1
|
Mier P, Andrade-Navarro MA. Predicting the involvement of polyQ- and polyA in protein-protein interactions by their amino acid context. Heliyon 2024; 10:e37861. [PMID: 39323775 PMCID: PMC11422028 DOI: 10.1016/j.heliyon.2024.e37861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Homorepeats, specifically polyglutamine (polyQ) and polyalanine (polyA), are often implicated in protein-protein interactions (PPIs). So far, a method to predict the participation of homorepeats in protein interactions is lacking. We propose a machine learning approach to identify PPI-involved polyQ and polyA regions within the human proteome based on known interacting regions. Using the dataset of human homorepeats, we identified 157 polyQ and 745 polyA regions potentially involved in PPIs. Machine learning models, trained on amino acid context and homorepeat length, demonstrated high precision (0.90-0.98) but variable recall (0.42-0.85). Random forest outperformed other models (AUC polyQ = 0.686, AUC polyA = 0.732) using the positions surrounding the homorepeat -10 to +10. Integrating paralog information marginally improved predictions but was excluded for model simplicity. Further optimization revealed that for polyQ, using amino acid surrounding positions from -6 to +6 increased AUC to 0.715. For polyA, no improvement was found. Incorporating coiled coil overlap information enhanced polyA predictions (AUC = 0.745) but not polyQ. Finally, we applied these models to predict PPI involvement across all polyQ and polyA regions, identifying potential interactions. Case studies illustrated the method's predictive capacity, highlighting known interacting regions with high scores and elucidating potential false negatives.
Collapse
Affiliation(s)
- Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| |
Collapse
|
2
|
Moldovean-Cioroianu NS. Reviewing the Structure-Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches. Int J Mol Sci 2024; 25:6789. [PMID: 38928495 PMCID: PMC11204371 DOI: 10.3390/ijms25126789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Polyglutamine (polyQ) disorders are a group of neurodegenerative diseases characterized by the excessive expansion of CAG (cytosine, adenine, guanine) repeats within host proteins. The quest to unravel the complex diseases mechanism has led researchers to adopt both theoretical and experimental methods, each offering unique insights into the underlying pathogenesis. This review emphasizes the significance of combining multiple approaches in the study of polyQ disorders, focusing on the structure-function correlations and the relevance of polyQ-related protein dynamics in neurodegeneration. By integrating computational/theoretical predictions with experimental observations, one can establish robust structure-function correlations, aiding in the identification of key molecular targets for therapeutic interventions. PolyQ proteins' dynamics, influenced by their length and interactions with other molecular partners, play a pivotal role in the polyQ-related pathogenic cascade. Moreover, conformational dynamics of polyQ proteins can trigger aggregation, leading to toxic assembles that hinder proper cellular homeostasis. Understanding these intricacies offers new avenues for therapeutic strategies by fine-tuning polyQ kinetics, in order to prevent and control disease progression. Last but not least, this review highlights the importance of integrating multidisciplinary efforts to advancing research in this field, bringing us closer to the ultimate goal of finding effective treatments against polyQ disorders.
Collapse
Affiliation(s)
- Nastasia Sanda Moldovean-Cioroianu
- Institute of Materials Science, Bioinspired Materials and Biosensor Technologies, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany;
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Antón R, Treviño MÁ, Pantoja-Uceda D, Félix S, Babu M, Cabrita EJ, Zweckstetter M, Tinnefeld P, Vera AM, Oroz J. Alternative low-populated conformations prompt phase transitions in polyalanine repeat expansions. Nat Commun 2024; 15:1925. [PMID: 38431667 PMCID: PMC10908835 DOI: 10.1038/s41467-024-46236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal trinucleotide repeat expansions alter protein conformation causing malfunction and contribute to a significant number of incurable human diseases. Scarce structural insights available on disease-related homorepeat expansions hinder the design of effective therapeutics. Here, we present the dynamic structure of human PHOX2B C-terminal fragment, which contains the longest polyalanine segment known in mammals. The major α-helical conformation of the polyalanine tract is solely extended by polyalanine expansions in PHOX2B, which are responsible for most congenital central hypoventilation syndrome cases. However, polyalanine expansions in PHOX2B additionally promote nascent homorepeat conformations that trigger length-dependent phase transitions into solid condensates that capture wild-type PHOX2B. Remarkably, HSP70 and HSP90 chaperones specifically seize PHOX2B alternative conformations preventing phase transitions. The precise observation of emerging polymorphs in expanded PHOX2B postulates unbalanced phase transitions as distinct pathophysiological mechanisms in homorepeat expansion diseases, paving the way towards the search of therapeutics modulating biomolecular condensates in central hypoventilation syndrome.
Collapse
Affiliation(s)
- Rosa Antón
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - Miguel Á Treviño
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - Sara Félix
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - María Babu
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Eurico J Cabrita
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Andrés M Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Javier Oroz
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain.
| |
Collapse
|
4
|
Marchese D, Guislain F, Pringels T, Bridoux L, Rezsohazy R. A poly-histidine motif of HOXA1 is involved in regulatory interactions with cysteine-rich proteins. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194993. [PMID: 37952572 DOI: 10.1016/j.bbagrm.2023.194993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/05/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Homopolymeric amino acid repeats are found in about 24 % of human proteins and are over-represented in transcriptions factors and kinases. Although relatively rare, homopolymeric histidine repeats (polyH) are more significantly found in proteins involved in the regulation of embryonic development. To gain a better understanding of the role of polyH in these proteins, we used a bioinformatic approach to search for shared features in the interactomes of polyH-containing proteins in human. Our analysis revealed that polyH protein interactomes are enriched in cysteine-rich proteins and in proteins containing (a) cysteine repeat(s). Focusing on HOXA1, a HOX transcription factor displaying one long polyH motif, we identified that the polyH motif is required for the HOXA1 interaction with such cysteine-rich proteins. We observed a correlation between the length of the polyH repeat and the strength of the HOXA1 interaction with one Cys-rich protein, MDFI. We also found that metal ion chelators disrupt the HOXA1-MDFI interaction supporting that such metal ions are required for the interaction. Furthermore, we identified three polyH interactors which down-regulate the transcriptional activity of HOXA1. Taken together, our data point towards the involvement of polyH and cysteines in regulatory interactions between proteins, notably transcription factors like HOXA1.
Collapse
Affiliation(s)
- Damien Marchese
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Florent Guislain
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
5
|
Elena-Real CA, Mier P, Sibille N, Andrade-Navarro MA, Bernadó P. Structure-function relationships in protein homorepeats. Curr Opin Struct Biol 2023; 83:102726. [PMID: 37924569 DOI: 10.1016/j.sbi.2023.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Homorepeats (or polyX), protein segments containing repetitions of the same amino acid, are abundant in proteomes from all kingdoms of life and are involved in crucial biological functions as well as several neurodegenerative and developmental diseases. Mainly inserted in disordered segments of proteins, the structure/function relationships of homorepeats remain largely unexplored. In this review, we summarize present knowledge for the most abundant homorepeats, highlighting the role of the inherent structure and the conformational influence exerted by their flanking regions. Recent experimental and computational methods enable residue-specific investigations of these regions and promise novel structural and dynamic information for this elusive group of proteins. This information should increase our knowledge about the structural bases of phenomena such as liquid-liquid phase separation and trinucleotide repeat disorders.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France. https://twitter.com/carloselenareal
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
6
|
Vaglietti S, Villeri V, Dell’Oca M, Marchetti C, Cesano F, Rizzo F, Miller D, LaPierre L, Pelassa I, Monje FJ, Colnaghi L, Ghirardi M, Fiumara F. PolyQ length-based molecular encoding of vocalization frequency in FOXP2. iScience 2023; 26:108036. [PMID: 37860754 PMCID: PMC10582585 DOI: 10.1016/j.isci.2023.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/18/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
The transcription factor FOXP2, a regulator of vocalization- and speech/language-related phenotypes, contains two long polyQ repeats (Q1 and Q2) displaying marked, still enigmatic length variation across mammals. We found that the Q1/Q2 length ratio quantitatively encodes vocalization frequency ranges, from the infrasonic to the ultrasonic, displaying striking convergent evolution patterns. Thus, species emitting ultrasonic vocalizations converge with bats in having a low ratio, whereas species vocalizing in the low-frequency/infrasonic range converge with elephants and whales, which have higher ratios. Similar, taxon-specific patterns were observed for the FOXP2-related protein FOXP1. At the molecular level, we observed that the FOXP2 polyQ tracts form coiled coils, assembling into condensates and fibrils, and drive liquid-liquid phase separation (LLPS). By integrating evolutionary and molecular analyses, we found that polyQ length variation related to vocalization frequency impacts FOXP2 structure, LLPS, and transcriptional activity, thus defining a novel form of polyQ length-based molecular encoding of vocalization frequency.
Collapse
Affiliation(s)
- Serena Vaglietti
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Veronica Villeri
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Marco Dell’Oca
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Chiara Marchetti
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Federico Cesano
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Francesca Rizzo
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China
| | - Dave Miller
- Cascades Pika Watch, Oregon Zoo, Portland, OR 97221, USA
| | - Louis LaPierre
- Deptartment of Natural Science, Lower Columbia College, Longview, WA 98632, USA
| | - Ilaria Pelassa
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Luca Colnaghi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mirella Ghirardi
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Ferdinando Fiumara
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| |
Collapse
|
7
|
Elena-Real CA, Urbanek A, Imbert L, Morató A, Fournet A, Allemand F, Sibille N, Boisbouvier J, Bernadó P. Site-Specific Introduction of Alanines for the Nuclear Magnetic Resonance Investigation of Low-Complexity Regions and Large Biomolecular Assemblies. ACS Chem Biol 2023; 18:2039-2049. [PMID: 37582223 DOI: 10.1021/acschembio.3c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Nuclear magnetic resonance (NMR) studies of large biomolecular machines and highly repetitive proteins remain challenging due to the difficulty of assigning frequencies to individual nuclei. Here, we present an efficient strategy to address this challenge by engineering a Pyrococcus horikoshii tRNA/alanyl-tRNA synthetase pair that enables the incorporation of up to three isotopically labeled alanine residues in a site-specific manner using in vitro protein expression. The general applicability of this approach for NMR assignment has been demonstrated by introducing isotopically labeled alanines into four distinct proteins: huntingtin exon-1, HMA8 ATPase, the 300 kDa molecular chaperone ClpP, and the alanine-rich Phox2B transcription factor. For large protein assemblies, our labeling approach enabled unambiguous assignments while avoiding potential artifacts induced by site-specific mutations. When applied to Phox2B, which contains two poly-alanine tracts of nine and twenty alanines, we observed that the helical stability is strongly dependent on the homorepeat length. The capacity to selectively introduce alanines with distinct labeling patterns is a powerful tool to probe structure and dynamics of challenging biomolecular systems.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090 Montpellier, France
| | - Annika Urbanek
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090 Montpellier, France
| | - Lionel Imbert
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Anna Morató
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090 Montpellier, France
| | - Aurélie Fournet
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090 Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090 Montpellier, France
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090 Montpellier, France
| | - Jérôme Boisbouvier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090 Montpellier, France
| |
Collapse
|
8
|
Manso JA, Carabias A, Sárkány Z, de Pereda JM, Pereira PJB, Macedo-Ribeiro S. Pathogen-specific structural features of Candida albicans Ras1 activation complex: uncovering new antifungal drug targets. mBio 2023; 14:e0063823. [PMID: 37526476 PMCID: PMC10470544 DOI: 10.1128/mbio.00638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023] Open
Abstract
An important feature associated with Candida albicans pathogenicity is its ability to switch between yeast and hyphal forms, a process in which CaRas1 plays a key role. CaRas1 is activated by the guanine nucleotide exchange factor (GEF) CaCdc25, triggering hyphal growth-related signaling pathways through its conserved GTP-binding (G)-domain. An important function in hyphal growth has also been proposed for the long hypervariable region downstream the G-domain, whose unusual content of polyglutamine stretches and Q/N repeats make CaRas1 unique within Ras proteins. Despite its biological importance, both the structure of CaRas1 and the molecular basis of its activation by CaCdc25 remain unexplored. Here, we show that CaRas1 has an elongated shape and limited conformational flexibility and that its hypervariable region contains helical structural elements, likely forming an intramolecular coiled-coil. Functional assays disclosed that CaRas1-activation by CaCdc25 is highly efficient, with activities up to 2,000-fold higher than reported for human GEFs. The crystal structure of the CaCdc25 catalytic region revealed an active conformation for the α-helical hairpin, critical for CaRas1-activation, unveiling a specific region exclusive to CTG-clade species. Structural studies on CaRas1/CaCdc25 complexes also revealed an interaction surface clearly distinct from that of homologous human complexes. Furthermore, we identified an inhibitory synthetic peptide, prompting the proposal of a key regulatory mechanism for CaCdc25. To our knowledge, this is the first report of specific inhibition of the CaRas1-activation via targeting its GEF. This, together with their unique pathogen-structural features, disclose a set of novel strategies to specifically block this important virulence-related mechanism. IMPORTANCE Candida albicans is the main causative agent of candidiasis, the commonest fungal infection in humans. The eukaryotic nature of C. albicans and the rapid emergence of antifungal resistance raise the challenge of identifying novel drug targets to battle this prevalent and life-threatening disease. CaRas1 and CaCdc25 are key players in the activation of signaling pathways triggering multiple virulence traits, including the yeast-to-hypha interconversion. The structural similarity of the conserved G-domain of CaRas1 to those of human homologs and the lack of structural information on CaCdc25 has impeded progress in targeting these proteins. The unique structural and functional features for CaRas1 and CaCdc25 presented here, together with the identification of a synthetic peptide capable of specifically inhibiting the GEF activity of CaCdc25, open new possibilities to uncover new antifungal drug targets against C. albicans virulence.
Collapse
Affiliation(s)
- José A. Manso
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Arturo Carabias
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, Salamanca, Spain
| | - Zsuzsa Sárkány
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José M. de Pereda
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, Salamanca, Spain
| | - Pedro José Barbosa Pereira
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Horváth D, Dürvanger Z, K Menyhárd D, Sulyok-Eiler M, Bencs F, Gyulai G, Horváth P, Taricska N, Perczel A. Polymorphic amyloid nanostructures of hormone peptides involved in glucose homeostasis display reversible amyloid formation. Nat Commun 2023; 14:4621. [PMID: 37528104 PMCID: PMC10394066 DOI: 10.1038/s41467-023-40294-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
A large group of hormones are stored as amyloid fibrils in acidic secretion vesicles before they are released into the bloodstream and readopt their functional state. Here, we identify an evolutionarily conserved hexapeptide sequence as the major aggregation-prone region (APR) of gastrointestinal peptides of the glucagon family: xFxxWL. We determine nine polymorphic crystal structures of the APR segments of glucagon-like peptides 1 and 2, and exendin and its derivatives. We follow amyloid formation by CD, FTIR, ThT assays, and AFM. We propose that the pH-dependent changes of the protonation states of glutamate/aspartate residues of APRs initiate switching between the amyloid and the folded, monomeric forms of the hormones. We find that pH sensitivity diminishes in the absence of acidic gatekeepers and amyloid formation progresses over a broad pH range. Our results highlight the dual role of short aggregation core motifs in reversible amyloid formation and receptor binding.
Collapse
Affiliation(s)
- Dániel Horváth
- ELKH-ELTE Protein Modeling Research Group ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Zsolt Dürvanger
- ELKH-ELTE Protein Modeling Research Group ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
- Laboratory of Structural Chemistry and Biology ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Dóra K Menyhárd
- ELKH-ELTE Protein Modeling Research Group ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
- Laboratory of Structural Chemistry and Biology ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Máté Sulyok-Eiler
- Laboratory of Structural Chemistry and Biology ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Fruzsina Bencs
- Laboratory of Structural Chemistry and Biology ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Gergő Gyulai
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Péter Horváth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 9, Budapest, 1092, Hungary
| | - Nóra Taricska
- ELKH-ELTE Protein Modeling Research Group ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - András Perczel
- ELKH-ELTE Protein Modeling Research Group ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary.
- Laboratory of Structural Chemistry and Biology ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary.
| |
Collapse
|
10
|
Singh AK, Amar I, Ramadasan H, Kappagantula KS, Chavali S. Proteins with amino acid repeats constitute a rapidly evolvable and human-specific essentialome. Cell Rep 2023; 42:112811. [PMID: 37453061 DOI: 10.1016/j.celrep.2023.112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Protein products of essential genes, indispensable for organismal survival, are highly conserved and bring about fundamental functions. Interestingly, proteins that contain amino acid homorepeats that tend to evolve rapidly are enriched in eukaryotic essentialomes. Why are proteins with hypermutable homorepeats enriched in conserved and functionally vital essential proteins? We solve this functional versus evolutionary paradox by demonstrating that human essential proteins with homorepeats bring about crosstalk across biological processes through high interactability and have distinct regulatory functions affecting expansive global regulation. Importantly, essential proteins with homorepeats rapidly diverge with the amino acid substitutions frequently affecting functional sites, likely facilitating rapid adaptability. Strikingly, essential proteins with homorepeats influence human-specific embryonic and brain development, implying that the presence of homorepeats could contribute to the emergence of human-specific processes. Thus, we propose that homorepeat-containing essential proteins affecting species-specific traits can be potential intervention targets across pathologies, including cancers and neurological disorders.
Collapse
Affiliation(s)
- Anjali K Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Ishita Amar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Harikrishnan Ramadasan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Keertana S Kappagantula
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
11
|
Barbosa Pereira PJ, Manso JA, Macedo-Ribeiro S. The structural plasticity of polyglutamine repeats. Curr Opin Struct Biol 2023; 80:102607. [PMID: 37178477 DOI: 10.1016/j.sbi.2023.102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
From yeast to humans, polyglutamine (polyQ) repeat tracts are found frequently in the proteome and are particularly prominent in the activation domains of transcription factors. PolyQ is a polymorphic motif that modulates functional protein-protein interactions and aberrant self-assembly. Expansion of the polyQ repeated sequences beyond critical physiological repeat length thresholds triggers self-assembly and is linked to severe pathological implications. This review provides an overview of the current knowledge on the structures of polyQ tracts in the soluble and aggregated states and discusses the influence of neighboring regions on polyQ secondary structure, aggregation, and fibril morphologies. The influence of the genetic context of the polyQ-encoding trinucleotides is briefly discussed as a challenge for future endeavors in this field.
Collapse
Affiliation(s)
- Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - José A Manso
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
12
|
Mier P, Elena-Real CA, Cortés J, Bernadó P, Andrade-Navarro MA. The sequence context in poly-alanine regions: structure, function and conservation. Bioinformatics 2022; 38:4851-4858. [PMID: 36106994 PMCID: PMC9620824 DOI: 10.1093/bioinformatics/btac610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/07/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
MOTIVATION Poly-alanine (polyA) regions are protein stretches mostly composed of alanines. Despite their abundance in eukaryotic proteomes and their association to nine inherited human diseases, the structural and functional roles exerted by polyA stretches remain poorly understood. In this work we study how the amino acid context in which polyA regions are settled in proteins influences their structure and function. RESULTS We identified glycine and proline as the most abundant amino acids within polyA and in the flanking regions of polyA tracts, in human proteins as well as in 17 additional eukaryotic species. Our analyses indicate that the non-structuring nature of these two amino acids influences the α-helical conformations predicted for polyA, suggesting a relevant role in reducing the inherent aggregation propensity of long polyA. Then, we show how polyA position in protein N-termini relates with their function as transit peptides. PolyA placed just after the initial methionine is often predicted as part of mitochondrial transit peptides, whereas when placed in downstream positions, polyA are part of signal peptides. A few examples from known structures suggest that short polyA can emerge by alanine substitutions in α-helices; but evolution by insertion is observed for longer polyA. Our results showcase the importance of studying the sequence context of homorepeats as a mechanism to shape their structure-function relationships. AVAILABILITY AND IMPLEMENTATION The datasets used and/or analyzed during the current study are available from the corresponding author onreasonable request. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pablo Mier
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
13
|
Rho S, Park JK, Sim YW, Choi MH, Kwon N, Kim M, Jung W, Kim J, Kim JH, Lee SH, Park S. Biophysical properties of human body louse nit related proteins: LNSP1, Agp9 and Agp22. Biochem Biophys Res Commun 2022; 631:64-71. [PMID: 36174297 DOI: 10.1016/j.bbrc.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
The human parasitic head and body lice lay their eggs on either hair or clothing. Attachments of the eggs are possible because the female lice secret a glue substance from the accessory gland along with the egg, which hardens into a nit sheath that secures and protects the egg (The "nit" commonly refers to either the louse egg with an embryo or the empty hatched egg). Proteins called the louse nit sheath protein (LNSP) are suggested to be the major proteins of the nit sheath, but transcriptome profiling of the accessory glands indicated other proteins such as Agp9 and Agp22 are also expressed in the glands. In this study, human body louse LNSP1 (partial), Agp9, and Agp22 are recombinantly produced using the E. coli expression system, and the biophysical properties characterized. Circular dichroism analysis indicated that the secondary structure elements of LNSP1 N-terminal and middle-domains, Agp9, and Agp22 are prominently random coiled with up to 10-30% anti-parallel β-sheet element present. Size-exclusion chromatography profiles of LNSP1 proteins further suggested that the β-sheets made of the smaller N-terminal domain stacks onto the β-sheets of the larger middle-domain.
Collapse
Affiliation(s)
- SooHo Rho
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jeong Kuk Park
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Yeo Won Sim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Min Hee Choi
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Nayoung Kwon
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - MinJu Kim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - WeonSeok Jung
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - JooYoung Kim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Si Hyeock Lee
- Entomology Division, Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
14
|
Multiple roles of Runt-related transcription factor-2 in tooth eruption: bone formation and resorption. Arch Oral Biol 2022; 141:105484. [PMID: 35749976 DOI: 10.1016/j.archoralbio.2022.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim was to provide a comprehensive review of the current knowledge of the multiple roles of Runt-related transcription factor-2 (RUNX2) in regulating tooth eruption, focusing on the molecular mechanisms regarding tooth eruption mediated by RUNX2. DESIGN Relevant literatures in PubMed, Medline, and Scopus database were searched, and a narrative review was performed. The multiple roles of RUNX2 in regulating tooth eruption was reviewed and discussed. RESULTS Aberrant RUNX2 expression leads to disturbed or failed tooth eruption. Tooth eruption involves both the process of bone formation and bone resorption. RUNX2 promotes osteogenesis around the radicular portion of the dental follicle that provides the biological force for tooth eruption through inducing the expression of osteogenesis-related genes in dental follicle cells/osteoblasts. On the other hand, through indirect and direct pathways, RUNX2 regulates osteoclastogenesis and the formation of the eruption pathway. CONCLUSION RUNX2 exerts a pivotal and complex influence in regulating tooth eruption. This review provides a better understanding of the function of RUNX2 in tooth eruption, which is beneficial to illuminate the precise molecular mechanism of osteogenesis and bone resorption, aiding the development of effective therapy for the failure of tooth eruption.
Collapse
|
15
|
Ramírez de Mingo D, Pantoja-Uceda D, Hervás R, Carrión-Vázquez M, Laurents DV. Conformational dynamics in the disordered region of human CPEB3 linked to memory consolidation. BMC Biol 2022; 20:129. [PMID: 35658951 PMCID: PMC9166367 DOI: 10.1186/s12915-022-01310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Current understanding of the molecular basis of memory consolidation points to an important function of amyloid formation by neuronal-specific isoforms of the cytoplasmic polyadenylation element binding (CPEB) protein family. In particular, CPEB is thought to promote memory persistence through formation of self-sustaining prion-like amyloid assemblies at synapses, mediated by its intrinsically disordered region (IDR) and leading to permanent physical alterations at the basis of memory persistence. Although the molecular mechanisms by which amyloid formation takes place in CPEB have been described in invertebrates, the way amyloid formation occurs in the human homolog CPEB3 (hCPEB3) remains unclear. Here, we characterize by NMR spectroscopy the atomic level conformation and ps-ms dynamics of the 426-residue IDR of hCPEB3, which has been associated with episodic memory in humans. Results We show that the 426-residue N-terminal region of hCPEB3 is a dynamic, intrinsically disordered region (IDR) which lacks stable folded structures. The first 29 residues, M1QDDLLMDKSKTQPQPQQQQRQQQQPQP29, adopt a helical + disordered motif, and residues 86–93: P83QQPPPP93, and 166–175: P166PPPAPAPQP175 form polyproline II (PPII) helices. The (VG)5 repeat motif is completely disordered, and residues 200–250 adopt three partially populated α-helices. Residues 345–355, which comprise the nuclear localization signal (NLS), form a modestly populated α-helix which may mediate STAT5B binding. These findings allow us to suggest a model for nascent hCPEB3 structural transitions at single residue resolution, advancing that amyloid breaker residues, like proline, are a key difference between functional versus pathological amyloids. Conclusion Our NMR spectroscopic analysis of hCPEB3 provides insights into the first structural transitions involved in protein–protein and protein-mRNA interactions. The atomic level understanding of these structural transitions involved in hCPEB3 aggregation is a key first step toward understanding memory persistence in humans, as well as sequence features that differentiate beneficial amyloids from pathological ones. Areas Biophysics, Structural Biology, Biochemistry & Neurosciences. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01310-6.
Collapse
|
16
|
Marchetti C, Vaglietti S, Rizzo F, Di Nardo G, Colnaghi L, Ghirardi M, Fiumara F. Heptad stereotypy, S/Q layering, and remote origin of the SARS-CoV-2 fusion core. Virus Evol 2022; 7:veab097. [PMID: 35039783 PMCID: PMC8754743 DOI: 10.1093/ve/veab097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The fusion of the SARS-CoV-2 virus with cells, a key event in the pathogenesis of Covid-19, depends on the assembly of a six-helix fusion core (FC) formed by portions of the spike protein heptad repeats (HRs) 1 and 2. Despite the critical role in regulating infectivity, its distinctive features, origin, and evolution are scarcely understood. Thus, we undertook a structure-guided positional and compositional analysis of the SARS-CoV-2 FC, in comparison with FCs of related viruses, tracing its origin and ongoing evolution. We found that clustered amino acid substitutions within HR1, distinguishing SARS-CoV-2 from SARS-CoV-1, enhance local heptad stereotypy and increase sharply the FC serine-to-glutamine (S/Q) ratio, determining a neat alternate layering of S-rich and Q-rich subdomains along the post-fusion structure. Strikingly, SARS-CoV-2 ranks among viruses with the highest FC S/Q ratio, together with highly syncytiogenic respiratory pathogens (RSV, NDV), whereas MERS-Cov, HIV, and Ebola viruses display low ratios, and this feature reflects onto S/Q segregation and H-bonding patterns. Our evolutionary analyses revealed that the SARS-CoV-2 FC occurs in other SARS-CoV-1-like Sarbecoviruses identified since 2005 in Hong Kong and adjacent regions, tracing its origin to >50 years ago with a recombination-driven spread. Finally, current mutational trends show that the FC is varying especially in the FC1 evolutionary hotspot. These findings establish a novel analytical framework illuminating the sequence/structure evolution of the SARS-CoV-2 FC, tracing its long history within Sarbecoviruses, and may help rationalize the evolution of the fusion machinery in emerging pathogens and the design of novel therapeutic fusion inhibitors.
Collapse
Affiliation(s)
- Chiara Marchetti
- Rita Levi Montalcini Department of Neuroscience, University of Torino, Corso Raffaello 30, Torino 10125, Italy
| | - Serena Vaglietti
- Rita Levi Montalcini Department of Neuroscience, University of Torino, Corso Raffaello 30, Torino 10125, Italy
| | - Francesca Rizzo
- Istituto Zooprofilattico Sperimentale (IZS) del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, Torino 10148, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Luca Colnaghi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milano 20132, Italy
| | - Mirella Ghirardi
- Rita Levi Montalcini Department of Neuroscience, University of Torino, Corso Raffaello 30, Torino 10125, Italy
| | - Ferdinando Fiumara
- Rita Levi Montalcini Department of Neuroscience, University of Torino, Corso Raffaello 30, Torino 10125, Italy
| |
Collapse
|
17
|
Palacio M, Taatjes DJ. Merging Established Mechanisms with New Insights: Condensates, Hubs, and the Regulation of RNA Polymerase II Transcription. J Mol Biol 2022; 434:167216. [PMID: 34474085 PMCID: PMC8748285 DOI: 10.1016/j.jmb.2021.167216] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
The regulation of RNA polymerase II (pol II) transcription requires a complex and context-specific array of proteins and protein complexes, as well as nucleic acids and metabolites. Every major physiological process requires coordinated transcription of specific sets of genes at the appropriate time, and a breakdown in this regulation is a hallmark of human disease. A proliferation of recent studies has revealed that many general transcription components, including sequence-specific, DNA-binding transcription factors, Mediator, and pol II itself, are capable of liquid-liquid phase separation, to form condensates that partition these factors away from the bulk aqueous phase. These findings hold great promise for next-level understanding of pol II transcription; however, many mechanistic aspects align with more conventional models, and whether phase separation per se regulates pol II activity in cells remains controversial. In this review, we describe the conventional and condensate-dependent models, and why their similarities and differences are important. We also compare and contrast these models in the context of genome organization and pol II transcription (initiation, elongation, and termination), and highlight the central role of RNA in these processes. Finally, we discuss mutations that disrupt normal partitioning of transcription factors, and how this may contribute to disease.
Collapse
Affiliation(s)
- Megan Palacio
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Dylan J. Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA,corresponding author;
| |
Collapse
|
18
|
Mier P, Andrade-Navarro MA. Between Interactions and Aggregates: The PolyQ Balance. Genome Biol Evol 2021; 13:evab246. [PMID: 34791220 PMCID: PMC8763233 DOI: 10.1093/gbe/evab246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Polyglutamine (polyQ) regions are highly abundant consecutive runs of glutamine residues. They have been generally studied in relation to the so-called polyQ-associated diseases, characterized by protein aggregation caused by the expansion of the polyQ tract via a CAG-slippage mechanism. However, more than 4,800 human proteins contain a polyQ, and only nine of these regions are known to be associated with disease. Computational sequence studies and experimental structure determinations are completing a more interesting picture in which polyQ emerge as a motif for modulation of protein-protein interactions. But long polyQ regions may lead to an excess of interactions, and produce aggregates. Within this mechanistic perspective of polyQ function and malfunction, we discuss polyQ definition and properties such as variable codon usage, sequence and context structure imposition, functional relevance, evolutionary patterns in species-centered analyses, and open resources.
Collapse
Affiliation(s)
- Pablo Mier
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
19
|
Ben Hlima H, Karray A, Dammak M, Elleuch F, Michaud P, Fendri I, Abdelkafi S. Production and structure prediction of amylases from Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51046-51059. [PMID: 33973124 DOI: 10.1007/s11356-021-14357-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Amylases are enzymes required for starch degradation and are naturally produced by many microorganisms. These enzymes are used in several fields such as food processing, beverage, and medicine as well as in the formulation of enzymatic detergents proving their significance in modern biotechnology. In this study, a three-stage growth mode was applied to enhance starch production and amylase detection from Chlorella vulgaris. Stress conditions applied in the second stage of cultivation led to an accumulation of proteins (75% DW) and starch (21% DW) and a decrease in biomass. Amylase activities were detected and they showed high production levels especially on day 3 (35 U/ml) and day 5 (22.5 U/ml) of the second and third stages, respectively. The bioinformatic tools used to seek amylase protein sequences from TSA database of C. vulgaris revealed 7 putative genes encoding for 4 α-amylases, 2 β-amylases, and 1 isoamylase. An in silico investigation showed that these proteins are different in their lengths as well as in their cellular localizations and oligomeric states though they share common features like CSRs of GH13 family or active site of GH14 family. In brief, this study allowed for the production and in silico characterization of amylases from C. vulgaris.
Collapse
Affiliation(s)
- Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax, Tunisia
| | - Mouna Dammak
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Fatma Elleuch
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
20
|
Trimouille A, Tingaud-Sequeira A, Lacombe D, Duelund Hjortshøj T, Kreiborg S, Buciek Hove H, Rooryck C. Description of a family with X-linked oculo-auriculo-vertebral spectrum associated with polyalanine tract expansion in ZIC3. Clin Genet 2021; 98:384-389. [PMID: 32639022 DOI: 10.1111/cge.13811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) [MIM:164210], or Goldenhar syndrome, is a developmental disorder associating defects of structures derived from the first and second branchial arches. The genetic origin of OAVS is supported by the description of rare deleterious variants in a few causative genes, and several chromosomal copy number variations. We describe here a large family with eight male members affected by a mild form of the spectrum, mostly auricular defects, harboring a hemizygous ZIC3 variant detected by familial exome sequencing: c.159_161dup p.(Ala55dup), resulting in an expansion of the normal 10 consecutive alanine residues to 11 alanines. Segregation analysis shows its presence in all the affected individuals, with a recessive X-linked transmission. Whole-genome sequencing performed in another affected male allowed to exclude linkage disequilibrium between this ZIC3 variant and another potential pathogenic variant in this family. Furthermore, by screening of a cohort of 274 OAVS patients, we found 1 male patient carrying an expansion of 10 to 12 alanines, a variant previously reported in patient presenting with VACTERL. Loss-of-function variants of ZIC3 are causing heterotaxy or cardiac malformations. These alanine expansion variants could have a different impact on the protein and thereby resulting in a different phenotype within the OAVS/VACTERL.
Collapse
Affiliation(s)
- Aurélien Trimouille
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.,Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Univ. Bordeaux, Bordeaux, France
| | - Angèle Tingaud-Sequeira
- Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Univ. Bordeaux, Bordeaux, France
| | - Didier Lacombe
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.,Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Univ. Bordeaux, Bordeaux, France
| | - Tina Duelund Hjortshøj
- Department of Medical Genetics, University Hospital of Copenhagen, Rigshospitalet, Denmark
| | - Sven Kreiborg
- Section of Pediatric Dentistry and Clinical Genetics, Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Buciek Hove
- Department of Pediatrics, University Hospital of Copenhagen, Rigshospitalet, Denmark
| | - Caroline Rooryck
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.,Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
21
|
Vaglietti S, Fiumara F. PolyQ length co-evolution in neural proteins. NAR Genom Bioinform 2021; 3:lqab032. [PMID: 34017944 PMCID: PMC8121095 DOI: 10.1093/nargab/lqab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
Intermolecular co-evolution optimizes physiological performance in functionally related proteins, ultimately increasing molecular co-adaptation and evolutionary fitness. Polyglutamine (polyQ) repeats, which are over-represented in nervous system-related proteins, are increasingly recognized as length-dependent regulators of protein function and interactions, and their length variation contributes to intraspecific phenotypic variability and interspecific divergence. However, it is unclear whether polyQ repeat lengths evolve independently in each protein or rather co-evolve across functionally related protein pairs and networks, as in an integrated regulatory system. To address this issue, we investigated here the length evolution and co-evolution of polyQ repeats in clusters of functionally related and physically interacting neural proteins in Primates. We observed function-/disease-related polyQ repeat enrichment and evolutionary hypervariability in specific neural protein clusters, particularly in the neurocognitive and neuropsychiatric domains. Notably, these analyses detected extensive patterns of intermolecular polyQ length co-evolution in pairs and clusters of functionally related, physically interacting proteins. Moreover, they revealed both direct and inverse polyQ length co-variation in protein pairs, together with complex patterns of coordinated repeat variation in entire polyQ protein sets. These findings uncover a whole system of co-evolving polyQ repeats in neural proteins with direct implications for understanding polyQ-dependent phenotypic variability, neurocognitive evolution and neuropsychiatric disease pathogenesis.
Collapse
Affiliation(s)
- Serena Vaglietti
- Rita Levi Montalcini Department of Neuroscience, University of Torino, Torino 10125, Italy
| | - Ferdinando Fiumara
- Rita Levi Montalcini Department of Neuroscience, University of Torino, Torino 10125, Italy
- National Institute of Neuroscience (INN), University of Torino, Torino 10125, Italy
| |
Collapse
|
22
|
Pande M, Kundu D, Srivastava R. Vitamin C and Vitamin D3 show strong binding with the amyloidogenic region of G555F mutant of Fibrinogen A alpha-chain associated with renal amyloidosis: proposed possible therapeutic intervention. Mol Divers 2021; 26:939-949. [PMID: 33710477 DOI: 10.1007/s11030-021-10205-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
G555F mutant of Fibrinogen A alpha-chain (FGA) is reported to be associated with kidney amyloidosis. In the current study, we have modelled the G555F mutant and examined the mutation's effect on the structural and functional level. We have also docked Vitamin C and D3 on the mutant's amyloidogenic region to identify if these vitamins can bind amyloidogenic regions. Further, we analyzed if they could prevent or modulate amyloid formation by stopping critical interactions in amyloidogenic regions in FGA. We used the wild type FGA model protein as a control. Our docking and molecular dynamics simulation results indicate stronger Vitamin D3 binding than Vitamin C to the amyloidogenic region of the mutant protein. The RMSD, radius of gyration, and RMSF values were higher for the G555F mutant than the FGA wild type protein. Overall, the results support these vitamins' potential as a therapeutic and anti-amyloidogenic agent for FGA renal amyloidosis.
Collapse
Affiliation(s)
- Monu Pande
- Department of Biochemistry, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Debanjan Kundu
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ragini Srivastava
- Department of Biochemistry, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
23
|
Oroz J, Félix SS, Cabrita EJ, Laurents DV. Structural transitions in Orb2 prion-like domain relevant for functional aggregation in memory consolidation. J Biol Chem 2020; 295:18122-18133. [PMID: 33093173 PMCID: PMC7939463 DOI: 10.1074/jbc.ra120.015211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The recent structural elucidation of ex vivo Drosophila Orb2 fibrils revealed a novel amyloid formed by interdigitated Gln and His residue side chains belonging to the prion-like domain. However, atomic-level details on the conformational transitions associated with memory consolidation remain unknown. Here, we have characterized the nascent conformation and dynamics of the prion-like domain (PLD) of Orb2A using a nonconventional liquid-state NMR spectroscopy strategy based on 13C detection to afford an essentially complete set of 13Cα, 13Cβ, 1Hα, and backbone 13CO and 15N assignments. At pH 4, where His residues are protonated, the PLD is disordered and flexible, except for a partially populated α-helix spanning residues 55-60, and binds RNA oligos, but not divalent cations. At pH 7, in contrast, His residues are predominantly neutral, and the Q/H segments adopt minor populations of helical structure, show decreased mobility and start to self-associate. At pH 7, the His residues do not bind RNA or Ca2+, but do bind Zn2+, which promotes further association. These findings represent a remarkable case of structural plasticity, based on which an updated model for Orb2A functional amyloidogenesis is suggested.
Collapse
Affiliation(s)
- Javier Oroz
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Madrid, Spain
| | - Sara S Félix
- Departamento de Química Faculdade de Ciências e Tecnologia, UCIBIO, Universidade Nova de Lisboa, Caparica, Portugal
| | - Eurico J Cabrita
- Departamento de Química Faculdade de Ciências e Tecnologia, UCIBIO, Universidade Nova de Lisboa, Caparica, Portugal
| | | |
Collapse
|
24
|
Newton AH, Pask AJ. Evolution and expansion of the RUNX2 QA repeat corresponds with the emergence of vertebrate complexity. Commun Biol 2020; 3:771. [PMID: 33319865 PMCID: PMC7738678 DOI: 10.1038/s42003-020-01501-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is critical for the development of the vertebrate bony skeleton. Unlike other RUNX family members, RUNX2 possesses a variable poly-glutamine, poly-alanine (QA) repeat domain. Natural variation within this repeat is able to alter the transactivation potential of RUNX2, acting as an evolutionary 'tuning knob' suggested to influence mammalian skull shape. However, the broader role of the RUNX2 QA repeat throughout vertebrate evolution is unknown. In this perspective, we examine the role of the RUNX2 QA repeat during skeletal development and discuss how its emergence and expansion may have facilitated the evolution of morphological novelty in vertebrates.
Collapse
Affiliation(s)
- Axel H Newton
- Biosciences 4, The School of Biosciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia.
- Anatomy and Developmental Biology, The School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Andrew J Pask
- Biosciences 4, The School of Biosciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
25
|
Ford LK, Fioriti L. Coiled-Coil Motifs of RNA-Binding Proteins: Dynamicity in RNA Regulation. Front Cell Dev Biol 2020; 8:607947. [PMID: 33330512 PMCID: PMC7710910 DOI: 10.3389/fcell.2020.607947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 01/29/2023] Open
Abstract
Neuronal granules are biomolecular condensates that concentrate high quantities of RNAs and RNA-related proteins within neurons. These dense packets of information are trafficked from the soma to distal sites rich in polysomes, where local protein synthesis can occur. Movement of neuronal granules to distal sites, and local protein synthesis, play a critical role in synaptic plasticity. The formation of neuronal granules is intriguing; these granules lack a membrane and instead phase separate due to protein and RNA interactions. Low complexity motifs and RNA binding domains are highly prevalent in these proteins. Here, we introduce the role that coiled-coil motifs play in neuronal granule proteins, and investigate the structure-function relationship of coiled-coil proteins in RNA regulation. Interestingly, low complexity domains and coiled-coil motifs are highly dynamic, allowing for increased functional response to environmental influences. Finally, biomolecular condensates have been suggested to drive the formation of toxic, neurodegenerative proteins such as TDP-43 and tau. Here, we review the conversion of coiled-coil motifs to amyloid structures, and speculate a role that neuronal granules play in coiled-coil to amyloid conversions of neurodegenerative proteins.
Collapse
Affiliation(s)
- Lenzie K Ford
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, United States
| | - Luana Fioriti
- Laboratory of Molecular Mechanisms of Polyglutamine Disorders, Department of Neuroscience, Dulbecco Telethon Institute, Istituto di Ricerche Farmacologiche Mario Negri (IRCCS), Milan, Italy
| |
Collapse
|
26
|
Jazurek-Ciesiolka M, Ciesiolka A, Komur AA, Urbanek-Trzeciak MO, Krzyzosiak WJ, Fiszer A. RAN Translation of the Expanded CAG Repeats in the SCA3 Disease Context. J Mol Biol 2020; 432:166699. [PMID: 33157084 DOI: 10.1016/j.jmb.2020.10.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene encoding the ataxin-3 protein. Despite extensive research the exact pathogenic mechanisms of SCA3 are still not understood in depth. In the present study, to gain insight into the toxicity induced by the expanded CAG repeats in SCA3, we comprehensively investigated repeat-associated non-ATG (RAN) translation in various cellular models expressing translated or non-canonically translated ATXN3 sequences with an increasing number of CAG repeats. We demonstrate that two SCA3 RAN proteins, polyglutamine (polyQ) and polyalanine (polyA), are found only in the case of CAG repeats of pathogenic length. Despite having distinct cellular localization, RAN polyQ and RAN polyA proteins are very often coexpressed in the same cell, impairing nuclear integrity and inducing apoptosis. We provide for the first time mechanistic insights into SCA3 RAN translation indicating that ATXN3 sequences surrounding the repeat region have an impact on SCA3 RAN translation initiation and efficiency. We revealed that RAN translation of polyQ proteins starts at non-cognate codons upstream of the CAG repeats, whereas RAN polyA proteins are likely translated within repeats. Furthermore, integrated stress response activation enhances SCA3 RAN translation. Our findings suggest that the ATXN3 sequence context plays an important role in triggering SCA3 RAN translation and that SCA3 RAN proteins may cause cellular toxicity.
Collapse
Affiliation(s)
- Magdalena Jazurek-Ciesiolka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Adam Ciesiolka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Alicja A Komur
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Martyna O Urbanek-Trzeciak
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
27
|
Matencio A, Caldera F, Cecone C, López-Nicolás JM, Trotta F. Cyclic Oligosaccharides as Active Drugs, an Updated Review. Pharmaceuticals (Basel) 2020; 13:E281. [PMID: 33003610 PMCID: PMC7601923 DOI: 10.3390/ph13100281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
There have been many reviews of the cyclic oligosaccharide cyclodextrin (CD) and CD-based materials used for drug delivery, but the capacity of CDs to complex different agents and their own intrinsic properties suggest they might also be considered for use as active drugs, not only as carriers. The aim of this review is to summarize the direct use of CDs as drugs, without using its complexing potential with other substances. The direct application of another oligosaccharide called cyclic nigerosyl-1,6-nigerose (CNN) is also described. The review is divided into lipid-related diseases, aggregation diseases, antiviral and antiparasitic activities, anti-anesthetic agent, function in diet, removal of organic toxins, CDs and collagen, cell differentiation, and finally, their use in contact lenses in which no drug other than CDs are involved. In the case of CNN, its application as a dietary supplement and immunological modulator is explained. Finally, a critical structure-activity explanation is provided.
Collapse
Affiliation(s)
- Adrián Matencio
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Fabrizio Caldera
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Claudio Cecone
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Espinardo, Murcia, Spain;
| | - Francesco Trotta
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| |
Collapse
|
28
|
Chavali S, Singh AK, Santhanam B, Babu MM. Amino acid homorepeats in proteins. Nat Rev Chem 2020; 4:420-434. [PMID: 37127972 DOI: 10.1038/s41570-020-0204-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Amino acid homorepeats, or homorepeats, are polypeptide segments found in proteins that contain stretches of identical amino acid residues. Although abnormal homorepeat expansions are linked to pathologies such as neurodegenerative diseases, homorepeats are prevalent in eukaryotic proteomes, suggesting that they are important for normal physiology. In this Review, we discuss recent advances in our understanding of the biological functions of homorepeats, which range from facilitating subcellular protein localization to mediating interactions between proteins across diverse cellular pathways. We explore how the functional diversity of homorepeat-containing proteins could be linked to the ability of homorepeats to adopt different structural conformations, an ability influenced by repeat composition, repeat length and the nature of flanking sequences. We conclude by highlighting how an understanding of homorepeats will help us better characterize and develop therapeutics against the human diseases to which they contribute.
Collapse
Affiliation(s)
- Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India.
| | - Anjali K Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
29
|
Singh V, Kumar N, Dwivedi AK, Sharma R, Sharma MK. Phylogenomic Analysis of R2R3 MYB Transcription Factors in Sorghum and their Role in Conditioning Biofuel Syndrome. Curr Genomics 2020; 21:138-154. [PMID: 32655308 PMCID: PMC7324873 DOI: 10.2174/1389202921666200326152119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022] Open
Abstract
Background Large scale cultivation of sorghum for food, feed, and biofuel requires concerted efforts for engineering multipurpose cultivars with optimised agronomic traits. Due to their vital role in regulating the biosynthesis of phenylpropanoid-derived compounds, biomass composition, biotic, and abiotic stress response, R2R3-MYB family transcription factors are ideal targets for improving environmental resilience and economic value of sorghum. Methods We used diverse computational biology tools to survey the sorghum genome to identify R2R3-MYB transcription factors followed by their structural and phylogenomic analysis. We used in-house generated as well as publicly available high throughput expression data to analyse the R2R3 expression patterns in various sorghum tissue types. Results We have identified a total of 134 R2R3-MYB genes from sorghum and developed a framework to predict gene functions. Collating information from the physical location, duplication, structural analysis, orthologous sequences, phylogeny, and expression patterns revealed the role of duplications in clade-wise expansion of the R2R3-MYB family as well as intra-clade functional diversification. Using publicly available and in-house generated RNA sequencing data, we provide MYB candidates for conditioning biofuel syndrome by engineering phenylpropanoid biosynthesis and sugar signalling pathways in sorghum. Conclusion The results presented here are pivotal to prioritize MYB genes for functional validation and optimize agronomic traits in sorghum.
Collapse
Affiliation(s)
- Vinay Singh
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Neeraj Kumar
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Anuj K Dwivedi
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Rita Sharma
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Manoj K Sharma
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| |
Collapse
|
30
|
Gil-Garcia M, Navarro S, Ventura S. Coiled-coil inspired functional inclusion bodies. Microb Cell Fact 2020; 19:117. [PMID: 32487230 PMCID: PMC7268670 DOI: 10.1186/s12934-020-01375-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recombinant protein expression in bacteria often leads to the formation of intracellular insoluble protein deposits, a major bottleneck for the production of soluble and active products. However, in recent years, these bacterial protein aggregates, commonly known as inclusion bodies (IBs), have been shown to be a source of stable and active protein for biotechnological and biomedical applications. The formation of these functional IBs is usually facilitated by the fusion of aggregation-prone peptides or proteins to the protein of interest, leading to the formation of amyloid-like nanostructures, where the functional protein is embedded. RESULTS In order to offer an alternative to the classical amyloid-like IBs, here we develop functional IBs exploiting the coiled-coil fold. An in silico analysis of coiled-coil and aggregation propensities, net charge, and hydropathicity of different potential tags identified the natural homo-dimeric and anti-parallel coiled-coil ZapB bacterial protein as an optimal candidate to form assemblies in which the native state of the fused protein is preserved. The protein itself forms supramolecular fibrillar networks exhibiting only α-helix secondary structure. This non-amyloid self-assembly propensity allows generating innocuous IBs in which the recombinant protein of interest remains folded and functional, as demonstrated using two different fluorescent proteins. CONCLUSIONS Here, we present a proof of concept for the use of a natural coiled-coil domain as a versatile tool for the production of functional IBs in bacteria. This α-helix-based strategy excludes any potential toxicity drawback that might arise from the amyloid nature of β-sheet-based IBs and renders highly active and homogeneous submicrometric particles.
Collapse
Affiliation(s)
- Marcos Gil-Garcia
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
31
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
32
|
Pelassa I, Cibelli M, Villeri V, Lilliu E, Vaglietti S, Olocco F, Ghirardi M, Montarolo PG, Corà D, Fiumara F. Compound Dynamics and Combinatorial Patterns of Amino Acid Repeats Encode a System of Evolutionary and Developmental Markers. Genome Biol Evol 2020; 11:3159-3178. [PMID: 31589292 PMCID: PMC6839033 DOI: 10.1093/gbe/evz216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 01/05/2023] Open
Abstract
Homopolymeric amino acid repeats (AARs) like polyalanine (polyA) and polyglutamine (polyQ) in some developmental proteins (DPs) regulate certain aspects of organismal morphology and behavior, suggesting an evolutionary role for AARs as developmental "tuning knobs." It is still unclear, however, whether these are occasional protein-specific phenomena or hints at the existence of a whole AAR-based regulatory system in DPs. Using novel approaches to trace their functional and evolutionary history, we find quantitative evidence supporting a generalized, combinatorial role of AARs in developmental processes with evolutionary implications. We observe nonrandom AAR distributions and combinations in HOX and other DPs, as well as in their interactomes, defining elements of a proteome-wide combinatorial functional code whereby different AARs and their combinations appear preferentially in proteins involved in the development of specific organs/systems. Such functional associations can be either static or display detectable evolutionary dynamics. These findings suggest that progressive changes in AAR occurrence/combination, by altering embryonic development, may have contributed to taxonomic divergence, leaving detectable traces in the evolutionary history of proteomes. Consistent with this hypothesis, we find that the evolutionary trajectories of the 20 AARs in eukaryotic proteomes are highly interrelated and their individual or compound dynamics can sharply mark taxonomic boundaries, or display clock-like trends, carrying overall a strong phylogenetic signal. These findings provide quantitative evidence and an interpretive framework outlining a combinatorial system of AARs whose compound dynamics mark at the same time DP functions and evolutionary transitions.
Collapse
Affiliation(s)
- Ilaria Pelassa
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Marica Cibelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Veronica Villeri
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Elena Lilliu
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Serena Vaglietti
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Federica Olocco
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Mirella Ghirardi
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| | - Pier Giorgio Montarolo
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| | - Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| |
Collapse
|
33
|
Comprehensive phylogenomic analysis of ERF genes in sorghum provides clues to the evolution of gene functions and redundancy among gene family members. 3 Biotech 2020; 10:139. [PMID: 32158635 DOI: 10.1007/s13205-020-2120-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/05/2020] [Indexed: 10/24/2022] Open
Abstract
APETALA2/Ethylene-Responsive transcription factors (AP2/ERF), with their multifunctional roles in plant development, hormone signaling and stress tolerance, are important candidates for engineering crop plants. Here, we report identification and analysis of gene structure, phylogenetic distribution, expression, chromosomal localization and cis-acting promoter analysis of AP2/ERF genes in the C4 crop plant sorghum. We identified 158 ERF genes in sorghum with 52 of them encoding dehydration-responsive binding elements (DREB) while 106 code for ERF subfamily proteins. Phylogenetic analysis organized sorghum ERF proteins into 11 distinct groups exhibiting clade-specific expansion. About 68% ERF genes have paralogs indicating gene duplications as major cause of expansion of ERF family in sorghum. Analysis of spatiotemporal expression patterns using publicly available data revealed their tissue/genotype-preferential accumulation. In addition, 40 ERF genes exhibited differential accumulation in response to heat and/or drought stress. About 25% of the segmental gene pairs and eleven tandem duplicated genes exhibited high correlation (> 0.7) in their expression patterns indicating genetic redundancy. Comparative phylogenomic analysis of sorghum ERFs with 74 genetically characterized ERF genes from other plant species provided significant clues to sorghum ERF functions. Overall data generated here provides an overview of evolutionary relationship among ERF gene family members in sorghum and with respect to previously characterized ERF genes from other plant species. This information will be instrumental in initiating functional genomic studies of ERF candidates in sorghum.
Collapse
|
34
|
Laidou S, Alanis-Lobato G, Pribyl J, Raskó T, Tichy B, Mikulasek K, Tsagiopoulou M, Oppelt J, Kastrinaki G, Lefaki M, Singh M, Zink A, Chondrogianni N, Psomopoulos F, Prigione A, Ivics Z, Pospisilova S, Skladal P, Izsvák Z, Andrade-Navarro MA, Petrakis S. Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery. Redox Biol 2020; 32:101458. [PMID: 32145456 PMCID: PMC7058924 DOI: 10.1016/j.redox.2020.101458] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.
Collapse
Affiliation(s)
- Stamatia Laidou
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Gregorio Alanis-Lobato
- Faculty of Biology, Johannes Gutenberg University Mainz, 55122, Mainz, Germany; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Tamás Raskó
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Kamil Mikulasek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Maria Tsagiopoulou
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Georgia Kastrinaki
- Aerosol and Particle Technology Laboratory/Chemical Process & Energy Resources Institute/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Maria Lefaki
- Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
| | - Manvendra Singh
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - Annika Zink
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece; Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Alessandro Prigione
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Petr Skladal
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Zsuzsanna Izsvák
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany.
| | | | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece.
| |
Collapse
|
35
|
Sánchez AI, García-Acero MA, Paredes A, Quero R, Ortega RI, Rojas JA, Herrera D, Parra M, Prieto K, Ángel J, Rodríguez LS, Prieto JC, Franco M. Immunodeficiency in a Patient with 22q11.2 Distal Deletion Syndrome and a p.Ala7dup Variant in the MAPK1 Gene. Mol Syndromol 2020; 11:15-23. [PMID: 32256297 DOI: 10.1159/000506032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The genetic basis for sporadic immunodeficiency in patients with 22q11.2 distal deletion syndrome is unknown. We report an adult with a type 1 (D-F) 22q11.2 distal deletion syndrome and recurrent severe infections due to herpes zoster virus, presenting mild T cell lymphopenia and diminished frequency of naive CD4<sup>+</sup> T cells, but increased frequencies of central, effector, and terminally differentiated memory T cells. Antigen-specific CD4<sup>+</sup> and CD8<sup>+</sup> T cells to influenza, rotavirus, and SEB were conserved in the patient, but responses to tetanus toxoid were temporarily undetectable. Exomic sequencing identified the c.20_22dupCGG (NM_002745.4) variant in the remaining MAPK1 gene of the patient, which adds 1 alanine to the polyalanine amino-terminal tract of the protein (p.Ala7dup). The mother, unlike the father, was heterozygote for the variant. Western blot analysis with the patient's activated PBMCs showed a 91% reduction in the MAPK1 protein. Further studies will be necessary to determine whether or not the variant present in the remaining MAPK1 gene of the patient is pathogenic.
Collapse
Affiliation(s)
- Ana I Sánchez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia.,Departamento Materno Infantil, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Cali, Cali, Columbia
| | - Mary A García-Acero
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Angela Paredes
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Rossi Quero
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Rita I Ortega
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Jorge A Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Daniel Herrera
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Miguel Parra
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Karol Prieto
- Immunobiology and Cell Biology Group, Department of Microbiology, School of Science Pontificia Universidad Javeriana, Bogota, Colombia
| | - Juana Ángel
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Luz-Stella Rodríguez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Juan C Prieto
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Manuel Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| |
Collapse
|
36
|
Gao B, Wang J, Huang J, Huang X, Sha W, Qin L. The dynamic region of the peptidoglycan synthase gene, Rv0050, induces the growth rate and morphologic heterogeneity in Mycobacteria. INFECTION GENETICS AND EVOLUTION 2019; 72:86-92. [DOI: 10.1016/j.meegid.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022]
|
37
|
RUNX family: Oncogenes or tumor suppressors (Review). Oncol Rep 2019; 42:3-19. [PMID: 31059069 PMCID: PMC6549079 DOI: 10.3892/or.2019.7149] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor (RUNX) proteins belong to a transcription factors family known as master regulators of important embryonic developmental programs. In the last decade, the whole family has been implicated in the regulation of different oncogenic processes and signaling pathways associated with cancer. Furthermore, a suppressor tumor function has been also reported, suggesting the RUNX family serves key role in all different types of cancer. In this review, the known biological characteristics, specific regulatory abilities and experimental evidence of RUNX proteins will be analyzed to demonstrate their oncogenic potential and tumor suppressor abilities during oncogenic processes, suggesting their importance as biomarkers of cancer. Additionally, the importance of continuing with the molecular studies of RUNX proteins' and its dual functions in cancer will be underlined in order to apply it in the future development of specific diagnostic methods and therapies against different types of cancer.
Collapse
|
38
|
Rawat S, Anusha V, Jha M, Sreedurgalakshmi K, Raychaudhuri S. Aggregation of Respiratory Complex Subunits Marks the Onset of Proteotoxicity in Proteasome Inhibited Cells. J Mol Biol 2019; 431:996-1015. [DOI: 10.1016/j.jmb.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
|
39
|
Polyserine repeats promote coiled coil-mediated fibril formation and length-dependent protein aggregation. J Struct Biol 2018; 204:572-584. [PMID: 30194983 DOI: 10.1016/j.jsb.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/06/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
Abstract
Short polyserine (polyS) repeats are frequently found in proteins and longer ones are produced in neurological disorders such as Huntington disease (HD) owing to translational frameshifting or non-ATG-dependent translation, together with polyglutamine (polyQ) and polyalanine (polyA) repeats, forming intracellular aggregates. However, the physiological and pathological structures of polyS repeats are not clearly understood. Early studies highlighted their structural versatility, similar to other homopolymers whose conformation is influenced by the surrounding protein context. As polyS stretches are frequently near polyQ and polyA repeats, which can be part of coiled coil (CC) structures, and the frameshift-derived polyS repeats in HD directly flank CC heptads important for aggregation, we investigate here the structural and aggregation properties of polyS in the context of CC structures. We have taken advantage of peptide models, previously used to study polyQ and polyA in CCs, in which we inserted polyS repeats of variable length and studied them in comparison with polyQ and polyA peptides. We found that polyS repeats promote CC-mediated polymerization and fibrillization as revealed by circular dichroism, chemical crosslinking, and atomic force microscopy. Furthermore, they promote CC-based, length-dependent intracellular aggregation, which is negligible with 7 and widespread with 49 serines. These findings show that polyS repeats can participate in the formation of CCs, as previously found for polyQ and polyA, conferring to peptides distinctive structural properties with aggregation kinetics that are intermediate between those of polyA and polyQ CCs, and contribute to an overall structural definition of the pathophysiogical roles of homopolymeric repeats in CC structures.
Collapse
|
40
|
Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:molecules22122027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
|
41
|
Newton AH, Feigin CY, Pask AJ. RUNX2 repeat variation does not drive craniofacial diversity in marsupials. BMC Evol Biol 2017; 17:110. [PMID: 28472940 PMCID: PMC5418715 DOI: 10.1186/s12862-017-0955-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Runt-related transcription factor 2 (RUNX2) is a transcription factor essential for skeletal development. Variation within the RUNX2 polyglutamine / polyalanine (QA) repeat is correlated with facial length within orders of placental mammals and is suggested to be a major driver of craniofacial diversity. However, it is not known if this correlation exists outside of the placental mammals. RESULTS Here we examined the correlation between the RUNX2 QA repeat ratio and facial length in the naturally evolving sister group to the placental mammals, the marsupials. Marsupials have a diverse range of facial lengths similar to that seen in placental mammals. Despite their diversity there was almost no variation seen in the RUNX2 QA repeat across individuals spanning the entire marsupial infraclass. The extreme conservation of the marsupial RUNX2 QA repeat indicates it is under strong purifying selection. Despite this, we observed an unexpectedly high level of repeat purity. CONCLUSIONS Unlike within orders of placental mammals, RUNX2 repeat variation cannot drive craniofacial diversity in marsupials. We propose conservation of the marsupial RUNX2 QA repeat is driven by the constraint of accelerated ossification of the anterior skeleton to facilitate life in the pouch. Thus, marsupials must utilize alternate pathways to placental mammals to drive craniofacial evolution.
Collapse
Affiliation(s)
- Axel H. Newton
- The School of BioSciences, The University of Melbourne, Victoria, 3010 Australia
| | - Charles Y. Feigin
- The School of BioSciences, The University of Melbourne, Victoria, 3010 Australia
| | - Andrew J. Pask
- The School of BioSciences, The University of Melbourne, Victoria, 3010 Australia
| |
Collapse
|
42
|
Erives AJ. Evolving Notch polyQ tracts reveal possible solenoid interference elements. PLoS One 2017; 12:e0174253. [PMID: 28319202 PMCID: PMC5358852 DOI: 10.1371/journal.pone.0174253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/06/2017] [Indexed: 01/24/2023] Open
Abstract
Polyglutamine (polyQ) tracts in regulatory proteins are extremely polymorphic. As functional elements under selection for length, triplet repeats are prone to DNA replication slippage and indel mutations. Many polyQ tracts are also embedded within intrinsically disordered domains, which are less constrained, fast evolving, and difficult to characterize. To identify structural principles underlying polyQ tracts in disordered regulatory domains, here I analyze deep evolution of metazoan Notch polyQ tracts, which can generate alleles causing developmental and neurogenic defects. I show that Notch features polyQ tract turnover that is restricted to a discrete number of conserved “polyQ insertion slots”. Notch polyQ insertion slots are: (i) identifiable by an amphipathic “slot leader” motif; (ii) conserved as an intact C-terminal array in a 1-to-1 relationship with the N-terminal solenoid-forming ankyrin repeats (ARs); and (iii) enriched in carboxamide residues (Q/N), whose sidechains feature dual hydrogen bond donor and acceptor atoms. Correspondingly, the terminal loop and β-strand of each AR feature conserved carboxamide residues, which would be susceptible to folding interference by hydrogen bonding with residues outside the ARs. I thus suggest that Notch polyQ insertion slots constitute an array of AR interference elements (ARIEs). Notch ARIEs would dynamically compete with the delicate serial folding induced by adjacent ARs. Huntingtin, which harbors solenoid-forming HEAT repeats, also possesses a similar number of polyQ insertion slots. These results suggest that intrinsically disordered interference arrays featuring carboxamide and polyQ enrichment may constitute coupled proteodynamic modulators of solenoids.
Collapse
Affiliation(s)
- Albert J. Erives
- Department of Biology University of Iowa Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
43
|
Xu W, Chen Q, Liu C, Chen J, Xiong F, Wu B. A novel, complex RUNX2 gene mutation causes cleidocranial dysplasia. BMC MEDICAL GENETICS 2017; 18:13. [PMID: 28173761 PMCID: PMC5297198 DOI: 10.1186/s12881-017-0375-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
Background Haploinsufficiency of the runt-related transcription factor 2 (RUNX2) gene is known to cause cleidocranial dysplasia (CCD). Here, we investigated a complex, heterozygous RUNX2 gene mutation in a Chinese family with CCD and the pathogenesis associated with the variations. Methods Genomic DNA extracted from peripheral venous blood was taken from the proband, her parents and 3 siblings, and 150 normal controls. Analysis of their respective RUNX2 gene sequences was performed by PCR amplification and Sanger sequencing. Pathogenesis associated with RUNX2 mutations was investigated by performing bioinformatics, real-time PCR, western blot analysis, and subcellular localization studies. Results We identified 2 complex heterozygous mutations involving a c.398–399 insACAGCAGCAGCAGCA insertion and a c.411–412 insG frameshift mutation in exon 3 of the RUNX2 gene. The frameshift mutation changed the structure of the RUNX2 protein while did not affect its expression at the mRNA level. Transfection of HEK293T cells with a plasmid expressing the RUNX2 variant decreased the molecular weight of the variant RUNX2 protein, compared with that of the wild-type protein. Subcellular localization assays showed both nuclear and cytoplasmic localization for the mutant protein, while the wild-type protein localized to the nucleus. Conclusions Our findings demonstrated that the novel c.398–399insACAGCAGCAGCAGCA mutation occurred alongside the c.411–412insG frameshift mutation, which resulted in RUNX2 truncation. RUNX2 haploinsufficiency was associated with CCD pathogenesis. These results extend the known mutational spectrum of the RUNX2 gene and suggest a functional role of the novel mutation in CCD pathogenesis.
Collapse
Affiliation(s)
- Wen'an Xu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuyue Chen
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.,Department of Stomatology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Cuixian Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiajing Chen
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Escalona-Rayo O, Fuentes-Vázquez P, Leyva-Gómez G, Cisneros B, Villalobos R, Magaña JJ, Quintanar-Guerrero D. Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process. Drug Dev Ind Pharm 2017; 43:871-888. [PMID: 28142290 DOI: 10.1080/03639045.2017.1281949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of neurodegenerative disorders that cause cellular dysfunction and, eventually, neuronal death in specific regions of the brain. Neurodegeneration is linked to the misfolding and aggregation of expanded polyQ-containing proteins, and their inhibition is one of major therapeutic strategies used commonly. However, successful treatment has been limited to date because of the intrinsic properties of therapeutic agents (poor water solubility, low bioavailability, poor pharmacokinetic properties), and difficulty in crossing physiological barriers, including the blood-brain barrier (BBB). In order to solve these problems, nanoparticulate systems with dimensions of 1-1000 nm able to incorporate small and macromolecules with therapeutic value, to protect and deliver them directly to the brain, have recently been developed, but their use for targeting polyQ disease-mediated protein misfolding and aggregation remains scarce. This review provides an update of the polyQ protein aggregation process and the development of therapeutic strategies for halting it. The main features that a nanoparticulate system should possess in order to enhance brain delivery are discussed, as well as the different types of materials utilized to produce them. The final part of this review focuses on the potential application of nanoparticulate system strategies to improve the specific and efficient delivery of therapeutic agents to the brain for the treatment of polyQ diseases.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Paulina Fuentes-Vázquez
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Gerardo Leyva-Gómez
- b Laboratory of Connective Tissue , CENIAQ, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - Bulmaro Cisneros
- c Department of Genetics and Molecular Biology , CINVESTAV-IPN , Mexico City , Mexico
| | - Rafael Villalobos
- d División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Jonathan J Magaña
- e Laboratory of Genomic Medicine, Department of Genetics , Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - David Quintanar-Guerrero
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| |
Collapse
|
45
|
Totzeck F, Andrade-Navarro MA, Mier P. The Protein Structure Context of PolyQ Regions. PLoS One 2017; 12:e0170801. [PMID: 28125688 PMCID: PMC5268486 DOI: 10.1371/journal.pone.0170801] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
Proteins containing glutamine repeats (polyQ) are known to be structurally unstable. Abnormal expansion of polyQ in some proteins exceeding a certain threshold leads to neurodegenerative disease, a symptom of which are protein aggregates. This has led to extensive research of the structure of polyQ stretches. However, the accumulation of contradictory results suggests that protein context might be of importance. Here we aimed to evaluate the structural context of polyQ regions in proteins by analysing the secondary structure of polyQ proteins and their homologs. The results revealed that the secondary structure in polyQ vicinity is predominantly random coil or helix. Importantly, the regions surrounding the polyQ are often not solved in 3D structures. In the few cases where the point of insertion of the polyQ was mapped to a full protein, we observed that these are always located in the surface of the protein. The findings support the hypothesis that polyQ might serve to extend coiled coils at their C-terminus in highly disordered regions involved in protein-protein interactions.
Collapse
Affiliation(s)
- Franziska Totzeck
- Faculty of Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, Mainz, Germany
| | - Miguel A. Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, Mainz, Germany
- Institute of Molecular Biology, Ackermannweg 4, Mainz, Germany
| | - Pablo Mier
- Faculty of Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, Mainz, Germany
- Institute of Molecular Biology, Ackermannweg 4, Mainz, Germany
- * E-mail:
| |
Collapse
|
46
|
Zhang YJ, Gendron TF, Grima JC, Sasaguri H, Jansen-West K, Xu YF, Katzman RB, Gass J, Murray ME, Shinohara M, Lin WL, Garrett A, Stankowski JN, Daughrity L, Tong J, Perkerson EA, Yue M, Chew J, Castanedes-Casey M, Kurti A, Wang ZS, Liesinger AM, Baker JD, Jiang J, Lagier-Tourenne C, Edbauer D, Cleveland DW, Rademakers R, Boylan KB, Bu G, Link CD, Dickey CA, Rothstein JD, Dickson DW, Fryer JD, Petrucelli L. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat Neurosci 2016; 19:668-677. [PMID: 26998601 PMCID: PMC5138863 DOI: 10.1038/nn.4272] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jonathan C Grima
- Department of Neurology, School of Medicine, Johns Hopkins University, Maryland, USA
- Brain Science Institute, School of Medicine, Johns Hopkins University, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Maryland, USA
| | - Hiroki Sasaguri
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Ya-Fei Xu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jennifer Gass
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Aliesha Garrett
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Zizhao S Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jeremy D Baker
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | - Jie Jiang
- Ludwig Institute, University of California at San Diego, La Jolla, California, USA
| | | | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Metabolic Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Don W Cleveland
- Ludwig Institute, University of California at San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Kevin B Boylan
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Christopher D Link
- Integrative Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | - Chad A Dickey
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | - Jeffrey D Rothstein
- Department of Neurology, School of Medicine, Johns Hopkins University, Maryland, USA
- Brain Science Institute, School of Medicine, Johns Hopkins University, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Maryland, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | |
Collapse
|
47
|
Zhemkov VA, Kulminskaya AA, Bezprozvanny IB, Kim M. The 2.2-Angstrom resolution crystal structure of the carboxy-terminal region of ataxin-3. FEBS Open Bio 2016; 6:168-78. [PMID: 27047745 PMCID: PMC4794786 DOI: 10.1002/2211-5463.12029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/15/2023] Open
Abstract
An expansion of polyglutamine (polyQ) sequence in ataxin‐3 protein causes spinocerebellar ataxia type 3, an inherited neurodegenerative disorder. The crystal structure of the polyQ‐containing carboxy‐terminal fragment of human ataxin‐3 was solved at 2.2‐Å resolution. The Atxn3 carboxy‐terminal fragment including 14 glutamine residues adopts both random coil and α‐helical conformations in the crystal structure. The polyQ sequence in α‐helical structure is stabilized by intrahelical hydrogen bonds mediated by glutamine side chains. The intrahelical hydrogen‐bond interactions between glutamine side chains along the axis of the polyQ α‐helix stabilize the secondary structure. Analysis of this structure furthers our understanding of the polyQ‐structural characteristics that likely underlie the pathogenesis of polyQ‐expansion disorders.
Collapse
Affiliation(s)
- Vladimir A Zhemkov
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Laboratory of Enzymology National Research Center «Kurchatov Institute»B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Russia
| | - Anna A Kulminskaya
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Laboratory of Enzymology National Research Center «Kurchatov Institute»B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Department of Physiology University of Texas Southwestern Medical Center Dallas TX USA
| | - Meewhi Kim
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Department of Physiology University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
48
|
Pelassa I, Fiumara F. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats. Front Genet 2015; 6:345. [PMID: 26734058 PMCID: PMC4683181 DOI: 10.3389/fgene.2015.00345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/20/2015] [Indexed: 12/13/2022] Open
Abstract
Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as "junk" sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping the interaction networks of the human proteome, and define proteome-wide knowledge that may guide the informed biological exploration of the role of AARs in protein interactions.
Collapse
Affiliation(s)
- Ilaria Pelassa
- Department of Neuroscience, University of Torino Torino, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience, University of TorinoTorino, Italy; National Institute of Neuroscience (INN)Torino, Italy
| |
Collapse
|
49
|
Wu LZ, Xu XY, Liu YF, Ge X, Wang XJ. Expansion of polyalanine tracts in the QA domain may play a critical role in the clavicular development of cleidocranial dysplasia. J Genet 2015; 94:551-3. [PMID: 26440098 DOI: 10.1007/s12041-015-0551-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Li-Zheng Wu
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China.
| | | | | | | | | |
Collapse
|
50
|
Sharma P, Chinaranagari S, Chaudhary J. Inhibitor of differentiation 4 (ID4) acts as an inhibitor of ID-1, -2 and -3 and promotes basic helix loop helix (bHLH) E47 DNA binding and transcriptional activity. Biochimie 2015; 112:139-50. [PMID: 25778840 DOI: 10.1016/j.biochi.2015.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/05/2015] [Indexed: 01/15/2023]
Abstract
The four known ID proteins (ID1-4, Inhibitor of Differentiation) share a homologous helix loop helix (HLH) domain and act as dominant negative regulators of basic-HLH transcription factors. ID proteins also interact with many non-bHLH proteins in complex networks. The expression of ID proteins is increasingly observed in many cancers. Whereas ID-1, ID-2 and ID-3, are generally considered as tumor promoters, ID4 on the contrary has emerged as a tumor suppressor. In this study we demonstrate that ID4 heterodimerizes with ID-1, -2 and -3 and promote bHLH DNA binding, essentially acting as an inhibitor of inhibitors of differentiation proteins. Interaction of ID4 was observed with ID1, ID2 and ID3 that was dependent on intact HLH domain of ID4. Interaction with bHLH protein E47 required almost 3 fold higher concentration of ID4 as compared to ID1. Furthermore, inhibition of E47 DNA binding by ID1 was restored by ID4 in an EMSA binding assay. ID4 and ID1 were also colocalized in prostate cancer cell line LNCaP. The alpha helix forming alanine stretch N-terminal, unique to HLH ID4 domain was required for optimum interaction. Ectopic expression of ID4 in DU145 prostate cancer line promoted E47 dependent expression of CDKNI p21. Thus counteracting the biological activities of ID-1, -2 and -3 by forming inactive heterodimers appears to be a novel mechanism of action of ID4. These results could have far reaching consequences in developing strategies to target ID proteins for cancer therapy and understanding biologically relevant ID-interactions.
Collapse
Affiliation(s)
- Pankaj Sharma
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Swathi Chinaranagari
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA.
| |
Collapse
|