1
|
Moreira-Gomes T, Nóbrega C. From the disruption of RNA metabolism to the targeting of RNA-binding proteins: The case of polyglutamine spinocerebellar ataxias. J Neurochem 2024; 168:1442-1459. [PMID: 37990934 DOI: 10.1111/jnc.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine-induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA-binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
Collapse
Affiliation(s)
- Tiago Moreira-Gomes
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
2
|
Carmen-Orozco RP, Tsao W, Ye Y, Sinha IR, Chang K, Trinh VT, Chung W, Bowden K, Troncoso JC, Blackshaw S, Hayes LR, Sun S, Wong PC, Ling JP. Elevated nuclear TDP-43 induces constitutive exon skipping. Mol Neurodegener 2024; 19:45. [PMID: 38853250 PMCID: PMC11163724 DOI: 10.1186/s13024-024-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. METHODS We analyzed RNA-seq datasets from mouse and human neurons overexpressing TDP-43 to explore species specific splicing patterns. We explored the dynamics between TDP-43 levels and exon repression in vitro. Furthermore we analyzed human brain samples and publicly available RNA datasets to explore the relationship between exon repression and disease. RESULTS Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. CONCLUSIONS Our findings emphasize the need for caution in interpreting TDP-43 overexpression data and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Rogger P Carmen-Orozco
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - William Tsao
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Irika R Sinha
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Vickie T Trinh
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - William Chung
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kyra Bowden
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Lindsey R Hayes
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Zhang X, Das T, Chao TF, Trinh V, Carmen R, Ling JP, Kalab P, Hayes LR. Multivalent GU-rich oligonucleotides sequester TDP-43 in the nucleus by inducing high molecular weight RNP complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551528. [PMID: 37577513 PMCID: PMC10418175 DOI: 10.1101/2023.08.01.551528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
TDP-43 nuclear clearance and cytoplasmic aggregation are hallmarks of TDP-43 proteinopathies. We recently demonstrated that binding to endogenous nuclear GU-rich RNAs sequesters TDP-43 in the nucleus by restricting its passive nuclear export. Here, we tested the feasibility of synthetic RNA oligonucleotide-mediated augmentation of TDP-43 nuclear localization. Using biochemical assays, we compared the ability of GU-rich oligonucleotides to engage in multivalent, RRM-dependent binding with TDP-43. When transfected into cells, (GU)16 attenuated TDP-43 mislocalization induced by transcriptional blockade or RanGAP1 ablation. Clip34nt and (GU)16 accelerated TDP-43 nuclear re-import after cytoplasmic mislocalization. RNA pulldowns confirmed that multivalent GU-oligonucleotides induced high molecular weight RNP complexes, incorporating TDP-43 and possibly other GU-binding proteins. Transfected GU-repeat oligos disrupted TDP-43 cryptic exon repression, likely by diverting TDP-43 from endogenous RNAs, except for Clip34nt which contains interspersed A and C. Thus, exogenous multivalent GU-RNAs can promote TDP-43 nuclear localization, though pure GU-repeat motifs impair TDP-43 function.
Collapse
|
4
|
Irwin KE, Jasin P, Braunstein KE, Sinha IR, Garret MA, Bowden KD, Chang K, Troncoso JC, Moghekar A, Oh ES, Raitcheva D, Bartlett D, Miller T, Berry JD, Traynor BJ, Ling JP, Wong PC. A fluid biomarker reveals loss of TDP-43 splicing repression in presymptomatic ALS-FTD. Nat Med 2024; 30:382-393. [PMID: 38278991 PMCID: PMC10878965 DOI: 10.1038/s41591-023-02788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024]
Abstract
Although loss of TAR DNA-binding protein 43 kDa (TDP-43) splicing repression is well documented in postmortem tissues of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), whether this abnormality occurs during early-stage disease remains unresolved. Cryptic exon inclusion reflects loss of function of TDP-43, and thus detection of proteins containing cryptic exon-encoded neoepitopes in cerebrospinal fluid (CSF) or blood could reveal the earliest stages of TDP-43 dysregulation in patients. Here we use a newly characterized monoclonal antibody specific to a TDP-43-dependent cryptic epitope (encoded by the cryptic exon found in HDGFL2) to show that loss of TDP-43 splicing repression occurs in ALS-FTD, including in presymptomatic C9orf72 mutation carriers. Cryptic hepatoma-derived growth factor-like protein 2 (HDGFL2) accumulates in CSF at significantly higher levels in familial ALS-FTD and sporadic ALS compared with controls and is elevated earlier than neurofilament light and phosphorylated neurofilament heavy chain protein levels in familial disease. Cryptic HDGFL2 can also be detected in blood of individuals with ALS-FTD, including in presymptomatic C9orf72 mutation carriers, and accumulates at levels highly correlated with those in CSF. Our findings indicate that loss of TDP-43 cryptic splicing repression occurs early in disease progression, even presymptomatically, and that detection of the HDGFL2 cryptic neoepitope serves as a potential diagnostic biomarker for ALS, which should facilitate patient recruitment and measurement of target engagement in clinical trials.
Collapse
Affiliation(s)
- Katherine E Irwin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Pei Jasin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
| | | | - Irika R Sinha
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Mark A Garret
- Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Kyra D Bowden
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department and Graduate Institute of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Esther S Oh
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
| | | | | | - Timothy Miller
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Bryan J Traynor
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- National Institute of Neurological Disorders, National Institutes of Health, Bethesda, MD, USA
- RNA Therapeutics Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Irwin KE, Sheth U, Wong PC, Gendron TF. Fluid biomarkers for amyotrophic lateral sclerosis: a review. Mol Neurodegener 2024; 19:9. [PMID: 38267984 PMCID: PMC10809579 DOI: 10.1186/s13024-023-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Presently, three FDA-approved drugs are available to help slow functional decline for patients with ALS, but no cure yet exists. With an average life expectancy of only two to five years after diagnosis, there is a clear need for biomarkers to improve the care of patients with ALS and to expedite ALS treatment development. Here, we provide a review of the efforts made towards identifying diagnostic, prognostic, susceptibility/risk, and response fluid biomarkers with the intent to facilitate a more rapid and accurate ALS diagnosis, to better predict prognosis, to improve clinical trial design, and to inform interpretation of clinical trial results. Over the course of 20 + years, several promising fluid biomarker candidates for ALS have emerged. These will be discussed, as will the exciting new strategies being explored for ALS biomarker discovery and development.
Collapse
Affiliation(s)
- Katherine E Irwin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
6
|
Salapa HE, Thibault PA, Libner CD, Ding Y, Clarke JPWE, Denomy C, Hutchinson C, Abidullah HM, Austin Hammond S, Pastushok L, Vizeacoumar FS, Levin MC. hnRNP A1 dysfunction alters RNA splicing and drives neurodegeneration in multiple sclerosis (MS). Nat Commun 2024; 15:356. [PMID: 38191621 PMCID: PMC10774274 DOI: 10.1038/s41467-023-44658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Neurodegeneration is the primary driver of disease progression in multiple sclerosis (MS) resulting in permanent disability, creating an urgent need to discover its underlying mechanisms. Herein, we establish that dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) results in differential of binding to RNA targets causing alternative RNA splicing, which contributes to neurodegeneration in MS and its models. Using RNAseq of MS brains, we discovered differential expression and aberrant splicing of hnRNP A1 target RNAs involved in neuronal function and RNA homeostasis. We confirmed this in vivo in experimental autoimmune encephalomyelitis employing CLIPseq specific for hnRNP A1, where hnRNP A1 differentially binds and regulates RNA, including aberrantly spliced targets identified in human samples. Additionally, dysfunctional hnRNP A1 expression in neurons caused neurite loss and identical changes in splicing, corroborating hnRNP A1 dysfunction as a cause of neurodegeneration. Collectively, these data indicate hnRNP A1 dysfunction causes altered neuronal RNA splicing, resulting in neurodegeneration in MS.
Collapse
Affiliation(s)
- Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Cole D Libner
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Yulian Ding
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
- Division of Biomedical Engineering, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Joseph-Patrick W E Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Connor Denomy
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Catherine Hutchinson
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Hashim M Abidullah
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - S Austin Hammond
- Next-Generation Sequencing Facility, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Landon Pastushok
- Advanced Diagnostics Research Laboratory, Department of Pathology and Lab Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada.
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada.
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada.
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
7
|
Chang K, Ling JP, Redding-Ochoa J, An Y, Li L, Dean SA, Blanchard TG, Pylyukh T, Barrett A, Irwin KE, Moghekar A, Resnick SM, Wong PC, Troncoso JC. Loss of TDP-43 splicing repression occurs early in the aging population and is associated with Alzheimer's disease neuropathologic changes and cognitive decline. Acta Neuropathol 2023; 147:4. [PMID: 38133681 DOI: 10.1007/s00401-023-02653-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
LATE-NC, the neuropathologic changes of limbic-predominant age-related TAR DNA-binding protein 43 kDa (TDP-43) encephalopathy are frequently associated with Alzheimer's disease (AD) and cognitive impairment in older adults. The association of TDP-43 proteinopathy with AD neuropathologic changes (ADNC) and its impact on specific cognitive domains are not fully understood and whether loss of TDP-43 function occurs early in the aging brain remains unknown. Here, using a large set of autopsies from the Baltimore Longitudinal Study of Aging (BLSA) and another younger cohort, we were able to study brains from subjects 21-109 years of age. Examination of these brains show that loss of TDP-43 splicing repression, as judged by TDP-43 nuclear clearance and expression of a cryptic exon in HDGFL2, first occurs during the 6th decade, preceding by a decade the appearance of TDP-43+ neuronal cytoplasmic inclusions (NCIs). We corroborated this observation using a monoclonal antibody to demonstrate a cryptic exon-encoded neoepitope within HDGFL2 in neurons exhibiting nuclear clearance of TDP-43. TDP-43 nuclear clearance is associated with increased burden of tau pathology. Age at death, female sex, high CERAD neuritic plaque score, and high Braak neurofibrillary stage significantly increase the odds of LATE-NC. Faster rates of cognitive decline on verbal memory (California Verbal Learning Test immediate recall), visuospatial ability (Card Rotations Test), mental status (MMSE) and semantic fluency (Category Fluency Test) were associated with LATE-NC. Notably, the effects of LATE-NC on verbal memory and visuospatial ability are independent of ADNC. However, the effects of TDP-43 nuclear clearance in absence of NCI on the longitudinal trajectories and levels of cognitive measures are not significant. These results establish that loss of TDP-43 splicing repression is an early event occurring in the aging population during the development of TDP-43 proteinopathy and is associated with increased tau pathology. Furthermore, LATE-NC correlates with high levels of ADNC but also has an impact on specific memory and visuospatial functions in aging that is independent of AD.
Collapse
Affiliation(s)
- Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department and Graduate Institute of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ling Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Office of the Chief Medical Examiner, State of Maryland, Baltimore, MD, 21223, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephanie A Dean
- Office of the Chief Medical Examiner, State of Maryland, Baltimore, MD, 21223, USA
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tatiana Pylyukh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alexander Barrett
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Katherine E Irwin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Gittings LM, Alsop EB, Antone J, Singer M, Whitsett TG, Sattler R, Van Keuren-Jensen K. Cryptic exon detection and transcriptomic changes revealed in single-nuclei RNA sequencing of C9ORF72 patients spanning the ALS-FTD spectrum. Acta Neuropathol 2023; 146:433-450. [PMID: 37466726 PMCID: PMC10412668 DOI: 10.1007/s00401-023-02599-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023]
Abstract
The C9ORF72-linked diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by the nuclear depletion and cytoplasmic accumulation of TAR DNA-binding protein 43 (TDP-43). Recent studies have shown that the loss of TDP-43 function leads to the inclusion of cryptic exons (CE) in several RNA transcript targets of TDP-43. Here, we show for the first time the detection of CEs in a single-nuclei RNA sequencing (snRNA-seq) dataset obtained from frontal and occipital cortices of C9ORF72 patients that phenotypically span the ALS-FTD disease spectrum. We assessed each cellular cluster for detection of recently described TDP-43-induced CEs. Transcripts containing CEs in the genes STMN2 and KALRN were detected in the frontal cortex of all C9ORF72 disease groups with the highest frequency in excitatory neurons in the C9ORF72-FTD group. Within the excitatory neurons, the cluster with the highest proportion of cells containing a CE had transcriptomic similarities to von Economo neurons, which are known to be vulnerable to TDP-43 pathology and selectively lost in C9ORF72-FTD. Differential gene expression and pathway analysis of CE-containing neurons revealed multiple dysregulated metabolic processes. Our findings reveal novel insights into the transcriptomic changes of neurons vulnerable to TDP-43 pathology.
Collapse
Affiliation(s)
- Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Eric B Alsop
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Jerry Antone
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Mo Singer
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Timothy G Whitsett
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA.
| |
Collapse
|
9
|
de Prisco N, Ford C, Elrod ND, Lee W, Tang LC, Huang KL, Lin A, Ji P, Jonnakuti VS, Boyle L, Cabaj M, Botta S, Õunap K, Reinson K, Wojcik MH, Rosenfeld JA, Bi W, Tveten K, Prescott T, Gerstner T, Schroeder A, Fong CT, George-Abraham JK, Buchanan CA, Hanson-Khan A, Bernstein JA, Nella AA, Chung WK, Brandt V, Jovanovic M, Targoff KL, Yalamanchili HK, Wagner EJ, Gennarino VA. Alternative polyadenylation alters protein dosage by switching between intronic and 3'UTR sites. SCIENCE ADVANCES 2023; 9:eade4814. [PMID: 36800428 PMCID: PMC9937581 DOI: 10.1126/sciadv.ade4814] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3' untranslated region (3'UTR), introns, or exons. Most studies focus on APA within the 3'UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3'UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3'UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3'UTR APA to modulate protein expression.
Collapse
Affiliation(s)
- Nicola de Prisco
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Caitlin Ford
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathan D. Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Winston Lee
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ai Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, WC67+HC Dongcheng, Beijing, China
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Venkata S. Jonnakuti
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Lia Boyle
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Maximilian Cabaj
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Salvatore Botta
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Katrin Õunap
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Monica H. Wojcik
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Thorsten Gerstner
- Department of Child Neurology and Rehabilitation and Department of Pediatrics, Hospital of Southern Norway, Arendal, Norway
| | - Audrey Schroeder
- Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Chin-To Fong
- Department of Pediatrics and of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jaya K. George-Abraham
- Dell Children’s Medical Group, Austin, TX, USA
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Andrea Hanson-Khan
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
- Department of Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jonathan A. Bernstein
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aikaterini A. Nella
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Wendy K. Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Vicky Brandt
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kimara L. Targoff
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
10
|
Li H, Wei M, Ye T, Liu Y, Qi D, Cheng X. Identification of the molecular subgroups in Alzheimer's disease by transcriptomic data. Front Neurol 2022; 13:901179. [PMID: 36204002 PMCID: PMC9530954 DOI: 10.3389/fneur.2022.901179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAlzheimer's disease (AD) is a heterogeneous pathological disease with genetic background accompanied by aging. This inconsistency is present among molecular subtypes, which has led to diagnostic ambiguity and failure in drug development. We precisely distinguished patients of AD at the transcriptome level.MethodsWe collected 1,240 AD brain tissue samples collected from the GEO dataset. Consensus clustering was used to identify molecular subtypes, and the clinical characteristics were focused on. To reveal transcriptome differences among subgroups, we certificated specific upregulated genes and annotated the biological function. According to RANK METRIC SCORE in GSEA, TOP10 was defined as the hub gene. In addition, the systematic correlation between the hub gene and “A/T/N” was analyzed. Finally, we used external data sets to verify the diagnostic value of hub genes.ResultsWe identified three molecular subtypes of AD from 743 AD samples, among which subtypes I and III had high-risk factors, and subtype II had protective factors. All three subgroups had higher neuritis plaque density, and subgroups I and III had higher clinical dementia scores and neurofibrillary tangles than subgroup II. Our results confirmed a positive association between neurofibrillary tangles and dementia, but not neuritis plaques. Subgroup I genes clustered in viral infection, hypoxia injury, and angiogenesis. Subgroup II showed heterogeneity in synaptic pathology, and we found several essential beneficial synaptic proteins. Due to presenilin one amplification, Subgroup III was a risk subgroup suspected of familial AD, involving abnormal neurogenic signals, glial cell differentiation, and proliferation. Among the three subgroups, the highest combined diagnostic value of the hub genes were 0.95, 0.92, and 0.83, respectively, indicating that the hub genes had sound typing and diagnostic ability.ConclusionThe transcriptome classification of AD cases played out the pathological heterogeneity of different subgroups. It throws daylight on the personalized diagnosis and treatment of AD.
Collapse
Affiliation(s)
- He Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meiqi Wei
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiduan Liu
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaorui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xiaorui Cheng
| |
Collapse
|
11
|
Altered TDP-43 Structure and Function: Key Insights into Aberrant RNA, Mitochondrial, and Cellular and Systemic Metabolism in Amyotrophic Lateral Sclerosis. Metabolites 2022; 12:metabo12080709. [PMID: 36005581 PMCID: PMC9415507 DOI: 10.3390/metabo12080709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disorder with no cure available and limited treatment options. ALS is a highly heterogeneous disease, whereby patients present with vastly different phenotypes. Despite this heterogeneity, over 97% of patients will exhibit pathological TAR-DNA binding protein-43 (TDP-43) cytoplasmic inclusions. TDP-43 is a ubiquitously expressed RNA binding protein with the capacity to bind over 6000 RNA and DNA targets—particularly those involved in RNA, mitochondrial, and lipid metabolism. Here, we review the unique structure and function of TDP-43 and its role in affecting the aforementioned metabolic processes in ALS. Considering evidence published specifically in TDP-43-relevant in vitro, in vivo, and ex vivo models we posit that TDP-43 acts in a positive feedback loop with mRNA transcription/translation, stress granules, cytoplasmic aggregates, and mitochondrial proteins causing a relentless cycle of disease-like pathology eventuating in neuronal toxicity. Given its undeniable presence in ALS pathology, TDP-43 presents as a promising target for mechanistic disease modelling and future therapeutic investigations.
Collapse
|
12
|
Liu L, Vujovic A, Deshpande NP, Sathe S, Anande G, Chen HTT, Xu J, Minden MD, Yeo GW, Unnikrishnan A, Hope KJ, Lu Y. The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors. Nat Commun 2022; 13:3833. [PMID: 35781533 PMCID: PMC9250932 DOI: 10.1038/s41467-022-31155-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
Chemo-resistance in acute myeloid leukemia (AML) patients is driven by leukemic stem cells (LSCs) resulting in high rates of relapse and low overall survival. Here, we demonstrate that upregulation of the splicing factor, RBM17 preferentially marks and sustains LSCs and directly correlates with shorten patient survival. RBM17 knockdown in primary AML cells leads to myeloid differentiation and impaired colony formation and in vivo engraftment. Integrative multi-omics analyses show that RBM17 repression leads to inclusion of poison exons and production of nonsense-mediated decay (NMD)-sensitive transcripts for pro-leukemic factors and the translation initiation factor, EIF4A2. We show that EIF4A2 is enriched in LSCs and its inhibition impairs primary AML progenitor activity. Proteomic analysis of EIF4A2-depleted AML cells shows recapitulation of the RBM17 knockdown biological effects, including pronounced suppression of proteins involved in ribosome biogenesis. Overall, these results provide a rationale to target RBM17 and/or its downstream NMD-sensitive splicing substrates for AML treatment.
Collapse
Affiliation(s)
- Lina Liu
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ana Vujovic
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nandan P Deshpande
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, San Diego, CA, USA
| | - Govardhan Anande
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - He Tian Tony Chen
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Joshua Xu
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, San Diego, CA, USA
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Kristin J Hope
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Yu Lu
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
13
|
Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022; 19:1061-1084. [PMID: 35790708 PMCID: PMC9587158 DOI: 10.1007/s13311-022-01260-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Johns Hopkins School of Medicine, Dept. of Neurology, Baltimore, MD, USA.
| | - Petr Kalab
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Jutzi D, Ruepp MD. Alternative Splicing in Human Biology and Disease. Methods Mol Biol 2022; 2537:1-19. [PMID: 35895255 DOI: 10.1007/978-1-0716-2521-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative pre-mRNA splicing allows for the production of multiple mRNAs from an individual gene, which not only expands the protein-coding potential of the genome but also enables complex mechanisms for the post-transcriptional control of gene expression. Regulation of alternative splicing entails a combinatorial interplay between an abundance of trans-acting splicing factors, cis-acting regulatory sequence elements and their concerted effects on the core splicing machinery. Given the extent and biological significance of alternative splicing in humans, it is not surprising that aberrant splicing patterns can cause or contribute to a wide range of diseases. In this introductory chapter, we outline the mechanisms that govern alternative pre-mRNA splicing and its regulation and discuss how dysregulated splicing contributes to human diseases affecting the motor system and the brain.
Collapse
Affiliation(s)
- Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| |
Collapse
|
15
|
Liu T, Yang Y, Xie Z, Luo Q, Yang D, Liu X, Zhao H, Wei Q, Liu Y, Li L, Wang Y, Wang F, Yu J, Xu J, Yu J, Yi P. The RNA binding protein QKI5 suppresses ovarian cancer via downregulating transcriptional coactivator TAZ. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:388-400. [PMID: 34552820 PMCID: PMC8426461 DOI: 10.1016/j.omtn.2021.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/17/2021] [Indexed: 01/14/2023]
Abstract
RNA-binding proteins (RBPs) are a set of proteins involved in many steps of post-transcriptional regulation to maintain cellular homeostasis. Ovarian cancer (OC) is the most deadly gynecological cancer, but the roles of RBPs in OC are not fully understood. Here, we reported that the RBP QKI5 was significantly negatively correlated with aggressive tumor stage and worse prognosis in serous OC patients. QKI5 could suppress the growth and metastasis of OC cells both in vitro and in vivo. Transcriptome analysis showed that QKI5 negatively regulated the expression of the transcriptional coactivator TAZ and its downstream targets (e.g., CTGF and CYR61). Mechanistically, QKI5 bound to TAZ mRNA and recruited EDC4, thus decreasing the stability of TAZ mRNA. Functionally, TAZ was involved in the QKI5-mediated tumor suppression of OC cells, and QKI5 expression was inversely correlated with TAZ, CTGF, and CYR61 expression in OC patients. Together, our study indicates that QKI5 plays a tumor-suppressive role and negatively regulates TAZ expression in OC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Zhe Xie
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qingya Luo
- Department of Pathology, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Dan Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Hongyan Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Lanfang Li
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fang Wang
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jia Yu
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
16
|
Martín E, Vivori C, Rogalska M, Herrero-Vicente J, Valcárcel J. Alternative splicing regulation of cell-cycle genes by SPF45/SR140/CHERP complex controls cell proliferation. RNA (NEW YORK, N.Y.) 2021; 27:1557-1576. [PMID: 34544891 PMCID: PMC8594467 DOI: 10.1261/rna.078935.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/11/2021] [Indexed: 06/10/2023]
Abstract
The regulation of pre-mRNA processing has important consequences for cell division and the control of cancer cell proliferation, but the underlying molecular mechanisms remain poorly understood. We report that three splicing factors, SPF45, SR140, and CHERP, form a tight physical and functionally coherent complex that regulates a variety of alternative splicing events, frequently by repressing short exons flanked by suboptimal 3' splice sites. These comprise alternative exons embedded in genes with important functions in cell-cycle progression, including the G2/M key regulator FOXM1 and the spindle regulator SPDL1. Knockdown of either of the three factors leads to G2/M arrest and to enhanced apoptosis in HeLa cells. Promoting the changes in FOXM1 or SPDL1 splicing induced by SPF45/SR140/CHERP knockdown partially recapitulates the effects on cell growth, arguing that the complex orchestrates a program of alternative splicing necessary for efficient cell proliferation.
Collapse
Affiliation(s)
- Elena Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Malgorzata Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Jorge Herrero-Vicente
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
17
|
Fukumura K, Venables JP, Mayeda A. SPF45/RBM17-dependent splicing and multidrug resistance to cancer chemotherapy. Mol Cell Oncol 2021; 8:1996318. [PMID: 35419480 PMCID: PMC8997263 DOI: 10.1080/23723556.2021.1996318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 06/14/2023]
Abstract
The early splicing complex A occupies at least eighty nucleotides of intron, in which U2AF covers the polypyrimidine tract. SPF45 (RBM17) functionally substitutes for U2AF on a subset of short introns. Since SPF45 expression confers resistance to various anticancer drugs, SPF45-dependent splicing may play a critical role in multidrug resistance.
Collapse
Affiliation(s)
- Kazuhiro Fukumura
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Julian P. Venables
- Science Sense, 2 Rue St Vincent, Salèlles du Bosc, 34700 Le Bosc, France
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
18
|
HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol 2021; 142:609-627. [PMID: 34274995 PMCID: PMC8423707 DOI: 10.1007/s00401-021-02340-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (HnRNPs) are a group of ubiquitously expressed RNA-binding proteins implicated in the regulation of all aspects of nucleic acid metabolism. HnRNP K is a member of this highly versatile hnRNP family. Pathological redistribution of hnRNP K to the cytoplasm has been linked to the pathogenesis of several malignancies but, until now, has been underexplored in the context of neurodegenerative disease. Here we show hnRNP K mislocalisation in pyramidal neurons of the frontal cortex to be a novel neuropathological feature that is associated with both frontotemporal lobar degeneration and ageing. HnRNP K mislocalisation is mutually exclusive to TDP-43 and tau pathological inclusions in neurons and was not observed to colocalise with mitochondrial, autophagosomal or stress granule markers. De-repression of cryptic exons in RNA targets following TDP-43 nuclear depletion is an emerging mechanism of potential neurotoxicity in frontotemporal lobar degeneration and the mechanistically overlapping disorder amyotrophic lateral sclerosis. We silenced hnRNP K in neuronal cells to identify the transcriptomic consequences of hnRNP K nuclear depletion. Intriguingly, by performing RNA-seq analysis we find that depletion of hnRNP K induces 101 novel cryptic exon events. We validated cryptic exon inclusion in an SH-SY5Y hnRNP K knockdown and in FTLD brain exhibiting hnRNP K nuclear depletion. We, therefore, present evidence for hnRNP K mislocalisation to be associated with FTLD and for this to induce widespread changes in splicing.
Collapse
|
19
|
Fukumura K, Yoshimoto R, Sperotto L, Kang HS, Hirose T, Inoue K, Sattler M, Mayeda A. SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns. Nat Commun 2021; 12:4910. [PMID: 34389706 PMCID: PMC8363638 DOI: 10.1038/s41467-021-24879-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 07/06/2021] [Indexed: 11/11/2022] Open
Abstract
Human pre-mRNA introns vary in size from under fifty to over a million nucleotides. We searched for essential factors involved in the splicing of human short introns by screening siRNAs against 154 human nuclear proteins. The splicing activity was assayed with a model HNRNPH1 pre-mRNA containing short 56-nucleotide intron. We identify a known alternative splicing regulator SPF45 (RBM17) as a constitutive splicing factor that is required to splice out this 56-nt intron. Whole-transcriptome sequencing of SPF45-deficient cells reveals that SPF45 is essential in the efficient splicing of many short introns. To initiate the spliceosome assembly on a short intron with the truncated poly-pyrimidine tract, the U2AF-homology motif (UHM) of SPF45 competes out that of U2AF65 (U2AF2) for binding to the UHM-ligand motif (ULM) of the U2 snRNP protein SF3b155 (SF3B1). We propose that splicing in a distinct subset of human short introns depends on SPF45 but not U2AF heterodimer. The length distribution of human pre-mRNA introns is very extensive. The authors demonstrate that splicing in a subset of short introns is dependent on SPF45 (RBM17), which replaces authentic U2AF-heterodimer on the truncated poly-pyrimidine tracts and interacts with the U2 snRNP protein SF3b155.
Collapse
Affiliation(s)
- Kazuhiro Fukumura
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | - Rei Yoshimoto
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.,Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Luca Sperotto
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| |
Collapse
|
20
|
Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105292. [PMID: 34069857 PMCID: PMC8157344 DOI: 10.3390/ijms22105292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| |
Collapse
|
21
|
Fazal R, Boeynaems S, Swijsen A, De Decker M, Fumagalli L, Moisse M, Vanneste J, Guo W, Boon R, Vercruysse T, Eggermont K, Swinnen B, Beckers J, Pakravan D, Vandoorne T, Vanden Berghe P, Verfaillie C, Van Den Bosch L, Van Damme P. HDAC6 inhibition restores TDP-43 pathology and axonal transport defects in human motor neurons with TARDBP mutations. EMBO J 2021; 40:e106177. [PMID: 33694180 PMCID: PMC8013789 DOI: 10.15252/embj.2020106177] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
TDP-43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP-43, are one of the common causes of familial ALS. In this study, we investigate TDP-43 protein behavior in induced pluripotent stem cell (iPSC)-derived motor neurons from three ALS patients with different TARDBP mutations, three healthy controls and an isogenic control. TARDPB mutations induce several TDP-43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP-43, C-terminal fragments, and phospho-TDP-43. By generating iPSC lines with allele-specific tagging of TDP-43, we find that mutant TDP-43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry. Our findings also indicate that TDP-43 proteinopathy results in a defect in mitochondrial transport. Lastly, we show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP-43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP-43 pathology.
Collapse
Affiliation(s)
- Raheem Fazal
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Steven Boeynaems
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Ann Swijsen
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Mathias De Decker
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Joni Vanneste
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Wenting Guo
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Ruben Boon
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Thomas Vercruysse
- Department of Microbiology, Immunology and TransplantationLaboratory of Virology and ChemotherapyRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Donya Pakravan
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Tijs Vandoorne
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Pieter Vanden Berghe
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research in GastroIntestinal Disorders, KU LeuvenLeuvenBelgium
| | - Catherine Verfaillie
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
22
|
Lee PJ, Yang S, Sun Y, Guo JU. Regulation of nonsense-mediated mRNA decay in neural development and disease. J Mol Cell Biol 2021; 13:269-281. [PMID: 33783512 PMCID: PMC8339359 DOI: 10.1093/jmcb/mjab022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022] Open
Abstract
Eukaryotes have evolved a variety of mRNA surveillance mechanisms to detect and degrade aberrant mRNAs with potential deleterious outcomes. Among them, nonsense-mediated mRNA decay (NMD) functions not only as a quality control mechanism targeting aberrant mRNAs containing a premature termination codon but also as a posttranscriptional gene regulation mechanism targeting numerous physiological mRNAs. Despite its well-characterized molecular basis, the regulatory scope and biological functions of NMD at an organismal level are incompletely understood. In humans, mutations in genes encoding core NMD factors cause specific developmental and neurological syndromes, suggesting a critical role of NMD in the central nervous system. Here, we review the accumulating biochemical and genetic evidence on the developmental regulation and physiological functions of NMD as well as an emerging role of NMD dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul Jongseo Lee
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Suzhou Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
23
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
24
|
Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS Genetics: Gains, Losses, and Implications for Future Therapies. Neuron 2020; 108:822-842. [PMID: 32931756 PMCID: PMC7736125 DOI: 10.1016/j.neuron.2020.08.022] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder caused by the loss of motor neurons from the brain and spinal cord. The ALS community has made remarkable strides over three decades by identifying novel familial mutations, generating animal models, elucidating molecular mechanisms, and ultimately developing promising new therapeutic approaches. Some of these approaches reduce the expression of mutant genes and are in human clinical trials, highlighting the need to carefully consider the normal functions of these genes and potential contribution of gene loss-of-function to ALS. Here, we highlight known loss-of-function mechanisms underlying ALS, potential consequences of lowering levels of gene products, and the need to consider both gain and loss of function to develop safe and effective therapeutic strategies.
Collapse
Affiliation(s)
- Garam Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivia Gautier
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eduardo Tassoni-Tsuchida
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - X Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 2020; 140:599-623. [PMID: 32748079 PMCID: PMC7547044 DOI: 10.1007/s00401-020-02203-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated RNA metabolism is emerging as a crucially important mechanism underpinning the pathogenesis of frontotemporal dementia (FTD) and the clinically, genetically and pathologically overlapping disorder of amyotrophic lateral sclerosis (ALS). Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins with diverse, multi-functional roles across all aspects of mRNA processing. The role of these proteins in neurodegeneration is far from understood. Here, we review some of the unifying mechanisms by which hnRNPs have been directly or indirectly linked with FTD/ALS pathogenesis, including their incorporation into pathological inclusions and their best-known roles in pre-mRNA splicing regulation. We also discuss the broader functionalities of hnRNPs including their roles in cryptic exon repression, stress granule assembly and in co-ordinating the DNA damage response, which are all emerging pathogenic themes in both diseases. We then present an integrated model that depicts how a broad-ranging network of pathogenic events can arise from declining levels of functional hnRNPs that are inadequately compensated for by autoregulatory means. Finally, we provide a comprehensive overview of the most functionally relevant cellular roles, in the context of FTD/ALS pathogenesis, for hnRNPs A1-U.
Collapse
|
26
|
Selective neuronal degeneration in MATR3 S85C knock-in mouse model of early-stage ALS. Nat Commun 2020; 11:5304. [PMID: 33082323 PMCID: PMC7576598 DOI: 10.1038/s41467-020-18949-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
A missense mutation, S85C, in the MATR3 gene is a genetic cause for amyotrophic lateral sclerosis (ALS). It is unclear how the S85C mutation affects MATR3 function and contributes to disease. Here, we develop a mouse model that harbors the S85C mutation in the endogenous Matr3 locus using the CRISPR/Cas9 system. MATR3 S85C knock-in mice recapitulate behavioral and neuropathological features of early-stage ALS including motor impairment, muscle atrophy, neuromuscular junction defects, Purkinje cell degeneration and neuroinflammation in the cerebellum and spinal cord. Our neuropathology data reveals a loss of MATR3 S85C protein in the cell bodies of Purkinje cells and motor neurons, suggesting that a decrease in functional MATR3 levels or loss of MATR3 function contributes to neuronal defects. Our findings demonstrate that the MATR3 S85C mouse model mimics aspects of early-stage ALS and would be a promising tool for future basic and preclinical research.
Collapse
|
27
|
Alcott CE, Yalamanchili HK, Ji P, van der Heijden ME, Saltzman A, Elrod N, Lin A, Leng M, Bhatt B, Hao S, Wang Q, Saliba A, Tang J, Malovannaya A, Wagner EJ, Liu Z, Zoghbi HY. Partial loss of CFIm25 causes learning deficits and aberrant neuronal alternative polyadenylation. eLife 2020; 9:e50895. [PMID: 32319885 PMCID: PMC7176433 DOI: 10.7554/elife.50895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/05/2020] [Indexed: 12/19/2022] Open
Abstract
We previously showed that NUDT21-spanning copy-number variations (CNVs) are associated with intellectual disability (Gennarino et al., 2015). However, the patients' CNVs also included other genes. To determine if reduced NUDT21 function alone can cause disease, we generated Nudt21+/- mice to mimic NUDT21-deletion patients. We found that although these mice have 50% reduced Nudt21 mRNA, they only have 30% less of its cognate protein, CFIm25. Despite this partial protein-level compensation, the Nudt21+/- mice have learning deficits, cortical hyperexcitability, and misregulated alternative polyadenylation (APA) in their hippocampi. Further, to determine the mediators driving neural dysfunction in humans, we partially inhibited NUDT21 in human stem cell-derived neurons to reduce CFIm25 by 30%. This induced APA and protein level misregulation in hundreds of genes, a number of which cause intellectual disability when mutated. Altogether, these results show that disruption of NUDT21-regulated APA events in the brain can cause intellectual disability.
Collapse
Affiliation(s)
- Callison E Alcott
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ping Ji
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
| | - Meike E van der Heijden
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Alexander Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
| | - Nathan Elrod
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
| | - Ai Lin
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mei Leng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
| | - Bhoomi Bhatt
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Qi Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Afaf Saliba
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Mass Spectrometry Proteomics Core, Baylor College of MedicineHoustonUnited States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Eric J Wagner
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of MedicineHoustonUnited States
| | - Huda Y Zoghbi
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
28
|
Fujita KI, Ishizuka T, Mitsukawa M, Kurata M, Masuda S. Regulating Divergent Transcriptomes through mRNA Splicing and Its Modulation Using Various Small Compounds. Int J Mol Sci 2020; 21:ijms21062026. [PMID: 32188117 PMCID: PMC7139312 DOI: 10.3390/ijms21062026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Human transcriptomes are more divergent than genes and contribute to the sophistication of life. This divergence is derived from various isoforms arising from alternative splicing. In addition, alternative splicing regulated by spliceosomal factors and RNA structures, such as the RNA G-quadruplex, is important not only for isoform diversity but also for regulating gene expression. Therefore, abnormal splicing leads to serious diseases such as cancer and neurodegenerative disorders. In the first part of this review, we describe the regulation of divergent transcriptomes using alternative mRNA splicing. In the second part, we present the relationship between the disruption of splicing and diseases. Recently, various compounds with splicing inhibitor activity were established. These splicing inhibitors are recognized as a biological tool to investigate the molecular mechanism of splicing and as a potential therapeutic agent for cancer treatment. Food-derived compounds with similar functions were found and are expected to exhibit anticancer effects. In the final part, we describe the compounds that modulate the messenger RNA (mRNA) splicing process and their availability for basic research and future clinical potential.
Collapse
|
29
|
De Maio A, Yalamanchili HK, Adamski CJ, Gennarino VA, Liu Z, Qin J, Jung SY, Richman R, Orr H, Zoghbi HY. RBM17 Interacts with U2SURP and CHERP to Regulate Expression and Splicing of RNA-Processing Proteins. Cell Rep 2019; 25:726-736.e7. [PMID: 30332651 PMCID: PMC6292215 DOI: 10.1016/j.celrep.2018.09.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/07/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023] Open
Abstract
RNA splicing entails the coordinated interaction of more than 150 proteins in the spliceosome, one of the most complex of the cell’s molecular machines. We previously discovered that the RNA-binding motif protein 17 (RBM17), a component of the spliceosome, is essential for survival and cell maintenance. Here, we find that it interacts with the spliceosomal factors U2SURP and CHERP and that they reciprocally regulate each other’s stability, both in mouse and in human cells. Individual knockdown of each of the three proteins induces overlapping changes in splicing and gene expression of transcripts enriched for RNA-processing factors. Our results elucidate the function of RBM17, U2SURP, and CHERP and link the activity of the spliceosome to the regulation of downstream RNA-binding proteins. These data support the hypothesis that, beyond driving constitutive splicing, spliceosomal factors can regulate alternative splicing of specific targets. De Maio et al. find that the splicing factor RBM17 establishes a physical and functional relation with U2SURP and CHERP. Knockdown of these U2 snRNP-associated spliceosomal components reveals their synergistic activity toward regulation of a given set of transcripts rather than a more predictable transcriptome-wide inhibition of splicing.
Collapse
Affiliation(s)
- Antonia De Maio
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carolyn J Adamski
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vincenzo A Gennarino
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Y Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronald Richman
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harry Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huda Y Zoghbi
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathol 2019; 138:813-826. [PMID: 31332509 DOI: 10.1007/s00401-019-02042-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 02/08/2023]
Abstract
Nuclear depletion of TDP-43, an essential RNA binding protein, may underlie neurodegeneration in amyotrophic lateral sclerosis (ALS). As several functions have been ascribed to this protein, the critical role(s) of TDP-43 in motor neurons that may be compromised in ALS remains unknown. We show here that TDP-43 mediated splicing repression, which serves to protect the transcriptome by preventing aberrant splicing, is central to the physiology of motor neurons. Expression in Drosophila TDP-43 knockout models of a chimeric repressor, comprised of the RNA recognition domain of TDP-43 fused to an unrelated splicing repressor, RAVER1, attenuated motor deficits and extended lifespan. Likewise, AAV9-mediated delivery of this chimeric rescue repressor to mice lacking TDP-43 in motor neurons delayed the onset, slowed the progression of motor symptoms, and markedly extended their lifespan. In treated mice lacking TDP-43 in motor neurons, aberrant splicing was significantly decreased and accompanied by amelioration of axon degeneration and motor neuron loss. This AAV9 strategy allowed long-term expression of the chimeric repressor without any adverse effects. Our findings establish that splicing repression is a major function of TDP-43 in motor neurons and strongly support the idea that loss of TDP-43-mediated splicing fidelity represents a key pathogenic mechanism underlying motor neuron loss in ALS.
Collapse
|
32
|
Roczniak-Ferguson A, Ferguson SM. Pleiotropic requirements for human TDP-43 in the regulation of cell and organelle homeostasis. Life Sci Alliance 2019; 2:2/5/e201900358. [PMID: 31527135 PMCID: PMC6749094 DOI: 10.26508/lsa.201900358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is an RNA-binding protein that forms cytoplasmic aggregates in multiple neurodegenerative diseases. Although the loss of normal TDP-43 functions likely contributes to disease pathogenesis, the cell biological consequences of human TDP-43 depletion are not well understood. We, therefore, generated human TDP-43 knockout (KO) cells and subjected them to parallel cell biological and transcriptomic analyses. These efforts yielded three important discoveries. First, complete loss of TDP-43 resulted in widespread morphological defects related to multiple organelles, including Golgi, endosomes, lysosomes, mitochondria, and the nuclear envelope. Second, we identified a new role for TDP-43 in controlling mRNA splicing of Nup188 (nuclear pore protein). Third, analysis of multiple amyotrophic lateral sclerosis causing TDP-43 mutations revealed a broad ability to support splicing of TDP-43 target genes. However, as some TDP-43 disease-causing mutants failed to fully support the regulation of specific target transcripts, our results raise the possibility of mutation-specific loss-of-function contributions to disease pathology.
Collapse
Affiliation(s)
- Agnes Roczniak-Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Eszlari N, Millinghoffer A, Petschner P, Gonda X, Baksa D, Pulay AJ, Réthelyi JM, Breen G, Deakin JFW, Antal P, Bagdy G, Juhasz G. Genome-wide association analysis reveals KCTD12 and miR-383-binding genes in the background of rumination. Transl Psychiatry 2019; 9:119. [PMID: 30886212 PMCID: PMC6423133 DOI: 10.1038/s41398-019-0454-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Ruminative response style is a passive and repetitive way of responding to stress, associated with several disorders. Although twin and candidate gene studies have proven the genetic underpinnings of rumination, no genome-wide association study (GWAS) has been conducted yet. We performed a GWAS on ruminative response style and its two subtypes, brooding and reflection, among 1758 European adults recruited in the general population of Budapest, Hungary, and Manchester, United Kingdom. We evaluated single-nucleotide polymorphism (SNP)-based, gene-based and gene set-based tests, together with inferences on genes regulated by our most significant SNPs. While no genome-wide significant hit emerged at the SNP level, the association of rumination survived correction for multiple testing with KCTD12 at the gene level, and with the set of genes binding miR-383 at the gene set level. SNP-level results were concordant between the Budapest and Manchester subsamples for all three rumination phenotypes. SNP-level results and their links to brain expression levels based on external databases supported the role of KCTD12, SRGAP3, and SETD5 in rumination, CDH12 in brooding, and DPYSL5, MAPRE3, KCNK3, ATXN7L3B, and TPH2 in reflection, among others. The relatively low sample size is a limitation of our study. Results of the first GWAS on rumination identified genes previously implicated in psychiatric disorders underscoring the transdiagnostic nature of rumination, and pointed to the possible role of the dorsolateral prefrontal cortex, hippocampus, and cerebellum in this cognitive process.
Collapse
Affiliation(s)
- Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary. .,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Andras Millinghoffer
- 0000 0001 0942 9821grid.11804.3cNAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary ,0000 0001 2180 0451grid.6759.dDepartment of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Peter Petschner
- 0000 0001 0942 9821grid.11804.3cDepartment of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cMTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- 0000 0001 0942 9821grid.11804.3cNAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cMTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cDepartment of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- 0000 0001 0942 9821grid.11804.3cDepartment of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cSE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Attila J. Pulay
- 0000 0001 0942 9821grid.11804.3cDepartment of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M. Réthelyi
- 0000 0001 0942 9821grid.11804.3cDepartment of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cNAP2 Molecular Psychiatry Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gerome Breen
- 0000 0001 2322 6764grid.13097.3cSocial, Genetic and Developmental Psychiatry Centre, King’s College London, London, UK
| | - John Francis William Deakin
- 0000000121662407grid.5379.8Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK ,0000 0004 0417 0074grid.462482.eManchester Academic Health Sciences Centre, Manchester, UK ,0000 0004 0430 6955grid.450837.dGreater Manchester Mental Health NHS Foundation Trust, Prestwich, Manchester, M25 3BL UK
| | - Peter Antal
- 0000 0001 2180 0451grid.6759.dDepartment of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gyorgy Bagdy
- 0000 0001 0942 9821grid.11804.3cDepartment of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cNAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cMTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- 0000 0001 0942 9821grid.11804.3cDepartment of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cNAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cMTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cSE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary ,0000000121662407grid.5379.8Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK ,0000 0004 0417 0074grid.462482.eManchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
34
|
Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol 2019; 137:1-26. [PMID: 30368547 DOI: 10.1007/s00401-018-1921-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
What are the most important and treatable pathogenic mechanisms in C9orf72-FTD/ALS? Model-based efforts to address this question are forging ahead at a blistering pace, often with conflicting results. But what does the human neuropathological literature reveal? Here, we provide a critical review of the human studies to date, seeking to highlight key gaps or uncertainties in our knowledge. First, we engage the C9orf72-specific mechanisms, including C9orf72 haploinsufficiency, repeat RNA foci, and dipeptide repeat protein inclusions. We then turn to some of the most prominent C9orf72-associated features, such as TDP-43 loss-of-function, TDP-43 aggregation, and nuclear transport defects. Finally, we review potential disease-modifying epigenetic and genetic factors and the natural history of the disease across the lifespan. Throughout, we emphasize the importance of anatomical precision when studying how candidate mechanisms relate to neuronal, regional, and behavioral findings. We further highlight methodological approaches that may help address lingering knowledge gaps and uncertainties, as well as other logical next steps for the field. We conclude that anatomically oriented human neuropathological studies have a critical role to play in guiding this fast-moving field toward effective new therapies.
Collapse
Affiliation(s)
- Sarat C Vatsavayai
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.
- Department of Pathology, University of California, San Francisco, Box 1207, San Francisco, CA, 94143-1207, USA.
| |
Collapse
|
35
|
Nana AL, Sidhu M, Gaus SE, Hwang JHL, Li L, Park Y, Kim EJ, Pasquini L, Allen IE, Rankin KP, Toller G, Kramer JH, Geschwind DH, Coppola G, Huang EJ, Grinberg LT, Miller BL, Seeley WW. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol 2019; 137:27-46. [PMID: 30511086 PMCID: PMC6339592 DOI: 10.1007/s00401-018-1942-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/26/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) aggregation is the most common pathological hallmark in frontotemporal dementia (FTD) and characterizes nearly all patients with motor neuron disease (MND). The earliest stages of TDP-43 pathobiology are not well-characterized, and whether neurodegeneration results from TDP-43 loss-of-function or aggregation remains unclear. In the behavioral variant of FTD (bvFTD), patients undergo selective dropout of von Economo neurons (VENs) and fork cells within the frontoinsular (FI) and anterior cingulate cortices. Here, we examined TDP-43 pathobiology within these vulnerable neurons in the FI across a clinical spectrum including 17 patients with sporadic bvFTD, MND, or both. In an exploratory analysis based on our initial observations, we further assessed ten patients with C9orf72-associated bvFTD/MND. VENs and fork cells showed early, disproportionate TDP-43 aggregation that correlated with anatomical and clinical severity, including loss of emotional empathy. The presence of a TDP-43 inclusion was associated with striking nuclear and somatodendritic atrophy. An intriguing minority of neurons lacked detectable nuclear TDP-43 despite the apparent absence of a cytoplasmic TDP-43 inclusion. These cells showed neuronal atrophy comparable to inclusion-bearing neurons, suggesting that the loss of nuclear TDP-43 function promotes neurodegeneration, even when TDP-43 aggregation is inconspicuous or absent.
Collapse
Affiliation(s)
- Alissa L Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Manu Sidhu
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie E Gaus
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ji-Hye L Hwang
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Libo Li
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, China
| | - Youngsoon Park
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eun-Joo Kim
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lorenzo Pasquini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine P Rankin
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gianina Toller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joel H Kramer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric J Huang
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
Zhao M, Kim JR, van Bruggen R, Park J. RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Mol Cells 2018; 41:818-829. [PMID: 30157547 PMCID: PMC6182225 DOI: 10.14348/molcells.2018.0243] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying amyotrophic lateral sclerosis (ALS), which may in turn pinpoint potential therapeutic targets for treatment. The ALS research field has evolved with recent discoveries of numerous genetic mutations in ALS patients, many of which are in genes encoding RNA binding proteins (RBPs), including TDP-43, FUS, ATXN2, TAF15, EWSR1, hnRNPA1, hnRNPA2/B1, MATR3 and TIA1. Accumulating evidence from studies on these ALS-linked RBPs suggests that dysregulation of RNA metabolism, cytoplasmic mislocalization of RBPs, dysfunction in stress granule dynamics of RBPs and increased propensity of mutant RBPs to aggregate may lead to ALS pathogenesis. Here, we review current knowledge of the biological function of these RBPs and the contributions of ALS-linked mutations to disease pathogenesis.
Collapse
Affiliation(s)
- Melody Zhao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto,
Canada
| | - Jihye Rachel Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto,
Canada
| | - Rebekah van Bruggen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto,
Canada
| |
Collapse
|
37
|
The N Termini of TAR DNA-Binding Protein 43 (TDP43) C-Terminal Fragments Influence Degradation, Aggregation Propensity, and Morphology. Mol Cell Biol 2018; 38:MCB.00243-18. [PMID: 29987190 PMCID: PMC6146831 DOI: 10.1128/mcb.00243-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023] Open
Abstract
Fragments of the TAR DNA-binding protein 43 (TDP43) are major components of intracellular aggregates associated with amyotrophic lateral sclerosis and frontotemporal dementia. A variety of C-terminal fragments (CTFs) exist, with distinct N termini; however, little is known regarding their differences in metabolism and aggregation dynamics. Fragments of the TAR DNA-binding protein 43 (TDP43) are major components of intracellular aggregates associated with amyotrophic lateral sclerosis and frontotemporal dementia. A variety of C-terminal fragments (CTFs) exist, with distinct N termini; however, little is known regarding their differences in metabolism and aggregation dynamics. Previously, we found that specific CTFs accumulate in the absence of the Arg/N-end rule pathway of the ubiquitin proteasome system (UPS) and that their degradation requires arginyl-tRNA protein transferase 1 (ATE1). Here, we examined two specific CTFs of TDP43 (TDP43219 and TDP43247), which are ∼85% identical and differ at their N termini by 28 amino acids. We found that TDP43247 is degraded primarily by the Arg/N-end rule pathway, whereas degradation of TDP43219 continues in the absence of ATE1. These fragments also differ in their aggregation propensities and form morphologically distinct aggregates. This work reveals that the N termini of otherwise similar CTFs have profound effects on fragment behavior and may influence clinical outcomes in neurodegeneration associated with aggregation.
Collapse
|
38
|
Ferro D, Yao S, Zarnescu DC. Dynamic duo - FMRP and TDP-43: Regulating common targets, causing different diseases. Brain Res 2018; 1693:37-42. [PMID: 29715444 PMCID: PMC5997554 DOI: 10.1016/j.brainres.2018.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
RNA binding proteins play essential roles during development and aging, and are also involved in disease pathomechanisms. RNA sequencing and omics analyses have provided a window into systems level alterations in neurological disease, and have identified RNA processing defects among notable disease mechanisms. This review focuses on two seemingly distinct neurological disorders, the RNA binding proteins they are linked to, and their newly discovered functional relationship. When deficient, Fragile X Mental Retardation Protein (FMRP) causes developmental deficits and autistic behaviors while TAR-DNA Binding Protein (TDP-43) dysregulation causes age dependent neuronal degeneration. Recent findings that FMRP and TDP-43 associate in ribonuclear protein particles and share mRNA targets in neurons highlight the critical importance of translation regulation in synaptic plasticity and provide new perspectives on neuronal vulnerability during lifespan.
Collapse
Affiliation(s)
- Diana Ferro
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Stephen Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States; Department of Neuroscience, University of Arizona, Tucson, AZ, United States; Department of Neurology, University of Arizona, Tucson AZ, United States.
| |
Collapse
|
39
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
40
|
Tank EM, Figueroa-Romero C, Hinder LM, Bedi K, Archbold HC, Li X, Weskamp K, Safren N, Paez-Colasante X, Pacut C, Thumma S, Paulsen MT, Guo K, Hur J, Ljungman M, Feldman EL, Barmada SJ. Abnormal RNA stability in amyotrophic lateral sclerosis. Nat Commun 2018; 9:2845. [PMID: 30030424 PMCID: PMC6054632 DOI: 10.1038/s41467-018-05049-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) share key features, including accumulation of the RNA-binding protein TDP-43. TDP-43 regulates RNA homeostasis, but it remains unclear whether RNA stability is affected in these disorders. We use Bru-seq and BruChase-seq to assess genome-wide RNA stability in ALS patient-derived cells, demonstrating profound destabilization of ribosomal and mitochondrial transcripts. This pattern is recapitulated by TDP-43 overexpression, suggesting a primary role for TDP-43 in RNA destabilization, and in postmortem samples from ALS and FTD patients. Proteomics and functional studies illustrate corresponding reductions in mitochondrial components and compensatory increases in protein synthesis. Collectively, these observations suggest that TDP-43 deposition leads to targeted RNA instability in ALS and FTD, and may ultimately cause cell death by disrupting energy production and protein synthesis pathways.
Collapse
Affiliation(s)
- E M Tank
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - C Figueroa-Romero
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - L M Hinder
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - K Bedi
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - H C Archbold
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - X Li
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - K Weskamp
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - N Safren
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - X Paez-Colasante
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - C Pacut
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - S Thumma
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - M T Paulsen
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - K Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - J Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - M Ljungman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Cellular & Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - E L Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Cellular & Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - S J Barmada
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Cellular & Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
41
|
Synaptic Paths to Neurodegeneration: The Emerging Role of TDP-43 and FUS in Synaptic Functions. Neural Plast 2018; 2018:8413496. [PMID: 29755516 PMCID: PMC5925147 DOI: 10.1155/2018/8413496] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/08/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein-43 KDa (TDP-43) and fused in sarcoma (FUS) as the defining pathological hallmarks for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), coupled with ALS-FTD-causing mutations in both genes, indicate that their dysfunctions damage the motor system and cognition. On the molecular level, TDP-43 and FUS participate in the biogenesis and metabolism of coding and noncoding RNAs as well as in the transport and translation of mRNAs as part of cytoplasmic mRNA-ribonucleoprotein (mRNP) granules. Intriguingly, many of the RNA targets of TDP-43 and FUS are involved in synaptic transmission and plasticity, indicating that synaptic dysfunction could be an early event contributing to motor and cognitive deficits in ALS and FTD. Furthermore, the ability of the low-complexity prion-like domains of TDP-43 and FUS to form liquid droplets suggests a potential mechanism for mRNP assembly and conversion. This review will discuss the role of TDP-43 and FUS in RNA metabolism, with an emphasis on the involvement of this process in synaptic function and neuroprotection. This will be followed by a discussion of the potential phase separation mechanism for forming RNP granules and pathological inclusions.
Collapse
|
42
|
Volkening K, Keller BA, Leystra-Lantz C, Strong MJ. RNA and Protein Interactors with TDP-43 in Human Spinal-Cord Lysates in Amyotrophic Lateral Sclerosis. J Proteome Res 2018. [DOI: 10.1021/acs.jproteome.8b00126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Gao J, Wang L, Huntley ML, Perry G, Wang X. Pathomechanisms of TDP-43 in neurodegeneration. J Neurochem 2018; 146:10.1111/jnc.14327. [PMID: 29486049 PMCID: PMC6110993 DOI: 10.1111/jnc.14327] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ju Gao
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Luwen Wang
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mikayla L. Huntley
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Xinglong Wang
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
44
|
Tan Q, Brunetti L, Rousseaux MWC, Lu HC, Wan YW, Revelli JP, Liu Z, Goodell MA, Zoghbi HY. Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma. Proc Natl Acad Sci U S A 2018; 115:E1511-E1519. [PMID: 29382756 PMCID: PMC5816173 DOI: 10.1073/pnas.1716452115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Capicua (CIC) regulates a transcriptional network downstream of the RAS/MAPK signaling cascade. In Drosophila, CIC is important for many developmental processes, including embryonic patterning and specification of wing veins. In humans, CIC has been implicated in neurological diseases, including spinocerebellar ataxia type 1 (SCA1) and a neurodevelopmental syndrome. Additionally, we and others have reported mutations in CIC in several cancers. However, whether CIC is a tumor suppressor remains to be formally tested. In this study, we found that deletion of Cic in adult mice causes T cell acute lymphoblastic leukemia/lymphoma (T-ALL). Using hematopoietic-specific deletion and bone marrow transplantation studies, we show that loss of Cic from hematopoietic cells is sufficient to drive T-ALL. Cic-null tumors show up-regulation of the KRAS pathway as well as activation of the NOTCH1 and MYC transcriptional programs. In sum, we demonstrate that loss of CIC causes T-ALL, establishing it as a tumor suppressor for lymphoid malignancies. Moreover, we show that mouse models lacking CIC in the hematopoietic system are robust models for studying the role of RAS signaling as well as NOTCH1 and MYC transcriptional programs in T-ALL.
Collapse
Affiliation(s)
- Qiumin Tan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Centro di Ricerca Emato-Oncologica, University of Perugia, 06156 Perugia, Italy
| | - Maxime W C Rousseaux
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Hsiang-Chih Lu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Jean-Pierre Revelli
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Margaret A Goodell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
45
|
Weskamp K, Barmada SJ. TDP43 and RNA instability in amyotrophic lateral sclerosis. Brain Res 2018; 1693:67-74. [PMID: 29395044 DOI: 10.1016/j.brainres.2018.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in RNA processing. In accord with this central function, TDP43 levels are tightly regulated through a negative feedback loop, in which TDP43 recognizes its own RNA transcript, destabilizes it, and reduces new TDP43 protein production. In the neurodegenerative disorder amyotrophic lateral sclerosis (ALS), cytoplasmic mislocalization and accumulation of TDP43 disrupt autoregulation; conversely, inefficient TDP43 autoregulation can lead to cytoplasmic TDP43 deposition and subsequent neurodegeneration. Because TDP43 plays a multifaceted role in maintaining RNA metabolism, its mislocalization and accumulation interrupt several RNA processing pathways that in turn affect RNA stability and gene expression. TDP43-mediated disruption of these pathways-including alternative mRNA splicing, non-coding RNA processing, and RNA granule dynamics-may directly or indirectly contribute to ALS pathogenesis. Therefore, strategies that restore effective TDP43 autoregulation may ultimately prevent neurodegeneration in ALS and related disorders.
Collapse
Affiliation(s)
- Kaitlin Weskamp
- Neuroscience Graduate Program and Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Sami J Barmada
- Neuroscience Graduate Program and Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States.
| |
Collapse
|
46
|
The Expanding Toolkit of Translating Ribosome Affinity Purification. J Neurosci 2018; 37:12079-12087. [PMID: 29237735 DOI: 10.1523/jneurosci.1929-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 01/23/2023] Open
Abstract
Translating ribosome affinity purification is a method initially developed for profiling mRNA from genetically defined cell types in complex tissues. It has been applied both to identify target molecules in cell types that are important for controlling a variety of behaviors in the brain, and to understand the molecular consequences on those cells due to experimental manipulations, ranging from drugs of abuse to disease-causing mutations. Since its inception, a variety of methodological advances are opening new avenues of investigation. These advances include a variety of new methods for targeting cells for translating ribosome affinity purification by features such as their projections or activity, additional tags and mouse reagents increasing the flexibility of the system, and new modifications of the method specifically focused on studying the regulation of translation. The latter includes methods to assess cell type-specific regulation of translation in specific subcellular compartments. Here, I provide a summary of these recent advances and resources, highlighting both new experimental opportunities and areas for future technical development.
Collapse
|
47
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
48
|
Abstract
Neurodegeneration is a leading cause of death in the developed world and a natural, albeit unfortunate, consequence of longer-lived populations. Despite great demand for therapeutic intervention, it is often the case that these diseases are insufficiently understood at the basic molecular level. What little is known has prompted much hopeful speculation about a generalized mechanistic thread that ties these disparate conditions together at the subcellular level and can be exploited for broad curative benefit. In this review, we discuss a prominent theory supported by genetic and pathological changes in an array of neurodegenerative diseases: that neurons are particularly vulnerable to disruption of RNA-binding protein dosage and dynamics. Here we synthesize the progress made at the clinical, genetic, and biophysical levels and conclude that this perspective offers the most parsimonious explanation for these mysterious diseases. Where appropriate, we highlight the reciprocal benefits of cross-disciplinary collaboration between disease specialists and RNA biologists as we envision a future in which neurodegeneration declines and our understanding of the broad importance of RNA processing deepens.
Collapse
Affiliation(s)
- Erin G Conlon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
49
|
Gao FB, Almeida S, Lopez-Gonzalez R. Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder. EMBO J 2017; 36:2931-2950. [PMID: 28916614 DOI: 10.15252/embj.201797568] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/15/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of C9ORF72 As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS-FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre-mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
50
|
Yalamanchili HK, Wan YW, Liu Z. Data Analysis Pipeline for RNA-seq Experiments: From Differential Expression to Cryptic Splicing. ACTA ACUST UNITED AC 2017; 59:11.15.1-11.15.21. [PMID: 28902396 DOI: 10.1002/cpbi.33] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RNA sequencing (RNA-seq) is a high-throughput technology that provides unique insights into the transcriptome. It has a wide variety of applications in quantifying genes/isoforms and in detecting non-coding RNA, alternative splicing, and splice junctions. It is extremely important to comprehend the entire transcriptome for a thorough understanding of the cellular system. Several RNA-seq analysis pipelines have been proposed to date. However, no single analysis pipeline can capture dynamics of the entire transcriptome. Here, we compile and present a robust and commonly used analytical pipeline covering the entire spectrum of transcriptome analysis, including quality checks, alignment of reads, differential gene/transcript expression analysis, discovery of cryptic splicing events, and visualization. Challenges, critical parameters, and possible downstream functional analysis pipelines associated with each step are highlighted and discussed. This unit provides a comprehensive understanding of state-of-the-art RNA-seq analysis pipeline and a greater understanding of the transcriptome. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Hari Krishna Yalamanchili
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Bioinformatics Core, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Bioinformatics Core, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Zhandong Liu
- Bioinformatics Core, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas.,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|