1
|
García-García E, Carreras-Caballé M, Coll-Manzano A, Ramón-Lainez A, Besa-Selva G, Pérez-Navarro E, Malagelada C, Alberch J, Masana M, Rodríguez MJ. Preserved VPS13A distribution and expression in Huntington's disease: divergent mechanisms of action for similar movement disorders? Front Neurosci 2024; 18:1394478. [PMID: 38903599 PMCID: PMC11188336 DOI: 10.3389/fnins.2024.1394478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
VPS13A disease and Huntington's disease (HD) are two basal ganglia disorders that may be difficult to distinguish clinically because they have similar symptoms, neuropathological features, and cellular dysfunctions with selective degeneration of the medium spiny neurons of the striatum. However, their etiology is different. VPS13A disease is caused by a mutation in the VPS13A gene leading to a lack of protein in the cells, while HD is due to an expansion of CAG repeat in the huntingtin (Htt) gene, leading to aberrant accumulation of mutant Htt. Considering the similarities of both diseases regarding the selective degeneration of striatal medium spiny neurons, the involvement of VPS13A in the molecular mechanisms of HD pathophysiology cannot be discarded. We analyzed the VPS13A distribution in the striatum, cortex, hippocampus, and cerebellum of a transgenic mouse model of HD. We also quantified the VPS13A levels in the human cortex and putamen nucleus; and compared data on mutant Htt-induced changes in VPS13A expression from differential expression datasets. We found that VPS13A brain distribution or expression was unaltered in most situations with a decrease in the putamen of HD patients and small mRNA changes in the striatum and cerebellum of HD mice. We concluded that the selective susceptibility of the striatum in VPS13A disease and HD may be a consequence of disturbances in different cellular processes with convergent molecular mechanisms already to be elucidated.
Collapse
Affiliation(s)
- Esther García-García
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Maria Carreras-Caballé
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Albert Coll-Manzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Alba Ramón-Lainez
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Gisela Besa-Selva
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Esther Pérez-Navarro
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Malagelada
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Jordi Alberch
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Mercè Masana
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| | - Manuel J. Rodríguez
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
2
|
Zamanian MY, Golmohammadi M, Amin RS, Bustani GS, Romero-Parra RM, Zabibah RS, Oz T, Jalil AT, Soltani A, Kujawska M. Therapeutic Targeting of Krüppel-Like Factor 4 and Its Pharmacological Potential in Parkinson's Disease: a Comprehensive Review. Mol Neurobiol 2024; 61:3596-3606. [PMID: 37996730 PMCID: PMC11087351 DOI: 10.1007/s12035-023-03800-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, is found in different human tissues and shows diverse regulatory activities in a cell-dependent manner. In the brain, KLF4 controls various neurophysiological and neuropathological processes, and its contribution to various neurological diseases has been widely reported. Parkinson's disease (PD) is an age-related neurodegenerative disease that might have a connection with KLF4. In this review, we discussed the potential implication of KLF4 in fundamental molecular mechanisms of PD, including aberrant proteostasis, neuroinflammation, apoptosis, oxidative stress, and iron overload. The evidence collected herein sheds new light on KLF4-mediated pathways, which manipulation appears to be a promising therapeutic target for PD management. However, there is a gap in the knowledge on this topic, and extended research is required to understand the translational value of the KLF4-oriented therapeutical approach in PD.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | | | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Tuba Oz
- Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran.
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland.
| |
Collapse
|
3
|
Siew JJ, Chen HM, Chiu FL, Lee CW, Chang YM, Chen HL, Nguyen TNA, Liao HT, Liu M, Hagar HT, Sun YC, Lai HL, Kuo MH, Blum D, Buée L, Jin LW, Chen SY, Ko TM, Huang JR, Kuo HC, Liu FT, Chern Y. Galectin-3 aggravates microglial activation and tau transmission in tauopathy. J Clin Invest 2024; 134:e165523. [PMID: 37988169 PMCID: PMC10786694 DOI: 10.1172/jci165523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid-β plaques, aggregation of hyperphosphorylated tau (pTau), and microglia activation. Galectin-3 (Gal3) is a β-galactoside-binding protein that has been implicated in amyloid pathology. Its role in tauopathy remains enigmatic. Here, we showed that Gal3 was upregulated in the microglia of humans and mice with tauopathy. pTau triggered the release of Gal3 from human induced pluripotent stem cell-derived microglia in both its free and extracellular vesicular-associated (EV-associated) forms. Both forms of Gal3 increased the accumulation of pathogenic tau in recipient cells. Binding of Gal3 to pTau greatly enhanced tau fibrillation. Besides Gal3, pTau was sorted into EVs for transmission. Moreover, pTau markedly enhanced the number of EVs released by iMGL in a Gal3-dependent manner, suggesting a role of Gal3 in biogenesis of EVs. Single-cell RNA-Seq analysis of the hippocampus of a mouse model of tauopathy (THY-Tau22) revealed a group of pathogenic tau-evoked, Gal3-associated microglia with altered cellular machineries implicated in neurodegeneration, including enhanced immune and inflammatory responses. Genetic removal of Gal3 in THY-Tau22 mice suppressed microglia activation, reduced the level of pTau and synaptic loss in neurons, and rescued memory impairment. Collectively, Gal3 is a potential therapeutic target for tauopathy.
Collapse
Affiliation(s)
| | | | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | - Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Hsiao-Tien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Yung-Chen Sun
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille, France
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, USA
| | | | - Tai-Ming Ko
- Institute of Biomedical Sciences
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
4
|
Tsai TY, Chen CY, Lin TW, Lin TC, Chiu FL, Shih O, Chang MY, Lin YC, Su AC, Chen CM, Jeng US, Kuo HC, Chang CF, Chen YR. Amyloid modifier SERF1a interacts with polyQ-expanded huntingtin-exon 1 via helical interactions and exacerbates polyQ-induced toxicity. Commun Biol 2023; 6:767. [PMID: 37479809 PMCID: PMC10361993 DOI: 10.1038/s42003-023-05142-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Abnormal polyglutamine (polyQ) expansion and fibrillization occur in Huntington's disease (HD). Amyloid modifier SERF enhances amyloid formation, but the underlying mechanism is not revealed. Here, the fibrillization and toxicity effect of SERF1a on Htt-exon1 are examined. SERF1a enhances the fibrillization of and interacts with mutant thioredoxin (Trx)-fused Httex1. NMR studies with Htt peptides show that TrxHttex1-39Q interacts with the helical regions in SERF1a and SERF1a preferentially interacts with the N-terminal 17 residues of Htt. Time-course analysis shows that SERF1a induces mutant TrxHttex1 to a single conformation enriched of β-sheet. Co-expression of SERF1a and Httex1-polyQ in neuroblastoma and lentiviral infection of SERF1a in HD-induced polypotent stem cell (iPSC)-derived neurons demonstrates the detrimental effect of SERF1a in HD. Higher level of SERF1a transcript or protein is detected in HD iPSC, transgenic mice, and HD plasma. Overall, this study provides molecular mechanism for SERF1a and mutant Httex1 to facilitate therapeutic development for HD.
Collapse
Affiliation(s)
- Tien-Ying Tsai
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2. Nankang, Taipei, 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chun-Yu Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Tien-Wei Lin
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Tien-Chang Lin
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Ming-Yun Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Lin
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan.
| |
Collapse
|
5
|
Wang X, Lv S, Sun J, Zhang M, Zhang L, Sun Y, Zhao Z, Wang D, Zhao X, Zhang J. Caffeine reduces oxidative stress to protect against hyperoxia-induced lung injury via the adenosine A2A receptor/cAMP/PKA/Src/ERK1/2/p38MAPK pathway. Redox Rep 2022; 27:270-278. [DOI: 10.1080/13510002.2022.2143114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xijuan Wang
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Shuai Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jianwei Sun
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Meihui Zhang
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Lei Zhang
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Yan Sun
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Ziyan Zhao
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Dandan Wang
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Xinjing Zhao
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| | - Jiajie Zhang
- Department of Paediatrics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, People’s Republic of China
| |
Collapse
|
6
|
Franco R, Lillo A, Navarro G, Reyes-Resina I. The adenosine A 2A receptor is a therapeutic target in neurological, heart and oncogenic diseases. Expert Opin Ther Targets 2022; 26:791-800. [DOI: 10.1080/14728222.2022.2136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Bhargava A, Sandoval Castellanos AM, Shah S, Ning K. An insight into the iPSCs-derived two-dimensional culture and three-dimensional organoid models for neurodegenerative disorders. Interface Focus 2022; 12:20220040. [PMID: 35992771 PMCID: PMC9372641 DOI: 10.1098/rsfs.2022.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 12/20/2022] Open
Abstract
The use of induced pluripotent stem cells (iPSCs) is a promising approach when used as models to study neurodegenerative disorders (NDDs) in vitro. iPSCs have been used in in vitro two-dimensional cultures; however, these two-dimensional cultures do not mimic the physiological three-dimensional cellular environment. The use of iPSCs-derived three-dimensional organoids has risen as a powerful alternative to using animal models to study NDDs. These iPSCs-derived three-dimensional organoids can resemble the complexity of the tissue of interest, making it an approachable, cost-effective technique, to study NDDs in an ethical manner. Furthermore, the use of iPSCs-derived organoids will be an important tool to develop new therapeutics and pharmaceutics to treat NDDs. Herein, we will highlight how iPSCs-derived two-dimensional cultures and three-dimensional organoids have been used to study NDDs, as well as the advantages and disadvantages of both techniques.
Collapse
Affiliation(s)
- Anushka Bhargava
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Ana M. Sandoval Castellanos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Sonali Shah
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
8
|
Weng YT, Chen HM, Chien T, Chiu FL, Kuo HC, Chern Y. TRAX Provides Neuroprotection for Huntington's Disease Via Modulating a Novel Subset of MicroRNAs. Mov Disord 2022; 37:2008-2020. [PMID: 35997316 DOI: 10.1002/mds.29174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/19/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disease caused by CAG-repeat expansions (>36) in exon 1 of HTT, which dysregulates multiple cellular machineries. Translin-associated protein X (TRAX) is a scaffold protein with diverse functions, including suppressing the microRNA (miRNA)-mediated silencing by degrading pre-miRNA. To date, the role of TRAX in neurodegenerative diseases remains unknown. OBJECTIVES We delineated the role of TRAX upregulation during HD progression. METHODS Expression of TRAX in the brains of humans and three mouse models with HD were analyzed by immunohistochemistry staining, western blot, and quantitative reverse transcription-polymerase chain reaction. Adeno-associated viruses harboring TRAX short hairpin RNA were intrastriatally injected into HD mice to downregulate TRAX. HD-like symptoms were analyzed by behavioral and biochemical assessments. The miRNA-sequencing and RNA-sequencing analyses were used to identify the TRAX- regulated miRNA-messenger RNA (mRNA) axis during HD progression. The identified gene targets were validated biochemically in mouse and human striatal cells. RESULTS We discovered that TRAX was upregulated in the brains of HD patients and three HD mouse models. Downregulation of TRAX enhanced 83 miRNAs (including miR-330-3p, miR-496a-3p) and subsequently changed the corresponding mRNA networks critical for HD pathogenesis (eg, DARPP-32 and brain-derived neurotrophic factor). Disruption of the TRAX-mediated miRNA-mRNA axis accelerated the progression of HD-like symptoms, including the degeneration of motor function, accumulation of mHTT aggregates, and shortened neurite outgrowth. CONCLUSIONS We demonstrated that TRAX upregulation is authentic and protective in HD. Our study provides a novel layer of regulation for HD pathogenesis and may lead to the development of new therapeutic strategies for HD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Chemical interference with DSIF complex formation lowers synthesis of mutant huntingtin gene products and curtails mutant phenotypes. Proc Natl Acad Sci U S A 2022; 119:e2204779119. [PMID: 35914128 PMCID: PMC9371670 DOI: 10.1073/pnas.2204779119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Earlier work has shown that siRNA-mediated reduction of the SUPT4H or SUPT5H proteins, which interact to form the DSIF complex and facilitate transcript elongation by RNA polymerase II (RNAPII), can decrease expression of mutant gene alleles containing nucleotide repeat expansions differentially. Using luminescence and fluorescence assays, we identified chemical compounds that interfere with the SUPT4H-SUPT5H interaction and then investigated their effects on synthesis of mRNA and protein encoded by mutant alleles containing repeat expansions in the huntingtin gene (HTT), which causes the inherited neurodegenerative disorder, Huntington's Disease (HD). Here we report that such chemical interference can differentially affect expression of HTT mutant alleles, and that a prototypical chemical, 6-azauridine (6-AZA), that targets the SUPT4H-SUPT5H interaction can modify the biological response to mutant HTT gene expression. Selective and dose-dependent effects of 6-AZA on expression of HTT alleles containing nucleotide repeat expansions were seen in multiple types of cells cultured in vitro, and in a Drosophila melanogaster animal model for HD. Lowering of mutant HD protein and mitigation of the Drosophila "rough eye" phenotype associated with degeneration of photoreceptor neurons in vivo were observed. Our findings indicate that chemical interference with DSIF complex formation can decrease biochemical and phenotypic effects of nucleotide repeat expansions.
Collapse
|
10
|
Beneficial Effects of Polydeoxyribonucleotide (PDRN) in an In Vitro Model of Fuchs Endothelial Corneal Dystrophy. Pharmaceuticals (Basel) 2022; 15:ph15040447. [PMID: 35455444 PMCID: PMC9025871 DOI: 10.3390/ph15040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a bilateral, hereditary syndrome characterized by progressive irreversible injury in the corneal endothelium; it is the most frequent cause for corneal transplantation worldwide. Oxidative stress induces the apoptosis of corneal endothelial cells (CECs), and has a crucial function in FECD pathogenesis. The stimulation of the adenosine A2A receptor (A2Ar) inhibits oxidative stress, reduces inflammation and modulates apoptosis. Polydeoxyribonucleotide (PDRN) is a registered drug that acts through adenosine A2Ar. Thus, the goal of this study was to assess the effect of PDRN in an in vitro FECD model. Human Corneal Endothelial Cells (IHCE) were challenged with H2O2 (200 μM) alone or in combination with PDRN (100 μg/mL), PDRN plus ZM241385 (1 μM) as an A2Ar antagonist, and CGS21680 (1 μM) as a well-known A2Ar agonist. H2O2 reduced the cells’ viability and increased the expression of the pro-inflammatory markers NF-κB, IL-6, IL-1β, and TNF-α; by contrast, it decreased the expression of the anti-inflammatory IL-10. Moreover, the pro-apoptotic genes Bax, Caspase-3 and Caspase-8 were concurrently upregulated with a decrease of Bcl-2 expression. PDRN and CGS21680 reverted the negative effects of H2O2. Co-incubation with ZM241385 abolished the effects of PDRN, indicating that A2Ar is involved in the mode of action of PDRN. These data suggest that PDRN defends IHCE cells against H2O2-induced damage, potentially as a result of its antioxidant, anti-inflammatory and antiapoptotic properties, suggesting that PDRN could be used as an FECD therapy.
Collapse
|
11
|
Expression of the Adenosine A2A-A3 Receptor Heteromer in Different Brain Regions and Marked Upregulation in the Microglia of the Transgenic APPSw,Ind Alzheimer’s Disease Model. Biomedicines 2022; 10:biomedicines10020214. [PMID: 35203424 PMCID: PMC8869194 DOI: 10.3390/biomedicines10020214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Adenosine (Ado) receptors have been instrumental in the detection of heteromers and other higher-order receptor structures, mainly via interactions with other cell surface G-protein-coupled receptors. Apart from the first report of the A1 Ado receptor interacting with the A2A Ado receptor, there has been more recent data on the possibility that every Ado receptor type, A1, A2A, A2B, and A3, may interact with each other. The aim of this paper was to look for the expression and function of the A2A/A3 receptor heteromer (A2AA3Het) in neurons and microglia. In situ proximity ligation assays (PLA), performed in primary cells, showed that A2AA3Het expression was markedly higher in striatal than in cortical and hippocampal neurons, whereas it was similar in resting and activated microglia. Signaling assays demonstrated that the effect of the A2AR agonist, PSB 777, was reduced in the presence of the A3R agonist, 2-Cl-IB-MECA, whereas the effect of the A3R agonist was potentiated by the A2AR antagonist, SCH 58261. Interestingly, the expression of the heteromer was markedly enhanced in microglia from the APPSw,Ind model of Alzheimer’s disease. The functionality of the heteromer in primary microglia from APPSw,Ind mice was more similar to that found in resting microglia from control mice.
Collapse
|
12
|
Lange J, Wood-Kaczmar A, Ali A, Farag S, Ghosh R, Parker J, Casey C, Uno Y, Kunugi A, Ferretti P, Andre R, Tabrizi SJ. Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington's Disease PSC-Derived Striatal Neurons. Front Cell Neurosci 2021; 15:742763. [PMID: 34658796 PMCID: PMC8519404 DOI: 10.3389/fncel.2021.742763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). Disease progression is characterized by the loss of vulnerable neuronal populations within the striatum. A consistent phenotype across HD models is disruption of nucleocytoplasmic transport and nuclear pore complex (NPC) function. Here we demonstrate that high content imaging is a suitable method for detecting mislocalization of lamin-B1, RAN and RANGAP1 in striatal neuronal cultures thus allowing a robust, unbiased, highly powered approach to assay nuclear pore deficits. Furthermore, nuclear pore deficits extended to the selectively vulnerable DARPP32 + subpopulation neurons, but not to astrocytes. Striatal neuron cultures are further affected by changes in gene and protein expression of RAN, RANGAP1 and lamin-B1. Lowering total HTT using HTT-targeted anti-sense oligonucleotides partially restored gene expression, as well as subtly reducing mislocalization of proteins involved in nucleocytoplasmic transport. This suggests that mislocalization of RAN, RANGAP1 and lamin-B1 cannot be normalized by simply reducing expression of CAG-expanded HTT in the absence of healthy HTT protein.
Collapse
Affiliation(s)
- Jenny Lange
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alison Wood-Kaczmar
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Aneesa Ali
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sahar Farag
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rhia Ghosh
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer Parker
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Caroline Casey
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yumiko Uno
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Akiyoshi Kunugi
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ralph Andre
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah J. Tabrizi
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
| |
Collapse
|
13
|
Vasan L, Park E, David LA, Fleming T, Schuurmans C. Direct Neuronal Reprogramming: Bridging the Gap Between Basic Science and Clinical Application. Front Cell Dev Biol 2021; 9:681087. [PMID: 34291049 PMCID: PMC8287587 DOI: 10.3389/fcell.2021.681087] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
Direct neuronal reprogramming is an innovative new technology that involves the conversion of somatic cells to induced neurons (iNs) without passing through a pluripotent state. The capacity to make new neurons in the brain, which previously was not achievable, has created great excitement in the field as it has opened the door for the potential treatment of incurable neurodegenerative diseases and brain injuries such as stroke. These neurological disorders are associated with frank neuronal loss, and as new neurons are not made in most of the adult brain, treatment options are limited. Developmental biologists have paved the way for the field of direct neuronal reprogramming by identifying both intrinsic cues, primarily transcription factors (TFs) and miRNAs, and extrinsic cues, including growth factors and other signaling molecules, that induce neurogenesis and specify neuronal subtype identities in the embryonic brain. The striking observation that postmitotic, terminally differentiated somatic cells can be converted to iNs by mis-expression of TFs or miRNAs involved in neural lineage development, and/or by exposure to growth factors or small molecule cocktails that recapitulate the signaling environment of the developing brain, has opened the door to the rapid expansion of new neuronal reprogramming methodologies. Furthermore, the more recent applications of neuronal lineage conversion strategies that target resident glial cells in situ has expanded the clinical potential of direct neuronal reprogramming techniques. Herein, we present an overview of the history, accomplishments, and therapeutic potential of direct neuronal reprogramming as revealed over the last two decades.
Collapse
Affiliation(s)
- Lakshmy Vasan
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Eunjee Park
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Taylor Fleming
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Świtońska-Kurkowska K, Krist B, Delimata J, Figiel M. Juvenile Huntington's Disease and Other PolyQ Diseases, Update on Neurodevelopmental Character and Comparative Bioinformatic Review of Transcriptomic and Proteomic Data. Front Cell Dev Biol 2021; 9:642773. [PMID: 34277598 PMCID: PMC8281051 DOI: 10.3389/fcell.2021.642773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Polyglutamine (PolyQ) diseases are neurodegenerative disorders caused by the CAG repeat expansion mutation in affected genes resulting in toxic proteins containing a long chain of glutamines. There are nine PolyQ diseases: Huntington’s disease (HD), spinocerebellar ataxias (types 1, 2, 3, 6, 7, and 17), dentatorubral-pallidoluysian atrophy (DRPLA), and spinal bulbar muscular atrophy (SBMA). In general, longer CAG expansions and longer glutamine tracts lead to earlier disease presentations in PolyQ patients. Rarely, cases of extremely long expansions are identified for PolyQ diseases, and they consistently lead to juvenile or sometimes very severe infantile-onset polyQ syndromes. In apparent contrast to the very long CAG tracts, shorter CAGs and PolyQs in proteins seems to be the evolutionary factor enhancing human cognition. Therefore, polyQ tracts in proteins can be modifiers of brain development and disease drivers, which contribute neurodevelopmental phenotypes in juvenile- and adult-onset PolyQ diseases. Therefore we performed a bioinformatics review of published RNAseq polyQ expression data resulting from the presence of polyQ genes in search of neurodevelopmental expression patterns and comparison between diseases. The expression data were collected from cell types reflecting stages of development such as iPSC, neuronal stem cell, neurons, but also the adult patients and models for PolyQ disease. In addition, we extended our bioinformatic transcriptomic analysis by proteomics data. We identified a group of 13 commonly downregulated genes and proteins in HD mouse models. Our comparative bioinformatic review highlighted several (neuro)developmental pathways and genes identified within PolyQ diseases and mouse models responsible for neural growth, synaptogenesis, and synaptic plasticity.
Collapse
Affiliation(s)
| | - Bart Krist
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Delimata
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
15
|
Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021; 10:cells10071565. [PMID: 34206228 PMCID: PMC8306243 DOI: 10.3390/cells10071565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain. There are currently no effective treatments to prevent or delay the progression of HD as knowledge into the mechanisms driving the selective degeneration of MSNs has been hindered by a lack of access to live neurons from individuals with HD. The invention of cell reprogramming provides a revolutionary technique for the study, and potential treatment, of neurological conditions. Cell reprogramming technologies allow for the generation of live disease-affected neurons from patients with neurological conditions, becoming a primary technique for modelling these conditions in vitro. The ability to generate HD-affected neurons has widespread applications for investigating the pathogenesis of HD, the identification of new therapeutic targets, and for high-throughput drug screening. Cell reprogramming also offers a potential autologous source of cells for HD cell replacement therapy. This review provides a comprehensive analysis of the use of cell reprogramming to model HD and a discussion on recent advancements in cell reprogramming technologies that will benefit the HD field.
Collapse
|
16
|
Monk R, Lee K, Jones KS, Connor B. Directly reprogrammed Huntington's disease neural precursor cells generate striatal neurons exhibiting aggregates and impaired neuronal maturation. STEM CELLS (DAYTON, OHIO) 2021; 39:1410-1422. [PMID: 34028139 DOI: 10.1002/stem.3420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/08/2021] [Indexed: 11/07/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Using a highly efficient protocol for direct reprogramming of adult human fibroblasts with chemically modified mRNA, we report the first generation of HD induced neural precursor cells (iNPs) expressing striatal lineage markers that differentiated into DARPP32+ neurons from individuals with adult-onset HD (41-57 CAG). While no transcriptional differences between normal and HD reprogrammed neurons were detected by NanoString nCounter analysis, a subpopulation of HD reprogrammed neurons contained ubiquitinated polyglutamine aggregates. Importantly, reprogrammed HD neurons exhibited impaired neuronal maturation, displaying altered neurite morphology and more depolarized resting membrane potentials. Reduced BDNF protein expression in reprogrammed HD neurons correlated with increased CAG repeat lengths and earlier symptom onset. This model represents a platform for investigating impaired neuronal maturation and screening for neuronal maturation modifiers to treat HD.
Collapse
Affiliation(s)
- Ruth Monk
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Department of Physiology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn S Jones
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Metabolic Aspects of Adenosine Functions in the Brain. Front Pharmacol 2021; 12:672182. [PMID: 34054547 PMCID: PMC8160517 DOI: 10.3389/fphar.2021.672182] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5'-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington's disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marcella Camici
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Simone Allegrini
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Rossana Pesi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Abstract
Significance: The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Recent Advances: Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Critical Issues: Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Future Directions: Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Kolagar TA, Farzaneh M, Nikkar N, Khoshnam SE. Human Pluripotent Stem Cells in Neurodegenerative Diseases: Potentials, Advances and Limitations. Curr Stem Cell Res Ther 2020; 15:102-110. [PMID: 31441732 DOI: 10.2174/1574888x14666190823142911] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/15/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are progressive and uncontrolled gradual loss of motor neurons function or death of neuron cells in the central nervous system (CNS) and the mechanisms underlying their progressive nature remain elusive. There is urgent need to investigate therapeutic strategies and novel treatments for neural regeneration in disorders like Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Currently, the development and identification of pluripotent stem cells enabling the acquisition of a large number of neural cells in order to improve cell recovery after neurodegenerative disorders. Pluripotent stem cells which consist of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their ability to indefinitely self-renew and the capacity to differentiate into different types of cells. The first human ESC lines were established from donated human embryos; while, because of a limited supply of donor embryos, human ESCs derivation remains ethically and politically controversial. Hence, hiPSCs-based therapies have been shown as an effective replacement for human ESCs without embryo destruction. Compared to the invasive methods for derivation of human ESCs, human iPSCs has opened possible to reprogram patient-specific cells by defined factors and with minimally invasive procedures. Human pluripotent stem cells are a good source for cell-based research, cell replacement therapies and disease modeling. To date, hundreds of human ESC and human iPSC lines have been generated with the aim of treating various neurodegenerative diseases. In this review, we have highlighted the recent potentials, advances, and limitations of human pluripotent stem cells for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Tannaz Akbari Kolagar
- Faculty of Biological Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Negin Nikkar
- Department of Biology, Faculty of Sciences, Alzahra University, Tehran, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Machiela E, Jeloka R, Caron NS, Mehta S, Schmidt ME, Baddeley HJE, Tom CM, Polturi N, Xie Y, Mattis VB, Hayden MR, Southwell AL. The Interaction of Aging and Cellular Stress Contributes to Pathogenesis in Mouse and Human Huntington Disease Neurons. Front Aging Neurosci 2020; 12:524369. [PMID: 33192449 PMCID: PMC7531251 DOI: 10.3389/fnagi.2020.524369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
Huntington disease (HD) is a fatal, inherited neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. While mutant HTT is present ubiquitously throughout life, HD onset typically occurs in mid-life. Oxidative damage accumulates in the aging brain and is a feature of HD. We sought to interrogate the roles and interaction of age and oxidative stress in HD using primary Hu97/18 mouse neurons, neurons differentiated from HD patient induced pluripotent stem cells (iPSCs), and the brains of HD mice. We find that primary neurons must be matured in culture for canonical stress responses to occur. Furthermore, when aging is accelerated in mature HD neurons, mutant HTT accumulates and sensitivity to oxidative stress is selectively enhanced. Furthermore, we observe HD-specific phenotypes in neurons and mouse brains that have undergone accelerated aging, including a selective increase in DNA damage. These findings suggest a role for aging in HD pathogenesis and an interaction between the biological age of HD neurons and sensitivity to exogenous stress.
Collapse
Affiliation(s)
- Emily Machiela
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Ritika Jeloka
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Nicholas S. Caron
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shagun Mehta
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mandi E. Schmidt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Helen J. E. Baddeley
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Colton M. Tom
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nalini Polturi
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Yuanyun Xie
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Virginia B. Mattis
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Amber L. Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Powell SK, O'Shea CP, Shannon SR, Akbarian S, Brennand KJ. Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:155-206. [PMID: 32578147 DOI: 10.1007/978-3-030-45493-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic and severe neuropsychiatric condition manifested by cognitive, emotional, affective, perceptual, and behavioral abnormalities. Despite decades of research, the biological substrates driving the signs and symptoms of the disorder remain elusive, thus hampering progress in the development of treatments aimed at disease etiologies. The recent emergence of human induced pluripotent stem cell (hiPSC)-based models has provided the field with a highly innovative approach to generate, study, and manipulate living neural tissue derived from patients, making possible the exploration of fundamental roles of genes and early-life stressors in disease-relevant cell types. Here, we begin with a brief overview of the clinical, epidemiological, and genetic aspects of the condition, with a focus on schizophrenia as a neurodevelopmental disorder. We then highlight relevant technical advancements in hiPSC models and assess novel findings attained using hiPSC-based approaches and their implications for disease biology and treatment innovation. We close with a critical appraisal of the developments necessary for both further expanding knowledge of schizophrenia and the translation of new insights into therapeutic innovations.
Collapse
Affiliation(s)
- Samuel K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Callan P O'Shea
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Rose Shannon
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Modeling Neurodevelopmental Deficits in Tuberous Sclerosis Complex with Stem Cell Derived Neural Precursors and Neurons. ADVANCES IN NEUROBIOLOGY 2020. [PMID: 32578142 DOI: 10.1007/978-3-030-45493-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder that is caused by mutations in TSC1 or TSC2. TSC is a multi-organ disorder characterized by development of non-malignant cellular overgrowths, called hamartomas, in different organs of the body. TSC is also characterized as a neurodevelopmental disorder presenting with epilepsy and autism, and formation of cortical malformations ("tubers"), subependymal giant cell astrocytomas (SEGAs), and subependymal nodules (SENs) in the patient's brain. In this chapter, we are going to give an overview of neural stem cell and neuronal development in TSC. In addition, we will also describe previously developed animal models of TSC that display seizures, autistic-like behaviors, and neuronal cell abnormalities in vivo, and we will compare them to disease phenotypes detected with human stem cell derived neuronal cells in vitro. We will describe the effects of TSC-mutations in different neural cell subtypes, and discuss the mitochondrial function, autophagy, and synaptic development and functional deficits in the neurons. Finally, we will review utilization of these human TSC-patient derived neuronal models for drug screening to develop new treatment options for the neurological phenotypes seen in TSC patients.
Collapse
|
23
|
Zhang X, Hu D, Shang Y, Qi X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165431. [PMID: 30898538 PMCID: PMC6751032 DOI: 10.1016/j.bbadis.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/09/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Current application of human induced pluripotent stem cells (hiPSCs) technology in patient-specific models of neurodegenerative disorders recapitulate some of key phenotypes of diseases, representing disease-specific cellular modeling and providing a unique platform for therapeutics development. We review recent efforts toward advancing hiPSCs-derived neuronal cell types and highlight their potential use for the development of more complex in vitro models of neurodegenerative diseases by focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. We present evidence from previous works on the important phenotypic changes of various neuronal types in these neurological diseases. We also summarize efforts on conducting low- and high-throughput screening experiments with hiPSCs toward developing potential therapeutics for treatment of neurodegenerative diseases. Lastly, we discuss the limitations of hiPSCs culture system in studying neurodegenerative diseases and alternative strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Xinwen Zhang
- Center of Implant Dentistry, School of Stomatology, China Medical University, Shenyang 110002, China; Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Yutong Shang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Wu YY, Chiu FL, Yeh CS, Kuo HC. Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biol 2020; 9:180177. [PMID: 30958120 PMCID: PMC6367134 DOI: 10.1098/rsob.180177] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adult-onset neurodegenerative diseases are among the most difficult human health conditions to model for drug development. Most genetic or toxin-induced cell and animal models cannot faithfully recapitulate pathology in disease-relevant cells, making it excessively challenging to explore the potential mechanisms underlying sporadic disease. Patient-derived induced pluripotent stem cells (iPSCs) can be differentiated into disease-relevant neurons, providing an unparalleled platform for in vitro modelling and development of therapeutic strategies. Here, we review recent progress in generating Alzheimer's, Parkinson's and Huntington's disease models from patient-derived iPSCs. We also describe novel discoveries of pathological mechanisms and drug evaluations that have used these patient iPSC-derived neuronal models. Additionally, current human iPSC technology allows researchers to model diseases with 3D brain organoids, which are more representative of tissue architecture than traditional neuronal cultures. We discuss remaining challenges and emerging opportunities for the use of three-dimensional brain organoids in modelling brain development and neurodegeneration.
Collapse
Affiliation(s)
- Yi-Ying Wu
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China
| | - Feng-Lan Chiu
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China
| | - Chan-Shien Yeh
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China
| | - Hung-Chih Kuo
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China.,2 Genomics Research Center, Academia Sinica , Taipei 11529 , Taiwan, Republic of China.,3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University , Taipei , Taiwan, Republic of China
| |
Collapse
|
25
|
Csobonyeiova M, Polak S, Danisovic L. Recent Overview of the Use of iPSCs Huntington's Disease Modeling and Therapy. Int J Mol Sci 2020; 21:ijms21062239. [PMID: 32213859 PMCID: PMC7139425 DOI: 10.3390/ijms21062239] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) is an inherited, autosomal dominant, degenerative disease characterized by involuntary movements, cognitive decline, and behavioral impairment ending in death. HD is caused by an expansion in the number of CAG repeats in the huntingtin gene on chromosome 4. To date, no effective therapy for preventing the onset or progression of the disease has been found, and many symptoms do not respond to pharmacologic treatment. However, recent results of pre-clinical trials suggest a beneficial effect of stem-cell-based therapy. Induced pluripotent stem cells (iPSCs) represent an unlimited cell source and are the most suitable among the various types of autologous stem cells due to their patient specificity and ability to differentiate into a variety of cell types both in vitro and in vivo. Furthermore, the cultivation of iPSC-derived neural cells offers the possibility of studying the etiopathology of neurodegenerative diseases, such as HD. Moreover, differentiated neural cells can organize into three-dimensional (3D) organoids, mimicking the complex architecture of the brain. In this article, we present a comprehensive review of recent HD models, the methods for differentiating HD–iPSCs into the desired neural cell types, and the progress in gene editing techniques leading toward stem-cell-based therapy.
Collapse
Affiliation(s)
- Maria Csobonyeiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (S.P.)
| | - Stefan Polak
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (S.P.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-59357215
| |
Collapse
|
26
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
27
|
The protective effect of inosine against rotenone-induced Parkinson's disease in mice; role of oxido-nitrosative stress, ERK phosphorylation, and A2AR expression. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1041-1053. [PMID: 31915844 DOI: 10.1007/s00210-019-01804-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a severe disabling syndrome in which neuroinflammation and various signaling pathways are believed to mediate dopaminergic neurodegeneration. Here, the possible disease-modifying effects of the purine nucleoside inosine were examined against rotenone-induced PD. Mice were allocated into six groups, namely, a normal control group receiving dimethylsulfoxide, a PD control group receiving rotenone, a standard treatment group receiving L-dopa/carbidopa together with rotenone, and three treatment groups receiving inosine in low, medium, and high doses together with rotenone. At the end of the experimental protocol, three behavioral tests were performed to assess PD motor manifestations, namely, wire-hanging test, wood-walking test, and stair test. After performing the behavioral study, mice striata were isolated for the colorimetric assay of hypoxanthine, the enzyme-linked immunosorbent assay of dopamine, tumor necrosis factor-α, interleukin-6 and nitrite, the Western blot estimation of total and phosphorylated extracellular signal-regulated kinase (tERK and pERK), the polymerase chain reaction estimation of adenosine A2A receptor (A2AR) expression, as well as the histopathological examination of substantia nigra and striatal tissue. Inosine protected against PD progression in a dose-dependent manner, with the effect comparable to the standard treatment L-dopa/carbidopa, evidenced by behavioral, biochemical, and histologic findings. The beneficial antiparkinsonian effect of inosine could be attributed to the ability of the drug to ameliorate neuroinflammation and oxido-nitrosative stress, together with suppression of ERK phosphorylation and down-regulation of A2AR expression. Inosine could therefore be considered as a disease-modifying agent against PD, but further studies are claimed to confirm such effects clinically.
Collapse
|
28
|
Mateus JM, Ribeiro FF, Alonso-Gomes M, Rodrigues RS, Marques JM, Sebastião AM, Rodrigues RJ, Xapelli S. Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Joana M. Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Alonso-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S. Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M. Marques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo J. Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
29
|
Pueraria lobata and Daidzein Reduce Cytotoxicity by Enhancing Ubiquitin-Proteasome System Function in SCA3-iPSC-Derived Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8130481. [PMID: 31687087 PMCID: PMC6800904 DOI: 10.1155/2019/8130481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion within the ATXN3/MJD1 gene. The expanded CAG repeats encode a polyglutamine (polyQ) tract at the C-terminus of the ATXN3 protein. ATXN3 containing expanded polyQ forms aggregates, leading to subsequent cellular dysfunctions including an impaired ubiquitin-proteasome system (UPS). To investigate the pathogenesis of SCA3 and develop potential therapeutic strategies, we established induced pluripotent stem cell (iPSC) lines from SCA3 patients (SCA3-iPSC). Neurons derived from SCA3-iPSCs formed aggregates that are positive to the polyQ marker 1C2. Treatment with the proteasome inhibitor, MG132, on SCA3-iPSC-derived neurons downregulated proteasome activity, increased production of radical oxygen species (ROS), and upregulated the cleaved caspase 3 level and caspase 3 activity. This increased susceptibility to the proteasome inhibitor can be rescued by a Chinese herbal medicine (CHM) extract NH037 (from Pueraria lobata) and its constituent daidzein via upregulating proteasome activity and reducing protein ubiquitination, oxidative stress, cleaved caspase 3 level, and caspase 3 activity. Our results successfully recapitulate the key phenotypes of the neurons derived from SCA3 patients, as well as indicate the potential of NH037 and daidzein in the treatment for SCA3 patients.
Collapse
|
30
|
Sabti M, Sasaki K, Gadhi C, Isoda H. Elucidation of the Molecular Mechanism Underlying Lippia citriodora(Lim.)-Induced Relaxation and Anti-Depression. Int J Mol Sci 2019; 20:E3556. [PMID: 31330819 PMCID: PMC6678442 DOI: 10.3390/ijms20143556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Lippia citriodora ethanolic extract (VEE) and verbascoside (Vs), a phenypropanoid glycoside, have been demonstrated to exert relaxant and anxiolytic properties. However, the molecular mechanisms behind their effects are still unclear. In this work, we studied the effects and action mechanisms of VEE and Vs in vivo and in vitro, on human neurotypic SH-SY5Y cells.TST was conducted on mice treated orally with VEE (25, 50 and 100 mg/Kg), Vs (2.5 and 5 mg/Kg), Bupropion (20 mg/Kg) and Milli-Q water. Higher dose of VEE-treated mice showed an increase of immobility time compared to control groups, indicating an induction of relaxation. This effect was found to be induced by regulation of genes playing key roles in calcium homeostasis (calcium channels), cyclic AMP (cAMP) production and energy metabolism. On the other hand, low doses of VEE and Vs showed an antidepressant-like effect and was confirmed by serotonin, noradrenalin, dopamine and BDNF expressions. Finally, VEE and Vsenhancedcell viability, mitochondrial activity and calcium uptake in vitro confirming in vivo findings. Our results showed induction of relaxation and antidepressant-like effects depending on the administered dose of VEE and Vs, through modulation of cAMP and calcium.
Collapse
Affiliation(s)
- Mouad Sabti
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City 305-8572, Ibaraki, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tennodai 1-1-1, Tsukuba City 305-8577, Ibaraki, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City 305-8572, Ibaraki, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
| | - Chemseddoha Gadhi
- Faculty of Sciences Semlalia, Cadi Ayyad University, Avenue Prince MoulayAbdellah, BP 2390, 40000 Marrakesh, Morocco
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City 305-8572, Ibaraki, Japan.
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tennodai 1-1-1, Tsukuba City 305-8577, Ibaraki, Japan.
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan.
| |
Collapse
|
31
|
Smith‐Dijak AI, Sepers MD, Raymond LA. Alterations in synaptic function and plasticity in Huntington disease. J Neurochem 2019; 150:346-365. [DOI: 10.1111/jnc.14723] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/28/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Amy I. Smith‐Dijak
- Graduate Program in Neuroscience the University of British Columbia Vancouver British Columbia Canada
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Marja D. Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Lynn A. Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
32
|
Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 2019; 9:565-611. [PMID: 30873582 PMCID: PMC6705133 DOI: 10.1002/cphy.c180025] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurological disorders have emerged as a predominant healthcare concern in recent years due to their severe consequences on quality of life and prevalence throughout the world. Understanding the underlying mechanisms of these diseases and the interactions between different brain cell types is essential for the development of new therapeutics. Induced pluripotent stem cells (iPSCs) are invaluable tools for neurological disease modeling, as they have unlimited self-renewal and differentiation capacity. Mounting evidence shows: (i) various brain cells can be generated from iPSCs in two-dimensional (2D) monolayer cultures; and (ii) further advances in 3D culture systems have led to the differentiation of iPSCs into organoids with multiple brain cell types and specific brain regions. These 3D organoids have gained widespread attention as in vitro tools to recapitulate complex features of the brain, and (iii) complex interactions between iPSC-derived brain cell types can recapitulate physiological and pathological conditions of blood-brain barrier (BBB). As iPSCs can be generated from diverse patient populations, researchers have effectively applied 2D, 3D, and BBB models to recapitulate genetically complex neurological disorders and reveal novel insights into molecular and genetic mechanisms of neurological disorders. In this review, we describe recent progress in the generation of 2D, 3D, and BBB models from iPSCs and further discuss their limitations, advantages, and future ventures. This review also covers the current status of applications of 2D, 3D, and BBB models in drug screening, precision medicine, and modeling a wide range of neurological diseases (e.g., neurodegenerative diseases, neurodevelopmental disorders, brain injury, and neuropsychiatric disorders). © 2019 American Physiological Society. Compr Physiol 9:565-611, 2019.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott G. Canfield
- Department of Cellular & Integrative Physiology, IU School of Medicine-Terre Haute, Terre Haute, IN, USA
| | - Emily R. Seminary
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha L. Sison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
33
|
Chuang CY, Yang CC, Soong BW, Yu CY, Chen SH, Huang HP, Kuo HC. Modeling spinocerebellar ataxias 2 and 3 with iPSCs reveals a role for glutamate in disease pathology. Sci Rep 2019; 9:1166. [PMID: 30718627 PMCID: PMC6361947 DOI: 10.1038/s41598-018-37774-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/11/2018] [Indexed: 01/25/2023] Open
Abstract
Spinocerebellar ataxias 2 and 3 (SCA2 and SCA3) are dominantly inherited neurodegenerative diseases caused by expansion of polyglutamine-encoding CAG repeats in the affected genes. The etiology of these disorders is known to involve widespread loss of neuronal cells in the cerebellum, however, the mechanisms that contribute to cell death are still elusive. Here we established SCA2 and SCA3 induced pluripotent stem cells (iPSCs) and demonstrated that SCA-associated pathological features can be recapitulated in SCA-iPSC-derived neurons. Importantly, our results also revealed that glutamate stimulation promotes the development of disease-related phenotypes in SCA-iPSC-derived neurons, including altered composition of glutamatergic receptors, destabilized intracellular calcium, and eventual cell death. Furthermore, anti-glutamate drugs and calcium stabilizer treatment protected the SCA-iPSC-derived neurons and reduced cell death. Collectively, our study demonstrates that the SCA-iPSC-derived neurons can recapitulate SCA-associated pathological features, providing a valuable tool to explore SCA pathogenic mechanisms and screen drugs to identify potential SCA therapeutics.
Collapse
Affiliation(s)
- Ching-Yu Chuang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Chao Yang
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Bing-Wen Soong
- Departments of Neurology, National Yang-Ming University Faculty of Medicine and Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Ying Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Hwa Chen
- Lab of Systems and Network Biology, Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Genomics Research Center, Academia Sinica, Taipei, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan. .,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Świtońska K, Szlachcic WJ, Handschuh L, Wojciechowski P, Marczak Ł, Stelmaszczuk M, Figlerowicz M, Figiel M. Identification of Altered Developmental Pathways in Human Juvenile HD iPSC With 71Q and 109Q Using Transcriptome Profiling. Front Cell Neurosci 2019; 12:528. [PMID: 30713489 PMCID: PMC6345698 DOI: 10.3389/fncel.2018.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022] Open
Abstract
In Huntington disease (HD) subtle symptoms in patients may occur years or even decades prior to diagnosis. HD changes at a molecular level may begin as early as in cells that are non-lineage committed such as stem cells or HD patients induced pluripotent stem cells (iPSCs) offering opportunity to enhance the understanding of the HD pathogenesis. In addition, juvenile HD non-linage committed cells were previously not directly investigated in detail by RNA-seq. In the present manuscript, we define the early HD and juvenile HD transcriptional alterations using 6 human HD iPS cell lines from two patients, one with 71 CAGs and one with 109 CAG repeats. We identified 107 (6 HD lines), 198 (3 HD71Q lines) and 217 (3 HD109Q lines) significantly dysregulated mRNAs in each comparison group. The analyses showed that many of dysregulated transcripts in HD109Q iPSC lines are involved in DNA damage response and apoptosis, such as CCND1, CDKN1A, TP53, BAX, TNFRSF10B, TNFRSF10C, TNFRSF10D, DDB2, PLCB1, PRKCQ, HSH2D, ZMAT3, PLK2, and RPS27L. Most of them were identified as downregulated and their proteins are direct interactors with TP53. HTT probably alters the level of several TP53 interactors influencing apoptosis. This may lead to accumulation of an excessive number of progenitor cells and potential disruption of cell differentiation and production of mature neurons. In addition, HTT effects on cell polarization also demonstrated in the analysis may result in a generation of incorrect progenitors. Bioinformatics analysis of transcripts dysregulated in HD71Q iPSC lines showed that several of them act as transcription regulators during the early multicellular stages of development, such as ZFP57, PIWIL2, HIST1H3C, and HIST1H2BB. Significant upregulation of most of these transcripts may lead to a global increase in expression level of genes involved in pathways critical for embryogenesis and early neural development. In addition, MS analysis revealed altered levels of TP53 and ZFP30 proteins reflecting the functional significance of dysregulated mRNA levels of these proteins which were associated with apoptosis and DNA binding. Our finding very well corresponds to the fact that mutation in the HTT gene may cause precocious neurogenesis and identifies pathways likely disrupted during development.
Collapse
Affiliation(s)
- Karolina Świtońska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,Institute of Computing Science, Poznan University of Technology, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Stelmaszczuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
35
|
cAMP-producing chemogenetic and adenosine A2a receptor activation inhibits the inwardly rectifying potassium current in striatal projection neurons. Neuropharmacology 2019; 148:229-243. [PMID: 30659840 DOI: 10.1016/j.neuropharm.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Adenosine A2a receptors (A2aRs) are highly and selectively expressed in D2-medium spiny neurons (D2-MSNs) that also express a high level of dopamine D2 receptors (D2Rs). However, it was not established how A2aR activity affects D2-MSN excitability, let alone the ion channels involved. We have performed two sets of experiments to determine the potential A2aR agonistic effects on D2-MSN intrinsic excitability and the underlying ion channel mechanism. First, we have used the cAMP-producing, Gαs/olf coupled designer receptors exclusively activated by designer drug (Gs-DREADDs) to phenocopy cAMP-stimulating A2aR activation. We found that activation of Gs-DREADD inhibited the inwardly rectifying potassium current (Kir)-a key regulator of MSN excitability, caused a depolarization, increased input resistance, and substantially increased the intrinsic excitability of MSNs such that depolarizing inputs evoked many more action potentials. Second, we have determined that A2aR agonism produced these same excitatory effects on D2-MSN intrinsic excitability and spike firing, although at lower magnitudes than those induced by Gs-DREADD activation; furthermore, these A2aR-triggered excitatory effects were intact in the presence of a D2R antagonist. Taken together, these results clearly establish that in striatal D2-MSNs, A2aR activation can independently inhibit Kir and increase intrinsic excitability and spike and neurotransmitter output; our results also indicate that Gs-DREADD can serve as a broadly useful positive control for neurotransmitter receptors that increase intracellular cAMP levels and hence facilitate the determination of the cellular effects of these neurotransmitter receptors.
Collapse
|
36
|
Weng YT, Chien T, Kuan II, Chern Y. The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions. J Biomed Sci 2018; 25:71. [PMID: 30285728 PMCID: PMC6171312 DOI: 10.1186/s12929-018-0473-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders (such as bipolar disorder, depression, and schizophrenia) affect the lives of millions of individuals worldwide. Despite the tremendous efforts devoted to various types of psychiatric studies and rapidly accumulating genetic information, the molecular mechanisms underlying psychiatric disorder development remain elusive. Among the genes that have been implicated in schizophrenia and other mental disorders, disrupted in schizophrenia 1 (DISC1) and glycogen synthase kinase 3 (GSK3) have been intensively investigated. DISC1 binds directly to GSK3 and modulates many cellular functions by negatively inhibiting GSK3 activity. The human DISC1 gene is located on chromosome 1 and is highly associated with schizophrenia and other mental disorders. A recent study demonstrated that a neighboring gene of DISC1, translin-associated factor X (TRAX), binds to the DISC1/GSK3β complex and at least partly mediates the actions of the DISC1/GSK3β complex. Previous studies also demonstrate that TRAX and most of its interacting proteins that have been identified so far are risk genes and/or markers of mental disorders. In the present review, we will focus on the emerging roles of TRAX and its interacting proteins (including DISC1 and GSK3β) in psychiatric disorders and the potential implications for developing therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - I-I Kuan
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
37
|
Zhang R, Guo L, Ji Z, Li X, Zhang C, Ma Z, Fu Q, Qu R, Ma S. Radix Scutellariae Attenuates CUMS-Induced Depressive-Like Behavior by Promoting Neurogenesis via cAMP/PKA Pathway. Neurochem Res 2018; 43:2111-2120. [DOI: 10.1007/s11064-018-2635-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
|
38
|
Golas MM. Human cellular models of medium spiny neuron development and Huntington disease. Life Sci 2018; 209:179-196. [PMID: 30031060 DOI: 10.1016/j.lfs.2018.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
The loss of gamma-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum is the hallmark of Huntington disease (HD), an incurable neurodegenerative disorder characterized by progressive motor, psychiatric, and cognitive symptoms. Transplantation of MSNs or their precursors represents a promising treatment strategy for HD. In initial clinical trials in which HD patients received fetal neurografts directly into the striatum without a pretransplant cell-differentiation step, some patients exhibited temporary benefits. Meanwhile, major challenges related to graft overgrowth, insufficient survival of grafted cells, and limited availability of donated fetal tissue remain. Thus, the development of approaches that allow modeling of MSN differentiation and HD development in cell culture platforms may improve our understanding of HD and translate, ultimately, into HD treatment options. Here, recent advances in the in vitro differentiation of MSNs derived from fetal neural stem cells/progenitor cells (NSCs/NPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and induced NSCs (iNSCs) as well as advances in direct transdifferentiation are reviewed. Progress in non-allele specific and allele specific gene editing of HTT is presented as well. Cell characterization approaches involving phenotyping as well as in vitro and in vivo functional assays are also discussed.
Collapse
Affiliation(s)
- Monika M Golas
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 3, Building 1233, DK-8000 Aarhus C, Denmark; Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
39
|
Inhibition of Japanese encephalitis virus infection by the host zinc-finger antiviral protein. PLoS Pathog 2018; 14:e1007166. [PMID: 30016363 PMCID: PMC6049953 DOI: 10.1371/journal.ppat.1007166] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
CCCH-type zinc-finger antiviral protein (ZAP) is a host factor that restricts the infection of many viruses mainly through RNA degradation, translation inhibition and innate immune responses. So far, only one flavivirus, yellow fever virus, has been reported to be ZAP-resistant. Here, we investigated the antiviral potential of human ZAP (isoform ZAP-L and ZAP-S) against three flaviviruses, Japanese encephalitis virus (JEV), dengue virus (DENV) and Zika virus (ZIKV). Infection of JEV but not DENV or ZIKV was blocked by ZAP overexpression, and depletion of endogenous ZAP enhanced JEV replication. ZAP hampered JEV translation and targeted viral RNA for 3′-5′ RNA exosome-mediated degradation. The zinc-finger motifs of ZAP were essential for RNA targeting and anti-JEV activity. JEV 3′-UTR, especially in the region with dumbbell structures and high content of CG dinucleotide, was mapped to bind ZAP and confer sensitivity to ZAP. In summary, we identified JEV as the first ZAP-sensitive flavivirus. ZAP may act as an intrinsic antiviral factor through specific RNA binding to fight against JEV infection. In addition to innate and adaptive immunities, many cellular proteins also exert antiviral activity against viral invasion. Human zinc-finger antiviral protein (ZAP) is a cellular restriction factor against many viruses but its role with regard to the flavivirus family is largely unknown. We tested the antiviral potential of ZAP against three flaviviruses and found that Japanese encephalitis virus (JEV) was ZAP-sensitive, while dengue virus and Zika virus were ZAP-resistant. ZAP specifically targets JEV viral RNA and induces translation repression and RNA degradation. Our findings highlight the ZAP-mediated anti-JEV mechanisms and extend the antiviral spectrum of ZAP to include a member of the Flavivirus genus.
Collapse
|
40
|
Trax: A versatile signaling protein plays key roles in synaptic plasticity and DNA repair. Neurobiol Learn Mem 2018; 159:46-51. [PMID: 30017897 DOI: 10.1016/j.nlm.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 01/23/2023]
Abstract
Translin-associated protein X (TSNAX), also called trax, was first identified as a protein that interacts with translin. Subsequent studies demonstrated that these proteins form a heteromeric RNase complex that mediates degradation of microRNAs, a pivotal finding that has stimulated interest in understanding the role of translin and trax in cell signaling. Recent studies addressing this question have revealed that trax plays key roles in both synaptic plasticity and DNA repair signaling pathways. In the context of synaptic plasticity, trax works together with its partner protein, translin, to degrade a subset of microRNAs. Activation of the translin/trax RNase complex reverses microRNA-mediated translational silencing to trigger dendritic protein synthesis critical for synaptic plasticity. In the context of DNA repair, trax binds to and activates ATM, a central component of the double-stranded DNA repair process. Thus, these studies focus attention on trax as a critical signaling protein that interacts with multiple partners to impact diverse signaling pathways. To stimulate interest in deciphering the multifaceted role of trax in cell signaling, we summarize the current understanding of trax biology and highlight gaps in our knowledge about this protean protein.
Collapse
|
41
|
Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, de Souza HDN, Ulrich H. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Front Pharmacol 2018; 9:325. [PMID: 29692728 PMCID: PMC5902708 DOI: 10.3389/fphar.2018.00325] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.
Collapse
Affiliation(s)
| | - Yahaira Naaldijk
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Laura Sardá-Arroyo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria C. B. Gonçalves
- Department of Neurology and Neuroscience, Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Micheli M. Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Héllio D. N. de Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Liu J, Ciarochi J, Calhoun VD, Paulsen JS, Bockholt HJ, Johnson HJ, Long JD, Lin D, Espinoza FA, Misiura MB, Caprihan A, Turner JA. Genetics Modulate Gray Matter Variation Beyond Disease Burden in Prodromal Huntington's Disease. Front Neurol 2018; 9:190. [PMID: 29651271 PMCID: PMC5884935 DOI: 10.3389/fneur.2018.00190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by an expansion mutation of the cytosine–adenine–guanine (CAG) trinucleotide in the HTT gene. Decline in cognitive and motor functioning during the prodromal phase has been reported, and understanding genetic influences on prodromal disease progression beyond CAG will benefit intervention therapies. From a prodromal HD cohort (N = 715), we extracted gray matter (GM) components through independent component analysis and tested them for associations with cognitive and motor functioning that cannot be accounted for by CAG-induced disease burden (cumulative effects of CAG expansion and age). Furthermore, we examined genetic associations (at the genomic, HD pathway, and candidate region levels) with the GM components that were related to functional decline. After accounting for disease burden, GM in a component containing cuneus, lingual, and middle occipital regions was positively associated with attention and working memory performance, and the effect size was about a tenth of that of disease burden. Prodromal participants with at least one dystonia sign also had significantly lower GM volume in a bilateral inferior parietal component than participants without dystonia, after controlling for the disease burden. Two single-nucleotide polymorphisms (SNPs: rs71358386 in NCOR1 and rs71358386 in ADORA2B) in the HD pathway were significantly associated with GM volume in the cuneus component, with minor alleles being linked to reduced GM volume. Additionally, homozygous minor allele carriers of SNPs in a candidate region of ch15q13.3 had significantly higher GM volume in the inferior parietal component, and one minor allele copy was associated with a total motor score decrease of 0.14 U. Our findings depict an early genetical GM reduction in prodromal HD that occurs irrespective of disease burden and affects regions important for cognitive and motor functioning.
Collapse
Affiliation(s)
- Jingyu Liu
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Jennifer Ciarochi
- Department of Psychology, Georgia State University, Atlanta, GA, United States.,Department of Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Vince D Calhoun
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Jane S Paulsen
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Neurology, University of Iowa, Iowa City, IA, United States.,Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - H Jeremy Bockholt
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Neurology, University of Iowa, Iowa City, IA, United States.,Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Hans J Johnson
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Biostatistics, University of Iowa, Iowa City, IA, United States
| | - Dongdong Lin
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States
| | - Flor A Espinoza
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States
| | - Maria B Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, United States.,Department of Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Arvind Caprihan
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States
| | - Jessica A Turner
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States.,Department of Neuroscience, Georgia State University, Atlanta, GA, United States
| | | |
Collapse
|
43
|
Ghaffari LT, Starr A, Nelson AT, Sattler R. Representing Diversity in the Dish: Using Patient-Derived in Vitro Models to Recreate the Heterogeneity of Neurological Disease. Front Neurosci 2018; 12:56. [PMID: 29479303 PMCID: PMC5812426 DOI: 10.3389/fnins.2018.00056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Neurological diseases, including dementias such as Alzheimer's disease (AD) and fronto-temporal dementia (FTD) and degenerative motor neuron diseases such as amyotrophic lateral sclerosis (ALS), are responsible for an increasing fraction of worldwide fatalities. Researching these heterogeneous diseases requires models that endogenously express the full array of genetic and epigenetic factors which may influence disease development in both familial and sporadic patients. Here, we discuss the two primary methods of developing patient-derived neurons and glia to model neurodegenerative disease: reprogramming somatic cells into induced pluripotent stem cells (iPSCs), which are differentiated into neurons or glial cells, or directly converting (DC) somatic cells into neurons (iNeurons) or glial cells. Distinct differentiation techniques for both models result in a variety of neuronal and glial cell types, which have been successful in displaying unique hallmarks of a variety of neurological diseases. Yield, length of differentiation, ease of genetic manipulation, expression of cell-specific markers, and recapitulation of disease pathogenesis are presented as determining factors in how these methods may be used separately or together to ascertain mechanisms of disease and identify therapeutics for distinct patient populations or for specific individuals in personalized medicine projects.
Collapse
Affiliation(s)
- Layla T Ghaffari
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Alexander Starr
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Andrew T Nelson
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
44
|
Chien T, Weng YT, Chang SY, Lai HL, Chiu FL, Kuo HC, Chuang DM, Chern Y. GSK3β negatively regulates TRAX, a scaffold protein implicated in mental disorders, for NHEJ-mediated DNA repair in neurons. Mol Psychiatry 2018; 23:2375-2390. [PMID: 29298990 PMCID: PMC6294740 DOI: 10.1038/s41380-017-0007-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
Abstract
Translin-associated protein X (TRAX) is a scaffold protein with various functions and has been associated with mental illnesses, including schizophrenia. We have previously demonstrated that TRAX interacts with a Gsα protein-coupled receptor, the A2A adenosine receptor (A2AR), and mediates the function of this receptor in neuritogenesis. In addition, stimulation of the A2AR markedly ameliorates DNA damage evoked by elevated oxidative stress in neurons derived from induced pluripotent stem cells (iPSCs). Here, we report that glycogen synthase kinase 3 beta (GSK3β) and disrupted-in-schizophrenia 1 (DISC1) are two novel interacting proteins of TRAX. We present evidence to suggest that the stimulation of A2AR markedly facilitated DNA repair through the TRAX/DISC1/GSK3β complex in a rat neuronal cell line (PC12), primary mouse neurons, and human medium spiny neurons derived from iPSCs. A2AR stimulation led to the inhibition of GSK3β, thus dissociating the TRAX/DISC1/GSK3β complex and facilitating the non-homologous end-joining pathway (NHEJ) by enhancing the activation of a DNA-dependent protein kinase via phosphorylation at Thr2609. Similarly, pharmacological inhibition of GSK3β by SB216763 also facilitated the TRAX-mediated repair of oxidative DNA damage. Collectively, GSK3β binds with TRAX and negatively affects its ability to facilitate NHEJ repair. The suppression of GSK3β by A2AR activation or a GSK3β inhibitor releases TRAX for the repair of oxidative DNA damage. Our findings shed new light on the molecular mechanisms underlying diseases associated with DNA damage and provides a novel target (i.e., the TRAX/DISC1/GSK3β complex) for future therapeutic development for mental disorders.
Collapse
Affiliation(s)
- Ting Chien
- 0000 0004 0634 0356grid.260565.2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan ,0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Weng
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 2287 1366grid.28665.3fProgram in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Shu-Yung Chang
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 0425 5914grid.260770.4Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Hsing-Lin Lai
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Feng-Lan Chiu
- 0000 0001 2287 1366grid.28665.3fInstitute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- 0000 0001 2287 1366grid.28665.3fInstitute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - De-Maw Chuang
- 0000 0004 0464 0574grid.416868.5Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Yijuang Chern
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
45
|
Franco R, Navarro G. Adenosine A 2A Receptor Antagonists in Neurodegenerative Diseases: Huge Potential and Huge Challenges. Front Psychiatry 2018; 9:68. [PMID: 29593579 PMCID: PMC5857539 DOI: 10.3389/fpsyt.2018.00068] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universidad de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universidad de Barcelona, Barcelona, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
46
|
Tousley A, Kegel-Gleason KB. Induced Pluripotent Stem Cells in Huntington's Disease Research: Progress and Opportunity. J Huntingtons Dis 2017; 5:99-131. [PMID: 27372054 PMCID: PMC4942721 DOI: 10.3233/jhd-160199] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced pluripotent stem cells (iPSCs) derived from controls and patients can act as a starting point for in vitro differentiation into human brain cells for discovery of novel targets and treatments for human disease without the same ethical limitations posed by embryonic stem cells. Numerous groups have successfully produced and characterized Huntington’s disease (HD) iPSCs with different CAG repeat lengths, including cells from patients with one or two HD alleles. HD iPSCs and the neural cell types derived from them recapitulate some disease phenotypes found in both human patients and animal models. Although these discoveries are encouraging, the use of iPSCs for cutting edge and reproducible research has been limited due to some of the inherent problems with cell lines and the technological differences in the way laboratories use them. The goal of this review is to summarize the current state of the HD iPSC field, and to highlight some of the issues that need to be addressed to maximize their potential as research tools.
Collapse
Affiliation(s)
| | - Kimberly B. Kegel-Gleason
- Correspondence to: Kimberly Kegel-Gleason, Assistant Professor in Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Room 2001, Charlestown, MA 02129, USA. Tel.: +1 617 724 8754; E-mail:
| |
Collapse
|
47
|
Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Mol Neurobiol 2017; 55:3351-3371. [PMID: 28497201 PMCID: PMC5842500 DOI: 10.1007/s12035-017-0477-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.
Collapse
|
48
|
Voller J, Maková B, Kadlecová A, Gonzalez G, Strnad M. Plant Hormone Cytokinins for Modulating Human Aging and Age-Related Diseases. HEALTHY AGEING AND LONGEVITY 2017. [DOI: 10.1007/978-3-319-63001-4_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Generation of Cholinergic and Dopaminergic Interneurons from Human Pluripotent Stem Cells as a Relevant Tool for In Vitro Modeling of Neurological Disorders Pathology and Therapy. Stem Cells Int 2016; 2016:5838934. [PMID: 28105055 PMCID: PMC5220531 DOI: 10.1155/2016/5838934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/24/2023] Open
Abstract
The cellular and molecular bases of neurological diseases have been studied for decades; however, the underlying mechanisms are not yet fully elucidated. Compared with other disorders, diseases of the nervous system have been very difficult to study mainly due to the inaccessibility of the human brain and live neurons in vivo or in vitro and difficulties in examination of human postmortem brain tissue. Despite the availability of various genetically engineered animal models, these systems are still not adequate enough due to species variation and differences in genetic background. Human induced pluripotent stem cells (hiPSCs) reprogrammed from patient somatic cells possess the potential to differentiate into any cell type, including neural progenitor cells and postmitotic neurons; thus, they open a new area to in vitro modeling of neurological diseases and their potential treatment. Currently, many protocols for generation of various neuronal subtypes are being developed; however, most of them still require further optimization. Here, we highlight accomplishments made in the generation of dopaminergic and cholinergic neurons, the two subtypes most affected in Alzheimer's and Parkinson's diseases and indirectly affected in Huntington's disease. Furthermore, we discuss the potential role of hiPSC-derived neurons in the modeling and treatment of neurological diseases related to dopaminergic and cholinergic system dysfunction.
Collapse
|
50
|
Direct Conversion of Human Fibroblasts into Neural Progenitors Using Transcription Factors Enriched in Human ESC-Derived Neural Progenitors. Stem Cell Reports 2016; 8:54-68. [PMID: 27940274 PMCID: PMC5233298 DOI: 10.1016/j.stemcr.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 01/22/2023] Open
Abstract
Early human embryonic stem cell (hESC)-derived neural populations consist of various embryonic neural progenitors (ENPs) with broad neural developmental propensity. Here, we sought to directly convert human somatic cells into ENP-like phenotypes using hESC-ENP-enriched neural transcription factors (TFs). We demonstrated that induced ENP could be efficiently converted from human fibroblasts using two TF combinations. The iENPs exhibit cellular and molecular characteristics resembling hESC-ENPs and can give rise to astrocytes, oligodendrocytes, and functional neuronal subtypes of the central and peripheral nervous system. Nevertheless, our analyses further revealed that these two iENP populations differ in terms of their proliferation ability and neuronal propensity. Finally, we demonstrated that the iENPs can be induced from fibroblasts from patients with Huntington's disease and Alzheimer’s disease, and the diseased iENPs and their neuronal derivatives recapitulated the hallmark pathological features of the diseases. Collectively, our results point toward a promising strategy for generating iENPs from somatic cells for disease modeling and future clinical intervention. iENPs can be converted from fibroblasts using hESC-ENP enriched factors iENPs exhibit cellular and molecular characteristics resembling hESC-ENPs iENPs induced by different TF combinations exhibit different neural propensity iENP and their neuronal derivatives recapitulated HD and AD phenotypes
Collapse
|