Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| |
Collapse
|
10
|
Irfan Z, Khanam S, Karmakar V, Firdous SM, El Khier BSIA, Khan I, Rehman MU, Khan A. Pathogenesis of Huntington's Disease: An Emphasis on Molecular Pathways and Prevention by Natural Remedies. Brain Sci 2022; 12:1389. [PMID: 36291322 PMCID: PMC9599635 DOI: 10.3390/brainsci12101389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Huntington's disease is an inherited autosomal dominant trait neuro-degenerative disorder caused by changes (mutations) of a gene called huntingtin (htt) that is located on the short arm (p) of chromosome 4, CAG expansion mutation. It is characterized by unusual movements, cognitive and psychiatric disorders. OBJECTIVE This review was undertaken to apprehend biological pathways of Huntington's disease (HD) pathogenesis and its management by nature-derived products. Natural products can be lucrative for the management of HD as it shows protection against HD in pre-clinical trials. Advanced research is still required to assess the therapeutic effectiveness of the known organic products and their isolated compounds in HD experimental models. SUMMARY Degeneration of neurons in Huntington's disease is distinguished by progressive loss of motor coordination and muscle function. This is due to the expansion of CAG trinucleotide in the first exon of the htt gene responsible for neuronal death and neuronal network degeneration in the brain. It is believed that the factors such as molecular genetics, oxidative stress, excitotoxicity, mitochondrial dysfunction, neuroglia dysfunction, protein aggregation, and altered UPS leads to HD. The defensive effect of the natural product provides therapeutic efficacy against HD. Recent reports on natural drugs have enlightened the protective role against HD via antioxidant, anti-inflammatory, antiapoptotic, and neurofunctional regulation.
Collapse
Affiliation(s)
- Zainab Irfan
- Department of Pharmaceutical Technology, Brainware University, Kolkata 700125, West Bengal, India
| | - Sofia Khanam
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | - Varnita Karmakar
- Department of Pharmacology, Eminent College of Pharmaceutical Technology, Barasat 700126, West Bengal, India
| | - Sayeed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | | | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
11
|
Podvin S, Rosenthal SB, Poon W, Wei E, Fisch KM, Hook V. Mutant Huntingtin Protein Interaction Map Implicates Dysregulation of Multiple Cellular Pathways in Neurodegeneration of Huntington's Disease. J Huntingtons Dis 2022; 11:243-267. [PMID: 35871359 PMCID: PMC9484122 DOI: 10.3233/jhd-220538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat (CAG) expansions in the human HTT gene encoding the huntingtin protein (Htt) with an expanded polyglutamine tract. OBJECTIVE HD models from yeast to transgenic mice have investigated proteins interacting with mutant Htt that may initiate molecular pathways of cell death. There is a paucity of datasets of published Htt protein interactions that include the criteria of 1) defining fragments or full-length Htt forms, 2) indicating the number of poly-glutamines of the mutant and wild-type Htt forms, and 3) evaluating native Htt interaction complexes. This research evaluated such interactor data to gain understanding of Htt dysregulation of cellular pathways. METHODS Htt interacting proteins were compiled from the literature that meet our criteria and were subjected to network analysis via clustering, gene ontology, and KEGG pathways using rigorous statistical methods. RESULTS The compiled data of Htt interactors found that both mutant and wild-type Htt interact with more than 2,971 proteins. Application of a community detection algorithm to all known Htt interactors identified significant signal transduction, membrane trafficking, chromatin, and mitochondrial clusters, among others. Binomial analyses of a subset of reported protein interactor information determined that chromatin organization, signal transduction and endocytosis were diminished, while mitochondria, translation and membrane trafficking had enriched overall edge effects. CONCLUSION The data support the hypothesis that mutant Htt disrupts multiple cellular processes causing toxicity. This dataset is an open resource to aid researchers in formulating hypotheses of HD mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA.,Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Neuroscience and Dept of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Khan MQ, Mubeen H, Khan ZQ, Masood A, Zafar A, Wattoo JI, Nisa AU. Computational insights into missense mutations in HTT gene causing Huntington's disease and its interactome networks. Ir J Med Sci 2022:10.1007/s11845-022-03043-5. [PMID: 35829908 DOI: 10.1007/s11845-022-03043-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Huntington's disease is a rare neurodegenerative illness of the central nervous system that is inherited in an autosomal dominant pattern. Mutant huntingtin protein is produced as a result of enlargement of CAG repeat in the N-terminal of the polyglutamine tract. AIM OF THE STUDY Herein, we aim to investigate the mutations and their effects on the HTT gene and its genetic variants. Additionally, the protein-protein interaction of HTT with other proteins and receptor-ligand interaction with the three-dimensional structure of huntingtin protein were identified. METHODS A comprehensive analysis of the HTT interactome and protein-ligand interaction has been carried out to provide a global picture of structure-function analysis of huntingtin protein. Mutations were analyzed and mutation verification tools were used to check the effect of mutation on protein function. RESULTS The results showed, mutations in a single gene are not only responsible for causing a particular disease but may also cause other hereditary disorders as well. Moreover, the modification at the nucleotide level also cause the change in the specific amino acid which may disrupt the function of HTT and its interacting proteins contributing in disease pathogenesis. Furthermore, the interaction between MECP2 and BDNF lowers the rate of transcriptional activity. Molecular docking further confirmed the strong interaction between MECP2 and BDNF with highest affinity. Amino acid residues of the HTT protein, involved in the interaction with tetrabenazine were N912, Y890, G2385, and V2320. These findings proved, tetrabenazine as one of the potential therapeutic agent for treatment of Huntington's disease. CONCLUSION These results give further insights into the genetics of Huntington's disease for a better understanding of disease models which will be beneficial for the future therapeutic studies.
Collapse
Affiliation(s)
| | - Hira Mubeen
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan.
| | | | - Ammara Masood
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Asma Zafar
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Javed Iqbal Wattoo
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Alim Un Nisa
- Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| |
Collapse
|
13
|
Lawlor M, Zigo M, Kerns K, Cho IK, Easley IV CA, Sutovsky P. Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington’s Disease. Int J Mol Sci 2022; 23:ijms23137163. [PMID: 35806166 PMCID: PMC9266437 DOI: 10.3390/ijms23137163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Huntington’s Disease (HD) is a fatal autosomal dominant neurodegenerative disease manifested through motor dysfunction and cognitive deficits. Decreased fertility is also observed in HD animal models and HD male patients, due to altered spermatogenesis and sperm function, thus resulting in reduced fertilization potential. Although some pharmaceuticals are currently utilized to mitigate HD symptoms, an effective treatment that remedies the pathogenesis of the disease is yet to be approved by the FDA. Identification of genes and relevant diagnostic biomarkers and therapeutic target pathways including glycolysis and mitochondrial complex-I-dependent respiration may be advantageous for early diagnosis, management, and treatment of the disease. This review addresses the HD pathway in neuronal and sperm metabolism, including relevant gene and protein expression in both neurons and spermatozoa, indicated in the pathogenesis of HD. Furthermore, zinc-containing and zinc-interacting proteins regulate and/or are regulated by zinc ion homeostasis in both neurons and spermatozoa. Therefore, this review also aims to explore the comparative role of zinc in both neuronal and sperm function. Ongoing studies aim to characterize the products of genes implicated in HD pathogenesis that are expressed in both neurons and spermatozoa to facilitate studies of future treatment avenues in HD and HD-related male infertility. The emerging link between zinc homeostasis and the HD pathway could lead to new treatments and diagnostic methods linking genetic sperm defects with somatic comorbidities.
Collapse
Affiliation(s)
- Meghan Lawlor
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
| | - Michal Zigo
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
| | - Karl Kerns
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - In Ki Cho
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; (I.K.C.); (C.A.E.IV)
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Charles A. Easley IV
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; (I.K.C.); (C.A.E.IV)
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-882-3329
| |
Collapse
|
14
|
Floreani L, Ansaloni F, Mangoni D, Agostoni E, Sanges R, Persichetti F, Gustincich S. Analysis of LINE1 Retrotransposons in Huntington’s Disease. Front Cell Neurosci 2022; 15:743797. [PMID: 35095420 PMCID: PMC8795916 DOI: 10.3389/fncel.2021.743797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that made up about half the human genome. Among them, the autonomous non-LTR retrotransposon long interspersed nuclear element-1 (L1) is the only currently active TE in mammals and covers about 17% of the mammalian genome. L1s exert their function as structural elements in the genome, as transcribed RNAs to influence chromatin structure and as retrotransposed elements to shape genomic variation in somatic cells. L1s activity has been shown altered in several diseases of the nervous system. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by an expansion of a CAG repeat in the HTT gene which leads to a gradual loss of neurons most prominently in the striatum and, to a lesser extent, in cortical brain regions. The length of the expanded CAG tract is related to age at disease onset, with longer repeats leading to earlier onset. Here we carried out bioinformatic analysis of public RNA-seq data of a panel of HD mouse models showing that a decrease of L1 RNA expression recapitulates two hallmarks of the disease: it correlates to CAG repeat length and it occurs in the striatum, the site of neurodegeneration. Results were then experimentally validated in HttQ111 knock-in mice. The expression of L1-encoded proteins was independent from L1 RNA levels and differentially regulated in time and tissues. The pattern of expression L1 RNAs in human HD post-mortem brains showed similarity to mouse models of the disease. This work suggests the need for further study of L1s in HD and adds support to the current hypothesis that dysregulation of TEs may be involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lavinia Floreani
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Federico Ansaloni
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia—IIT, Genova, Italy
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia—IIT, Genova, Italy
| | - Elena Agostoni
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia—IIT, Genova, Italy
- *Correspondence: Remo Sanges,
| | - Francesca Persichetti
- Department of Health Sciences, University of Piemonte Orientale “ A. Avogadro,”Novara, Italy
- Francesca Persichetti,
| | - Stefano Gustincich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia—IIT, Genova, Italy
- Stefano Gustincich,
| |
Collapse
|
15
|
DNA Methylation in Huntington's Disease. Int J Mol Sci 2021; 22:ijms222312736. [PMID: 34884540 PMCID: PMC8657460 DOI: 10.3390/ijms222312736] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Methylation of cytosine in CpG dinucleotides is the major DNA modification in mammalian cells that is a key component of stable epigenetic marks. This modification, which on the one hand is reversible, while on the other hand, can be maintained through successive rounds of replication plays roles in gene regulation, genome maintenance, transgenerational epigenetic inheritance, and imprinting. Disturbed DNA methylation contributes to a wide array of human diseases from single-gene disorders to sporadic metabolic diseases or cancer. DNA methylation was also shown to affect several neurodegenerative disorders, including Huntington's disease (HD), a fatal, monogenic inherited disease. HD is caused by a polyglutamine repeat expansion in the Huntingtin protein that brings about a multifaceted pathogenesis affecting several cellular processes. Research of the last decade found complex, genome-wide DNA methylation changes in HD pathogenesis that modulate transcriptional activity and genome stability. This article reviews current evidence that sheds light on the role of DNA methylation in HD.
Collapse
|
16
|
Bensalel J, Xu H, Lu ML, Capobianco E, Wei J. RNA-seq analysis reveals significant transcriptome changes in huntingtin-null human neuroblastoma cells. BMC Med Genomics 2021; 14:176. [PMID: 34215255 PMCID: PMC8252266 DOI: 10.1186/s12920-021-01022-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Huntingtin (Htt) protein is the product of the gene mutated in Huntington's disease (HD), a fatal, autosomal dominant, neurodegenerative disorder. Normal Htt is essential for early embryogenesis and the development of the central nervous system. However, the role of Htt in adult tissues is less defined. Following the recent promising clinical trial in which both normal and mutant Htt mRNA were knocked down in HD patients, there is an urgent need to fully understand the molecular consequences of knocking out/down Htt in adult tissues. Htt has been identified as an important transcriptional regulator. Unbiased investigations of transcriptome changes with RNA-sequencing (RNA-Seq) have been done in multiple cell types in HD, further confirming that transcriptional dysregulation is a central pathogenic mechanism in HD. However, there is lack of direct understanding of the transcriptional regulation by normal Htt. METHODS To investigate the transcriptional role of normal Htt, we first knocked out Htt in the human neuroblastoma SH-SY5Y cell line using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) gene editing approach. We then performed RNA-seq analysis on Htt-null and wild type SH-SY5Y cells to probe the global transcriptome changes induced by Htt deletion. RESULTS In general, Htt has a widespread effect on gene transcription. Functional analysis of the differentially expressed genes (DEGs) using various bioinformatic tools revealed irregularities in pathways related to cell communication and signaling, and more specifically those related to neuron development, neurotransmission and synaptic signaling. We further examined the transcription factors that may regulate these DEGs. Consistent with the disrupted pathways associated with cellular development, we showed that Htt-null cells exhibited slower cell proliferation than wild type cells. We finally validated some of the top DEGS with quantitative RT-PCR. CONCLUSIONS The widespread transcriptome changes in Htt-null cells could be directly caused by the loss of Htt-mediated transcriptional regulation or due to the secondary consequences of disruption in the gene regulatory network. Our study therefore provides valuable information about key genes associated with Htt-mediated transcription and improves our understanding of the molecular mechanisms underlying the cellular functions of normal and mutant Htt.
Collapse
Affiliation(s)
- Johanna Bensalel
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Hongyuan Xu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Michael L Lu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Enrico Capobianco
- Institute of Data Science and Computing, University of Miami, Miami, FL, 33146, USA
| | - Jianning Wei
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
17
|
Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021; 148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a devastating and fatal monogenic neurodegenerative disorder characterized by progressive loss of selective neurons in the brain and is caused by an abnormal expansion of CAG trinucleotide repeats in a coding exon of the huntingtin (HTT) gene. Progressive gene expression changes that begin at premanifest stages are a prominent feature of HD and are thought to contribute to disease progression. Increasing evidence suggests the critical involvement of epigenetic mechanisms in abnormal transcription in HD. Genome-wide alterations of a number of epigenetic modifications, including DNA methylation and multiple histone modifications, are associated with HD, suggesting that mutant HTT causes complex epigenetic abnormalities and chromatin structural changes, which may represent an underlying pathogenic mechanism. The causal relationship of specific epigenetic changes to early transcriptional alterations and to disease pathogenesis require further investigation. In this article, we review recent studies on epigenetic regulation in HD with a focus on DNA and histone modifications. We also discuss the contribution of epigenetic modifications to HD pathogenesis as well as potential mechanisms linking mutant HTT and epigenetic alterations. Finally, we discuss the therapeutic potential of epigenetic-based treatments.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
18
|
Stress-Sensitive Protein Rac1 and Its Involvement in Neurodevelopmental Disorders. Neural Plast 2020; 2020:8894372. [PMID: 33299404 PMCID: PMC7707960 DOI: 10.1155/2020/8894372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a small GTPase that is well known for its sensitivity to the environmental stress of a cell or an organism. It senses the external signals which are transmitted from membrane-bound receptors and induces downstream signaling cascades to exert its physiological functions. Rac1 is an important regulator of a variety of cellular processes, such as cytoskeletal organization, generation of oxidative products, and gene expression. In particular, Rac1 has a significant influence on certain brain functions like neuronal migration, synaptic plasticity, and memory formation via regulation of actin dynamics in neurons. Abnormal Rac1 expression and activity have been observed in multiple neurological diseases. Here, we review recent findings to delineate the role of Rac1 signaling in neurodevelopmental disorders associated with abnormal spine morphology, synaptogenesis, and synaptic plasticity. Moreover, certain novel inhibitors of Rac1 and related pathways are discussed as potential avenues toward future treatment for these diseases.
Collapse
|
19
|
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16:529-546. [PMID: 32796930 DOI: 10.1038/s41582-020-0389-4] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK. .,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK. .,UK Dementia Research Institute, University College London, London, UK.
| | - Michael D Flower
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Christopher A Ross
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
20
|
Epigenomic Remodeling in Huntington's Disease-Master or Servant? EPIGENOMES 2020; 4:epigenomes4030015. [PMID: 34968288 PMCID: PMC8594700 DOI: 10.3390/epigenomes4030015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/03/2022] Open
Abstract
In light of our aging population, neurodegenerative disorders are becoming a tremendous challenge, that modern societies have to face. They represent incurable, progressive conditions with diverse and complex pathological features, followed by catastrophic occurrences of massive neuronal loss at the later stages of the diseases. Some of these disorders, like Huntington’s disease (HD), rely on defined genetic factors. HD, as an incurable, fatal hereditary neurodegenerative disorder characterized by its mid-life onset, is caused by the expansion of CAG trinucleotide repeats coding for glutamine (Q) in exon 1 of the huntingtin gene. Apart from the genetic defect, environmental factors are thought to influence the risk, onset and progression of HD. As epigenetic mechanisms are known to readily respond to environmental stimuli, they are proposed to play a key role in HD pathogenesis. Indeed, dynamic epigenomic remodeling is observed in HD patients and in brains of HD animal models. Epigenetic signatures, such as DNA methylation, histone variants and modifications, are known to influence gene expression and to orchestrate various aspects of neuronal physiology. Hence, deciphering their implication in HD pathogenesis might open up new paths for novel therapeutic concepts, which are discussed in this review.
Collapse
|
21
|
Tillotson R, Bird A. The Molecular Basis of MeCP2 Function in the Brain. J Mol Biol 2020; 432:1602-1623. [PMID: 31629770 DOI: 10.1016/j.jmb.2019.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
MeCP2 is a reader of the DNA methylome that occupies a large proportion of the genome due to its high abundance and the frequency of its target sites. It has been the subject of extensive study because of its link with 'MECP2-related disorders', of which Rett syndrome is the most prevalent. This review integrates evidence from patient mutation data with results of experimental studies using mouse models, cell lines and in vitro systems to critically evaluate our understanding of MeCP2 protein function. Recent evidence challenges the idea that MeCP2 is a multifunctional hub that integrates diverse processes to underpin neuronal function, suggesting instead that its primary role is to recruit the NCoR1/2 co-repressor complex to methylated sites in the genome, leading to dampening of gene expression.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
22
|
Bajic VP, Essack M, Zivkovic L, Stewart A, Zafirovic S, Bajic VB, Gojobori T, Isenovic E, Spremo-Potparevic B. The X Files: "The Mystery of X Chromosome Instability in Alzheimer's Disease". Front Genet 2020; 10:1368. [PMID: 32047510 PMCID: PMC6997486 DOI: 10.3389/fgene.2019.01368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of individuals worldwide and can occur relatively early or later in life. It is well known that genetic components, such as the amyloid precursor protein gene on chromosome 21, are fundamental in early-onset AD (EOAD). To date, however, only the apolipoprotein E4 (ApoE4) gene has been proved to be a genetic risk factor for late-onset AD (LOAD). In recent years, despite the hypothesis that many additional unidentified genes are likely to play a role in AD development, it is surprising that additional gene polymorphisms associated with LOAD have failed to come to light. In this review, we examine the role of X chromosome epigenetics and, based upon GWAS studies, the PCDHX11 gene. Furthermore, we explore other genetic risk factors of AD that involve X-chromosome epigenetics.
Collapse
Affiliation(s)
- Vladan P Bajic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lada Zivkovic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Alan Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Sonja Zafirovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma Isenovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
23
|
Abstract
In addition to the clinically most relevant risk factor for glaucoma, i.e., elevated intraocular pressure (IOP), there are other factors with high relevance for the disease. Changes in the autoimmune component of the immune system are of particular importance. Clinical studies have demonstrated alterations in different autoantibodies in glaucoma patients compared to healthy controls, some of which increase in abundance/have a raised titer, but also some which have a reduced titer. These changes have a distinct potential-not only as a tool for early glaucoma detection, but also as a therapeutic option due to the documented neuroprotective effects of some of these antibodies. Several antibodies displaying lower abundance in glaucoma patients, e.g., antibodies against 14-3-3 proteins, γ‑/α-synuclein, or also against glial fibrillary acidic protein (GFAP), show neuroprotective effects on retinal ganglion cells in vivo and in vitro. To assess the relevance of changes detected in the immune system of glaucoma patients, "‑omics-based" analyses of different ocular tissues are of particular importance alongside cell culture studies. In this manner, not only samples derived from experimental studies but also samples derived from glaucoma patients in even very small amounts (e. g., tears, aqueous humor, serum, or post-mortem retina) can be analyzed in detail in terms of protein and, in particular, antibody changes. Modern mass spectrometric proteomic characterization of relevant samples will deliver valuable information concerning the understanding of molecular disease mechanisms in the coming years, thus also improving diagnosis and treatment of glaucoma.
Collapse
Affiliation(s)
- K Bell
- Experimentelle Ophthalmologie, Augenklinik der Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| | - S Funke
- Experimentelle Ophthalmologie, Augenklinik der Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - F H Grus
- Experimentelle Ophthalmologie, Augenklinik der Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| |
Collapse
|
24
|
Supplemental Treatment for Huntington's Disease with miR-132 that Is Deficient in Huntington's Disease Brain. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:79-90. [PMID: 29858092 PMCID: PMC5852323 DOI: 10.1016/j.omtn.2018.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Huntington’s disease (HD) is an intractable neurodegenerative disorder caused by mutant Huntingtin (HTT) proteins that adversely affect various biomolecules and genes. MicroRNAs (miRNAs), which are functional small non-coding RNAs, are also affected by mutant HTT proteins. Here, we show amelioration in motor function and lifespan of HD-model mice, R6/2 mice, by supplying miR-132 to HD brains using a recombinant adeno-associated virus (rAAV) miRNA expression system. miR-132 is an miRNA related to neuronal maturation and function, but the level of miR-132 in the brain of R6/2 mice was significantly lower than that of wild-type mice. Our miR-132 supplemental treatment, i.e., supplying miR-132 to the brain, produced symptomatic improvement or retarded disease progression in R6/2 mice; interestingly, it had little effect on disease-causing mutant HTT mRNA expression and its products. Therefore, the findings suggest that there may be a therapeutic way to treat HD without inhibiting and/or repairing disease-causing HTT genes and gene products. Although miR-132 supplement may not be a definitive treatment for HD, it may become a therapeutic method for relieving HD symptoms and delaying HD progression.
Collapse
|
25
|
Wang HQ, Zhang M, Zhao JX, Wu HQ, Gao Z, Zhang GL, Zhang R. Puerarin Up-regulates Methyl-CpG Binding Protein 2 Phosphorylation in Hippocampus of Vascular Dementia Rats. Chin J Integr Med 2018; 24:372-377. [PMID: 29327124 DOI: 10.1007/s11655-018-2822-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To observe the effect of puerarin on methyl-CpG binding protein 2 (MeCP2) phosphorylation (pMeCP2) in the hippocampus of a rat model of vascular dementia (VD). METHODS Thirty-six healthy Sprague-Dawley rats were randomly assigned to the sham-operated group, dementia group and puerarintreated group using a random number table (n=12 per group). The modifified permanent bilateral common carotid artery occlusion method was used to establish the VD model. The sham-operated and dementia groups were given 2 mL/d of saline, while the puerarin-treated group was given 100 mg/(kg•d) of puerarin for 17 days. The learning and memory abilities were evaluated by the Morris water maze test. Hematoxylin-eosin staining, immunohistochemical (IHC) staining and Western blot analysis were carried out to observe changes in neuron morphology and in level of pMeCP2 in the hippocampus, respectively. RESULTS The morphologies of rat hippocampal neurons in the puerarintreated group were markedly improved compared with the dementia group. The escape latency of the dementia group was significantly longer than the sham-operated group (P<0.05), while the puerarin-treated group was obviously shorter than the dementia group (P<0.05). Cross-platform times of the dementia group were signifificantly decreased compared with the sham-operated group (P<0.05), while the puerarin-treated group was obviously increased compared with the dementia group (P<0.05). IHC staining showed no significant difference in the number of MeCP2 positive cells among 3 groups (P>0.05). The number of pMeCP2 positive cells in the CA1 region of hippocampus in the dementia group was signifificantly increased compared with the sham-operated group, and the puerarin-treated group was signifificantly increased compared with the dementia group (both P<0.05). Western blot analysis showed no signifificant difference of MeCP2 expression among 3 groups (P>0.05). The expression of pMeCP2 in the dementia group was signifificantly increased compared with the sham-operated group, while it in the puerarin-treated group was signifificantly increased compared with the dementia group (P<0.05). CONCLUSION Puerarin could play a role in the protection of nerve cells through up-regulating pMeCP2 in the hippocampus, improving neuron morphologies, and enhancing learning and memory ablities in a rat model of VD.
Collapse
Affiliation(s)
- Hu-Qing Wang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Meng Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jia-Xin Zhao
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hai-Qin Wu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Zhen Gao
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Gui-Lian Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ru Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
26
|
The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:143-170. [PMID: 29325609 DOI: 10.1016/b978-0-444-63233-3.00011-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout the genome, unstable tandem nucleotide repeats can expand to cause a variety of neurologic disorders. Expansion of a CAG triplet repeat within a coding exon gives rise to an elongated polyglutamine (polyQ) tract in the resultant protein product, and accounts for a unique category of neurodegenerative disorders, known as the CAG-polyglutamine repeat diseases. The nine members of the CAG-polyglutamine disease family include spinal and bulbar muscular atrophy (SBMA), Huntington disease, dentatorubral pallidoluysian atrophy, and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). All CAG-polyglutamine diseases are dominantly inherited, with the exception of SBMA, which is X-linked, and many CAG-polyglutamine diseases display anticipation, which is defined as increasing disease severity in successive generations of an affected kindred. Despite widespread expression of the different polyQ-expanded disease proteins throughout the body, each CAG-polyglutamine disease strikes a particular subset of neurons, although the mechanism for this cell-type selectivity remains poorly understood. While the different genes implicated in these disorders display amino acid homology only in the repeat tract domain, certain pathologic molecular processes have been implicated in almost all of the CAG-polyglutamine repeat diseases, including protein aggregation, proteolytic cleavage, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Here we highlight the clinical and molecular genetic features of each distinct disorder, and then discuss common themes in CAG-polyglutamine disease pathogenesis, closing with emerging advances in therapy development.
Collapse
|
27
|
Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024240. [PMID: 27940602 DOI: 10.1101/cshperspect.a024240] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease is a late-onset neurodegenerative disease caused by a CAG trinucleotide repeat in the gene encoding the huntingtin protein. Despite its well-defined genetic origin, the molecular and cellular mechanisms underlying the disease are unclear and complex. Here, we review some of the currently known functions of the wild-type huntingtin protein and discuss the deleterious effects that arise from the expansion of the CAG repeats, which are translated into an abnormally long polyglutamine tract. Finally, we outline some of the therapeutic strategies that are currently being pursued to slow down the disease.
Collapse
Affiliation(s)
- Maria Jimenez-Sanchez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| | - Floriana Licitra
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| | - Benjamin R Underwood
- Department of Old Age Psychiatry, Beechcroft, Fulbourn Hospital, Cambridge CB21 5EF, United Kingdom
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
28
|
CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes (Basel) 2017; 8:genes8060148. [PMID: 28545252 PMCID: PMC5485512 DOI: 10.3390/genes8060148] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/18/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is a major epigenetic mark with important roles in genetic regulation. Methylated cytosines are found primarily at CpG dinucleotides, but are also found at non-CpG sites (CpA, CpT, and CpC). The general functions of CpG and non-CpG methylation include gene silencing or activation depending on the methylated regions. CpG and non-CpG methylation are found throughout the whole genome, including repetitive sequences, enhancers, promoters, and gene bodies. Interestingly, however, non-CpG methylation is restricted to specific cell types, such as pluripotent stem cells, oocytes, neurons, and glial cells. Thus, accumulation of methylation at non-CpG sites and CpG sites in neurons seems to be involved in development and disease etiology. Here, we provide an overview of CpG and non-CpG methylation and their roles in neurological diseases.
Collapse
|
29
|
Funke S, Perumal N, Bell K, Pfeiffer N, Grus FH. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev Proteomics 2017; 14:311-334. [PMID: 28271721 DOI: 10.1080/14789450.2017.1298448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Glaucoma, a major ocular neuropathy, is still far from being understood on a molecular scale. Proteomic workflows revealed glaucoma associated alterations in different eye components. By using state-of-the-art mass spectrometric (MS) based discovery approaches large proteome datasets providing important information about glaucoma related proteins and pathways could be generated. Corresponding proteomic information could be retrieved from various ocular sample species derived from glaucoma experimental models or from original human material (e.g. optic nerve head or aqueous humor). However, particular eye tissues with the potential for understanding the disease's molecular pathomechanism remains underrepresented. Areas covered: The present review provides an overview of the analysis depth achieved for the glaucomatous eye proteome. With respect to different eye regions and biofluids, proteomics related literature was found using PubMed, Scholar and UniProtKB. Thereby, the review explores the potential of clinical proteomics for glaucoma research. Expert commentary: Proteomics will provide important contributions to understanding the molecular processes associated with glaucoma. Sensitive discovery and targeted MS approaches will assist understanding of the molecular interplay of different eye components and biofluids in glaucoma. Proteomic results will drive the comprehension of glaucoma, allowing a more stringent disease hypothesis within the coming years.
Collapse
Affiliation(s)
- Sebastian Funke
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Natarajan Perumal
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Katharina Bell
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Norbert Pfeiffer
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Franz H Grus
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| |
Collapse
|
30
|
Chen KW, Chen L. Epigenetic Regulation of BDNF Gene during Development and Diseases. Int J Mol Sci 2017; 18:ijms18030571. [PMID: 28272318 PMCID: PMC5372587 DOI: 10.3390/ijms18030571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is required for the development of the nervous system, proper cognitive function and memory formation. While aberrant expression of BDNF has been implicated in neurological disorders, the transcriptional regulation of BDNF remains to be elucidated. In response to different stimuli, BDNF expression can be initiated from different promoters. Several studies have suggested that the expression of BDNF is regulated by promoter methylation. An emerging theme points to the possibility that histone modifications at the BDNF promoters may link to the neurological pathology. Thus, understanding the epigenetic regulation at the BDNF promoters will shed light on future therapies for neurological disorders. The present review summarizes the current knowledge of histone modifications of the BDNF gene in neuronal diseases, as well as the developmental regulation of the BDNF gene based on data from the Encyclopedia of DNA Elements (ENCODE).
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Linyi Chen
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
31
|
Tejeda GS, Díaz-Guerra M. Integral Characterization of Defective BDNF/TrkB Signalling in Neurological and Psychiatric Disorders Leads the Way to New Therapies. Int J Mol Sci 2017; 18:ijms18020268. [PMID: 28134845 PMCID: PMC5343804 DOI: 10.3390/ijms18020268] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes have been already described in several disorders, but their importance as pathological mechanisms has been frequently underestimated. This review highlights the relevance of an integrative characterization of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and TrkB targets could efficiently promote neurotrophic signalling.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Krench M, Littleton J. Neurotoxicity Pathways in Drosophila Models of the Polyglutamine Disorders. Curr Top Dev Biol 2017; 121:201-223. [DOI: 10.1016/bs.ctdb.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Rodan LH, Cohen J, Fatemi A, Gillis T, Lucente D, Gusella J, Picker JD. A novel neurodevelopmental disorder associated with compound heterozygous variants in the huntingtin gene. Eur J Hum Genet 2016; 24:1826-1827. [PMID: 27329733 DOI: 10.1038/ejhg.2016.74] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/28/2016] [Accepted: 05/26/2016] [Indexed: 11/09/2022] Open
Abstract
We report compound heterozygous variants in HTT, the gene encoding huntingtin, in association with an autosomal recessive neurodevelopmental disorder. Three siblings presented with severe global developmental delay since birth, central hypotonia progressing to spastic quadraparesis, feeding difficulties, dystonia (2/3 sibs), prominent midline stereotypies (2/3), bruxism (1/3), high myopia (2/3), and epilepsy (1/3). Whole exome sequencing identified compound heterozygous variants in HTT that co-segregated in the three affected sibs and were absent in an unaffected sib. There were no additional variants in other genes that could account for the reported phenotype. Molecular analysis of HTT should be considered, not just for Huntington's disease, but also in children with a Rett-like syndrome who test negative for known Rett and Rett-like syndrome genes.
Collapse
Affiliation(s)
- Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Julie Cohen
- Division of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ali Fatemi
- Division of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Tammy Gillis
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Diane Lucente
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - James Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jonathan D Picker
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
34
|
Lopes F, Barbosa M, Ameur A, Soares G, de Sá J, Dias AI, Oliveira G, Cabral P, Temudo T, Calado E, Cruz IF, Vieira JP, Oliveira R, Esteves S, Sauer S, Jonasson I, Syvänen AC, Gyllensten U, Pinto D, Maciel P. Identification of novel genetic causes of Rett syndrome-likephenotypes. J Med Genet 2016; 53:190-9. [DOI: 10.1136/jmedgenet-2015-103568] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/06/2015] [Indexed: 11/04/2022]
|
35
|
Pierson E, Koller D, Battle A, Mostafavi S. Sharing and Specificity of Co-expression Networks across 35 Human Tissues. PLoS Comput Biol 2015; 11:e1004220. [PMID: 25970446 PMCID: PMC4430528 DOI: 10.1371/journal.pcbi.1004220] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/02/2015] [Indexed: 01/21/2023] Open
Abstract
To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between genes. However, a small number of samples are available for a majority of the tissues, and therefore statistical inference of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning approach increases the accuracy with which networks are learned. Analysis of these networks reveals that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue specific functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules conserved across tissues are especially likely to have functions common to all tissues, while modules that are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and regulation in a tissue-specific manner.
Collapse
Affiliation(s)
- Emma Pierson
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | | | - Daphne Koller
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Alexis Battle
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Sara Mostafavi
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| |
Collapse
|
36
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Two decades of research have fostered the view that MeCP2 is a multifunctional chromatin protein that integrates diverse aspects of neuronal biology. More recently, studies have focused on specific RTT-associated mutations within the protein. This work has yielded molecular insights into the critical functions of MeCP2 that promise to simplify our understanding of RTT pathology.
Collapse
Affiliation(s)
- Matthew J Lyst
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Adrian Bird
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
37
|
Liu F, Ni JJ, Huang JJ, Kou ZW, Sun FY. VEGF overexpression enhances the accumulation of phospho-S292 MeCP2 in reactive astrocytes in the adult rat striatum following cerebral ischemia. Brain Res 2015; 1599:32-43. [DOI: 10.1016/j.brainres.2014.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
|
38
|
Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2014; 2:79-101. [PMID: 25642438 PMCID: PMC4301678 DOI: 10.1002/acn3.147] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) represent emerging therapeutic targets in the context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs activity in the nervous system has shown beneficial effects in several preclinical models of neurological disorders. However, the translation of such therapeutic approach to clinics has been only marginally successful, mainly due to our still limited knowledge about HDACs physiological role particularly in neurons. Here, we review the potential benefits along with the risks of targeting HDACs in light of what we currently know about HDAC activity in the brain.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology, University of California San Francisco San Francisco, California, 94158
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611 ; Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611
| |
Collapse
|
39
|
Mohan RD, Abmayr SM, Workman JL. The expanding role for chromatin and transcription in polyglutamine disease. Curr Opin Genet Dev 2014; 26:96-104. [PMID: 25108806 DOI: 10.1016/j.gde.2014.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/22/2014] [Accepted: 06/25/2014] [Indexed: 11/28/2022]
Abstract
Nine genetic diseases arise from expansion of CAG repeats in seemingly unrelated genes. They are referred to as polyglutamine (polyQ) diseases due to the presence of elongated glutamine tracts in the corresponding proteins. The pathologic consequences of polyQ expansion include progressive spinal, cerebellar, and neural degeneration. These pathologies are not identical, however, suggesting that disruption of protein-specific functions is crucial to establish and maintain each disease. A closer examination of protein function reveals that several act as regulators of gene expression. Here we examine the roles these proteins play in regulating gene expression, discuss how polyQ expansion may disrupt these functions to cause disease, and speculate on the neural specificity of perturbing ubiquitous gene regulators.
Collapse
Affiliation(s)
- Ryan D Mohan
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| |
Collapse
|
40
|
Advances in Human Biology: Combining Genetics and Molecular Biophysics to Pave the Way for Personalized Diagnostics and Medicine. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/471836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in several biology-oriented initiatives such as genome sequencing and structural genomics, along with the progress made through traditional biological and biochemical research, have opened up a unique opportunity to better understand the molecular effects of human diseases. Human DNA can vary significantly from person to person and determines an individual’s physical characteristics and their susceptibility to diseases. Armed with an individual’s DNA sequence, researchers and physicians can check for defects known to be associated with certain diseases by utilizing various databases. However, for unclassified DNA mutations or in order to reveal molecular mechanism behind the effects, the mutations have to be mapped onto the corresponding networks and macromolecular structures and then analyzed to reveal their effect on the wild type properties of biological processes involved. Predicting the effect of DNA mutations on individual’s health is typically referred to as personalized or companion diagnostics. Furthermore, once the molecular mechanism of the mutations is revealed, the patient should be given drugs which are the most appropriate for the individual genome, referred to as pharmacogenomics. Altogether, the shift in focus in medicine towards more genomic-oriented practices is the foundation of personalized medicine. The progress made in these rapidly developing fields is outlined.
Collapse
|
41
|
Abstract
The role of epigenetics in human disease has become an area of increased research interest. Collaborative efforts from scientists and clinicians have led to a better understanding of the molecular mechanisms by which epigenetic regulation is involved in the pathogenesis of many human diseases. Several neurological and non-neurological disorders are associated with mutations in genes that encode for epigenetic factors. One of the most studied proteins that impacts human disease and is associated with deregulation of epigenetic processes is Methyl CpG binding protein 2 (MeCP2). MeCP2 is an epigenetic regulator that modulates gene expression by translating epigenetic DNA methylation marks into appropriate cellular responses. In order to highlight the importance of epigenetics to development and disease, we will discuss how MeCP2 emerges as a key epigenetic player in human neurodevelopmental, neurological, and non-neurological disorders. We will review our current knowledge on MeCP2-related diseases, including Rett Syndrome, Angelman Syndrome, Fetal Alcohol Spectrum Disorder, Hirschsprung disease, and Cancer. Additionally, we will briefly discuss about the existing MeCP2 animal models that have been generated for a better understanding of how MeCP2 impacts certain human diseases.
Collapse
Affiliation(s)
| | - Mojgan Rastegar
- Author to whom correspondence should be addressed; ; Tel.: +204-272-3108; Fax: +204-789-3900
| |
Collapse
|