1
|
Hernández Rodríguez MY, Biswas DD, Slyne AD, Lee J, Scarrow E, Abdelbarr SM, Daniels H, O'Halloran KD, Ferreira LF, Gersbach CA, ElMallah MK. Respiratory pathology in the mdx/utrn -/- mouse: A murine model for Duchenne Muscular Dystrophy (DMD). PLoS One 2025; 20:e0316295. [PMID: 39919154 DOI: 10.1371/journal.pone.0316295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 02/09/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked devastating disease caused by a lack of dystrophin which results in progressive muscle weakness. As muscle weakness progresses, respiratory insufficiency and hypoventilation result in significant morbidity and mortality. The most studied DMD mouse model- the mdx mouse- has a milder respiratory phenotype compared to humans, likely due to compensatory overexpression of utrophin. mdx/utrn-/- mice lack both dystrophin and utrophin proteins. These mice have an early onset of muscular dystrophy, severe muscle weakness, and premature death, but the respiratory pathophysiology is unclear. The objective of this study is to characterize the respiratory pathophysiology and histopathology using whole body plethysmography to measure breathing and metabolism, diaphragm muscle functional analysis, histology, and immunohistochemistry. The mdx/utrn-/- mice have significant respiratory and metabolic deficits with respiratory insufficiency and hypoventilation when exposed to hypoxia and hypercarbia as early as 6 weeks of age. They also have significant diaphragmatic weakness and disrupted diaphragmatic structural pathology. The mdx/utrn-/- mice display respiratory dysfunction that mimics the DMD phenotype and therefore can provide a useful model to study the impact of novel therapies on respiratory function for DMD.
Collapse
Affiliation(s)
- Marán Y Hernández Rodríguez
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Aoife D Slyne
- Department of Physiology, University College Cork, Cork, Ireland
| | - Jane Lee
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Evelyn Scarrow
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Sarra M Abdelbarr
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Heather Daniels
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina, United States of America
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| | - Leonardo F Ferreira
- Department of Orthopedic Surgery, Duke University, Durham, North Carolina, United States of America
| | - Charles A Gersbach
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Hospital, Durham, North Carolina, United States of America
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Monceau A, Nath RG, Suárez-Calvet X, Musumeci O, Toscano A, Kierdaszuk B, Kostera-Pruszczyk A, Domínguez-González C, Hernández-Lain A, Paradas C, Rivas E, Papadimas G, Papadopoulos C, Chrysanthou-Piterou M, Gallardo E, Olivé M, Lilleker J, Roberts ME, Marchese D, Lunazzi G, Heyn H, Fernández-Simón E, Villalobos E, Clark J, Katsikis P, Collins C, Mehra P, Laidler Z, Vincent A, Tasca G, Marini-Bettolo C, Guglieri M, Straub V, Raben N, Díaz-Manera J. Decoding the muscle transcriptome of patients with late-onset Pompe disease reveals markers of disease progression. Brain 2024; 147:4213-4226. [PMID: 39045638 PMCID: PMC11629704 DOI: 10.1093/brain/awae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/25/2024] Open
Abstract
Late-onset Pompe disease (LOPD) is a rare genetic disorder caused by the deficiency of acid alpha-glucosidase leading to progressive cellular dysfunction owing to the accumulation of glycogen in the lysosome. The mechanism of relentless muscle damage (a classic manifestation of the disease) has been studied extensively by analysing the whole-muscle tissue; however, little, if anything, is known about transcriptional heterogeneity among nuclei within the multinucleated skeletal muscle cells. This is the first report of application of single-nucleus RNA sequencing to uncover changes in the gene expression profile in muscle biopsies from eight patients with LOPD and four muscle samples from age- and sex-matched healthy controls. We matched these changes with histological findings using GeoMx spatial transcriptomics to compare the transcriptome of control myofibres from healthy individuals with non-vacuolated (histologically unaffected) and vacuolated (histologically affected) myofibres of LODP patients. We observed an increase in the proportion of slow and regenerative muscle fibres and macrophages in LOPD muscles. The expression of the genes involved in glycolysis was reduced, whereas the expression of the genes involved in the metabolism of lipids and amino acids was increased in non-vacuolated fibres, indicating early metabolic abnormalities. Additionally, we detected upregulation of autophagy genes and downregulation of the genes involved in ribosomal and mitochondrial function leading to defective oxidative phosphorylation. Upregulation of genes associated with inflammation, apoptosis and muscle regeneration was observed only in vacuolated fibres. Notably, enzyme replacement therapy (the only available therapy for the disease) showed a tendency to restore dysregulated metabolism, particularly within slow fibres. A combination of single-nucleus RNA sequencing and spatial transcriptomics revealed the landscape of the normal and diseased muscle and highlighted the early abnormalities associated with disease progression. Thus, the application of these two new cutting-edge technologies provided insight into the molecular pathophysiology of muscle damage in LOPD and identified potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Alexandra Monceau
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Rasya Gokul Nath
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Xavier Suárez-Calvet
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Neuromuscular Disease Unit, 08041 Barcelona, Spain
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Antonio Toscano
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Biruta Kierdaszuk
- Department of Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Cristina Domínguez-González
- Department of Neurology, Neuromuscular Unit, Instituto de Investigación imas12, Hospital 12 de Octubre, 28041 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aurelio Hernández-Lain
- Department of Neurology, Neuromuscular Unit, Instituto de Investigación imas12, Hospital 12 de Octubre, 28041 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Paradas
- Neurology Department, Neuromuscular Disorders Unit, Instituto de Biomedicina de Sevilla, Hospital U Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
- Center for Biomedical Network Research on Neurodegenerative Disorders (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eloy Rivas
- Neurology Department, Neuromuscular Disorders Unit, Instituto de Biomedicina de Sevilla, Hospital U Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
- Center for Biomedical Network Research on Neurodegenerative Disorders (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - George Papadimas
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Constantinos Papadopoulos
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Margarita Chrysanthou-Piterou
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Eduard Gallardo
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Neuromuscular Disease Unit, 08041 Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servei de Neurologia, Unitat malalties neuromusculars, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Montse Olivé
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Neuromuscular Disease Unit, 08041 Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servei de Neurologia, Unitat malalties neuromusculars, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - James Lilleker
- Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PL, UK
- Muscle Disease Unit, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, M6 8HD, UK
| | - Mark E Roberts
- Muscle Disease Unit, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, M6 8HD, UK
| | - Domenica Marchese
- Centre for Genomic Regulation (CRG), CNAG-CRG, Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), 08028 Barcelona, Spain
| | - Giulia Lunazzi
- Centre for Genomic Regulation (CRG), CNAG-CRG, Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), 08028 Barcelona, Spain
| | - Holger Heyn
- Centre for Genomic Regulation (CRG), CNAG-CRG, Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), 08028 Barcelona, Spain
| | - Esther Fernández-Simón
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Elisa Villalobos
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - James Clark
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Panos Katsikis
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Catherine Collins
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Priyanka Mehra
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Zoe Laidler
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Amy Vincent
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
- Wellcome Trust Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 3NU, UK
| | - Giorgio Tasca
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordi Díaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| |
Collapse
|
3
|
Zhong R, Dionela DLA, Kim NH, Harris EN, Geisler JG, Wei-LaPierre L. Micro-Doses of DNP Preserve Motor and Muscle Function with a Period of Functional Recovery in Amyotrophic Lateral Sclerosis Mice. Ann Neurol 2024. [PMID: 39552508 DOI: 10.1002/ana.27140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE Mitochondrial dysfunction is one of the earliest pathological events observed in amyotrophic lateral sclerosis (ALS). The aim of this study is to evaluate the therapeutic efficacy of 2,4-dinitrophenol (DNP), a mild mitochondrial uncoupler, in an ALS mouse model to provide preclinical proof-of-concept evidence of using DNP as a potential therapeutic drug for ALS. METHODS hSOD1G93A mice were treated with 0.5-1.0 mg/kg DNP through daily oral gavage from presymptomatic stage or disease onset until 18 weeks old. Longitudinal behavioral studies were performed weekly or biweekly from 6 to 18 weeks old. In situ muscle contraction measurements in extensor digitorum longus muscles were conducted to evaluate the preservation of contractile force and motor unit numbers in hSOD1G93A mice following DNP treatment. Muscle innervation and inflammatory markers were assessed using immunostaining. Extent of protein oxidation and activation of Akt pathway were also examined. RESULTS DNP delayed disease onset; improved motor coordination and muscle performance in vivo; preserved muscle contractile function, neuromuscular junction morphology, and muscle innervation; and reduced inflammation and protein oxidation at 18 weeks old in hSOD1G93A mice. Strikingly, symptomatic hSOD1G93A mice exhibited a period of recovery in running ability at 20 cm/s several weeks after 2,4-dinitrophenol treatment started at disease onset, offering the first observation in disease phenotype reversal using a small molecule. INTERPRETATION Our results strongly support that micro-dose DNP may be used as a potential novel treatment for ALS patients, with a possibility for recovery, when used at optimal doses and time of intervention. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Demi L A Dionela
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL
| | - Nina Haeyeon Kim
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL
| | - Erin N Harris
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL
| | | | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY
- Myology Institute, University of Florida, Gainesville, FL
| |
Collapse
|
4
|
Yoon JK, Schindler JW, Loperfido M, Baricordi C, DeAndrade MP, Jacobs ME, Treleaven C, Plasschaert RN, Yan A, Barese CN, Dogan Y, Chen VP, Fiorini C, Hull F, Barbarossa L, Unnisa Z, Ivanov D, Kutner RH, Guda S, Oborski C, Maiwald T, Michaud V, Rothe M, Schambach A, Pfeifer R, Mason C, Biasco L, van Til NP. Preclinical lentiviral hematopoietic stem cell gene therapy corrects Pompe disease-related muscle and neurological manifestations. Mol Ther 2024; 32:3847-3864. [PMID: 39295144 PMCID: PMC11573599 DOI: 10.1016/j.ymthe.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Pompe disease, a rare genetic neuromuscular disorder, is caused by a deficiency of acid alpha-glucosidase (GAA), leading to an accumulation of glycogen in lysosomes, and resulting in the progressive development of muscle weakness. The current standard treatment, enzyme replacement therapy (ERT), is not curative and has limitations such as poor penetration into skeletal muscle and both the central and peripheral nervous systems, a risk of immune responses against the recombinant enzyme, and the requirement for high doses and frequent infusions. To overcome these limitations, lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy has been proposed as a next-generation approach for treating Pompe disease. This study demonstrates the potential of lentiviral HSPC gene therapy to reverse the pathological effects of Pompe disease in a preclinical mouse model. It includes a comprehensive safety assessment via integration site analysis, along with single-cell RNA sequencing analysis of central nervous tissue samples to gain insights into the underlying mechanisms of phenotype correction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aimin Yan
- AVROBIO, Inc., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Véronique Michaud
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; Advanced Centre for Biochemical Engineering, University College London, London WC1E 6AE, UK
| | - Luca Biasco
- AVROBIO, Inc., Cambridge, MA 02139, USA; Zayed Centre for Research, University College London, London WC1N 1DZ, UK
| | - Niek P van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1081 HV, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Shukla M, Chugh D, Ganesh S. Neuromuscular junction dysfunction in Lafora disease. Dis Model Mech 2024; 17:dmm050905. [PMID: 39301689 PMCID: PMC11512103 DOI: 10.1242/dmm.050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Lafora disease (LD), a fatal neurodegenerative disorder, is caused by mutations in the EPM2A gene encoding laforin phosphatase or NHLRC1 gene encoding malin ubiquitin ligase. LD symptoms include epileptic seizures, ataxia, dementia and cognitive decline. Studies on LD have primarily concentrated on the pathophysiology in the brain. A few studies have reported motor symptoms, muscle weakness and muscle atrophy. Intriguingly, skeletal muscles are known to accumulate Lafora polyglucosan bodies. Using laforin-deficient mice, an established model for LD, we demonstrate that LD pathology correlated with structural and functional impairments in the neuromuscular junction (NMJ). Specifically, we found impairment in NMJ transmission, which coincided with altered expression of NMJ-associated genes and reduced motor endplate area, fragmented junctions and loss of fully innervated junctions at the NMJ. We also observed a reduction in alpha-motor neurons in the lumbar spinal cord, with significant presynaptic morphological alterations. Disorganised myofibrillar patterns, slight z-line streaming and muscle atrophy were also evident in LD animals. In summary, our study offers insight into the neuropathic and myopathic alterations leading to motor deficits in LD.
Collapse
Affiliation(s)
- Monica Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Deepti Chugh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
6
|
Morton AB, Jacobsen NL, Diller AR, Kendra JA, Golpasandi S, Cornelison DDW, Segal SS. Inducible deletion of endothelial cell Efnb2 delays capillary regeneration and attenuates myofibre reinnervation following myotoxin injury in mice. J Physiol 2024; 602:4907-4927. [PMID: 39196901 PMCID: PMC11466691 DOI: 10.1113/jp285402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/22/2024] [Indexed: 08/30/2024] Open
Abstract
Acute injury of skeletal muscle disrupts myofibres, microvessels and motor innervation. Myofibre regeneration is well characterized, however its relationship with the regeneration of microvessels and motor nerves is undefined. Endothelial cell (EC) ephrin-B2 (Efnb2) is required for angiogenesis during embryonic development and promotes neurovascular regeneration in the adult. We hypothesized that, following acute injury to skeletal muscle, loss of EC Efnb2 would impair microvascular regeneration and the recovery of neuromuscular junction (NMJ) integrity. Mice (aged 3-6 months) were bred for EC-specific conditional knockout (CKO) of Efnb2 following tamoxifen injection with non-injected CKO mice as controls (CON). The gluteus maximus, tibialis anterior or extensor digitorum longus muscle was then injured with local injection of BaCl2. Intravascular staining with wheat germ agglutinin revealed diminished capillary area in the gluteus maximus of CKO vs. CON at 5 days post-injury (dpi); both recovered to uninjured (0 dpi) level by 10 dpi. At 0 dpi, tibialis anterior isometric force of CKO was less than CON. At 10 dpi, isometric force was reduced by half in both groups. During intermittent contractions (75 Hz, 330 ms s-1, 120 s), isometric force fell during indirect (sciatic nerve) stimulation whereas force was maintained during direct (electrical field) stimulation of myofibres. Neuromuscular transmission failure correlated with perturbed presynaptic (terminal Schwann cells) and postsynaptic (nicotinic acetylcholine receptors) NMJ morphology in CKO. Resident satellite cell number on extensor digitorum longus myofibres did not differ between groups. Following acute injury of skeletal muscle, loss of Efnb2 in ECs delays capillary regeneration and attenuates recovery of NMJ structure and function. KEY POINTS: The relationship between microvascular regeneration and motor nerve regeneration following skeletal muscle injury is undefined. Expression of Efnb2 in endothelial cells (ECs) is essential to vascular development and promotes neurovascular regeneration in the adult. To test the hypothesis that EfnB2 in ECs is required for microvascular regeneration and myofibre reinnervation, we induced conditional knockout of Efnb2 in ECs of mice. Acute injury was then induced by BaCl2 injection into gluteus maximus, tibialis anterior or extensor digitorum longus (EDL) muscle. Capillary regeneration was reduced at 5 days post-injury (dpi) in gluteus maximus of conditional knockout vs. controls; at 10 dpi, neither differed from uninjured. Nerve stimulation revealed neuromuscular transmission failure in tibialis anterior with perturbed neuromuscular junction structure. Resident satellite cell number on EDL myofibres did not differ between groups. Conditional knockout of EC Efnb2 delays capillary regeneration and attenuates recovery of neuromuscular junction structure and function.
Collapse
Affiliation(s)
- Aaron B. Morton
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | - Nicole L. Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | | | - Jacob A. Kendra
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - Shadi Golpasandi
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Steven S. Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
- Dalton Cardiovascular Research Center, Columbia, MO 65211
- Department of Biomedical Sciences, University of Missouri; Columbia, MO 65201
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri; Columbia, MO 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
7
|
Najac C, van der Beek NAME, Boer VO, van Doorn PA, van der Ploeg AT, Ronen I, Kan HE, van den Hout JMP. Brain glycogen build-up measured by magnetic resonance spectroscopy in classic infantile Pompe disease. Brain Commun 2024; 6:fcae303. [PMID: 39309683 PMCID: PMC11416038 DOI: 10.1093/braincomms/fcae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Classic infantile Pompe disease is caused by abnormal lysosomal glycogen accumulation in multiple tissues, including the brain due to a deficit in acid α-glucosidase. Although treatment with recombinant human acid α-glucosidase has dramatically improved survival, recombinant human acid α-glucosidase does not reach the brain, and surviving classic infantile Pompe patients develop progressive cognitive deficits and white matter lesions. We investigated the feasibility of measuring non-invasively glycogen build-up and other metabolic alterations in the brain of classic infantile Pompe patients. Four classic infantile patients (8-16 years old) and 4 age-matched healthy controls were scanned on a 7 T MRI scanner. We used T2-weighted MRI to assess the presence of white matter lesions as well as 1H magnetic resonance spectroscopy and magnetic resonance spectroscopy imaging to obtain the neurochemical profile and its spatial distribution, respectively. All patients had widespread white matter lesions on T2-weighted images. Magnetic resonance spectroscopy data from a single volume of interest positioned in the periventricular white matter showed a clear shift in the neurochemical profile, particularly a significant increase in glycogen (result of acid α-glucosidase deficiency) and decrease in N-acetyl-aspartate (marker of neuronal damage) in patients. Magnetic resonance spectroscopy imaging results were in line and showed a widespread accumulation of glycogen and a significant lower level of N-acetyl-aspartate in patients. Our results illustrate the unique potential of 1H magnetic resonance spectroscopy (imaging) to provide a non-invasive readout of the disease pathology in the brain. Further study will assess its potential to monitor disease progression and the correlation with cognitive decline.
Collapse
Affiliation(s)
- Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nadine A M E van der Beek
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Vincent O Boer
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, DK2650 Copenhagen, Denmark
| | - Pieter A van Doorn
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, East Sussex BN1 9RR, UK
| | - Hermien E Kan
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Duchenne Center Netherlands, 2333 ZA Leiden, The Netherlands
| | - Johanna M P van den Hout
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
8
|
Nguyen BL, Baumfalk DR, Lapierre-Nguyen SS, Zhong R, Doerr V, Montalvo RN, Wei-LaPierre L, Smuder AJ. Effects of exercise and doxorubicin on acute diaphragm neuromuscular transmission failure. Exp Neurol 2024; 378:114818. [PMID: 38782352 PMCID: PMC11616575 DOI: 10.1016/j.expneurol.2024.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Doxorubicin (DOX) is a highly effective anthracycline antibiotic used to treat a wide variety of cancers including breast cancer, leukemia and lymphoma. Unfortunately, clinical use of DOX is limited due to adverse off-target effects resulting in fatigue, respiratory muscle weakness and dyspnea. The diaphragm is the primary muscle of inspiration and respiratory insufficiency is likely the result of both muscle weakness and neural impairment. However, the contribution of neuropathology to DOX-induced respiratory muscle dysfunction is unclear. We hypothesized that diaphragm weakness following acute DOX exposure is associated with neurotoxicity and that exercise preconditioning is sufficient to improve diaphragm muscle contractility by maintaining neuromuscular integrity. Adult female Sprague-Dawley rats were randomized into four experimental groups: 1) sedentary-saline, 2) sedentary-DOX, 3) exercise-saline or 4) exercise-DOX. Endurance exercise preconditioning consisted of treadmill running for 1 h/day at 30 m/min for 10 days. Twenty-four hours after the last bout of exercise, animals were treated with DOX (20 mg/kg, I.P.) or saline (equal volume). Our results demonstrate that 48-h following DOX administration diaphragm muscle specific force is reduced in sedentary-DOX rats in response to both phrenic nerve and direct diaphragm stimulation. Importantly, endurance exercise preconditioning in DOX-treated rats attenuated the decrease in diaphragm contractile function, reduced neuromuscular transmission failure and altered phrenic nerve morphology. These changes were associated with an exercise-induced reduction in circulating biomarkers of inflammation, nerve injury and reformation. Therefore, the results are consistent with exercise preconditioning as an effective way of reducing respiratory impairment via preservation of phrenic-diaphragm neuromuscular conduction.
Collapse
Affiliation(s)
- Branden L Nguyen
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America.
| | - Dryden R Baumfalk
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Stephanie S Lapierre-Nguyen
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Renjia Zhong
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Vivian Doerr
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Ryan N Montalvo
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Lan Wei-LaPierre
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Ashley J Smuder
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| |
Collapse
|
9
|
Biswas DD, Shi Y, El Haddad L, Sethi R, Huston M, Kehoe S, Scarrow ER, Strickland LM, Pucci LA, Dhindsa JS, Hunanyan A, La Spada AR, ElMallah MK. Respiratory neuropathology in spinocerebellar ataxia type 7. JCI Insight 2024; 9:e170444. [PMID: 39053472 PMCID: PMC11457860 DOI: 10.1172/jci.insight.170444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurological disorder caused by deleterious CAG repeat expansion in the coding region of the ataxin 7 gene (polyQ-ataxin-7). Infantile-onset SCA7 leads to severe clinical manifestation of respiratory distress, but the exact cause of respiratory impairment remains unclear. Using the infantile-SCA7 mouse model, the SCA7266Q/5Q mouse, we examined the impact of pathological polyQ-ataxin-7 on hypoglossal (XII) and phrenic motor units. We identified the transcript profile of the medulla and cervical spinal cord and investigated the XII and phrenic nerves and the neuromuscular junctions in the diaphragm and tongue. SCA7266Q/5Q astrocytes showed significant intranuclear inclusions of ataxin-7 in the XII and putative phrenic motor nuclei. Transcriptomic analysis revealed dysregulation of genes involved in amino acid and neurotransmitter transport and myelination. Additionally, SCA7266Q/5Q mice demonstrated blunted efferent output of the XII nerve and demyelination in both XII and phrenic nerves. Finally, there was an increased number of neuromuscular junction clusters with higher expression of synaptic markers in SCA7266Q/5Q mice compared with WT controls. These preclinical findings elucidate the underlying pathophysiology responsible for impaired glial cell function and death leading to dysphagia, aspiration, and respiratory failure in infantile SCA7.
Collapse
Affiliation(s)
- Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Yihan Shi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Ronit Sethi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Meredith Huston
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Sean Kehoe
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Evelyn R Scarrow
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Laura M Strickland
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Logan A Pucci
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Justin S Dhindsa
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Ani Hunanyan
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology and Behavior, and
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, California, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
10
|
Oliveira Santos M, Domingues S, de Campos CF, Moreira S, de Carvalho M. Diaphragm weakness in late-onset Pompe disease: A complex interplay between lower motor neuron and muscle fibre degeneration. J Neurol Sci 2024; 460:123021. [PMID: 38653115 DOI: 10.1016/j.jns.2024.123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Late-onset Pompe disease (LOPD) patients may still need ventilation support at some point of their disease course, despite regular recombinant human alglucosidase alfa treatment. This suggest that other pathophysiological mechanisms than muscle fibre lesion can contribute to the respiratory failure process. We investigate through neurophysiology whether spinal phrenic motor neuron dysfunction could contribute to diaphragm weakness in LOPD patients. MATERIAL AND METHODS A group of symptomatic LOPD patients were prospectively studied in our centre from January 2022 to April 2023. We collected both demographic and clinical data, as well as neurophysiological parameters. Phrenic nerve conduction studies and needle EMG sampling of the diaphragm were perfomed. RESULTS Eight treated LOPD patients (3 males, 37.5%) were investigated. Three patients (37.5%) with no respiratory involvement had normal phrenic nerve motor responses [median phrenic compound muscle action potential (CMAP) amplitude of 0.49 mV; 1st-3rd interquartile range (IQR), 0.48-0.65]. Those with respiratory failure (under nocturnal non-invasive ventilation) had abnormal phrenic nerve motor responses (median phrenic CMAP amplitude of 0 mV; 1st-3rd IQR, 0-0.15), and were then investigated with EMG. Diaphragm needle EMG revealed both myopathic and neurogenic changes in 3 (60%) and myopathic potentials in 1 patient. In the last one, no motor unit potentials could be recruited. CONCLUSIONS Our study provide new insights regarding respiratory mechanisms in LOPD, suggesting a contribution of spinal phrenic motor neuron dysfunction for diaphragm weakness. If confirmed in further studies, our results recommend the need of new drugs crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Miguel Oliveira Santos
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal.
| | - Sara Domingues
- Department of Physical Medicine and Rehabilitation, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Catarina Falcão de Campos
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Susana Moreira
- Thoracic Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
11
|
El Haddad L, Khan M, Soufny R, Mummy D, Driehuys B, Mansour W, Kishnani PS, ElMallah MK. Monitoring and Management of Respiratory Function in Pompe Disease: Current Perspectives. Ther Clin Risk Manag 2023; 19:713-729. [PMID: 37680303 PMCID: PMC10480292 DOI: 10.2147/tcrm.s362871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Pompe disease (PD) is a neuromuscular disorder caused by a deficiency of acid alpha-glucosidase (GAA) - a lysosomal enzyme responsible for hydrolyzing glycogen. GAA deficiency leads to accumulation of glycogen in lysosomes, causing cellular disruption. The severity of PD is directly related to the extent of GAA deficiency - if no or minimal GAA is produced, symptoms are severe and manifest in infancy, known as infantile onset PD (IOPD). If left untreated, infants with IOPD experience muscle hypotonia and cardio-respiratory failure leading to significant morbidity and mortality in the first year of life. In contrast, late-onset PD (LOPD) patients have more GAA activity and present later in life, but also have significant respiratory function decline. Despite FDA-approved enzyme replacement therapy, respiratory insufficiency remains a major cause of morbidity and mortality, emphasizing the importance of early detection and management of respiratory complications. These complications include impaired cough and airway clearance, respiratory muscle weakness, sleep-related breathing issues, and pulmonary infections. This review aims to provide an overview of the respiratory pathology, monitoring, and management of PD patients. In addition, we discuss the impact of novel approaches and therapies on respiratory function in PD.
Collapse
Affiliation(s)
- Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Mainur Khan
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Rania Soufny
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - David Mummy
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Bastiaan Driehuys
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Wissam Mansour
- Division of Pulmonary and Sleep Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
12
|
Liberati C, Byrne BJ, Fuller DD, Croft C, Pitts T, Ehrbar J, Leon-Astudillo C, Smith BK. Diaphragm pacing and independent breathing in individuals with severe Pompe disease. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1184031. [PMID: 37583873 PMCID: PMC10423945 DOI: 10.3389/fresc.2023.1184031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023]
Abstract
Introduction Pompe disease is an inherited disease characterized by a deficit in acid-α-glucosidase (GAA), an enzyme which degrades lysosomal glycogen. The phrenic-diaphragm motor system is affected preferentially, and respiratory failure often occurs despite GAA enzyme replacement therapy. We hypothesized that the continued use of diaphragm pacing (DP) might improve ventilator-dependent subjects' respiratory outcomes and increase ventilator-free time tolerance. Methods Six patients (3 pediatric) underwent clinical DP implantation and started diaphragm conditioning, which involved progressively longer periods of daily, low intensity stimulation. Longitudinal respiratory breathing pattern, diaphragm electromyography, and pulmonary function tests were completed when possible, to assess feasibility of use, as well as diaphragm and ventilatory responses to conditioning. Results All subjects were eventually able to undergo full-time conditioning via DP and increase their maximal tolerated time off-ventilator, when compared to pre-implant function. Over time, 3 of 6 subjects also demonstrated increased or stable minute ventilation throughout the day, without positive-pressure ventilation assistance. Discussion Respiratory insufficiency is one of the main causes of death in patients with Pompe disease. Our results indicate that DP in Pompe disease was feasible, led to few adverse events and stabilized breathing for up to 7 years.
Collapse
Affiliation(s)
- Cristina Liberati
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL, United States
| | - Chasen Croft
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Teresa Pitts
- Department of Speech, Language and Hearing Sciences, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Center Investigator, University of Missouri, Columbia, MO, United States
| | - Jessica Ehrbar
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | | | - Barbara K. Smith
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Smith EC, Hopkins S, Case LE, Xu M, Walters C, Dearmey S, Han SO, Spears TG, Chichester JA, Bossen EH, Hornik CP, Cohen JL, Bali D, Kishnani PS, Koeberl DD. Phase I study of liver depot gene therapy in late-onset Pompe disease. Mol Ther 2023; 31:1994-2004. [PMID: 36805083 PMCID: PMC10362382 DOI: 10.1016/j.ymthe.2023.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023] Open
Abstract
Gene therapy with an adeno-associated virus serotype 8 (AAV8) vector (AAV8-LSPhGAA) could eliminate the need for enzyme replacement therapy (ERT) by creating a liver depot for acid α-glucosidase (GAA) production. We report initial safety and bioactivity of the first dose (1.6 × 1012 vector genomes/kg) cohort (n = 3) in a 52-week open-label, single-dose, dose-escalation study (NCT03533673) in patients with late-onset Pompe disease (LOPD). Subjects discontinued biweekly ERT after week 26 based on the detection of elevated serum GAA activity and the absence of clinically significant declines per protocol. Prednisone (60 mg/day) was administered as immunoprophylaxis through week 4, followed by an 11-week taper. All subjects demonstrated sustained serum GAA activities from 101% to 235% of baseline trough activity 2 weeks following the preceding ERT dose. There were no treatment-related serious adverse events. No subject had anti-capsid T cell responses that decreased transgene expression. Muscle biopsy at week 24 revealed unchanged muscle glycogen content in two of three subjects. At week 52, muscle GAA activity for the cohort was significantly increased (p < 0.05). Overall, these initial data support the safety and bioactivity of AAV8-LSPhGAA, the safety of withdrawing ERT, successful immunoprophylaxis, and justify continued clinical development of AAV8-LSPhGAA therapy in Pompe disease.
Collapse
Affiliation(s)
- Edward C Smith
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sam Hopkins
- Asklepios Biopharmaceutical, Inc. (Askbio), Durham, NC, USA
| | - Laura E Case
- Department of Orthopedics, Duke University School of Medicine, Durham, NC, USA
| | - Ming Xu
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Crista Walters
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie Dearmey
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sang-Oh Han
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Tracy G Spears
- Clinical Trials Statistics, Duke Clinical Research Institute, Durham, NC, USA
| | - Jessica A Chichester
- Immunology Core, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward H Bossen
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Christoph P Hornik
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Deeksha Bali
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Dwight D Koeberl
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
14
|
Watkins B, Schultheiß J, Rafuna A, Hintze S, Meinke P, Schoser B, Kröger S. Degeneration of muscle spindles in a murine model of Pompe disease. Sci Rep 2023; 13:6555. [PMID: 37085544 PMCID: PMC10121695 DOI: 10.1038/s41598-023-33543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
Pompe disease is a debilitating medical condition caused by a functional deficiency of lysosomal acid alpha-glucosidase (GAA). In addition to muscle weakness, people living with Pompe disease experience motor coordination deficits including an instable gait and posture. We reasoned that an impaired muscle spindle function might contribute to these deficiencies and therefore analyzed proprioception as well as muscle spindle structure and function in 4- and 8-month-old Gaa-/- mice. Gait analyses showed a reduced inter-limb and inter-paw coordination in Gaa-/- mice. Electrophysiological analyses of single-unit muscle spindle proprioceptive afferents revealed an impaired sensitivity of the dynamic and static component of the stretch response. Finally, a progressive degeneration of the sensory neuron and of the intrafusal fibers was detectable in Gaa-/- mice. We observed an increased abundance and size of lysosomes, a fragmentation of the inner and outer connective tissue capsule and a buildup of autophagic vacuoles in muscle spindles from 8-month-old Gaa-/- mice, indicating lysosomal defects and an impaired autophagocytosis. These results demonstrate a structural and functional degeneration of muscle spindles and an altered motor coordination in Gaa-/- mice. Similar changes could contribute to the impaired motor coordination in patients living with Pompe disease.
Collapse
Affiliation(s)
- Bridgette Watkins
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Jürgen Schultheiß
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Andi Rafuna
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Stefan Hintze
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Meinke
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University, Munich, Germany
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
15
|
Zhang WC, Mao YY, Chen Q. [Research progress of nervous system damage in Pompe disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:420-424. [PMID: 37073849 PMCID: PMC10120337 DOI: 10.7499/j.issn.1008-8830.2211052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Pompe disease, also known as glycogen storage disease type Ⅱ, is a rare autosomal recessive disease. With the application of enzyme replacement therapy, more and more patients with Pompe disease can survive to adulthood, and nervous system-related clinical manifestations gradually emerge. Nervous system involvement seriously affects the quality of life of patients with Pompe disease, and a systematic understanding of the clinical manifestations, imaging features and pathological changes of nervous system injury in Pompe disease is of great significance for the early identification and intervention of Pompe disease. This article reviews the research progress of neurological damage in Pompe disease.
Collapse
Affiliation(s)
- Wen-Chao Zhang
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ying-Ying Mao
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qian Chen
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
16
|
Rana J, Muñoz MM, Biswas M. Oral tolerance to prevent anti-drug antibody formation in protein replacement therapies. Cell Immunol 2022; 382:104641. [PMID: 36402002 PMCID: PMC9730862 DOI: 10.1016/j.cellimm.2022.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Protein based therapeutics have successfully improved the quality of life for patients of monogenic disorders like hemophilia, Pompe and Fabry disease. However, a significant proportion of patients develop immune responses towards intravenously infused therapeutic protein, which can complicate or neutralize treatment and compromise patient safety. Strategies aimed at circumventing immune responses following therapeutic protein infusion can greatly improve therapeutic efficacy. In recent years, antigen-based oral tolerance induction has shown promising results in the prevention and treatment of autoimmune diseases, food allergies and can prevent anti-drug antibody formation to protein replacement therapies. Oral tolerance exploits regulatory mechanisms that are initiated in the gut associated lymphoid tissue (GALT) to promote active suppression of orally ingested antigen. In this review, we outline general perceptions and current knowledge about the mechanisms of oral tolerance, including tissue specific sites of tolerance induction and the cells involved, with emphasis on antigen presenting cells and regulatory T cells. We define several factors, such as cytokines and metabolites that impact the stability and expansion potential of these immune modulatory cells. We highlight preclinical studies that have been performed to induce oral tolerance to therapeutic proteins or enzymes for single gene disorders, such as hemophilia or Pompe disease. These studies mainly utilize a transgenic plant-based system for oral delivery of antigen in conjugation with fusion protein technology that favors the prevention of antigen degradation in the stomach while enhancing uptake in the small intestine by antigen presenting cells and regulatory T cell induction, thereby promoting antigen specific systemic tolerance.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maite Melero Muñoz
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
17
|
Roger AL, Sethi R, Huston ML, Scarrow E, Bao-Dai J, Lai E, Biswas DD, Haddad LE, Strickland LM, Kishnani PS, ElMallah MK. What's new and what's next for gene therapy in Pompe disease? Expert Opin Biol Ther 2022; 22:1117-1135. [PMID: 35428407 PMCID: PMC10084869 DOI: 10.1080/14712598.2022.2067476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.
Collapse
Affiliation(s)
- Angela L. Roger
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ronit Sethi
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Meredith L. Huston
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Evelyn Scarrow
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Joy Bao-Dai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Elias Lai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Debolina D. Biswas
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Léa El Haddad
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Laura M. Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
18
|
Association of a newly identified lncRNA LNC_000280 with the formation of acetylcholine receptor clusters in vitro. Biochem Biophys Res Commun 2022; 610:8-14. [DOI: 10.1016/j.bbrc.2022.03.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
|
19
|
Enax-Krumova EK, Dahlhaus I, Görlach J, Claeys KG, Montagnese F, Schneider L, Sturm D, Fangerau T, Schlierbach H, Roth A, Wanschitz JV, Löscher WN, Güttsches AK, Vielhaber S, Hasseli R, Zunk L, Krämer HH, Hahn A, Schoser B, Rosenbohm A, Schänzer A. Small fiber involvement is independent from clinical pain in late-onset Pompe disease. Orphanet J Rare Dis 2022; 17:177. [PMID: 35477515 PMCID: PMC9044713 DOI: 10.1186/s13023-022-02327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain occurs in the majority of patients with late onset Pompe disease (LOPD) and is associated with a reduced quality of life. The aim of this study was to analyse the pain characteristics and its relation to a small nerve fiber involvement in LOPD patients. METHODS In 35 patients with LOPD under enzyme replacement therapy without clinical signs of polyneuropathy (19 females; 51 ± 15 years), pain characteristics as well as depressive and anxiety symptoms were assessed using the PainDetect questionnaire (PDQ) and the hospital anxiety and depression scale (HADS), respectively. Distal skin biopsies were analysed for intraepidermal nerve fiber density (IENFD) and compared to age- and gender-matched reference data. Skin biopsies from 20 healthy subjects served as controls to assure validity of the morphometric analysis. RESULTS Pain was reported in 69% of the patients with an average intensity of 4.1 ± 1.1 on the numeric rating scale (NRS; anchors: 0-10). According to PDQ, neuropathic pain was likely in one patient, possible in 29%, and unlikely in 67%. Relevant depression and anxiety symptoms occurred in 31% and 23%, respectively, and correlated with pain intensity. Distal IENFD (3.98 ± 1.95 fibers/mm) was reduced in 57% of the patients. The degree of IENFD reduction did not correlate with the durations of symptoms to ERT or duration of ERT to biopsy. CONCLUSIONS Pain is a frequent symptom in treated LOPD on ERT, though a screening questionnaire seldom indicated neuropathic pain. The high frequency of small nerve fiber pathology in a treated LOPD cohort was found regardless of the presence of pain or comorbid risk factors for SFN and needs further exploration in terms of clinical context, exact mechanisms and when developing novel therapeutic options for LOPD.
Collapse
Affiliation(s)
- Elena K Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Iris Dahlhaus
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Görlach
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Federica Montagnese
- Friedrich-Baur-Institute, Department of Neurology, LMU University Munich, Munich, Germany
| | - Llka Schneider
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, St Georg Hospital, Leipzig, Germany
| | - Dietrich Sturm
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Tanja Fangerau
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Hannah Schlierbach
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Angela Roth
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Julia V Wanschitz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang N Löscher
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Anne-Katrin Güttsches
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Rebecca Hasseli
- Department of Rheumtaology and Clinical Immunology, Campus Kerkhoff, Justus-Liebig University, Giessen, Germany
| | - Lea Zunk
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Heidrun H Krämer
- Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, Giessen, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU University Munich, Munich, Germany
| | | | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany.
| |
Collapse
|
20
|
Ganassi M, Zammit PS. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: Expanding the portfolio of satellite cell-opathies. Eur J Transl Myol 2022; 32:10064. [PMID: 35302338 PMCID: PMC8992676 DOI: 10.4081/ejtm.2022.10064] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
Neuromuscular disorders are a heterogeneous group of acquired or hereditary conditions that affect striated muscle function. The resulting decrease in muscle strength and motility irreversibly impacts quality of life. In addition to directly affecting skeletal muscle, pathogenesis can also arise from dysfunctional crosstalk between nerves and muscles, and may include cardiac impairment. Muscular weakness is often progressive and paralleled by continuous decline in the ability of skeletal muscle to functionally adapt and regenerate. Normally, the skeletal muscle resident stem cells, named satellite cells, ensure tissue homeostasis by providing myoblasts for growth, maintenance, repair and regeneration. We recently defined 'Satellite Cell-opathies' as those inherited neuromuscular conditions presenting satellite cell dysfunction in muscular dystrophies and myopathies (doi:10.1016/j.yexcr.2021.112906). Here, we expand the portfolio of Satellite Cell-opathies by evaluating the potential impairment of satellite cell function across all 16 categories of neuromuscular disorders, including those with mainly neurogenic and cardiac involvement. We explore the expression dynamics of myopathogenes, genes whose mutation leads to skeletal muscle pathogenesis, using transcriptomic analysis. This revealed that 45% of myopathogenes are differentially expressed during early satellite cell activation (0 - 5 hours). Of these 271 myopathogenes, 83 respond to Pax7, a master regulator of satellite cells. Our analysis suggests possible perturbation of satellite cell function in many neuromuscular disorders across all categories, including those where skeletal muscle pathology is not predominant. This characterisation further aids understanding of pathomechanisms and informs on development of prognostic and diagnostic tools, and ultimately, new therapeutics.
Collapse
Affiliation(s)
- Massimo Ganassi
- King's College London, Randall Centre for Cell and Molecular Biophysics, Guy's Campus, London.
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, Guy's Campus, London.
| |
Collapse
|
21
|
Abstract
Pompe disease results from lysosomal acid α-glucosidase deficiency, which leads to cardiomyopathy in all infantile-onset and occasional late-onset patients. Cardiac assessment is important for its diagnosis and management. This article presents unpublished cardiac findings, concomitant medications, and cardiac efficacy and safety outcomes from the ADVANCE study; trajectories of patients with abnormal left ventricular mass z score at enrolment; and post hoc analyses of on-treatment left ventricular mass and systolic blood pressure z scores by disease phenotype, GAA genotype, and "fraction of life" (defined as the fraction of life on pre-study 160 L production-scale alglucosidase alfa). ADVANCE evaluated 52 weeks' treatment with 4000 L production-scale alglucosidase alfa in ≥1-year-old United States of America patients with Pompe disease previously receiving 160 L production-scale alglucosidase alfa. M-mode echocardiography and 12-lead electrocardiography were performed at enrolment and Week 52. Sixty-seven patients had complete left ventricular mass z scores, decreasing at Week 52 (infantile-onset patients, change -0.8 ± 1.83; 95% confidence interval -1.3 to -0.2; all patients, change -0.5 ± 1.71; 95% confidence interval -1.0 to -0.1). Patients with "fraction of life" <0.79 had left ventricular mass z score decreasing (enrolment: +0.1 ± 3.0; Week 52: -1.1 ± 2.0); those with "fraction of life" ≥0.79 remained stable (enrolment: -0.9 ± 1.5; Week 52: -0.9 ± 1.4). Systolic blood pressure z scores were stable from enrolment to Week 52, and no cohort developed systemic hypertension. Eight patients had Wolff-Parkinson-White syndrome. Cardiac hypertrophy and dysrhythmia in ADVANCE patients at or before enrolment were typical of Pompe disease. Four-thousand L alglucosidase alfa therapy maintained fractional shortening, left ventricular posterior and septal end-diastolic thicknesses, and improved left ventricular mass z score.Trial registry: ClinicalTrials.gov Identifier: NCT01526785 https://clinicaltrials.gov/ct2/show/NCT01526785.Social Media Statement: Post hoc analyses of the ADVANCE study cohort of 113 children support ongoing cardiac monitoring and concomitant management of children with Pompe disease on long-term alglucosidase alfa to functionally improve cardiomyopathy and/or dysrhythmia.
Collapse
|
22
|
Smith VM, Nguyen H, Rumsey JW, Long CJ, Shuler ML, Hickman JJ. A Functional Human-on-a-Chip Autoimmune Disease Model of Myasthenia Gravis for Development of Therapeutics. Front Cell Dev Biol 2021; 9:745897. [PMID: 34881241 PMCID: PMC8645836 DOI: 10.3389/fcell.2021.745897] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Myasthenia gravis (MG) is a chronic and progressive neuromuscular disease where autoantibodies target essential proteins such as the nicotinic acetylcholine receptor (nAChR) at the neuromuscular junction (NMJ) causing muscle fatigue and weakness. Autoantibodies directed against nAChRs are proposed to work by three main pathological mechanisms of receptor disruption: blocking, receptor internalization, and downregulation. Current in vivo models using experimental autoimmune animal models fail to recapitulate the disease pathology and are limited in clinical translatability due to disproportionate disease severity and high animal death rates. The development of a highly sensitive antibody assay that mimics human disease pathology is desirable for clinical advancement and therapeutic development. To address this lack of relevant models, an NMJ platform derived from human iPSC differentiated motoneurons and primary skeletal muscle was used to investigate the ability of an anti-nAChR antibody to induce clinically relevant MG pathology in the serum-free, spatially organized, functionally mature NMJ platform. Treatment of the NMJ model with the anti-nAChR antibody revealed decreasing NMJ stability as measured by the number of NMJs before and after the synchrony stimulation protocol. This decrease in NMJ stability was dose-dependent over a concentration range of 0.01-20 μg/mL. Immunocytochemical (ICC) analysis was used to distinguish between pathological mechanisms of antibody-mediated receptor disruption including blocking, receptor internalization and downregulation. Antibody treatment also activated the complement cascade as indicated by complement protein 3 deposition near the nAChRs. Additionally, complement cascade activation significantly altered other readouts of NMJ function including the NMJ fidelity parameter as measured by the number of muscle contractions missed in response to increasing motoneuron stimulation frequencies. This synchrony readout mimics the clinical phenotype of neurological blocking that results in failure of muscle contractions despite motoneuron stimulations. Taken together, these data indicate the establishment of a relevant disease model of MG that mimics reduction of functional nAChRs at the NMJ, decreased NMJ stability, complement activation and blocking of neuromuscular transmission. This system is the first functional human in vitro model of MG to be used to simulate three potential disease mechanisms as well as to establish a preclinical platform for evaluation of disease modifying treatments (etiology).
Collapse
Affiliation(s)
- Virginia M. Smith
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Hesperos, Inc., Orlando, FL, United States
| | - Huan Nguyen
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
| | | | | | | | - James J. Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Hesperos, Inc., Orlando, FL, United States
| |
Collapse
|
23
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
24
|
Bragato C, Blasevich F, Ingenito G, Mantegazza R, Maggi L. Therapeutic efficacy of 3,4-Diaminopyridine phosphate on neuromuscular junction in Pompe disease. Biomed Pharmacother 2021; 137:111357. [PMID: 33724918 DOI: 10.1016/j.biopha.2021.111357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022] Open
Abstract
3,4-Diaminopyridine (3,4-DAP) and its phosphate form, 3,4-DAPP have been used efficiently in the past years to treat muscular weakness in myasthenic syndromes with neuromuscular junctions (NMJs) impairment. Pompe disease (PD), an autosomal recessive metabolic disorder due to a defect of the lysosomal enzyme α-glucosidase (GAA), presents some secondary symptoms that are related to neuromuscular transmission dysfunction, resulting in endurance and strength failure. In order to evaluate whether 3,4-DAPP could have a beneficial effect on this pathology, we took advantage of a transient zebrafish PD model that we previously generated and characterized. We investigated presynaptic and postsynaptic structures, NMJs at the electron microscopy level, and zebrafish behavior, before and after treatment with 3,4-DAPP. After drug administration, we observed an increase in the number of acetylcholine receptors an increment in the percentage of NMJs with normal structure and amelioration in embryo behavior, with recovery of typical movements that were lost in the embryo PD model. Our results revealed early NMJ impairment in Pompe zebrafish model with improvement after administration of 3,4-DAPP, suggesting its potential use as symptomatic drug in patients with Pompe disease.
Collapse
Affiliation(s)
- Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy.
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | | | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| |
Collapse
|
25
|
McCall AL, Dhindsa JS, Bailey AM, Pucci LA, Strickland LM, ElMallah MK. Glycogen accumulation in smooth muscle of a Pompe disease mouse model. J Smooth Muscle Res 2021; 57:8-18. [PMID: 33883348 PMCID: PMC8053439 DOI: 10.1540/jsmr.57.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pompe disease is a lysosomal storage disease caused by mutations within the
GAA gene, which encodes acid α-glucosidase (GAA)—an enzyme necessary
for lysosomal glycogen degradation. A lack of GAA results in an accumulation of glycogen
in cardiac and skeletal muscle, as well as in motor neurons. The only FDA approved
treatment for Pompe disease—an enzyme replacement therapy (ERT)—increases survival of
patients, but has unmasked previously unrecognized clinical manifestations of Pompe
disease. These clinical signs and symptoms include tracheo-bronchomalacia, vascular
aneurysms, and gastro-intestinal discomfort. Together, these previously unrecognized
pathologies indicate that GAA-deficiency impacts smooth muscle in addition to skeletal and
cardiac muscle. Thus, we sought to characterize smooth muscle pathology in the airway,
vascular, gastrointestinal, and genitourinary in the Gaa−/−
mouse model. Increased levels of glycogen were present in smooth muscle cells of the
aorta, trachea, esophagus, stomach, and bladder of Gaa−/−
mice, compared to wild type mice. In addition, there was an increased
abundance of both lysosome membrane protein (LAMP1) and autophagosome membrane protein
(LC3) indicating vacuolar accumulation in several tissues. Taken together, we show that
GAA deficiency results in subsequent pathology in smooth muscle cells, which may lead to
life-threatening complications if not properly treated.
Collapse
Affiliation(s)
- Angela L McCall
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Justin S Dhindsa
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aidan M Bailey
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Logan A Pucci
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Laura M Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
26
|
Modeling CNS Involvement in Pompe Disease Using Neural Stem Cells Generated from Patient-Derived Induced Pluripotent Stem Cells. Cells 2020; 10:cells10010008. [PMID: 33375166 PMCID: PMC7822217 DOI: 10.3390/cells10010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pompe disease is a lysosomal storage disorder caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene. Acid alpha-glucosidase deficiency leads to abnormal glycogen accumulation in patient cells. Given the increasing evidence of central nervous system (CNS) involvement in classic infantile Pompe disease, we used neural stem cells, differentiated from patient induced pluripotent stem cells, to model the neuronal phenotype of Pompe disease. These Pompe neural stem cells exhibited disease-related phenotypes including glycogen accumulation, increased lysosomal staining, and secondary lipid buildup. These morphological phenotypes in patient neural stem cells provided a tool for drug efficacy evaluation. Two potential therapeutic agents, hydroxypropyl-β-cyclodextrin and δ-tocopherol, were tested along with recombinant human acid alpha-glucosidase (rhGAA) in this cell-based Pompe model. Treatment with rhGAA reduced LysoTracker staining in Pompe neural stem cells, indicating reduced lysosome size. Additionally, treatment of diseased neural stem cells with the combination of hydroxypropyl-β-cyclodextrin and δ-tocopherol significantly reduced the disease phenotypes. These results demonstrated patient-derived Pompe neural stem cells could be used as a model to study disease pathogenesis, to evaluate drug efficacy, and to screen compounds for drug discovery in the context of correcting CNS defects.
Collapse
|
27
|
Ultrastructural and diffusion tensor imaging studies reveal axon abnormalities in Pompe disease mice. Sci Rep 2020; 10:20239. [PMID: 33214573 PMCID: PMC7677380 DOI: 10.1038/s41598-020-77193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/06/2020] [Indexed: 12/03/2022] Open
Abstract
Pompe disease (PD) is caused by lysosomal glycogen accumulation in tissues, including muscles and the central nervous system (CNS). The intravenous infusion of recombinant human acid alpha-glucosidase (rhGAA) rescues the muscle pathologies in PD but does not treat the CNS because rhGAA does not cross the blood–brain barrier (BBB). To understand the CNS pathologies in PD, control and PD mice were followed and analyzed at 9 and 18 months with brain structural and ultrastructural studies. T2-weighted brain magnetic resonance imaging studies revealed the progressive dilatation of the lateral ventricles and thinning of the corpus callosum in PD mice. Electron microscopy (EM) studies at the genu of the corpus callosum revealed glycogen accumulation, an increase in nerve fiber size variation, a decrease in the g-ratio (axon diameter/total fiber diameter), and myelin sheath decompaction. The morphology of oligodendrocytes was normal. Diffusion tensor imaging (DTI) studies at the corpus callosum revealed an increase in axial diffusivity (AD) and mean diffusivity (MD) more significantly in 9-month-old PD mice. The current study suggests that axon degeneration and axon loss occur in aged PD mice and are probably caused by glycogen accumulation in neurons. A drug crossing the BBB or a treatment for directly targeting the brain might be necessary in PD.
Collapse
|
28
|
Salabarria SM, Nair J, Clement N, Smith BK, Raben N, Fuller DD, Byrne BJ, Corti M. Advancements in AAV-mediated Gene Therapy for Pompe Disease. J Neuromuscul Dis 2020; 7:15-31. [PMID: 31796685 PMCID: PMC7029369 DOI: 10.3233/jnd-190426] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pompe disease (glycogen storage disease type II) is caused by mutations in acid α-glucosidase (GAA) resulting in lysosomal pathology and impairment of the muscular and cardio-pulmonary systems. Enzyme replacement therapy (ERT), the only approved therapy for Pompe disease, improves muscle function by reducing glycogen accumulation but this approach entails several limitations including a short drug half-life and an antibody response that results in reduced efficacy. To address these limitations, new treatments such as gene therapy are under development to increase the intrinsic ability of the affected cells to produce GAA. Key components to gene therapy strategies include the choice of vector, promoter, and the route of administration. The efficacy of gene therapy depends on the ability of the vector to drive gene expression in the target tissue and also on the recipient's immune tolerance to the transgene protein. In this review, we discuss the preclinical and clinical studies that are paving the way for the development of a gene therapy strategy for patients with early and late onset Pompe disease as well as some of the challenges for advancing gene therapy.
Collapse
Affiliation(s)
- S M Salabarria
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - J Nair
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - N Clement
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - B K Smith
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - N Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - D D Fuller
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - B J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - M Corti
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| |
Collapse
|
29
|
Colella P, Sellier P, Gomez MJ, Biferi MG, Tanniou G, Guerchet N, Cohen-Tannoudji M, Moya-Nilges M, van Wittenberghe L, Daniele N, Gjata B, Krijnse-Locker J, Collaud F, Simon-Sola M, Charles S, Cagin U, Mingozzi F. Gene therapy with secreted acid alpha-glucosidase rescues Pompe disease in a novel mouse model with early-onset spinal cord and respiratory defects. EBioMedicine 2020; 61:103052. [PMID: 33039711 PMCID: PMC7553357 DOI: 10.1016/j.ebiom.2020.103052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Pompe disease (PD) is a neuromuscular disorder caused by deficiency of acidalpha-glucosidase (GAA), leading to motor and respiratory dysfunctions. Available Gaa knock-out (KO) mouse models do not accurately mimic PD, particularly its highly impaired respiratory phenotype. Methods Here we developed a new mouse model of PD crossing Gaa KOB6;129 with DBA2/J mice. We subsequently treated Gaa KODBA2/J mice with adeno-associated virus (AAV) vectors expressing a secretable form of GAA (secGAA). Findings Male Gaa KODBA2/J mice present most of the key features of the human disease, including early lethality, severe respiratory impairment, cardiac hypertrophy and muscle weakness. Transcriptome analyses of Gaa KODBA2/J, compared to the parental Gaa KOB6;129 mice, revealed a profoundly impaired gene signature in the spinal cord and a similarly deregulated gene expression in skeletal muscle. Muscle and spinal cord transcriptome changes, biochemical defects, respiratory and muscle function in the Gaa KODBA2/J model were significantly improved upon gene therapy with AAV vectors expressing secGAA. Interpretation These data show that the genetic background impacts on the severity of respiratory function and neuroglial spinal cord defects in the Gaa KO mouse model of PD. Our findings have implications for PD prognosis and treatment, show novel molecular pathophysiology mechanisms of the disease and provide a unique model to study PD respiratory defects, which majorly affect patients. Funding This work was supported by Genethon, the French Muscular Dystrophy Association (AFM), the European Commission (grant nos. 667751, 617432, and 797144), and Spark Therapeutics.
Collapse
Affiliation(s)
- Pasqualina Colella
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France.
| | - Pauline Sellier
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | - Maria G Biferi
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Guillaume Tanniou
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Nicolas Guerchet
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | | | | | - Natalie Daniele
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Bernard Gjata
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | - Fanny Collaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Marcelo Simon-Sola
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Severine Charles
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Umut Cagin
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Federico Mingozzi
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France; Spark Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Fusco AF, McCall AL, Dhindsa JS, Zheng L, Bailey A, Kahn AF, ElMallah MK. The Respiratory Phenotype of Pompe Disease Mouse Models. Int J Mol Sci 2020; 21:ijms21062256. [PMID: 32214050 PMCID: PMC7139647 DOI: 10.3390/ijms21062256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/10/2023] Open
Abstract
Pompe disease is a glycogen storage disease caused by a deficiency in acid α-glucosidase (GAA), a hydrolase necessary for the degradation of lysosomal glycogen. This deficiency in GAA results in muscle and neuronal glycogen accumulation, which causes respiratory insufficiency. Pompe disease mouse models provide a means of assessing respiratory pathology and are important for pre-clinical studies of novel therapies that aim to treat respiratory dysfunction and improve quality of life. This review aims to compile and summarize existing manuscripts that characterize the respiratory phenotype of Pompe mouse models. Manuscripts included in this review were selected utilizing specific search terms and exclusion criteria. Analysis of these findings demonstrate that Pompe disease mouse models have respiratory physiological defects as well as pathologies in the diaphragm, tongue, higher-order respiratory control centers, phrenic and hypoglossal motor nuclei, phrenic and hypoglossal nerves, neuromuscular junctions, and airway smooth muscle. Overall, the culmination of these pathologies contributes to severe respiratory dysfunction, underscoring the importance of characterizing the respiratory phenotype while developing effective therapies for patients.
Collapse
|
31
|
Piekarz KM, Bhaskaran S, Sataranatarajan K, Street K, Premkumar P, Saunders D, Zalles M, Gulej R, Khademi S, Laurin J, Peelor R, Miller BF, Towner R, Van Remmen H. Molecular changes associated with spinal cord aging. GeroScience 2020; 42:765-784. [PMID: 32144690 DOI: 10.1007/s11357-020-00172-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022] Open
Abstract
Age-related muscle weakness and loss of muscle mass (sarcopenia) is a universal problem in the elderly. Our previous studies indicate that alpha motor neurons (α-MNs) play a critical role in this process. The goal of the current study is to uncover changes in the aging spinal cord that contribute to loss of innervation and the downstream degenerative processes that occur in skeletal muscle. The number of α-MNs is decreased in the spinal cord of wildtype mice during aging, beginning in middle age and reaching a 41% loss by 27 months of age. There is evidence for age-related loss of myelin and mild inflammation, including astrocyte and microglia activation and an increase in levels of sICAM-1. We identified changes in metabolites consistent with compromised neuronal viability, such as reduced levels of N-acetyl-aspartate. Cleaved caspase-3 is more abundant in spinal cord from old mice, suggesting that apoptosis contributes to neuronal loss. RNA-seq analysis revealed changes in the expression of a number of genes in spinal cord from old mice, in particular genes encoding extracellular matrix components (ECM) and a 172-fold increase in MMP-12 expression. Furthermore, blood-spinal cord barrier (BSCB) permeability is increased in old mice, which may contribute to alterations in spinal cord homeostasis and exacerbate neuronal distress. Together, these data show for the first time that the spinal cord undergoes significant changes during aging, including progressive α-MNs loss that is associated with low-grade inflammation, apoptosis, changes in ECM, myelination, and vascular permeability.
Collapse
Affiliation(s)
- Katarzyna M Piekarz
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shylesh Bhaskaran
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | - Kaitlyn Street
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Pavithra Premkumar
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Michelle Zalles
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rafal Gulej
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shadi Khademi
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jaime Laurin
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rick Peelor
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Benjamin F Miller
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rheal Towner
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA. .,Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA. .,Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
32
|
Doyle BM, Turner SM, Sunshine MD, Doerfler PA, Poirier AE, Vaught LA, Jorgensen ML, Falk DJ, Byrne BJ, Fuller DD. AAV Gene Therapy Utilizing Glycosylation-Independent Lysosomal Targeting Tagged GAA in the Hypoglossal Motor System of Pompe Mice. Mol Ther Methods Clin Dev 2019; 15:194-203. [PMID: 31660421 PMCID: PMC6807287 DOI: 10.1016/j.omtm.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Pompe disease is caused by mutations in the gene encoding the lysosomal glycogen-metabolizing enzyme, acid-alpha glucosidase (GAA). Tongue myofibers and hypoglossal motoneurons appear to be particularly susceptible in Pompe disease. Here we used intramuscular delivery of adeno-associated virus serotype 9 (AAV9) for targeted delivery of an enhanced form of GAA to tongue myofibers and motoneurons in 6-month-old Pompe (Gaa -/- ) mice. We hypothesized that addition of a glycosylation-independent lysosomal targeting tag to the protein would result in enhanced expression in tongue (hypoglossal) motoneurons when compared to the untagged GAA. Mice received an injection into the base of the tongue with AAV9 encoding either the tagged or untagged enzyme; tissues were harvested 4 months later. Both AAV9 constructs effectively drove GAA expression in lingual myofibers and hypoglossal motoneurons. However, mice treated with the AAV9 construct encoding the modified GAA enzyme had a >200% increase in the number of GAA-positive motoneurons as compared to the untagged GAA (p < 0.008). Our results confirm that tongue delivery of AAV9-encoding GAA can effectively target tongue myofibers and associated motoneurons in Pompe mice and indicate that the effectiveness of this approach can be improved by addition of the glycosylation-independent lysosomal targeting tag.
Collapse
Affiliation(s)
- Brendan M. Doyle
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Sara M.F. Turner
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Michael D. Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Phillip A. Doerfler
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Amy E. Poirier
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A. Vaught
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Marda L. Jorgensen
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Darin J. Falk
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
- Mcknight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
33
|
Molecular Approaches for the Treatment of Pompe Disease. Mol Neurobiol 2019; 57:1259-1280. [PMID: 31713816 DOI: 10.1007/s12035-019-01820-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.
Collapse
|
34
|
Clinical features of Pompe disease with motor neuronopathy. Neuromuscul Disord 2019; 29:903-906. [PMID: 31706699 DOI: 10.1016/j.nmd.2019.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 09/19/2019] [Indexed: 11/22/2022]
Abstract
Pathological studies on rodent models and patients with Pompe disease have demonstrated the accumulation of glycogen in spinal motor neurons; however, this finding has rarely been evaluated clinically in patients with Pompe disease. In this study, we analyzed seven patients (age, 7-11 years) with Pompe disease who received long-term enzyme replacement therapy. In addition to traditional myopathy-related clinical and electrophysiological features, these patients often developed bilateral foot drop, distal predominant weakness of four limbs, and hypo- or areflexia with preserved sensory function. Electrophysiological studies showed not only reduced amplitudes of compound muscle action potential, but also absent or impersistent F waves and mixed small and large/giant polyphasic motor unit action potentials with normal sensory study. Muscle biopsy usually showed the existence of angular fingers, fiber type grouping or group atrophy. Taken together, these features support the co-existence of motor neuronopathy additionally to myopathy.
Collapse
|
35
|
Abstract
Pompe disease (PD) is caused by the deficiency of the lysosomal enzyme acid α-glucosidase (GAA), resulting in systemic pathological glycogen accumulation. PD can present with cardiac, skeletal muscle, and central nervous system manifestations, as a continuum of phenotypes among two main forms: classical infantile-onset PD (IOPD) and late-onset PD (LOPD). IOPD is caused by severe GAA deficiency and presents at birth with cardiac hypertrophy, muscle hypotonia, and severe respiratory impairment, leading to premature death, if not treated. LOPD is characterized by levels of residual GAA activity up to ∼20% of normal and presents both in children and adults with a varied severity of muscle weakness and motor and respiratory deficit. Enzyme replacement therapy (ERT), based on repeated intravenous (i.v.) infusions of recombinant human GAA (rhGAA), represents the only available treatment for PD. Upon more than 10 years from its launch, it is becoming evident that ERT can extend the life span of IOPD and stabilize disease progression in LOPD; however, it does not represent a cure for PD. The limited uptake of the enzyme in key affected tissues and the high immunogenicity of rhGAA are some of the hurdles that limit ERT efficacy. GAA gene transfer with adeno-associated virus (AAV) vectors has been shown to reduce glycogen storage and improve the PD phenotype in preclinical studies following different approaches. Here, we present an overview of the different gene therapy approaches for PD, focusing on in vivo gene transfer with AAV vectors and discussing the potential opportunities and challenges in developing safe and effective gene therapies for the disease. Based on emerging safety and efficacy data from clinical trials for other protein deficiencies, in vivo gene therapy with AAV vectors appears to have the potential to provide a therapeutically relevant, stable source of GAA enzyme, which could be highly beneficial in PD.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, Evry, France.,Department of Pediatrics, Stanford University, Stanford, California
| | - Federico Mingozzi
- Genethon, Evry, France.,Spark Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Kravtsova VV, Saburova EA, Krivoi II. The Structural and Functional Characteristics of Rat Soleus Endplates under Short-Term Disruption of Motor Activity. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Xu L, Ba H, Pei Y, Huang X, Liang Y, Zhang L, Huang H, Zhang C, Tang W. Comprehensive approach to weaning in difficult-to-wean infantile and juvenile-onset glycogen-storage disease type II patients: a case series. Ital J Pediatr 2019; 45:106. [PMID: 31439017 PMCID: PMC6704633 DOI: 10.1186/s13052-019-0692-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/30/2019] [Indexed: 12/05/2022] Open
Abstract
Background Glycogen storage disease type II (GSD II) is caused by acid alpha-glucosidase (GAA) deficiency. Both infantile-onset and juvenile-onset GSD II lead to proximal muscle weakness and respiratory insufficiency and require mechanical ventilation. However, GSD II is also independently associated with delayed weaning from mechanical ventilation. This study aimed to describe a comprehensive approach including sequential invasive-noninvasive mechanical ventilation weaning and enzyme replacement therapy (ERT) in patients with weaning difficulties. Case presentation We studied six difficult-to-wean GSD II (three juvenile-onset, three infantile-onset) patients at the First Affiliated Hospital, Sun Yat-sen University from October 2015 to December 2017. Difficulty in weaning was defined as follows: the need for more than three spontaneous breathing trials or more than 1 week to achieve successful weaning. All patients received comprehensive treatment including sequential invasive-noninvasive mechanical ventilation weaning, ERT and general treatment. Recombinant human acid alpha-glucosidase enzyme therapy (20 mg/kg every 14 days) was used after diagnosis, and Patients 1–6 received ERT for 15.5, 4.5, 2, 2.5, 17, and 2 months, respectively. The therapeutic effect of the comprehensive treatment was observed. The patients’ respiratory function and limb muscle strength improved after each ERT session. Patients who successfully completed a spontaneous breathing trial could proceed to extubation, and then start non-invasive ventilation. The patients’ age range at initial mechanical ventilation was 3–47 (median 26.5) months, duration of invasive ventilation was 1–36 (median 2.75) months, and duration of noninvasive ventilation was 0–0.6 (median 0.05) month. The patients’ nutritional status improved after enhanced nutritional support. Patients 2, 3, and 5 were successfully weaned off the ventilator. Patient 1 underwent tracheal intubation after six weaning failures, and Patients 4 and 6 died after therapy was abandoned by their parents. Discussion and conclusions Male sex, GSD II type, and the presence of malnutrition and neurological impairment may predict poor respiratory outcomes. The above-described comprehensive sequential invasive-noninvasive mechanical ventilation weaning strategy may increase the success rate of weaning from mechanical ventilation.
Collapse
Affiliation(s)
- Lingling Xu
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Hongjun Ba
- Department of Cardiovascular pediatrics, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yuxin Pei
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xueqiong Huang
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yujian Liang
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Lidan Zhang
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Huimin Huang
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Wen Tang
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
38
|
Byrne BJ, Fuller DD, Smith BK, Clement N, Coleman K, Cleaver B, Vaught L, Falk DJ, McCall A, Corti M. Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:290. [PMID: 31392202 DOI: 10.21037/atm.2019.05.56] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pompe disease is a neuromuscular disease caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase leading to lysosomal and cytoplasmic glycogen accumulation in neurons and striated muscle. In the decade since availability of first-generation enzyme replacement therapy (ERT) a better understanding of the clinical spectrum of disease has emerged. The most severe form of early onset disease is typically identified with symptoms in the first year of life, known as infantile-onset Pompe disease (IOPD). Infants are described at floppy babies with cardiac hypertrophy in the first few months of life. A milder form with late onset (LOPD) of symptoms is mostly free of cardiac involvement with slower rate of progression. Glycogen accumulation in the CNS and skeletal muscle is observed in both IOPD and LOPD. In both circumstances, multi-system disease (principally motoneuron and myopathy) leads to progressive weakness with associated respiratory and feeding difficulty. In IOPD the untreated natural history leads to cardiorespiratory failure and death in the first year of life. In the current era of ERT clinical outcomes are improved, yet, many patients have an incomplete response and a substantial unmet need remains. Since the neurological manifestations of the disease are not amenable to peripheral enzyme replacement, we set out to better understand the pathophysiology and potential for treatment of disease manifestations using adeno-associated virus (AAV)-mediated gene transfer, with the first clinical gene therapy studies initiated by our group in 2006. This review focuses on the preclinical studies and clinical study findings which are pertinent to the development of a comprehensive gene therapy strategy for both IOPD and LOPD. Given the advent of newborn screening, a significant focus of our recent work has been to establish the basis for repeat administration of AAV vectors to enhance neuromuscular therapeutic efficacy over the life span.
Collapse
Affiliation(s)
- Barry J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Nathalie Clement
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Kirsten Coleman
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Brian Cleaver
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Lauren Vaught
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | | | - Angela McCall
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Manuela Corti
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Ronzitti G, Collaud F, Laforet P, Mingozzi F. Progress and challenges of gene therapy for Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:287. [PMID: 31392199 DOI: 10.21037/atm.2019.04.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pompe disease (PD) is a monogenic disorder caused by mutations in the acid alpha-glucosidase gene (Gaa). GAA is a lysosomal enzyme essential for the degradation of glycogen. Deficiency of GAA results in a severe, systemic disorder that, in its most severe form, can be fatal. About a decade ago, the prognosis of PD has changed dramatically with the marketing authorization of an enzyme replacement therapy (ERT) based on recombinant GAA. Despite the breakthrough nature of ERT, long-term follow-up of both infantile and late-onset Pompe disease patients (IOPD and LOPD, respectively), revealed several limitations of the approach. In recent years several investigational therapies for PD have entered preclinical and clinical development, with a few next generation ERTs entering late-stage clinical development. Gene therapy holds the potential to change dramatically the way we treat PD, based on the ability to express the Gaa gene long-term, ideally driving enhanced therapeutic efficacy compared to ERT. Several gene therapy approaches to PD have been tested in preclinical animal models, with a handful of early phase clinical trials started or about to start. The complexity of PD and of the endpoints used to measure efficacy of investigational treatments remains a challenge, however the hope is for a future with more therapeutic options for both IOPD and LOPD patients.
Collapse
Affiliation(s)
| | | | - Pascal Laforet
- Raymond Poincaré Teaching Hospital, APHP, Garches, France.,Nord/Est/Ile de France Neuromuscular Center, France
| | | |
Collapse
|
40
|
Spiesshoefer J, Henke C, Kabitz HJ, Brix T, Görlich D, Herkenrath S, Randerath W, Young P, Boentert M. The nature of respiratory muscle weakness in patients with late-onset Pompe disease. Neuromuscul Disord 2019; 29:618-627. [PMID: 31327549 DOI: 10.1016/j.nmd.2019.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/31/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022]
Abstract
Late-onset Pompe disease (LOPD) causes myopathy of skeletal and respiratory muscles, and phrenic nerve pathology putatively contributes to diaphragm weakness. The aim of this study was to investigate neural contributions to diaphragm dysfunction, usefulness of diaphragm ultrasound, and involvement of expiratory abdominal muscles in LOPD. Thirteen patients with LOPD (7 male, 51±17 years) and 13 age- and gender-matched controls underwent respiratory muscle strength testing, ultrasound evaluation of diaphragm excursion and thickness, cortical and cervical magnetic stimulation (MS) of the diaphragm with simultaneous recording of surface electromyogram and twitch transdiaphragmatic pressure (twPdi; n = 6), and MS of the abdominal muscles with recording of twitch gastric pressure (twPgas; n = 6). The following parameters were significantly reduced in LOPD patients versus controls: forced vital capacity (p<0.01), maximum inspiratory and expiratory pressure (both p<0.001), diaphragm excursion velocity (p<0.05), diaphragm thickening ratio (1.8 ± 0.4 vs. 2.6 ± 0.6, p<0.01), twPdi following cervical MS (12.0 ± 6.2 vs. 19.4 ± 4.8 cmH2O, p<0.05), and twPgas following abdominal muscle stimulation (8.8 ± 8.1 vs. 34.6 ± 17.1 cmH2O, p<0.01). Diaphragm motor evoked potentials and compound muscle action potentials showed no between-group differences. In conclusion, phrenic nerve involvement in LOPD could not be electrophysiologically confirmed. Ultrasound supports assessment of diaphragm function. Abdominal expiratory muscles are functionally involved in LOPD.
Collapse
Affiliation(s)
- Jens Spiesshoefer
- Respiratory Physiology Laboratory, Institute for Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Muenster, Germany
| | - Carolin Henke
- Respiratory Physiology Laboratory, Institute for Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Muenster, Germany
| | - Hans Joachim Kabitz
- Department of Pneumology, Cardiology and Intensive Care Medicine, Academic Teaching Hospital, Klinikum Konstanz, Konstanz, Germany
| | - Tobias Brix
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Dennis Görlich
- Institute for Biostatistics and Clinical Research, University Hospital, Muenster, Germany
| | - Simon Herkenrath
- Bethanien Hospital gGmbH Solingen, Solingen, Germany; Institute for Pneumology at the University of Cologne, Solingen, Germany
| | - Winfried Randerath
- Bethanien Hospital gGmbH Solingen, Solingen, Germany; Institute for Pneumology at the University of Cologne, Solingen, Germany
| | - Peter Young
- Medical Park Klinik Reithofpark, Bad Feilnbach, Germany
| | - Matthias Boentert
- Respiratory Physiology Laboratory, Institute for Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
41
|
Chittoor-Vinod VG, Bazick H, Todd AG, Falk D, Morelli KH, Burgess RW, Foster TC, Notterpek L. HSP90 Inhibitor, NVP-AUY922, Improves Myelination in Vitro and Supports the Maintenance of Myelinated Axons in Neuropathic Mice. ACS Chem Neurosci 2019; 10:2890-2902. [PMID: 31017387 PMCID: PMC6588339 DOI: 10.1021/acschemneuro.9b00105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
![]()
Hereditary
demyelinating neuropathies linked to peripheral myelin
protein 22 (PMP22) involve the disruption of normal protein trafficking
and are therefore relevant targets for chaperone therapy. Using a
small molecule HSP90 inhibitor, EC137, in cell culture models, we
previously validated the chaperone pathway as a viable target for
therapy development. Here, we tested five commercially available inhibitors
of HSP90 and identified BIIB021 and AUY922 to support Schwann cell
viability and enhance chaperone expression. AUY922 showed higher efficacy,
compared to BIIB021, in enhancing myelin synthesis in dorsal root
ganglion explant cultures from neuropathic mice. For in vivo testing,
we randomly assigned 2–3 month old C22 and 6 week old Trembler
J (TrJ) mice to receive two weekly injections of either vehicle or
AUY922 (2 mg/kg). By the intraperitoneal (i.p.) route, the drug was
well-tolerated by all mice over the 5 month long study, without influence
on body weight or general grooming behavior. AUY922 improved the maintenance
of myelinated nerves of both neuropathic models and attenuated the
decline in rotarod performance and peak muscle force production in
C22 mice. These studies highlight the significance of proteostasis
in neuromuscular function and further validate the HSP90 pathway as
a therapeutic target for hereditary neuropathies.
Collapse
Affiliation(s)
- Vinita G. Chittoor-Vinod
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| | - Hannah Bazick
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| | - Adrian G. Todd
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida 32611, United States
| | - Darin Falk
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida 32611, United States
| | - Kathryn H. Morelli
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, United States
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | - Robert W. Burgess
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, United States
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | - Thomas C. Foster
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| | - Lucia Notterpek
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| |
Collapse
|
42
|
Severe distal muscle involvement and mild sensory neuropathy in a boy with infantile onset Pompe disease treated with enzyme replacement therapy for 6 years. Neuromuscul Disord 2019; 29:477-482. [DOI: 10.1016/j.nmd.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 11/22/2022]
|
43
|
Ahn B, Ranjit R, Premkumar P, Pharaoh G, Piekarz KM, Matsuzaki S, Claflin DR, Riddle K, Judge J, Bhaskaran S, Satara Natarajan K, Barboza E, Wronowski B, Kinter M, Humphries KM, Griffin TM, Freeman WM, Richardson A, Brooks SV, Van Remmen H. Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching. J Cachexia Sarcopenia Muscle 2019; 10:411-428. [PMID: 30706998 PMCID: PMC6463475 DOI: 10.1002/jcsm.12375] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Excess reactive oxygen species (ROS) and muscle weakness occur in parallel in multiple pathological conditions. However, the causative role of skeletal muscle mitochondrial ROS (mtROS) on neuromuscular junction (NMJ) morphology and function and muscle weakness has not been directly investigated. METHODS We generated mice lacking skeletal muscle-specific manganese-superoxide dismutase (mSod2KO) to increase mtROS using a cre-Lox approach driven by human skeletal actin. We determined primary functional parameters of skeletal muscle mitochondrial function (respiration, ROS, and calcium retention capacity) using permeabilized muscle fibres and isolated muscle mitochondria. We assessed contractile properties of isolated skeletal muscle using in situ and in vitro preparations and whole lumbrical muscles to elucidate the mechanisms of contractile dysfunction. RESULTS The mSod2KO mice, contrary to our prediction, exhibit a 10-15% increase in muscle mass associated with an ~50% increase in central nuclei and ~35% increase in branched fibres (P < 0.05). Despite the increase in muscle mass of gastrocnemius and quadriceps, in situ sciatic nerve-stimulated isometric maximum-specific force (N/cm2 ), force per cross-sectional area, is impaired by ~60% and associated with increased NMJ fragmentation and size by ~40% (P < 0.05). Intrinsic alterations of components of the contractile machinery show elevated markers of oxidative stress, for example, lipid peroxidation is increased by ~100%, oxidized glutathione is elevated by ~50%, and oxidative modifications of myofibrillar proteins are increased by ~30% (P < 0.05). We also find an approximate 20% decrease in the intracellular calcium transient that is associated with specific force deficit. Excess superoxide generation from the mitochondrial complexes causes a deficiency of succinate dehydrogenase and reduced complex-II-mediated respiration and adenosine triphosphate generation rates leading to severe exercise intolerance (~10 min vs. ~2 h in wild type, P < 0.05). CONCLUSIONS Increased skeletal muscle mtROS is sufficient to elicit NMJ disruption and contractile abnormalities, but not muscle atrophy, suggesting new roles for mitochondrial oxidative stress in maintenance of muscle mass through increased fibre branching.
Collapse
Affiliation(s)
- Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Pavithra Premkumar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Katarzyna M Piekarz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Dennis R Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, USA
| | - Kaitlyn Riddle
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Jennifer Judge
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | | | - Erika Barboza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Benjamin Wronowski
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Oklahoma City VA Medical Center, Oklahoma City, USA.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Arlan Richardson
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Oklahoma City VA Medical Center, Oklahoma City, USA.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Oklahoma City VA Medical Center, Oklahoma City, USA.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| |
Collapse
|
44
|
Macroglossia, Motor Neuron Pathology, and Airway Malacia Contribute to Respiratory Insufficiency in Pompe Disease: A Commentary on Molecular Pathways and Respiratory Involvement in Lysosomal Storage Diseases. Int J Mol Sci 2019; 20:ijms20030751. [PMID: 30754627 PMCID: PMC6387234 DOI: 10.3390/ijms20030751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
The authors of the recently published, "Molecular Pathways and Respiratory Involvement in Lysosomal Storage Diseases", provide an important review of the various mechanisms of lysosomal storage diseases (LSD) and how they culminate in similar clinical pathologies [...].
Collapse
|
45
|
Vilchinskaya NA, Krivoi II, Shenkman BS. AMP-Activated Protein Kinase as a Key Trigger for the Disuse-Induced Skeletal Muscle Remodeling. Int J Mol Sci 2018; 19:ijms19113558. [PMID: 30424476 PMCID: PMC6274864 DOI: 10.3390/ijms19113558] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/25/2022] Open
Abstract
Molecular mechanisms that trigger disuse-induced postural muscle atrophy as well as myosin phenotype transformations are poorly studied. This review will summarize the impact of 5′ adenosine monophosphate -activated protein kinase (AMPK) activity on mammalian target of rapamycin complex 1 (mTORC1)-signaling, nuclear-cytoplasmic traffic of class IIa histone deacetylases (HDAC), and myosin heavy chain gene expression in mammalian postural muscles (mainly, soleus muscle) under disuse conditions, i.e., withdrawal of weight-bearing from ankle extensors. Based on the current literature and the authors’ own experimental data, the present review points out that AMPK plays a key role in the regulation of signaling pathways that determine metabolic, structural, and functional alternations in skeletal muscle fibers under disuse.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia.
| |
Collapse
|
46
|
Lagalice L, Pichon J, Gougeon E, Soussi S, Deniaud J, Ledevin M, Maurier V, Leroux I, Durand S, Ciron C, Franzoso F, Dubreil L, Larcher T, Rouger K, Colle MA. Satellite cells fail to contribute to muscle repair but are functional in Pompe disease (glycogenosis type II). Acta Neuropathol Commun 2018; 6:116. [PMID: 30382921 PMCID: PMC6211565 DOI: 10.1186/s40478-018-0609-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/29/2018] [Indexed: 12/26/2022] Open
Abstract
Pompe disease, which is due to acid alpha-glucosidase deficiency, is characterized by skeletal muscle dysfunction attributed to the accumulation of glycogen-filled lysosomes and autophagic buildup. Despite the extensive tissue damages, a failure of satellite cell (SC) activation and lack of muscle regeneration have been reported in patients. However, the origin of this defective program is unknown. Additionally, whether these deficits occur gradually over the disease course is unclear. Using a longitudinal pathophysiological study of two muscles in a Pompe mouse model, here, we report that the enzymatic defect results in a premature saturating glycogen overload and a high number of enlarged lysosomes. The muscles gradually display profound remodeling as the number of autophagic vesicles, centronucleated fibers, and split fibers increases and larger fibers are lost. Only a few regenerated fibers were observed regardless of age, although the SC pool was preserved. Except for the early age, during which higher numbers of activated SCs and myoblasts were observed, no myogenic commitment was observed in response to the damage. Following in vivo injury, we established that muscle retains regenerative potential, demonstrating that the failure of SC participation in repair is related to an activation signal defect. Altogether, our findings provide new insight into the pathophysiology of Pompe disease and highlight that the activation signal defect of SCs compromises muscle repair, which could be related to the abnormal energetic supply following autophagic flux impairment.
Collapse
Affiliation(s)
- Lydie Lagalice
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Julien Pichon
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Eliot Gougeon
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Salwa Soussi
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Johan Deniaud
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Mireille Ledevin
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Virginie Maurier
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Isabelle Leroux
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Sylvie Durand
- BIA, INRA, Centre INRA Pays de la Loire, Nantes, F-44300 France
| | - Carine Ciron
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Francesca Franzoso
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Laurence Dubreil
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Thibaut Larcher
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Karl Rouger
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| | - Marie-Anne Colle
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307 France
| |
Collapse
|
47
|
Keeler AM, Zieger M, Todeasa SH, McCall AL, Gifford JC, Birsak S, Choudhury SR, Byrne BJ, Sena-Esteves M, ElMallah MK. Systemic Delivery of AAVB1-GAA Clears Glycogen and Prolongs Survival in a Mouse Model of Pompe Disease. Hum Gene Ther 2018; 30:57-68. [PMID: 29901418 DOI: 10.1089/hum.2018.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pompe disease is an autosomal recessive glycogen storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). GAA deficiency results in systemic lysosomal glycogen accumulation and cellular disruption in muscle and the central nervous system (CNS). Adeno-associated virus (AAV) gene therapy is ideal for Pompe disease, since a single systemic injection may correct both muscle and CNS pathologies. Using the Pompe mouse (B6;129-GaaTm1Rabn/J), this study sought to explore if AAVB1, a newly engineered vector with a high affinity for muscle and CNS, reduces systemic weakness and improves survival in adult mice. Three-month-old Gaa-/- animals were injected with either AAVB1 or AAV9 vectors expressing GAA and tissues were harvested 6 months later. Both AAV vectors prolonged survival. AAVB1-treated animals had a robust weight gain compared to the AAV9-treated group. Vector genome levels, GAA enzyme activity, and histological analysis indicated that both vectors transduced the heart efficiently, leading to glycogen clearance, and transduced the diaphragm and CNS at comparable levels. AAVB1-treated mice had higher GAA activity and greater glycogen clearance in the tongue. Finally, AAVB1-treated animals showed improved respiratory function comparable to wild-type animals. In conclusion, AAVB1-GAA offers a promising therapeutic option for the treatment of muscle and CNS in Pompe disease.
Collapse
Affiliation(s)
- Allison M Keeler
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Marina Zieger
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Sophia H Todeasa
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Angela L McCall
- 4 Department of Pediatrics, Duke University, Durham, North Carolina
| | - Jennifer C Gifford
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Samantha Birsak
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Sourav R Choudhury
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Barry J Byrne
- 5 Department of Pediatrics, University of Florida, Gainesville, Florida.,6 Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Miguel Sena-Esteves
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Mai K ElMallah
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,4 Department of Pediatrics, Duke University, Durham, North Carolina
| |
Collapse
|
48
|
Lim JA, Sun B, Puertollano R, Raben N. Therapeutic Benefit of Autophagy Modulation in Pompe Disease. Mol Ther 2018; 26:1783-1796. [PMID: 29804932 DOI: 10.1016/j.ymthe.2018.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
The complexity of the pathogenic cascade in lysosomal storage disorders suggests that combination therapy will be needed to target various aspects of pathogenesis. The standard of care for Pompe disease (glycogen storage disease type II), a deficiency of lysosomal acid alpha glucosidase, is enzyme replacement therapy (ERT). Many patients have poor outcomes due to limited efficacy of the drug in clearing muscle glycogen stores. The resistance to therapy is linked to massive autophagic buildup in the diseased muscle. We have explored two strategies to address the problem. Genetic suppression of autophagy in muscle of knockout mice resulted in the removal of autophagic buildup, increase in muscle force, decrease in glycogen level, and near-complete clearance of lysosomal glycogen following ERT. However, this approach leads to accumulation of ubiquitinated proteins, oxidative stress, and exacerbation of muscle atrophy. Another approach involves AAV-mediated TSC knockdown in knockout muscle leading to upregulation of mTOR, inhibition of autophagy, reversal of atrophy, and efficient cellular clearance on ERT. Importantly, this approach reveals the possibility of reversing already established autophagic buildup, rather than preventing its development.
Collapse
Affiliation(s)
- Jeong-A Lim
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA; Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Understanding the mechanisms and abnormalities of respiratory function in neuromuscular disease is critical to supporting the patient and maintaining ventilation in the face of acute or chronic progressive impairment. RECENT FINDINGS Retrospective clinical studies reviewing the care of patients with Guillain-Barré syndrome and myasthenia have shown a disturbingly high mortality following step-down from intensive care. This implies high dependency and rehabilitation management is failing despite evidence that delayed improvement can occur with long-term care. A variety of mechanisms of phrenic nerve impairment have been recognized with newer investigation techniques, including EMG and ultrasound. Specific treatment for progressive neuromuscular and muscle disease has been increasingly possible particularly for the treatment of myasthenia, metabolic myopathies, and Duchenne muscular dystrophy. For those conditions without specific treatment, it has been increasingly possible to support ventilation in the domiciliary setting with newer techniques of noninvasive ventilation and better airway clearance. There remained several areas of vigorous debates, including the role for tracheostomy care and the place of respiratory muscle training and phrenic nerve/diaphragm pacing. SUMMARY Recent studies and systematic reviews have defined criteria for anticipating, recognizing, and managing ventilatory failure because of acute neuromuscular disease. The care of patients requiring long-term noninvasive ventilatory support for chronic disorders has also evolved. This has resulted in significantly improved survival for patients requiring domiciliary ventilatory support.
Collapse
|
50
|
Cantuti-Castelvetri L, Bongarzone ER. Synaptic failure: The achilles tendon of sphingolipidoses. J Neurosci Res 2017; 94:1031-6. [PMID: 27638588 DOI: 10.1002/jnr.23753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/07/2022]
Abstract
The presence of life-threatening neurological symptoms in more than two-thirds of lysosomal storage diseases (LSDs) underscores how vulnerable the nervous system is to lysosomal failure. Neurological dysfunction in LSDs has historically been attributed to the disruption of neuronal and glial homeostasis resulting from the progressive jamming of the endosomal/lysosomal pathway. In neurons, a dysfunctional endosomal-lysosomal system can elicit dire consequences. Given that neurons are largely postmitotic after birth, one can clearly understand that the inability of these cells to proliferate obliterates any possibility of diluting stored lysosomal material by means of cellular division. At its most advanced stage, this situation constitutes a terminal factor in neuronal life, resulting in cell death. However, synaptic deficits in the absence of classical neuronal cell death appear to be common features during the early stages in many LSDs, particularly sphingolipidoses. In essence, failure of synapses to convey their messages, even without major structural damage to the neuronal bodies, is a form of physiological death. This concept of dying-back neuropathology is highly relevant not only for understanding the dynamics of the neurological decline in these diseases, but, more importantly; it might also constitute an important target for molecular therapies to protect perhaps the "Achilles" point in the entire physiological architecture of the brain, thus avoiding an irreversible journey to neuronal demise. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ludovico Cantuti-Castelvetri
- Max Planck Institute of Experimental Medicine, Department of Cellular and Molecular Neurobiology, Göttingen, Germany
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|