1
|
Qiu Z, Deng X, Fu Y, Jiang M, Cui X. Exploring the triad: VPS35, neurogenesis, and neurodegenerative diseases. J Neurochem 2024; 168:2363-2378. [PMID: 39022884 DOI: 10.1111/jnc.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Vacuolar protein sorting 35 (VPS35), a critical component of the retromer complex, plays a pivotal role in the pathogenesis of neurodegenerative diseases (NDs). It is involved in protein transmembrane sorting, facilitating the transport from endosomes to the trans-Golgi network (TGN) and plasma membrane. Recent investigations have compellingly associated mutations in the VPS35 gene with neurodegenerative disorders such as Parkinson's and Alzheimer's disease. These genetic alterations are implicated in protein misfolding, disrupted autophagic processes, mitochondrial dysregulation, and synaptic impairment. Furthermore, VPS35 exerts a notable impact on neurogenesis by influencing neuronal functionality, protein conveyance, and synaptic performance. Dysregulation or mutation of VPS35 may escalate the progression of neurodegenerative conditions, underscoring its pivotal role in safeguarding neuronal integrity. This review comprehensively discusses the role of VPS35 and its functional impairments in NDs. Furthermore, we provide an overview of the impact of VPS35 on neurogenesis and further explore the intricate relationship between neurogenesis and NDs. These research advancements offer novel perspectives and valuable insights for identifying potential therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
- School of Medicine, Kashi University, Xinjiang, China
| |
Collapse
|
2
|
Wu A, Lee D, Xiong WC. VPS35 or retromer as a potential target for neurodegenerative disorders: barriers to progress. Expert Opin Ther Targets 2024; 28:701-712. [PMID: 39175128 DOI: 10.1080/14728222.2024.2392700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Vacuolar Protein Sorting 35 (VPS35) is pivotal in the retromer complex, governing transmembrane protein trafficking within cells, and its dysfunction is implicated in neurodegenerative diseases. A missense mutation, Asp620Asn (D620N), specifically ties to familial late-onset Parkinson's, while reduced VPS35 levels are observed in Alzheimer's, amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and tauopathies. VPS35's absence in certain neurons during development can initiate neurodegeneration, highlighting its necessity for neural health. Present therapeutic research mainly targets the clearance of harmful protein aggregates and symptom management. Innovative treatments focusing on VPS35 are under investigation, although fully understanding the mechanisms and optimal targeting strategies remain a challenge. AREAS COVERED This review offers a detailed account of VPS35's discovery, its role in neurodegenerative mechanisms - especially in Parkinson's and Alzheimer's - and its link to other disorders. It shines alight on recent insights into VPS35's function in development, disease, and as a therapeutic target. EXPERT OPINION VPS35 is integral to cellular function and disease association, making it a significant candidate for developing therapies. Progress in modulating VPS35's activity may lead to breakthrough treatments that not only slow disease progression but may also act as biomarkers for neurodegeneration risk, marking a step forward in managing these complex conditions.
Collapse
Affiliation(s)
- Anika Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Louis Stokes VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
3
|
Jothi D, Kulka LAM. Strategies for modeling aging and age-related diseases. NPJ AGING 2024; 10:32. [PMID: 38987252 PMCID: PMC11237002 DOI: 10.1038/s41514-024-00161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.
Collapse
Affiliation(s)
- D Jothi
- Department of Biochemistry II, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
4
|
Romano‐Moreno M, Astorga‐Simón EN, Rojas AL, Hierro A. Retromer-mediated recruitment of the WASH complex involves discrete interactions between VPS35, VPS29, and FAM21. Protein Sci 2024; 33:e4980. [PMID: 38607248 PMCID: PMC11010949 DOI: 10.1002/pro.4980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
Endosomal trafficking ensures the proper distribution of lipids and proteins to various cellular compartments, facilitating intracellular communication, nutrient transport, waste disposal, and the maintenance of cell structure. Retromer, a peripheral membrane protein complex, plays an important role in this process by recruiting the associated actin-polymerizing WASH complex to establish distinct sorting domains. The WASH complex is recruited through the interaction of the VPS35 subunit of retromer with the WASH complex subunit FAM21. Here, we report the identification of two separate fragments of FAM21 that interact with VPS35, along with a third fragment that binds to the VPS29 subunit of retromer. The crystal structure of VPS29 bound to a peptide derived from FAM21 shows a distinctive sharp bend that inserts into a conserved hydrophobic pocket with a binding mode similar to that adopted by other VPS29 effectors. Interestingly, despite the network of interactions between FAM21 and retromer occurring near the Parkinson's disease-linked mutation (D620N) in VPS35, this mutation does not significantly impair the direct association with FAM21 in vitro.
Collapse
Affiliation(s)
- Miguel Romano‐Moreno
- Center for Cooperative Research in Biosciences (CIC bioGUNE)BilbaoSpain
- GAIKER Technology CentreBasque Research and Technology Alliance (BRTA)ZamudioSpain
| | | | - Adriana L. Rojas
- Center for Cooperative Research in Biosciences (CIC bioGUNE)BilbaoSpain
| | - Aitor Hierro
- Center for Cooperative Research in Biosciences (CIC bioGUNE)BilbaoSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Present address:
Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaSpain
| |
Collapse
|
5
|
Rowlands J, Moore DJ. VPS35 and retromer dysfunction in Parkinson's disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220384. [PMID: 38368930 PMCID: PMC10874700 DOI: 10.1098/rstb.2022.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
The vacuolar protein sorting 35 ortholog (VPS35) gene encodes a core component of the retromer complex essential for the endosomal sorting and recycling of transmembrane cargo. Endo-lysosomal pathway deficits are suggested to play a role in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Mutations in VPS35 cause a late-onset, autosomal dominant form of PD, with a single missense mutation (D620N) shown to segregate with disease in PD families. Understanding how the PD-linked D620N mutation causes retromer dysfunction will provide valuable insight into the pathophysiology of PD and may advance the identification of therapeutics. D620N VPS35 can induce LRRK2 hyperactivation and impair endosomal recruitment of the WASH complex but is also linked to mitochondrial and autophagy-lysosomal pathway dysfunction and altered neurotransmitter receptor transport. The clinical similarities between VPS35-linked PD and sporadic PD suggest that defects observed in cellular and animal models with the D620N VPS35 mutation may provide valuable insights into sporadic disease. In this review, we highlight the current knowledge surrounding VPS35 and its role in retromer dysfunction in PD. We provide a critical discussion of the mechanisms implicated in VPS35-mediated neurodegeneration in PD, as well as the interplay between VPS35 and other PD-linked gene products. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Jordan Rowlands
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Darren J. Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
6
|
Eser P, Kocabicak E, Bekar A, Temel Y. The interplay between neuroinflammatory pathways and Parkinson's disease. Exp Neurol 2024; 372:114644. [PMID: 38061555 DOI: 10.1016/j.expneurol.2023.114644] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder predominantly affecting elderly, is marked by the gradual degeneration of the nigrostriatal dopaminergic pathway, culminating in neuronal loss within the substantia nigra pars compacta (SNpc) and dopamine depletion. At the molecular level, neuronal loss in the SNpc has been attributed to factors including neuroinflammation, impaired protein homeostasis, as well as mitochondrial dysfunction and the resulting oxidative stress. This review focuses on the interplay between neuroinflammatory pathways and Parkinson's disease, drawing insights from current literature.
Collapse
Affiliation(s)
- Pinar Eser
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
| | - Ersoy Kocabicak
- Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey
| | - Ahmet Bekar
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
7
|
Zhao H, Xie J, Wu S, Zhao X, Sánchez OF, Min S, Rochet JC, Freeman JL, Yuan C. Elevated parkinsonism pathological markers in dopaminergic neurons with developmental exposure to atrazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168307. [PMID: 37949145 PMCID: PMC10843769 DOI: 10.1016/j.scitotenv.2023.168307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Atrazine (ATZ) is one of the most used herbicides in the US and a known endocrine disruptor. ATZ is frequently detected in drinking water, especially in Midwestern regions of the United States, exceeding the EPA regulation of maximum contamination level (MCL) of 3 ppb. Epidemiology studies have suggested an association between ATZ exposure and neurodegeneration. Less, however, is known about the neurotoxic mechanism of ATZ, particularly for exposures at a developmental stage. Here, we exposed floor plate progenitors (FPPs) derived from human induced pluripotent stem cells (hiPSCs) to low concentrations of ATZ at 0.3 and 3 ppb for two days followed by differentiation into dopaminergic (DA) neurons in ATZ-free medium. We then examined the morphology, activity, pathological protein aggregation, and transcriptomic changes of differentiated DA neurons. We observed significant decrease in the complexity of neurite network, increase of neuronal activity, and elevated tau- and α-synuclein (aSyn) pathologies after ATZ exposure. The ATZ-induced neuronal changes observed here align with pathological characteristics in Parkinson's disease (PD). Transcriptomic analysis further corroborates our findings; and collectively provides a strong evidence base that low-concentration ATZ exposure during development can elicit increased risk of neurodegeneration.
Collapse
Affiliation(s)
- Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Xihui Zhao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Sehong Min
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, IN 47907, United States of America
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, IN 47907, United States of America; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, IN 47907, United States of America
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States of America; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, IN 47907, United States of America
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States of America; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, IN 47907, United States of America; Purdue Center of Cancer Research, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
8
|
Abdul-Rahman T, Ghosh S, Kalmanovich JB, Awuah AW, Zivcevska M, Khalifa S, Bassey EE, Ali NA, Ferreira MMDS, Umar TP, Garg N, Nweze VN, Inturu VSS, Abdelwahab MM, Kurian S, Alexiou A, Alfaleh M, Alqurashi TMA, Ashraf GM. The role of membrane trafficking and retromer complex in Parkinson's and Alzheimer's disease. J Neurosci Res 2024; 102:e25261. [PMID: 38284858 DOI: 10.1002/jnr.25261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 01/30/2024]
Abstract
Membrane trafficking is a physiological process encompassing different pathways involved in transporting cellular products across cell membranes to specific cell locations via encapsulated vesicles. This process is required for cells to mature and function properly, allowing them to adapt to their surroundings. The retromer complex is a complex composed of nexin proteins and peptides that play a vital role in the endosomal pathway of membrane trafficking. In humans, any interference in normal membrane trafficking or retromer complex can cause profound changes such as those seen in neurodegenerative disorders such as Alzheimer's and Parkinson's. Several studies have explored the potential causative mechanisms in developing both disease processes; however, the role of retromer trafficking in their pathogenesis is becoming increasingly significant with promising therapeutic applications. This manuscript describes the processes involved in membrane transport and the roles of the retromer in the onset and progression of Alzheimer's and Parkinson's. Moreover, we will also explore how these aberrant mechanisms may serve as possible avenues for treatment development in both diseases and the prospect of its future application.
Collapse
Affiliation(s)
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, USA
| | - Samar Khalifa
- Clinical Psychology Department, Faculty of Arts, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | | | | | | | - Tungki Pratama Umar
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Stratford, New Jersey, USA
| | | | | | | | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- AFNP Med, Wien, Austria
| | - Mohammed Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer M A Alqurashi
- Department of Pharmacology, Medical College, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Bu M, Follett J, Deng I, Tatarnikov I, Wall S, Guenther D, Maczis M, Wimsatt G, Milnerwood A, Moehle MS, Khoshbouei H, Farrer MJ. Inhibition of LRRK2 kinase activity rescues deficits in striatal dopamine physiology in VPS35 p.D620N knock-in mice. NPJ Parkinsons Dis 2023; 9:167. [PMID: 38110354 PMCID: PMC10728137 DOI: 10.1038/s41531-023-00609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
Dysregulation of dopamine neurotransmission profoundly affects motor, motivation and learning behaviors, and can be observed during the prodromal phase of Parkinson's disease (PD). However, the mechanism underlying these pathophysiological changes remains to be elucidated. Mutations in vacuolar protein sorting 35 (VPS35) and leucine-rich repeat kinase 2 (LRRK2) both lead to autosomal dominant PD, and VPS35 and LRRK2 may physically interact to govern the trafficking of synaptic cargos within the endo-lysosomal network in a kinase-dependent manner. To better understand the functional role of VPS35 and LRRK2 on dopamine physiology, we examined Vps35 haploinsufficient (Haplo) and Vps35 p.D620N knock-in (VKI) mice and how their behavior, dopamine kinetics and biochemistry are influenced by LRRK2 kinase inhibitors. We found Vps35 p.D620N significantly elevates LRRK2-mediated phosphorylation of Rab10, Rab12 and Rab29. In contrast, Vps35 haploinsufficiency reduces phosphorylation of Rab12. While striatal dopamine transporter (DAT) expression and function is similarly impaired in both VKI and Haplo mice, that physiology is normalized in VKI by treatment with the LRRK2 kinase inhibitor, MLi-2. As a corollary, VKI animals show a significant increase in amphetamine induced hyperlocomotion, compared to Haplo mice, that is also abolished by MLi-2. Taken together, these data show Vps35 p.D620N confers a gain-of-function with respect to LRRK2 kinase activity, and that VPS35 and LRRK2 functionally interact to regulate DAT function and striatal dopamine transmission.
Collapse
Affiliation(s)
- Mengfei Bu
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jordan Follett
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Isaac Deng
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Igor Tatarnikov
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shannon Wall
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dylan Guenther
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Melissa Maczis
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Genevieve Wimsatt
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Austen Milnerwood
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mark S Moehle
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Habibeh Khoshbouei
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Shin HA, Park M, Lee HJ, Duong VA, Kim HM, Hwang DY, Lee H, Lew H. Unveiling Neuroprotection and Regeneration Mechanisms in Optic Nerve Injury: Insight from Neural Progenitor Cell Therapy with Focus on Vps35 and Syntaxin12. Cells 2023; 12:2412. [PMID: 37830626 PMCID: PMC10572010 DOI: 10.3390/cells12192412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Axonal degeneration resulting from optic nerve damage can lead to the progressive death of retinal ganglion cells (RGCs), culminating in irreversible vision loss. We contrasted two methods for inducing optic nerve damage: optic nerve compression (ONCo) and optic nerve crush (ONCr). These were assessed for their respective merits in simulating traumatic optic neuropathies and neurodegeneration. We also administered neural progenitor cells (NPCs) into the subtenon space to validate their potential in mitigating optic nerve damage. Our findings indicate that both ONCo and ONCr successfully induced optic nerve damage, as shown by increases in ischemia and expression of genes linked to neuronal regeneration. Post NPC injection, recovery in the expression of neuronal regeneration-related genes was more pronounced in the ONCo model than in the ONCr model, while inflammation-related gene expression saw a better recovery in ONCr. In addition, the proteomic analysis of R28 cells in hypoxic conditions identified Vps35 and Syntaxin12 genes. Vps35 preserved the mitochondrial function in ONCo, while Syntaxin12 appeared to restrain inflammation via the Wnt/β-catenin signaling pathway in ONCr. NPCs managed to restore damaged RGCs by elevating neuroprotection factors and controlling inflammation through mitochondrial homeostasis and Wnt/β-catenin signaling in hypoxia-injured R28 cells and in both animal models. Our results suggest that ischemic injury and crush injury cause optic nerve damage via different mechanisms, which can be effectively simulated using ONCo and ONCr, respectively. Moreover, cell-based therapies such as NPCs may offer promising avenues for treating various optic neuropathies, including ischemic and crush injuries.
Collapse
Affiliation(s)
- Hyun-Ah Shin
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Mira Park
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Hey Jin Lee
- CHA Advanced Research Institute, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Van-An Duong
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Hyun-Mun Kim
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
- Department of Microbiology, School of Medicine, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Helen Lew
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| |
Collapse
|
11
|
Chen X, Tsika E, Levine N, Moore DJ. VPS35 and α-Synuclein fail to interact to modulate neurodegeneration in rodent models of Parkinson's disease. Mol Neurodegener 2023; 18:51. [PMID: 37542299 PMCID: PMC10403858 DOI: 10.1186/s13024-023-00641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant Parkinson's disease (PD), with a single missense mutation (Asp620Asn, D620N) known to segregate with disease in families with PD. The VPS35 gene encodes a core component of the retromer complex, involved in the endosomal sorting and recycling of transmembrane cargo proteins. VPS35-linked PD is clinically indistinguishable from sporadic PD, although it is not yet known whether VPS35-PD brains exhibit α-synuclein-positive brainstem Lewy pathology that is characteristic of sporadic cases. Prior studies have suggested a functional interaction between VPS35 and the PD-linked gene product α-synuclein in lower organisms, where VPS35 deletion enhances α-synuclein-induced toxicity. In mice, VPS35 overexpression is reported to rescue hippocampal neuronal loss in human α-synuclein transgenic mice, potentially suggesting a retromer deficiency in these mice. METHODS Here, we employ multiple well-established genetic rodent models to explore a functional or pathological interaction between VPS35 and α-synuclein in vivo. RESULTS We find that endogenous α-synuclein is dispensable for nigrostriatal pathway dopaminergic neurodegeneration induced by the viral-mediated delivery of human D620N VPS35 in mice, suggesting that α-synuclein does not operate downstream of VPS35. We next evaluated retromer levels in affected brain regions from human A53T-α-synuclein transgenic mice, but find normal levels of the core subunits VPS35, VPS26 or VPS29. We further find that heterozygous VPS35 deletion fails to alter the lethal neurodegenerative phenotype of these A53T-α-synuclein transgenic mice, suggesting the absence of retromer deficiency in this PD model. Finally, we explored the neuroprotective capacity of increasing VPS35 expression in a viral-based human wild-type α-synuclein rat model of PD. However, we find that the overexpression of wild-type VPS35 is not sufficient for protection against α-synuclein-induced nigral dopaminergic neurodegeneration, α-synuclein pathology and reactive gliosis. CONCLUSION Collectively, our data suggest a limited interaction of VPS35 and α-synuclein in neurodegenerative models of PD, and do not provide support for their interaction within a common pathophysiological pathway.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Elpida Tsika
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Vaud, 1015, Switzerland
- AC Immune SA, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Nathan Levine
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
12
|
Lim SH, Shin S, Lee NY, Min SS, Kim NS, Lee DY, Lee JR. Strumpellin/WASHC5 regulates the structural plasticity of cortical neurons involved in gait coordination. Biochem Biophys Res Commun 2023; 673:169-174. [PMID: 37392480 DOI: 10.1016/j.bbrc.2023.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Strumpellin/Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex subunit 5 (WASHC5) is a core component of the WASH complex, and its mutations confer pathogenicity for hereditary spastic paraplegia (HSP) type SPG8, a rare neurodegenerative gait disorder. WASH complex activates actin-related protein-2/3-mediated actin polymerization and plays a pivotal role in intracellular membrane trafficking in endosomes. In this study, we examined the role of strumpellin in the regulation of structural plasticity of cortical neurons involved in gait coordination. Administration of a lentivirus containing a strumpellin-targeting short hairpin RNA (shRNA) to cortical motor neurons lead to abnormal motor coordination in mice. Strumpellin knockdown using shRNA attenuated dendritic arborization and synapse formation in cultured cortical neurons, and this effect was rescued by wild-type strumpellin expression. Compared with the wild-type, strumpellin mutants N471D or V626F identified in patients with SPG8 exhibited no differences in rescuing the defects. Moreover, the number of F-actin clusters in neuronal dendrites was decreased by strumpellin knockdown and rescued by strumpellin expression. In conclusion, our results indicate that strumpellin regulates the structural plasticity of cortical neurons via actin polymerization.
Collapse
Affiliation(s)
- So-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Sangyep Shin
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon, 34824, South Korea
| | - Na-Yoon Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea; Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon, 34824, South Korea
| | - Nam-Soon Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Da Yong Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.
| | - Jae-Ran Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.
| |
Collapse
|
13
|
Hussein A, Guevara CA, Valle PD, Gupta S, Benson DL, Huntley GW. Non-Motor Symptoms of Parkinson's Disease: The Neurobiology of Early Psychiatric and Cognitive Dysfunction. Neuroscientist 2023; 29:97-116. [PMID: 33966533 PMCID: PMC9338765 DOI: 10.1177/10738584211011979] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that has been recognized for over 200 years by its clinically dominant motor system impairment. There are prominent non-motor symptoms as well, and among these, psychiatric symptoms of depression and anxiety and cognitive impairment are common and can appear earlier than motor symptoms. Although the neurobiology underlying these particular PD-associated non-motor symptoms is not completely understood, the identification of PARK genes that contribute to hereditary and sporadic PD has enabled genetic models in animals that, in turn, have fostered ever deepening analyses of cells, synapses, circuits, and behaviors relevant to non-motor psychiatric and cognitive symptoms of human PD. Moreover, while it has long been recognized that inflammation is a prominent component of PD, recent studies demonstrate that brain-immune signaling crosstalk has significant modulatory effects on brain cell and synaptic function in the context of psychiatric symptoms. This review provides a focused update on such progress in understanding the neurobiology of PD-related non-motor psychiatric and cognitive symptoms.
Collapse
Affiliation(s)
- Ayan Hussein
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Del Valle
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swati Gupta
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deanna L. Benson
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George W. Huntley
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Abstract
Parkinson's disease (PD) is clinically, pathologically, and genetically heterogeneous, resisting distillation to a single, cohesive disorder. Instead, each affected individual develops a virtually unique form of Parkinson's syndrome. Clinical manifestations consist of variable motor and nonmotor features, and myriad overlaps are recognized with other neurodegenerative conditions. Although most commonly characterized by alpha-synuclein protein pathology throughout the central and peripheral nervous systems, the distribution varies and other pathologies commonly modify PD or trigger similar manifestations. Nearly all PD is genetically influenced. More than 100 genes or genetic loci have been identified, and most cases likely arise from interactions among many common and rare genetic variants. Despite its complex architecture, insights from experimental genetic dissection coalesce to reveal unifying biological themes, including synaptic, lysosomal, mitochondrial, andimmune-mediated mechanisms of pathogenesis. This emerging understanding of Parkinson's syndrome, coupled with advances in biomarkers and targeted therapies, presages successful precision medicine strategies.
Collapse
Affiliation(s)
- Hui Ye
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; ,
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Laurie A Robak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
| | - Meigen Yu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA;
| | - Matthew Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA;
- Department of Neurology, Houston Methodist Hospital, Houston, Texas, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; ,
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA;
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Pérez-Torres EJ, Utkina-Sosunova I, Mishra V, Barbuti P, De Planell-Saguer M, Dermentzaki G, Geiger H, Basile AO, Robine N, Fagegaltier D, Politi KA, Rinchetti P, Jackson-Lewis V, Harms M, Phatnani H, Lotti F, Przedborski S. Retromer dysfunction in amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2022; 119:e2118755119. [PMID: 35749364 PMCID: PMC9245686 DOI: 10.1073/pnas.2118755119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/03/2022] [Indexed: 12/26/2022] Open
Abstract
Retromer is a heteropentameric complex that plays a specialized role in endosomal protein sorting and trafficking. Here, we report a reduction in the retromer proteins-vacuolar protein sorting 35 (VPS35), VPS26A, and VPS29-in patients with amyotrophic lateral sclerosis (ALS) and in the ALS model provided by transgenic (Tg) mice expressing the mutant superoxide dismutase-1 G93A. These changes are accompanied by a reduction of levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA1, a proxy of retromer function, in spinal cords from Tg SOD1G93A mice. Correction of the retromer deficit by a viral vector expressing VPS35 exacerbates the paralytic phenotype in Tg SOD1G93A mice. Conversely, lowering Vps35 levels in Tg SOD1G93A mice ameliorates the disease phenotype. In light of these findings, we propose that mild alterations in retromer inversely modulate neurodegeneration propensity in ALS.
Collapse
Affiliation(s)
- Eduardo J. Pérez-Torres
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Irina Utkina-Sosunova
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | - Vartika Mishra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Peter Barbuti
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | - Mariangels De Planell-Saguer
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Georgia Dermentzaki
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Heather Geiger
- Computational Biology, New York Genome Center, New York, NY 10013
| | - Anna O. Basile
- Computational Biology, New York Genome Center, New York, NY 10013
| | - Nicolas Robine
- Computational Biology, New York Genome Center, New York, NY 10013
| | - Delphine Fagegaltier
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013
| | - Kristin A. Politi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Paola Rinchetti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Vernice Jackson-Lewis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | | | - Matthew Harms
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Hemali Phatnani
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013
| | - Francesco Lotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Serge Przedborski
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neuroscience, Columbia University, New York, NY 10027
| |
Collapse
|
16
|
Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022; 158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
One of the most significant threats in Parkinson's disease (PD) is neurodegeneration. Neurodegeneration at both nigral as well as non-nigral regions of the brain is considered responsible for disease progression in PD. The key factors that initiate neurodegeneration are oxidative stress, neuroinflammation, mitochondrial complex-1 inhibition, and abnormal α-synuclein (SNCA) protein aggregations. Nigral neurodegeneration results in motor symptoms (tremor, bradykinesia, rigidity, shuffling gait, and postural instability) whereas; non-nigral neurodegeneration is responsible for non-motor symptoms (depression, cognitive dysfunctions, sleep disorders, hallucination, and psychosis). The available therapies for PD aim at increasing dopamine levels. The medications such as Monoamine oxidase B (MAO-B) inhibitors, catechol o-methyltransferase (COMT) inhibitors, Dopamine precursor (Levodopa), dopamine agonists, and dopamine reuptake inhibitors drastically improve the motor symptoms and quality of life only in the early stages of the disease. However, dopa resistant motor symptoms (abnormality in posture, speech impediment, gait, and balance problems), dopa resistant non-motor signs (sleep problems, autonomic dysfunction, mood, and cognitive impairment, pain), and drug-related side effects (motor fluctuations, psychosis, and dyskinesias) are considered responsible for the failure of these therapies. Further, none of the treatments, alone or in combination, are capable of halting the disease progression in the long run. Therefore, there is a need to develop safe and efficient neuroprotective agents, which can slow or stop the disease progression for the better management of PD. In this review, an effort has been made to discuss the various mechanisms responsible for progressive neurodegeneration (disease progression) in PD and also multiple strategies available for halting disease progression.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | | | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
17
|
Bose A, Petsko GA, Studer L. Induced pluripotent stem cells: a tool for modeling Parkinson's disease. Trends Neurosci 2022; 45:608-620. [PMID: 35667922 PMCID: PMC9576003 DOI: 10.1016/j.tins.2022.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. Among its pathologies, progressive loss of dopaminergic (DA) neurons in the substantia nigra is characteristic and contributes to many of the most severe symptoms of PD. Recent advances in induced pluripotent stem cell (iPSC) technology have made it possible to generate patient-derived DA neuronal cell culture and organoid models of PD. These models have contributed to understanding disease mechanisms and the identification of novel targets and therapeutic candidates. Still needed are better ways to model the age-related aspects of PD, as well as a deeper understanding of the interactions among disease-modifying genes and between genetic and environmental contributions to the etiology and progression of PD.
Collapse
Affiliation(s)
- Anindita Bose
- Ann Romney Institute of Neurological Diseases, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA; The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
| | - Gregory A Petsko
- Ann Romney Institute of Neurological Diseases, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA; The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| |
Collapse
|
18
|
Understanding the contributions of VPS35 and the retromer in neurodegenerative disease. Neurobiol Dis 2022; 170:105768. [PMID: 35588987 DOI: 10.1016/j.nbd.2022.105768] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Perturbations of the endolysosomal pathway have been suggested to play an important role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Specifically, VPS35 and the retromer complex play an important role in the endolysosomal system and are implicated in the pathophysiology of these diseases. A single missense mutation in VPS35, Asp620Asn (D620N), is known to cause late-onset, autosomal dominant familial PD. In this review, we focus on the emerging role of the PD-linked D620N mutation in causing retromer dysfunction and dissect its implications in neurodegeneration. Additionally, we will discuss how VPS35 and the retromer are linked to AD, amyotrophic lateral sclerosis, and primary tauopathies. Interestingly, reduced levels of VPS35 and other retromer components have been observed in post-mortem brain tissue, suggesting a role for the retromer in the pathophysiology of these diseases. This review will provide a comprehensive dive into the mechanisms of VPS35 dysfunction in neurodegenerative diseases. Furthermore, we will highlight outstanding questions in the field and the retromer as a therapeutic target for neurodegenerative disease at large.
Collapse
|
19
|
Yoshida S, Hasegawa T. Beware of Misdelivery: Multifaceted Role of Retromer Transport in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:897688. [PMID: 35601613 PMCID: PMC9120357 DOI: 10.3389/fnagi.2022.897688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Retromer is a highly integrated multimeric protein complex that mediates retrograde cargo sorting from endosomal compartments. In concert with its accessory proteins, the retromer drives packaged cargoes to tubular and vesicular structures, thereby transferring them to the trans-Golgi network or to the plasma membrane. In addition to the endosomal trafficking, the retromer machinery participates in mitochondrial dynamics and autophagic processes and thus contributes to cellular homeostasis. The retromer components and their associated molecules are expressed in different types of cells including neurons and glial cells, and accumulating evidence from genetic and biochemical studies suggests that retromer dysfunction is profoundly involved in the pathogenesis of neurodegenerative diseases including Alzheimer’s Disease and Parkinson’s disease. Moreover, targeting retromer components could alleviate the neurodegenerative process, suggesting that the retromer complex may serve as a promising therapeutic target. In this review, we will provide the latest insight into the regulatory mechanisms of retromer and discuss how its dysfunction influences the pathological process leading to neurodegeneration.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Takafumi Hasegawa,
| |
Collapse
|
20
|
Grochowska KM, Andres‐Alonso M, Karpova A, Kreutz MR. The needs of a synapse—How local organelles serve synaptic proteostasis. EMBO J 2022; 41:e110057. [PMID: 35285533 PMCID: PMC8982616 DOI: 10.15252/embj.2021110057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Synaptic function crucially relies on the constant supply and removal of neuronal membranes. The morphological complexity of neurons poses a significant challenge for neuronal protein transport since the machineries for protein synthesis and degradation are mainly localized in the cell soma. In response to this unique challenge, local micro‐secretory systems have evolved that are adapted to the requirements of neuronal membrane protein proteostasis. However, our knowledge of how neuronal proteins are synthesized, trafficked to membranes, and eventually replaced and degraded remains scarce. Here, we review recent insights into membrane trafficking at synaptic sites and into the contribution of local organelles and micro‐secretory pathways to synaptic function. We describe the role of endoplasmic reticulum specializations in neurons, Golgi‐related organelles, and protein complexes like retromer in the synthesis and trafficking of synaptic transmembrane proteins. We discuss the contribution of autophagy and of proteasome‐mediated and endo‐lysosomal degradation to presynaptic proteostasis and synaptic function, as well as nondegradative roles of autophagosomes and lysosomes in signaling and synapse remodeling. We conclude that the complexity of neuronal cyto‐architecture necessitates long‐distance protein transport that combines degradation with signaling functions.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | - Maria Andres‐Alonso
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | - Anna Karpova
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
| | - Michael R Kreutz
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg Germany
| |
Collapse
|
21
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
22
|
Luo A, Xu Z, Liao S. VPS35, the core component of the retromer complex, and Parkinson's disease. IBRAIN 2021; 7:318-324. [PMID: 37786555 PMCID: PMC10529152 DOI: 10.1002/ibra.12004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/04/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is common in middle-aged and elderly people, and its onset is related to multiple factors, such as heredity, environment, and age. The vesicle protein sorting 35 (VPS35) gene was found to be a late-onset autosomal dominant familial PD (PARK17) causative gene. The protein encoded by this gene is located in the endosome and aggregates with other membrane proteins to form a retromer complex, which participates in the membrane protein cycle between the endosome and the Golgi network. Increasing evidence shows that VPS35 may participate in the pathogenesis of PD by affecting autophagy, mitochondria, neurosynaptic transmission, dopamine signaling pathways, and so forth, and it can interact with other disease-causing genes of familial PD. This article aimed to review the functions of VPS35 and the mechanism of its mutations in PD that have been discovered in recent years.
Collapse
Affiliation(s)
- Ai‐Di Luo
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zu‐Cai Xu
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shu‐Sheng Liao
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
23
|
Chen KE, Guo Q, Hill TA, Cui Y, Kendall AK, Yang Z, Hall RJ, Healy MD, Sacharz J, Norwood SJ, Fonseka S, Xie B, Reid RC, Leneva N, Parton RG, Ghai R, Stroud DA, Fairlie DP, Suga H, Jackson LP, Teasdale RD, Passioura T, Collins BM. De novo macrocyclic peptides for inhibiting, stabilizing, and probing the function of the retromer endosomal trafficking complex. SCIENCE ADVANCES 2021; 7:eabg4007. [PMID: 34851660 PMCID: PMC8635440 DOI: 10.1126/sciadv.abg4007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/14/2021] [Indexed: 05/27/2023]
Abstract
The retromer complex (Vps35-Vps26-Vps29) is essential for endosomal membrane trafficking and signaling. Mutation of the retromer subunit Vps35 causes late-onset Parkinson’s disease, while viral and bacterial pathogens can hijack the complex during cellular infection. To modulate and probe its function, we have created a novel series of macrocyclic peptides that bind retromer with high affinity and specificity. Crystal structures show that most of the cyclic peptides bind to Vps29 via a Pro-Leu–containing sequence, structurally mimicking known interactors such as TBC1D5 and blocking their interaction with retromer in vitro and in cells. By contrast, macrocyclic peptide RT-L4 binds retromer at the Vps35-Vps26 interface and is a more effective molecular chaperone than reported small molecules, suggesting a new therapeutic avenue for targeting retromer. Last, tagged peptides can be used to probe the cellular localization of retromer and its functional interactions in cells, providing novel tools for studying retromer function.
Collapse
Affiliation(s)
- Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Qian Guo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Timothy A. Hill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yi Cui
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhe Yang
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ryan J. Hall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Joanna Sacharz
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Suzanne J. Norwood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sachini Fonseka
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert C. Reid
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Queensland, Australia
| | - Rajesh Ghai
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David A. Stroud
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rohan D. Teasdale
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Sydney Analytical, School of Life and Environmental Sciences and School of Chemistry, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
24
|
Pirooznia SK, Rosenthal LS, Dawson VL, Dawson TM. Parkinson Disease: Translating Insights from Molecular Mechanisms to Neuroprotection. Pharmacol Rev 2021; 73:33-97. [PMID: 34663684 DOI: 10.1124/pharmrev.120.000189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease (PD) used to be considered a nongenetic condition. However, the identification of several autosomal dominant and recessive mutations linked to monogenic PD has changed this view. Clinically manifest PD is then thought to occur through a complex interplay between genetic mutations, many of which have incomplete penetrance, and environmental factors, both neuroprotective and increasing susceptibility, which variably interact to reach a threshold over which PD becomes clinically manifested. Functional studies of PD gene products have identified many cellular and molecular pathways, providing crucial insights into the nature and causes of PD. PD originates from multiple causes and a range of pathogenic processes at play, ultimately culminating in nigral dopaminergic loss and motor dysfunction. An in-depth understanding of these complex and possibly convergent pathways will pave the way for therapeutic approaches to alleviate the disease symptoms and neuroprotective strategies to prevent disease manifestations. This review is aimed at providing a comprehensive understanding of advances made in PD research based on leveraging genetic insights into the pathogenesis of PD. It further discusses novel perspectives to facilitate identification of critical molecular pathways that are central to neurodegeneration that hold the potential to develop neuroprotective and/or neurorestorative therapeutic strategies for PD. SIGNIFICANCE STATEMENT: A comprehensive review of PD pathophysiology is provided on the complex interplay of genetic and environmental factors and biologic processes that contribute to PD pathogenesis. This knowledge identifies new targets that could be leveraged into disease-modifying therapies to prevent or slow neurodegeneration in PD.
Collapse
Affiliation(s)
- Sheila K Pirooznia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Liana S Rosenthal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| |
Collapse
|
25
|
Chandler R, Cogo S, Lewis P, Kevei E. Modelling the functional genomics of Parkinson's disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep 2021; 41:BSR20203672. [PMID: 34397087 PMCID: PMC8415217 DOI: 10.1042/bsr20203672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, Parkinson's disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes.
Collapse
Affiliation(s)
| | - Susanna Cogo
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
- Department of Biology, University of Padova, Padova, Via Ugo Bassi 58/B, 35121, Italy
| | - Patrick A. Lewis
- Royal Veterinary College, University of London, London, NW1 0TU, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, U.K
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
| |
Collapse
|
26
|
Kadgien CA, Kamesh A, Milnerwood AJ. Endosomal traffic and glutamate synapse activity are increased in VPS35 D620N mutant knock-in mouse neurons, and resistant to LRRK2 kinase inhibition. Mol Brain 2021; 14:143. [PMID: 34530877 PMCID: PMC8447518 DOI: 10.1186/s13041-021-00848-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Vacuolar protein sorting 35 (VPS35) regulates neurotransmitter receptor recycling from endosomes. A missense mutation (D620N) in VPS35 leads to autosomal-dominant, late-onset Parkinson's disease. Here, we study the basic neurobiology of VPS35 and Parkinson's disease mutation effects in the D620N knock-in mouse and the effect of leucine-rich repeat kinase 2 (LRRK2) inhibition on synaptic phenotypes. The study was conducted using a VPS35 D620N knock-in mouse that expresses VPS35 at endogenous levels. Protein levels, phosphorylation states, and binding ratios in brain lysates from knock-in mice and wild-type littermates were assayed by co-immunoprecipitation and western blot. Dendritic protein co-localization, AMPA receptor surface expression, synapse density, and glutamatergic synapse activity in primary cortical cultures from knock-in and wild-type littermates were assayed using immunocytochemistry and whole-cell patch clamp electrophysiology. In brain tissue, we confirm VPS35 forms complexes with LRRK2 and AMPA-type glutamate receptor GluA1 subunits, in addition to NMDA-type glutamate receptor GluN1 subunits and D2-type dopamine receptors. Receptor and LRRK2 binding was unaltered in D620N knock-in mice, but we confirm the mutation results in reduced binding of VPS35 with WASH complex member FAM21, and increases phosphorylation of the LRRK2 kinase substrate Rab10, which is reversed by LRRK2 kinase inhibition in vivo. In cultured cortical neurons from knock-in mice, pRab10 is also increased, and reversed by LRRK2 inhibition. The mutation also results in increased endosomal recycling protein cluster density (VPS35-FAM21 co-clusters and Rab11 clusters), glutamate transmission, and GluA1 surface expression. LRRK2 kinase inhibition, which reversed Rab10 hyper-phosphorylation, did not rescue elevated glutamate release or surface GluA1 expression in knock-in neurons, but did alter AMPAR traffic in wild-type cells. The results improve our understanding of the cell biology of VPS35, and the consequences of the D620N mutation in developing neuronal networks. Together the data support a chronic synaptopathy model for latent neurodegeneration, providing phenotypes and candidate pathophysiological stresses that may drive eventual transition to late-stage parkinsonism in VPS35 PD. The study demonstrates the VPS35 mutation has effects that are independent of ongoing LRRK2 kinase activity, and that LRRK2 kinase inhibition alters basal physiology of glutamate synapses in vitro.
Collapse
Affiliation(s)
- Chelsie A Kadgien
- Graduate Program in Neuroscience and Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Anusha Kamesh
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Austen J Milnerwood
- Graduate Program in Neuroscience and Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
27
|
Retromer dependent changes in cellular homeostasis and Parkinson's disease. Essays Biochem 2021; 65:987-998. [PMID: 34528672 PMCID: PMC8709886 DOI: 10.1042/ebc20210023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
To date, mechanistic treatments targeting the initial cause of Parkinson's disease (PD) are limited due to the underlying biological cause(s) been unclear. Endosomes and their associated cellular homeostasis processes have emerged to have a significant role in the pathophysiology associated with PD. Several variants within retromer complex have been identified and characterised within familial PD patients. The retromer complex represents a key sorting platform within the endosomal system that regulates cargo sorting that maintains cellular homeostasis. In this review, we summarise the current understandings of how PD-associated retromer variants disrupt cellular trafficking and how the retromer complex can interact with other PD-associated genes to contribute to the disease progression.
Collapse
|
28
|
Parkinson's disease-associated VPS35 mutant reduces mitochondrial membrane potential and impairs PINK1/Parkin-mediated mitophagy. Transl Neurodegener 2021; 10:19. [PMID: 34127073 PMCID: PMC8204421 DOI: 10.1186/s40035-021-00243-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mitochondrial dysfunction plays a prominent role in the pathogenesis of Parkinson’s disease (PD), and several genes linked to familial PD, including PINK1 (encoding PTEN-induced putative kinase 1 [PINK1]) and PARK2 (encoding the E3 ubiquitin ligase Parkin), are directly involved in processes such as mitophagy that maintain mitochondrial health. The dominant p.D620N variant of vacuolar protein sorting 35 ortholog (VPS35) gene is also associated with familial PD but has not been functionally connected to PINK1 and PARK2. Methods To better mimic and study the patient situation, we used CRISPR-Cas9 to generate heterozygous human SH-SY5Y cells carrying the PD-associated D620N variant of VPS35. These cells were treated with a protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) to induce the PINK1/Parkin-mediated mitophagy, which was assessed using biochemical and microscopy approaches. Results Mitochondria in the VPS35-D620N cells exhibited reduced mitochondrial membrane potential and appeared to already be damaged at steady state. As a result, the mitochondria of these cells were desensitized to the CCCP-induced collapse in mitochondrial potential, as they displayed altered fragmentation and were unable to accumulate PINK1 at their surface upon this insult. Consequently, Parkin recruitment to the cell surface was inhibited and initiation of the PINK1/Parkin-dependent mitophagy was impaired. Conclusion Our findings extend the pool of evidence that the p.D620N mutation of VPS35 causes mitochondrial dysfunction and suggest a converging pathogenic mechanism among VPS35, PINK1 and Parkin in PD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00243-4.
Collapse
|
29
|
Ding Y, Li Y, Chhetri G, Peng X, Wu J, Wang Z, Zhao B, Zhao W, Li X. Parkinson's Disease Causative Mutation in Vps35 Disturbs Tetherin Trafficking to Cell Surfaces and Facilitates Virus Spread. Cells 2021; 10:746. [PMID: 33800686 PMCID: PMC8066283 DOI: 10.3390/cells10040746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by progressive loss of dopaminergic neurons in the substantia nigra, intraneuronal deposition of misfolded proteins known as Lewy bodies, and chronic neuroinflammation. PD can arise from monogenic mutations, but in most cases, the etiology is unclear. Viral infection is gaining increasing attentions as a trigger of PD. In this study, we investigated whether the PD-causative 620 aspartate (D) to asparagine (N) mutation in the vacuolar protein sorting 35 ortholog (Vps35) precipitated herpes simplex virus (HSV) infection. We observed that ectopic expression of Vps35 significantly reduced the proliferation and release of HSV-1 virions; the D620N mutation rendered Vps35 a partial loss of such inhibitory effects. Tetherin is a host cell protein capable of restricting the spread of encapsulated viruses including HSV-1 and SARS-Cov-2, both of which are implicated in the development of parkinsonism. Compared with cells overexpressing wildtype Vps35, cells expressing mutant Vps35 with D620N had less Tetherin on cell surfaces. Real-time and static cell imaging revealed that Tetherin recycled through Vps35-positive endosomes. Expression of Vps35 with D620N reduced endosomal dynamics and frequency of motile Tetherin-containing vesicles, a sign of defective production of recycling carriers. Our study suggests that the D620N mutation in Vps35 hinders Tetherin trafficking to cell surfaces and facilitates virus spread.
Collapse
Affiliation(s)
- Yingzhuo Ding
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Xiaoxin Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Jing Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Bo Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
30
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder resulting from the death of dopamine neurons in the substantia nigra pars compacta. Our understanding of PD biology has been enriched by the identification of genes involved in its rare, inheritable forms, termed PARK genes. These genes encode proteins including α-syn, LRRK2, VPS35, parkin, PINK1, and DJ1, which can cause monogenetic PD when mutated. Investigating the cellular functions of these proteins has been instrumental in identifying signaling pathways that mediate pathology in PD and neuroprotective mechanisms active during homeostatic and pathological conditions. It is now evident that many PD-associated proteins perform multiple functions in PD-associated signaling pathways in neurons. Furthermore, several PARK proteins contribute to non-cell-autonomous mechanisms of neuron death, such as neuroinflammation. A comprehensive understanding of cell-autonomous and non-cell-autonomous pathways involved in PD is essential for developing therapeutics that may slow or halt its progression.
Collapse
Affiliation(s)
- Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA
| |
Collapse
|
31
|
Vos M, Klein C. The Importance of Drosophila melanogaster Research to UnCover Cellular Pathways Underlying Parkinson's Disease. Cells 2021; 10:579. [PMID: 33800736 PMCID: PMC7998316 DOI: 10.3390/cells10030579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder that is currently incurable. As a consequence of an incomplete understanding of the etiology of the disease, therapeutic strategies mainly focus on symptomatic treatment. Even though the majority of PD cases remain idiopathic (~90%), several genes have been identified to be causative for PD, facilitating the generation of animal models that are a good alternative to study disease pathways and to increase our understanding of the underlying mechanisms of PD. Drosophila melanogaster has proven to be an excellent model in these studies. In this review, we will discuss the different PD models in flies and key findings identified in flies in different affected pathways in PD. Several molecular changes have been identified, of which mitochondrial dysfunction and a defective endo-lysosomal pathway emerge to be the most relevant for PD pathogenesis. Studies in flies have significantly contributed to our knowledge of how disease genes affect and interact in these pathways enabling a better understanding of the disease etiology and providing possible therapeutic targets for the treatment of PD, some of which have already resulted in clinical trials.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160, Building 67, 23562 Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160, Building 67, 23562 Luebeck, Germany
| |
Collapse
|
32
|
Sidisky JM, Weaver D, Hussain S, Okumus M, Caratenuto R, Babcock D. Mayday sustains trans-synaptic BMP signaling required for synaptic maintenance with age. eLife 2021; 10:e54932. [PMID: 33667157 PMCID: PMC7935490 DOI: 10.7554/elife.54932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/23/2021] [Indexed: 01/12/2023] Open
Abstract
Maintaining synaptic structure and function over time is vital for overall nervous system function and survival. The processes that underly synaptic development are well understood. However, the mechanisms responsible for sustaining synapses throughout the lifespan of an organism are poorly understood. Here, we demonstrate that a previously uncharacterized gene, CG31475, regulates synaptic maintenance in adult Drosophila NMJs. We named CG31475 mayday due to the progressive loss of flight ability and synapse architecture with age. Mayday is functionally homologous to the human protein Cab45, which sorts secretory cargo from the Trans Golgi Network (TGN). We find that Mayday is required to maintain trans-synaptic BMP signaling at adult NMJs in order to sustain proper synaptic structure and function. Finally, we show that mutations in mayday result in the loss of both presynaptic motor neurons as well as postsynaptic muscles, highlighting the importance of maintaining synaptic integrity for cell viability.
Collapse
Affiliation(s)
- Jessica M Sidisky
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Daniel Weaver
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Sarrah Hussain
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Meryem Okumus
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Russell Caratenuto
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Daniel Babcock
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| |
Collapse
|
33
|
Dynamic control of the dopamine transporter in neurotransmission and homeostasis. NPJ Parkinsons Dis 2021; 7:22. [PMID: 33674612 PMCID: PMC7935902 DOI: 10.1038/s41531-021-00161-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
The dopamine transporter (DAT) transports extracellular dopamine into the intracellular space contributing to the regulation of dopamine neurotransmission. A reduction of DAT density is implicated in Parkinson's disease (PD) by neuroimaging; dopamine turnover is dopamine turnover is elevated in early symptomatic PD and in presymptomatic individuals with monogenic mutations causal for parkinsonism. As an integral plasma membrane protein, DAT surface expression is dynamically regulated through endocytic trafficking, enabling flexible control of dopamine signaling in time and space, which in turn critically modulates movement, motivation and learning behavior. Yet the cellular machinery and functional implications of DAT trafficking remain enigmatic. In this review we summarize mechanisms governing DAT trafficking under normal physiological conditions and discuss how PD-linked mutations may disturb DAT homeostasis. We highlight the complexity of DAT trafficking and reveal DAT dysregulation as a common theme in genetic models of parkinsonism.
Collapse
|
34
|
Gcwensa NZ, Russell DL, Cowell RM, Volpicelli-Daley LA. Molecular Mechanisms Underlying Synaptic and Axon Degeneration in Parkinson's Disease. Front Cell Neurosci 2021; 15:626128. [PMID: 33737866 PMCID: PMC7960781 DOI: 10.3389/fncel.2021.626128] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/05/2021] [Indexed: 01/13/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease that impairs movement as well as causing multiple other symptoms such as autonomic dysfunction, rapid eye movement (REM) sleep behavior disorder, hyposmia, and cognitive changes. Loss of dopamine neurons in the substantia nigra pars compacta (SNc) and loss of dopamine terminals in the striatum contribute to characteristic motor features. Although therapies ease the symptoms of PD, there are no treatments to slow its progression. Accumulating evidence suggests that synaptic impairments and axonal degeneration precede neuronal cell body loss. Early synaptic changes may be a target to prevent disease onset and slow progression. Imaging of PD patients with radioligands, post-mortem pathologic studies in sporadic PD patients, and animal models of PD demonstrate abnormalities in presynaptic terminals as well as postsynaptic dendritic spines. Dopaminergic and excitatory synapses are substantially reduced in PD, and whether other neuronal subtypes show synaptic defects remains relatively unexplored. Genetic studies implicate several genes that play a role at the synapse, providing additional support for synaptic dysfunction in PD. In this review article we: (1) provide evidence for synaptic defects occurring in PD before neuron death; (2) describe the main genes implicated in PD that could contribute to synapse dysfunction; and (3) show correlations between the expression of Snca mRNA and mouse homologs of PD GWAS genes demonstrating selective enrichment of Snca and synaptic genes in dopaminergic, excitatory and cholinergic neurons. Altogether, these findings highlight the need for novel therapeutics targeting the synapse and suggest that future studies should explore the roles for PD-implicated genes across multiple neuron types and circuits.
Collapse
Affiliation(s)
- Nolwazi Z Gcwensa
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| | - Drèson L Russell
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| | - Rita M Cowell
- Department of Neuroscience, Southern Research, Birmingham, AL, United States
| | - Laura A Volpicelli-Daley
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| |
Collapse
|
35
|
Impaired neurogenesis in the hippocampus of an adult VPS35 mutant mouse model of Parkinson's disease through interaction with APP. Neurobiol Dis 2021; 153:105313. [PMID: 33636388 DOI: 10.1016/j.nbd.2021.105313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Vacuolar protein sorting protein 35 (VPS35) is a core component of the retromer complex involved in regulating protein trafficking and retrieval. Recently, a missense mutation, Asp620Asn (D620N), in VPS35 (PARK17) has been identified as a pathogenic mutation for late-onset autosomal dominant Parkinson's disease (PD). Although PD is characterized by a range of motor symptoms associated with loss of dopaminergic neurons in the substantial nigra, non-motor symptoms such as impaired hippocampal neurogenesis were observed in both PD patients and animal models of PD caused by multiple PD-linked pathogenic genes such as alpha-synuclein and leucine-rich repeat kinase 2 (LRRK2). However, the role of the VPS35 D620N mutation in adult hippocampal neurogenesis remains unknown. Here, we showed that the VPS35 D620N mutation impaired hippocampal neurogenesis in adult transgenic mice expressing the VPS35 D620N gene. Specifically, we showed a reduction in the neural stem cell pool and neural proliferation and differentiation, retarded migration, and impaired neurite outgrowth in 3-month-old VPS35 D620N mutant mice. Moreover, we found that the VPS35 D620N mutant hyperphosphorylates amyloid precursor protein (APP) at Thr668and interacts with APP. Notably, by crossing the VPS35 D620N mutant mice with APP knockout (KO) mice, we showed that loss of APP function rescues VPS35 D620N-inhibited neurogenesis, neural migration, and maturation. Our study provides important evidence that APP is involved in the VPS35 D620N mutation in regulating adult neurogenesis, which sheds light on the pathogenic mechanisms in PD.
Collapse
|
36
|
Seaman MNJ. The Retromer Complex: From Genesis to Revelations. Trends Biochem Sci 2021; 46:608-620. [PMID: 33526371 DOI: 10.1016/j.tibs.2020.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The retromer complex has a well-established role in endosomal protein sorting, being necessary for maintaining the dynamic localisation of hundreds of membrane proteins that traverse the endocytic system. Retromer function and dysfunction is linked with neurodegenerative diseases, including Alzheimer's and Parkinson's disease, and many pathogens, both viral and bacterial, exploit or interfere in retromer function for their own ends. In this review, the history of retromer is distilled into a concentrated form that spans the identification of retromer to recent discoveries that have shed new light on how retromer functions in endosomal protein sorting and why retromer is increasingly being viewed as a potential therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew N J Seaman
- University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
37
|
Sargent D, Moore DJ. Mechanisms of VPS35-Mediated Neurodegeneration in Parkinson's Disease. INTERNATIONAL REVIEW OF MOVEMENT DISORDERS 2021; 2:221-244. [PMID: 35497708 DOI: 10.1016/bs.irmvd.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkinson's disease is a sporadic and common neurodegenerative movement disorder resulting from the complex interplay between genetic risk, aging and environmental exposure. Familial forms of PD account for ~10% of cases and are known to result from the inheritance of mutations in at least 15 genes. Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant familial PD. VPS35 is a key suunit of the pentameric retromer complex that plays a role in the retrograde sorting and recycling of transmembrane cargo proteins from endosomes to the plasma membrane and trans-Golgi network. A single heterozygous Asp620Asn (D620N) mutation in VPS35 has been identified in multiple families that segregates with PD, and a number of experimental cellular and animal models have been developed to understand its pathogenic effects. At the molecular level, the D620N mutation has been shown to impair the interaction of VPS35 with the WASH complex, that plays an accessory function in retromer-dependent sorting. In addition, the D620N mutation has been linked to the abnormal sorting of retromer cargo, including CI-M6PR, AMPA receptor subunits, MUL1, LAMP2a and ATG9A, as well as to LRRK2 hyperactivation. At the cellular level, data support an impact of D620N VPS35 on mitochondrial function, the autophagy-lysosomal pathway, Wnt signaling and neurotransmission via altered endosomal sorting. The relevance of abnormal retromer sorting and cellular pathways to PD-related neurodegenerative phenotypes induced by D620N VPS35 in rodent models is not yet clear. There is also uncertainty regarding the mechanism-of-action of the D620N mutation and whether it manifests pathogenic effects in animal models and PD through a gain-of-function and/or a partial dominant-negative mechanism. Here, we discuss the emerging molecular and cellular mechanisms underlying PD induced by familial VPS35 mutations, going from structure to cellular function to neuropathology. We further discuss studies linking reduced retromer function to other neurodegenerative diseases and potential therapeutic strategies to normalize retromer function to mitigate disease.
Collapse
Affiliation(s)
- Dorian Sargent
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
38
|
Vanan S, Zeng X, Chia SY, Varnäs K, Jiang M, Zhang K, Saw WT, Padmanabhan P, Yu WP, Zhou ZD, Halldin C, Gulyás B, Tan EK, Zeng L. Altered striatal dopamine levels in Parkinson's disease VPS35 D620N mutant transgenic aged mice. Mol Brain 2020; 13:164. [PMID: 33261640 PMCID: PMC7706192 DOI: 10.1186/s13041-020-00704-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex that mediates the retrograde transport of cargo proteins from endosomes to the trans-Golgi network. Mutations such as D620N in the VPS35 gene have been identified in patients with autosomal dominant Parkinson's disease (PD). However, it remains poorly understood whether and how VPS35 deficiency or mutation contributes to PD pathogenesis; specifically, the studies that have examined VPS35 thus far have differed in results and methodologies. We generated a VPS35 D620N mouse model using a Rosa26-based transgene expression platform to allow expression in a spatial manner, so as to better address these discrepancies. Here, aged (20-months-old) mice were first subjected to behavioral tests. Subsequently, DAB staining analysis of substantia nigra (SN) dopaminergic neurons with the marker for tyrosine hydroxylase (TH) was performed. Next, HPLC was used to determine dopamine levels, along with levels of its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum. Western blotting was also performed to study the levels of key proteins associated with PD. Lastly, autoradiography (ARG) evaluation of [3H]FE-PE2I binding to the striatal dopamine transporter DAT was carried out. We found that VPS35 D620N Tg mice displayed a significantly higher dopamine level than NTg counterparts. All results were then compared with that of current VPS35 studies to shed light on the disease pathogenesis. Our model allows future studies to explicitly control spatial expression of the transgene which would generate a more reliable PD phenotype.
Collapse
Affiliation(s)
- Sarivin Vanan
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Xiaoxia Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Sook Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet PET Centre, Karolinska Institutet, Karolinska University Hospital Solna, R5:02, 171 76, Stockholm, Sweden
| | - Mei Jiang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Ke Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Wuan Ting Saw
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory, Biological Resource Centre, A*STAR, Singapore, 138673, Singapore.,Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhi-Dong Zhou
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,Signature Research Program in Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Christer Halldin
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet PET Centre, Karolinska Institutet, Karolinska University Hospital Solna, R5:02, 171 76, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Balázs Gulyás
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet PET Centre, Karolinska Institutet, Karolinska University Hospital Solna, R5:02, 171 76, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Eng-King Tan
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore. .,Department of Neurology, National Neuroscience Institute, SGH Campus, Singapore, 169856, Singapore.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore. .,Center for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
39
|
Hanss Z, Larsen SB, Antony P, Mencke P, Massart F, Jarazo J, Schwamborn JC, Barbuti PA, Mellick GD, Krüger R. Mitochondrial and Clearance Impairment in p.D620N VPS35 Patient-Derived Neurons. Mov Disord 2020; 36:704-715. [PMID: 33142012 PMCID: PMC8048506 DOI: 10.1002/mds.28365] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Background VPS35 is part of the retromer complex and is responsible for the trafficking and recycling of proteins implicated in autophagy and lysosomal degradation, but also takes part in the degradation of mitochondrial proteins via mitochondria‐derived vesicles. The p.D620N mutation of VPS35 causes an autosomal‐dominant form of Parkinson's disease (PD), clinically representing typical PD. Objective Most of the studies on p.D620N VPS35 were performed on human tumor cell lines, rodent models overexpressing mutant VPS35, or in patient‐derived fibroblasts. Here, based on identified target proteins, we investigated the implication of mutant VPS35 in autophagy, lysosomal degradation, and mitochondrial function in induced pluripotent stem cell‐derived neurons from a patient harboring the p.D620N mutation. Methods We reprogrammed fibroblasts from a PD patient carrying the p.D620N mutation in the VPS35 gene and from two healthy donors in induced pluripotent stem cells. These were subsequently differentiated into neuronal precursor cells to finally generate midbrain dopaminergic neurons. Results We observed a decreased autophagic flux and lysosomal mass associated with an accumulation of α‐synuclein in patient‐derived neurons compared to controls. Moreover, patient‐derived neurons presented a mitochondrial dysfunction with decreased membrane potential, impaired mitochondrial respiration, and increased production of reactive oxygen species associated with a defect in mitochondrial quality control via mitophagy. Conclusion We describe for the first time the impact of the p.D620N VPS35 mutation on autophago‐lysosome pathway and mitochondrial function in stem cell‐derived neurons from an affected p.D620N carrier and define neuronal phenotypes for future pharmacological interventions. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zoé Hanss
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone B Larsen
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pauline Mencke
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - François Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Peter A Barbuti
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg
| |
Collapse
|
40
|
Bono K, Hara-Miyauchi C, Sumi S, Oka H, Iguchi Y, Okano HJ. Endosomal dysfunction in iPSC-derived neural cells from Parkinson's disease patients with VPS35 D620N. Mol Brain 2020; 13:137. [PMID: 33032646 PMCID: PMC7542911 DOI: 10.1186/s13041-020-00675-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the Vacuolar protein sorting 35 (VPS35) gene have been linked to familial Parkinson’s disease (PD), PARK17. VPS35 is a key component of the retromer complex, which plays a central role in endosomal trafficking. However, whether and how VPS35 deficiency or mutation contributes to PD pathogenesis remain unclear. Here, we analyzed human induced pluripotent stem cell (iPSC)-derived neurons from PD patients with the VPS35 D620N mutation and addressed relevant disease mechanisms. In the disease group, dopaminergic (DA) neurons underwent extensive apoptotic cell death. The movement of Rab5a- or Rab7a-positive endosomes was slower, and the endosome fission and fusion frequencies were lower in the PD group than in the healthy control group. Interestingly, vesicles positive for cation-independent mannose 6-phosphate receptor transported by retromers were abnormally localized in glial cells derived from patient iPSCs. Furthermore, we found α-synuclein accumulation in TH positive DA neurons. Our results demonstrate the induction of cell death, endosomal dysfunction and α -synuclein accumulation in neural cells of the PD group. PARK17 patient-derived iPSCs provide an excellent experimental tool for understanding the pathophysiology underlying PD.
Collapse
Affiliation(s)
- Keiko Bono
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.,Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Chikako Hara-Miyauchi
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shunsuke Sumi
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hisayoshi Oka
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.,Department of Neurology, Daisan Hospital, The Jikei University School of Medicine, 4-11-1 Izumihoncho, Komae-shi, Tokyo, 201-8601, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
41
|
Endosomal Trafficking in Alzheimer's Disease, Parkinson's Disease, and Neuronal Ceroid Lipofuscinosis. Mol Cell Biol 2020; 40:MCB.00262-20. [PMID: 32690545 DOI: 10.1128/mcb.00262-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is one of the most prevalent neurodegenerative disorders of early life, Parkinson's disease (PD) is the most common neurodegenerative disorder of midlife, while Alzheimer's disease (AD) is the most common neurodegenerative disorder of late life. While they are phenotypically distinct, recent studies suggest that they share a biological pathway, retromer-dependent endosomal trafficking. A retromer is a multimodular protein assembly critical for sorting and trafficking cargo out of the endosome. As a lysosomal storage disease, all 13 of NCL's causative genes affect endolysosomal function, and at least four have been directly linked to retromer. PD has several known causative genes, with one directly linked to retromer and others causing endolysosomal dysfunction. AD has over 25 causative genes/risk factors, with several of them linked to retromer or endosomal trafficking dysfunction. In this article, we summarize the emerging evidence on the association of genes causing NCL with retromer function and endosomal trafficking, review the recent evidence linking NCL genes to AD, and discuss how NCL, AD, and PD converge on a shared molecular pathway. We also discuss this pathway's role in microglia and neurons, cell populations which are critical to proper brain homeostasis and whose dysfunction plays a key role in neurodegeneration.
Collapse
|
42
|
Kuhlmann N, Milnerwood AJ. A Critical LRRK at the Synapse? The Neurobiological Function and Pathophysiological Dysfunction of LRRK2. Front Mol Neurosci 2020; 13:153. [PMID: 32973447 PMCID: PMC7482583 DOI: 10.3389/fnmol.2020.00153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Since the discovery of LRRK2 mutations causal to Parkinson's disease (PD) in the early 2000s, the LRRK2 protein has been implicated in a plethora of cellular processes in which pathogenesis could occur, yet its physiological function remains elusive. The development of genetic models of LRRK2 PD has helped identify the etiological and pathophysiological underpinnings of the disease, and may identify early points of intervention. An important role for LRRK2 in synaptic function has emerged in recent years, which links LRRK2 to other genetic forms of PD, most notably those caused by mutations in the synaptic protein α-synuclein. This point of convergence may provide useful clues as to what drives dysfunction in the basal ganglia circuitry and eventual death of substantia nigra (SN) neurons. Here, we discuss the evolution and current state of the literature placing LRRK2 at the synapse, through the lens of knock-out, overexpression, and knock-in animal models. We hope that a deeper understanding of LRRK2 neurobiology, at the synapse and beyond, will aid the eventual development of neuroprotective interventions for PD, and the advancement of useful treatments in the interim.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Austen J Milnerwood
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Xu LM, Liu M, Zhao JZ, Ren GM, Dong Y, Shao YZ, Lu TY, Zhang QY. Infectious pancreatic necrosis virus inhibits infectious hematopoietic necrosis virus at the early stage of infection in a time dependent manner during Co-infection in Chinook salmon embryo cell lines. FISH & SHELLFISH IMMUNOLOGY 2020; 102:361-367. [PMID: 32387559 DOI: 10.1016/j.fsi.2020.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/10/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Salmonids can be co-infected by infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) under natural or experimental conditions. To reveal the influence of IPNV on IHNV in co-infections, CHSE-214 cells were inoculated with IPNV at different time intervals prior to or after IHNV infection. Propagation of IHNV was determined by an immunofluorescence antibody test, real-time quantitative polymerase chain reaction, flow cytometry, and virus titration. The results showed that when cells were inoculated with IPNV prior to IHNV, IHNV multiplication was inhibited. This inhibitory effect became stronger with increasing time intervals (P < 0.05). When cells were inoculated with IPNV after IHNV, the inhibitory effect became weaker with increasing time intervals (P < 0.05), and no significant inhibition was observed at 12 h (P > 0.05) compared with the single IHNV infection group. The findings suggest that IHNV is inhibited at the early stage of infection by IPNV and in a time dependent manner during co-infection. Furthermore, the effect of IPNV on IHNV entry and expression of IHNV entry-related genes clathrin, dynamin-2, adaptor protein 2, and vacuolar protein sorting 35 were also determined. The results showed that IPNV did not affect the amount of IHNV entering the cells. However, the expression levels of clathrin and dynamin-2 were significantly lower in co-infection than those in single IHNV infection, which suggests that IPNV likely inhibits IHNV by affecting IHNV invasion via downregulating IHNV entry-related genes clathrin and dynamin-2.
Collapse
Affiliation(s)
- Li-Ming Xu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Guangzhou, 510380, China
| | - Miao Liu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Jing-Zhuang Zhao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Guang-Ming Ren
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Ying Dong
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Yi-Zhi Shao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Tong-Yan Lu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China.
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
44
|
Sidisky JM, Babcock DT. Visualizing Synaptic Degeneration in Adult Drosophila in Association with Neurodegeneration. J Vis Exp 2020. [PMID: 32478750 DOI: 10.3791/61363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Drosophila serves as a useful model for assessing synaptic structure and function associated with neurodegenerative diseases. While much work has focused on neuromuscular junctions (NMJs) in Drosophila larvae, assessing synaptic integrity in adult Drosophila has received much less attention. Here we provide a straightforward method for dissection of the dorsal longitudinal muscles (DLMs), which are required for flight ability. In addition to flight as a behavioral readout, this dissection allows for the both DLM synapses and muscle tissue to be amenable to structural analysis using fluorescently labeled antibodies for synaptic markers or proteins of interest. This protocol allows for the evaluation of the structural integrity of synapses in adult Drosophila during aging to model the progressive, age-dependent nature of most neurodegenerative diseases.
Collapse
|
45
|
Sassone J, Reale C, Dati G, Regoni M, Pellecchia MT, Garavaglia B. The Role of VPS35 in the Pathobiology of Parkinson's Disease. Cell Mol Neurobiol 2020; 41:199-227. [PMID: 32323152 DOI: 10.1007/s10571-020-00849-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
The vacuolar protein sorting 35 (VPS35) gene located on chromosome 16 has recently emerged as a cause of late-onset familial Parkinson's disease (PD) (PARK17). The gene encodes a 796-residue protein nearly ubiquitously expressed in human tissues. The protein localizes on endosomes where it assembles with other peripheral membrane proteins to form the retromer complex. How VPS35 mutations induce dopaminergic neuron degeneration in humans is still unclear. Because the retromer complex recycles the receptors that mediate the transport of hydrolase to lysosome, it has been suggested that VPS35 mutations lead to impaired lysosomal and autophagy function. Recent studies also demonstrated that VPS35 and the retromer complex influence mitochondrial homeostasis, suggesting that VPS35 mutations elicit mitochondrial dysfunction. More recent studies have identified a key role of VPS35 in neurotransmission, whilst others reported a functional interaction between VPS35 and other genes associated with familial PD, including α-SYNUCLEIN-PARKIN-LRRK2. Here, we review the biological role of VPS35 protein, the VPS35 mutations identified in human PD patients, and the potential molecular mechanism by which VPS35 mutations can induce progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Dati
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
46
|
Ye H, Ojelade SA, Li-Kroeger D, Zuo Z, Wang L, Li Y, Gu JYJ, Tepass U, Rodal AA, Bellen HJ, Shulman JM. Retromer subunit, VPS29, regulates synaptic transmission and is required for endolysosomal function in the aging brain. eLife 2020; 9:e51977. [PMID: 32286230 PMCID: PMC7182434 DOI: 10.7554/elife.51977] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/11/2020] [Indexed: 12/13/2022] Open
Abstract
Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson's and Alzheimer's disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.
Collapse
Affiliation(s)
- Hui Ye
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neurology, Baylor College of MedicineHoustonUnited States
| | | | - David Li-Kroeger
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Liping Wang
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Yarong Li
- Department of Neurology, Baylor College of MedicineHoustonUnited States
| | - Jessica YJ Gu
- Department of Cell and Systems Biology, University of TorontoOntarioCanada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of TorontoOntarioCanada
| | | | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical InstituteHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neurology, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| |
Collapse
|
47
|
Huntley GW, Benson DL. Origins of Parkinson's Disease in Brain Development: Insights From Early and Persistent Effects of LRRK2-G2019S on Striatal Circuits. Front Neurosci 2020; 14:265. [PMID: 32273839 PMCID: PMC7113397 DOI: 10.3389/fnins.2020.00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Late-onset Parkinson's disease (PD) is dominated clinically and experimentally by a focus on dopamine neuron degeneration and ensuing motor system abnormalities. There are, additionally, a number of non-motor symptoms - including cognitive and psychiatric - that can appear much earlier in the course of the disease and also significantly impair quality of life. The neurobiology of such cognitive and psychiatric non-motor symptoms is poorly understood. The recognition of genetic forms of late-onset PD, which are clinically similar to idiopathic forms in both motor and non-motor symptoms, raises the perspective that brain cells and circuits - and the behaviors they support - differ in significant ways from normal by virtue of the fact that these mutations are carried throughout life, including especially early developmental critical periods where circuit structure and function is particularly susceptible to the influence of experience-dependent activity. In this focused review, we support this central thesis by highlighting studies of LRRK2-G2019S mouse models. We describe work that shows that in G2019S mutants, corticostriatal activity and plasticity are abnormal by P21, the end of a period of excitatory synaptogenesis in striatum. Moreover, by young adulthood, impaired striatal synaptic and non-synaptic forms of plasticity likely underlie altered and variable performance by mutant mice in validated tasks that test for depression-like and anhedonia-like behaviors. Mechanistically, deficits in cellular, synaptic and behavioral plasticity may be unified by mutation-linked defects in trafficking of AMPAR subunits and other membrane channels, which in turn may reflect impairment in the function of the Rab family of GTPases, a major target of LRRK2 phosphorylation. These findings underscore the need to better understand how PD-related mutant proteins influence brain structure and function during an extended period of brain development, and offer new clues for future therapeutic strategies to target non-motor cognitive or psychiatric symptoms of PD.
Collapse
Affiliation(s)
- George W. Huntley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
48
|
Cunningham LA, Moore DJ. Endosomal sorting pathways in the pathogenesis of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:271-306. [PMID: 32247367 PMCID: PMC7206894 DOI: 10.1016/bs.pbr.2020.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of Parkinson's disease (PD)-associated genes has created a powerful platform to begin to understand and nominate pathophysiological disease mechanisms. Herein, we discuss the genetic and experimental evidence supporting endolysosomal dysfunction as a major pathway implicated in PD. Well-studied familial PD-linked gene products, including LRRK2, VPS35, and α-synuclein, demonstrate how disruption of different aspects of endolysosomal sorting pathways by disease-causing mutations may manifest into PD-like phenotypes in many disease models. Newly-identified PD-linked genes, including auxilin, synaptojanin-1 and Rab39b, as well as putative risk genes for idiopathic PD (endophilinA1, Rab29, GAK), further support endosomal sorting deficits as being central to PD. LRRK2 may represent a nexus by regulating many distinct features of endosomal sorting, potentially via phosphorylation of key endocytosis machinery (i.e., auxilin, synaptojanin-1, endoA1) and Rab GTPases (i.e., Rab29, Rab8A, Rab10) that function within these pathways. In turn, LRRK2 kinase activity is critically regulated by Rab29 at the Golgi complex and retromer-associated VPS35 at endosomes. Taken together, the known functions of PD-associated gene products, the impact of disease-linked mutations, and the emerging functional interactions between these proteins points to endosomal sorting pathways as a key point of convergence in the pathogenesis of PD.
Collapse
Affiliation(s)
- Lindsey A Cunningham
- Van Andel Institute Graduate School, Grand Rapids, MI, United States; Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
49
|
Hu X, Mao C, Fan L, Luo H, Hu Z, Zhang S, Yang Z, Zheng H, Sun H, Fan Y, Yang J, Shi C, Xu Y. Modeling Parkinson's Disease Using Induced Pluripotent Stem Cells. Stem Cells Int 2020; 2020:1061470. [PMID: 32256606 PMCID: PMC7091557 DOI: 10.1155/2020/1061470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/08/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The molecular mechanisms of PD at the cellular level involve oxidative stress, mitochondrial dysfunction, autophagy, axonal transport, and neuroinflammation. Induced pluripotent stem cells (iPSCs) with patient-specific genetic background are capable of directed differentiation into dopaminergic neurons. Cell models based on iPSCs are powerful tools for studying the molecular mechanisms of PD. The iPSCs used for PD studies were mainly from patients carrying mutations in synuclein alpha (SNCA), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PARK2), cytoplasmic protein sorting 35 (VPS35), and variants in glucosidase beta acid (GBA). In this review, we summarized the advances in molecular mechanisms of Parkinson's disease using iPSC models.
Collapse
Affiliation(s)
- Xinchao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Zhihua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Huifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000 Henan, China
| |
Collapse
|
50
|
MacIsaac S, Quevedo Melo T, Zhang Y, Volta M, Farrer MJ, Milnerwood AJ. Neuron-autonomous susceptibility to induced synuclein aggregation is exacerbated by endogenous Lrrk2 mutations and ameliorated by Lrrk2 genetic knock-out. Brain Commun 2020; 2:fcz052. [PMID: 32510053 PMCID: PMC7273240 DOI: 10.1093/braincomms/fcz052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Neuronal aggregates containing α-synuclein are a pathological hallmark of several degenerative diseases; including Parkinson’s disease, Parkinson’s disease with dementia and dementia with Lewy bodies. Understanding the process of α-synuclein aggregation, and discovering means of preventing it, may help guide therapeutic strategy and drug design. Recent advances provide tools to induce α-synuclein aggregation in neuronal cultures. Application of exogenous pre-formed fibrillar α-synuclein induces pathological phosphorylation and accumulation of endogenous α-synuclein, typical of that seen in disease. Genomic variability and mutations in α-synuclein and leucine-rich repeat kinase 2 proteins are the major genetic risk factors for Parkinson’s disease. Reports demonstrate fibril-induced α-synuclein aggregation is increased in cells from leucine-rich repeat kinase 2 pathogenic mutant (G2019S) overexpressing mice, and variously decreased by leucine-rich repeat kinase 2 inhibitors. Elsewhere in vivo antisense knock-down of leucine-rich repeat kinase 2 protein has been shown to protect mice from fibril-induced α-synuclein aggregation, whereas kinase inhibition did not. To help bring clarity to this issue, we took a purely genetic approach in a standardized neuron-enriched culture, lacking glia. We compared fibril treatment of leucine-rich repeat kinase 2 germ-line knock-out, and G2019S germ-line knock-in, mouse cortical neuron cultures with those from littermates. We found leucine-rich repeat kinase 2 knock-out neurons are resistant to α-synuclein aggregation, which predominantly forms within axons, and may cause axonal fragmentation. Conversely, leucine-rich repeat kinase 2 knock-in neurons are more vulnerable to fibril-induced α-synuclein accumulation. Protection and resistance correlated with basal increases in a lysosome marker in knock-out, and an autophagy marker in knock-in cultures. The data add to a growing number of studies that argue leucine-rich repeat kinase 2 silencing, and potentially kinase inhibition, may be a useful therapeutic strategy against synucleinopathy.
Collapse
Affiliation(s)
- Sarah MacIsaac
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada
| | - Thaiany Quevedo Melo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yuting Zhang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mattia Volta
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.,EURAC Research, Institute for Biomedicine, Bolzano, Italy
| | - Matthew J Farrer
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Austen J Milnerwood
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|