1
|
Matovu B, Takuwa M, Mpaata CN, Kiwanuka N, Mugaga J, Nalwoga RP, Kamuhanda S, Kworekwa P, Mulindwa B, Jjuuko GW, Wolters MK, Desmulliez MPY, Ssekitoleko RT. A compound analysis of medical device clinical trials registered in Africa on clinicaltrials.gov. Trials 2024; 25:658. [PMID: 39367383 PMCID: PMC11453074 DOI: 10.1186/s13063-024-08427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Africa, specifically the Sub-Saharan region, has had numerous medical technology clinical trials to address the various healthcare challenges around infectious diseases, non-communicable diseases, and nutritional disorders it is facing. Medical device clinical trials provide performance data in terms of safety, efficacy, and efficiency, which is a requirement before commercialization. Key players such as academicians, governments, international organizations, and funders collaborate to drive these trials, but their growth in Africa remains slower compared to other parts of the globe. This paper aims to evaluate the number of medical device clinical trials conducted in different African countries that are registered on the clinicaltrials.gov website. METHODS Data on medical device clinical trials was mined from clinicaltrials.gov website accessed on 22nd September, 2022. The data extracted was analyzed and cleaned in Microsoft Excel and R. Countries were grouped into regions and descriptive statistical analyses for each region were done. Additionally, frequency distributions were also generated and no inferential statistical tests were performed, as the primary focus of this analysis was to describe the distribution of medical conditions across regions. RESULTS Thirty-one African countries had registered medical device clinical trials on the website with the majority taking place in Egypt and South Africa. Medical device trials for heart related issues took longer to complete compared to other conditions. Malaria, HIV, and male circumcision related device trials were mainly conducted in Eastern and Southern Africa while trials related to dental, fertility, and obesity were concentrated in Northern Africa. Female reproductive health issues were studied equally across all regions. Some African countries did not have any trials registered on clinicaltrials.gov website. CONCLUSION Findings from this study clearly show the disparity in the number, status, and duration of medical device clinical trials across various African countries.
Collapse
Affiliation(s)
- Brian Matovu
- Biomedical Engineering Unit, Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mercy Takuwa
- Biomedical Engineering Unit, Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Charles Norman Mpaata
- Biomedical Engineering Unit, Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Noah Kiwanuka
- Clinical Trials Unit, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Julius Mugaga
- Biomedical Engineering Unit, Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Racheal Patricia Nalwoga
- Biomedical Engineering Unit, Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Success Kamuhanda
- Biomedical Engineering Unit, Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Paula Kworekwa
- Biomedical Engineering Unit, Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Benedict Mulindwa
- Biomedical Engineering Unit, Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - George William Jjuuko
- Biomedical Engineering Unit, Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Maria Klara Wolters
- Institute for Design Informatics, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Marc P Y Desmulliez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Robert T Ssekitoleko
- Biomedical Engineering Unit, Department of Physiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.
| |
Collapse
|
2
|
Akintola AA, Aborode AT, Hamza MT, Amakiri A, Moore B, Abdulai S, Iyiola OA, Sulaimon LA, Effiong E, Ogunyemi A, Dosunmu B, Maigoro AY, Lawal O, Raheem K, Hwang UW. Bioinformatics proficiency among African students. FRONTIERS IN BIOINFORMATICS 2024; 4:1328714. [PMID: 38966162 PMCID: PMC11222312 DOI: 10.3389/fbinf.2024.1328714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 07/06/2024] Open
Abstract
Bioinformatics, the interdisciplinary field that combines biology, computer science, and data analysis, plays a pivotal role in advancing our understanding of life sciences. In the African context, where the diversity of biological resources and healthcare challenges is substantial, fostering bioinformatics literacy and proficiency among students is important. This perspective provides an overview of the state of bioinformatics literacy among African students, highlighting the significance, challenges, and potential solutions in addressing this critical educational gap. It proposes various strategies to enhance bioinformatics literacy among African students. These include expanding educational resources, fostering collaboration between institutions, and engaging students in research projects. By addressing the current challenges and implementing comprehensive strategies, African students can harness the power of bioinformatics to contribute to innovative solutions in healthcare, agriculture, and biodiversity conservation, ultimately advancing the continent's scientific capabilities and improving the quality of life for her people. In conclusion, promoting bioinformatics literacy among African students is imperative for the continent's scientific development and advancing frontiers of biological research.
Collapse
Affiliation(s)
- Ashraf Akintayo Akintola
- School of Industrial Technology Advances, Kyungpook National University, Daegu, Republic of Korea
- NOBLEKINMAT Ltd. Bioinformatics Research Group, Ibadan, Nigeria
| | - Abdullahi Tunde Aborode
- NOBLEKINMAT Ltd. Bioinformatics Research Group, Ibadan, Nigeria
- Department of Chemistry, Mississippi State University, Starkville, MS, United States
| | - Muhammed Taofiq Hamza
- NOBLEKINMAT Ltd. Bioinformatics Research Group, Ibadan, Nigeria
- Green Climate Fund, Incheon, Republic of Korea
| | - Augustine Amakiri
- NOBLEKINMAT Ltd. Bioinformatics Research Group, Ibadan, Nigeria
- ProCogia, Vancouver, BC, Canada
| | - Benjamin Moore
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Suliat Abdulai
- NOBLEKINMAT Ltd. Bioinformatics Research Group, Ibadan, Nigeria
- Department of Biochemistry, Fountain University, Osogbo, Nigeria
| | | | - Lateef Adegboyega Sulaimon
- NOBLEKINMAT Ltd. Bioinformatics Research Group, Ibadan, Nigeria
- Department of Biochemistry, Crescent University, Abeokuta, Nigeria
| | - Effiong Effiong
- NOBLEKINMAT Ltd. Bioinformatics Research Group, Ibadan, Nigeria
- Department of Medical Laboratory Sciences, Babcock University, Ilishan-Remo, Nigeria
| | - Adedeji Ogunyemi
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | | | - Abdulkadir Yusif Maigoro
- NOBLEKINMAT Ltd. Bioinformatics Research Group, Ibadan, Nigeria
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Opeyemi Lawal
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Kayode Raheem
- NOBLEKINMAT Ltd. Bioinformatics Research Group, Ibadan, Nigeria
- Cancer Research Artificial Intelligence (CARESAI), Hobart, Australia
| | - Ui Wook Hwang
- School of Industrial Technology Advances, Kyungpook National University, Daegu, Republic of Korea
- Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
- Institute for Korean Herb-Bio Convergence Promotion, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Khan RR, Guerrero RF, Wapner RJ, Hahn MW, Raja A, Salleb-Aouissi A, Grobman WA, Simhan H, Silver RM, Chung JH, Reddy UM, Radivojac P, Pe'er I, Haas DM. Genetic polymorphisms associated with adverse pregnancy outcomes in nulliparas. Sci Rep 2024; 14:10514. [PMID: 38714721 PMCID: PMC11076516 DOI: 10.1038/s41598-024-61218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/02/2024] [Indexed: 05/10/2024] Open
Abstract
Adverse pregnancy outcomes (APOs) affect a large proportion of pregnancies and represent an important cause of morbidity and mortality worldwide. Yet the pathophysiology of APOs is poorly understood, limiting our ability to prevent and treat these conditions. To search for genetic markers of maternal risk for four APOs, we performed multi-ancestry genome-wide association studies (GWAS) for pregnancy loss, gestational length, gestational diabetes, and preeclampsia. We clustered participants by their genetic ancestry and focused our analyses on three sub-cohorts with the largest sample sizes: European, African, and Admixed American. Association tests were carried out separately for each sub-cohort and then meta-analyzed together. Two novel loci were significantly associated with an increased risk of pregnancy loss: a cluster of SNPs located downstream of the TRMU gene (top SNP: rs142795512), and the SNP rs62021480 near RGMA. In the GWAS of gestational length we identified two new variants, rs2550487 and rs58548906 near WFDC1 and AC005052.1, respectively. Lastly, three new loci were significantly associated with gestational diabetes (top SNPs: rs72956265, rs10890563, rs79596863), located on or near ZBTB20, GUCY1A2, and RPL7P20, respectively. Fourteen loci previously correlated with preterm birth, gestational diabetes, and preeclampsia were found to be associated with these outcomes as well.
Collapse
Affiliation(s)
- Raiyan R Khan
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Rafael F Guerrero
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - Ronald J Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Matthew W Hahn
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Anita Raja
- Department of Computer Science, CUNY Hunter College, New York, NY, USA
| | | | - William A Grobman
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hyagriv Simhan
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert M Silver
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA
| | - Judith H Chung
- Department of Obstetrics and Gynecology, University of California, Irvine, Orange, CA, USA
| | - Uma M Reddy
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Itsik Pe'er
- Department of Computer Science, Columbia University, New York, NY, USA
| | - David M Haas
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
4
|
Eletr LF, Ibnouf SH, Salih TA, Ibrahim HI, Mustafa MI, Alhashmi NA, Alfaki M. Comprehensive Analysis Reveals Deoxyribonuclease 1 as a Potential Prognostic and Diagnostic Biomarker in Human Cancers. Cureus 2024; 16:e56171. [PMID: 38618458 PMCID: PMC11015913 DOI: 10.7759/cureus.56171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Deoxyribonuclease 1 (DNASE1) is an important gene associated with several cancers, including liver, bladder, and gastric cancer. It has been linked to autoimmune illnesses, including systemic lupus erythematosus, which may lead to cancer formation. However, the role of DNASE1 in cancer has not been studied. MATERIALS AND METHODS We performed a pan-cancer analysis using bioinformatics tools, including Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), and University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) databases, Kaplan-Meier plotter, and cBioPortal, to investigate the expression of DNASE1 across various cancers as well as its association with immune infiltration and genetic alterations. Public datasets were used to validate DNASE1 expression in kidney renal clear cell carcinoma (KIRC) and kidney papillary renal cell carcinoma (KIRP) samples. RESULTS DNASE1 was found to be highly expressed in many cancers, such as bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), and was lowly expressed in other cancers, including KIRC, KIRP, and thyroid carcinoma (THCA). Additionally, TIMER results showed an association of DNASE1 with immune cell infiltration in KIRC and KIRP. Survival analysis indicated that high DNASE1 expression was associated with poor prognosis in KIRC. We also discovered that altered DNASE1 expression was related to poor prognosis in The Cancer Genome Atlas (TCGA) tumors. CONCLUSION DNASE1 could potentially be used as a prognostic and diagnostic biomarker for KIRC and as a diagnostic biomarker for KIRP.
Collapse
Affiliation(s)
- Loai F Eletr
- Computing and Bioinformatics, Faculty of Science, Port Said University, Port Said, EGY
| | | | | | - Hadba I Ibrahim
- Zoology, Faculty of Science, University of Khartoum, Khartoum, SDN
| | - Mustafa I Mustafa
- Internal Medicine, Sudan Medical Specialization Board, Khartoum, SDN
- Clinical Immunology, Sudan Medical Specialization Board, Khartoum, SDN
- Neurology, King Abdulaziz Medical City Jeddah, Jeddah, SAU
| | | | | |
Collapse
|
5
|
Jain K, McCarley SC, Mukhtar G, Ferlin A, Fleming A, Morris-Rosendahl DJ, Shovlin CL. Pathogenic Variant Frequencies in Hereditary Haemorrhagic Telangiectasia Support Clinical Evidence of Protection from Myocardial Infarction. J Clin Med 2023; 13:250. [PMID: 38202257 PMCID: PMC10779873 DOI: 10.3390/jcm13010250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait, due to a single heterozygous loss-of-function variant, usually in ACVRL1 (encoding activin receptor-like kinase 1 [ALK1]), ENG (encoding endoglin [CD105]), or SMAD4. In a consecutive single-centre series of 37 positive clinical genetic tests performed in 2021-2023, a skewed distribution pattern was noted, with 30 of 32 variants reported only once, but ACVRL1 c.1231C>T (p.Arg411Trp) identified as the disease-causal gene in five different HHT families. In the same centre's non-overlapping 1992-2020 series where 110/134 (82.1%) HHT-causal variants were reported only once, ACVRL1 c.1231C>T (p.Arg411Trp) was identified in nine further families. In a 14-country, four-continent HHT Mutation Database where 181/250 (72.4%) HHT-causal variants were reported only once, ACVRL1 c.1231C>T (p.Arg411Trp) was reported by 12 different laboratories, the adjacent ACVRL1 c.1232G>A (p.Arg411Gln) by 14, and ACVRL1 c.1120C>T (p.Arg374Trp) by 18. Unlike the majority of HHT-causal ACVRL1 variants, these encode ALK1 protein that reaches the endothelial cell surface but fails to signal. Six variants of this type were present in the three series and were reported 6.8-25.5 (mean 8.9) times more frequently than the other ACVRL1 missense variants (all p-values < 0.0039). Noting lower rates of myocardial infarction reported in HHT, we explore potential mechanisms, including a selective paradigm relevant to ALK1's role in the initiating event of atherosclerosis, where a plausible dominant negative effect of these specific variants can be proposed. In conclusion, there is an ~9-fold excess of kinase-inactive, cell surface-expressed ACVRL1/ALK1 pathogenic missense variants in HHT. The findings support further examination of differential clinical and cellular phenotypes by HHT causal gene molecular subtypes.
Collapse
Affiliation(s)
- Kinshuk Jain
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (K.J.); (S.C.M.); (G.M.); (D.J.M.-R.)
| | - Sarah C. McCarley
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (K.J.); (S.C.M.); (G.M.); (D.J.M.-R.)
| | - Ghazel Mukhtar
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (K.J.); (S.C.M.); (G.M.); (D.J.M.-R.)
| | - Anna Ferlin
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy’s and St Thomas’ NHS Trust, London SE1 7EH, UK; (A.F.); (A.F.)
| | - Andrew Fleming
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy’s and St Thomas’ NHS Trust, London SE1 7EH, UK; (A.F.); (A.F.)
| | - Deborah J. Morris-Rosendahl
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (K.J.); (S.C.M.); (G.M.); (D.J.M.-R.)
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy’s and St Thomas’ NHS Trust, London SE1 7EH, UK; (A.F.); (A.F.)
| | - Claire L. Shovlin
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (K.J.); (S.C.M.); (G.M.); (D.J.M.-R.)
- Specialist Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK
- Social, Genetic and Environmental Determinants of Health, NIHR Imperial Biomedical Research Centre, London W2 1NY, UK
| |
Collapse
|
6
|
Luzzatto L. A Journey from Blood Cells to Genes and Back. Annu Rev Genomics Hum Genet 2023; 24:1-33. [PMID: 37217201 DOI: 10.1146/annurev-genom-101022-105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
I was attracted to hematology because by combining clinical findings with the use of a microscope and simple laboratory tests, one could often make a diagnosis. I was attracted to genetics when I learned about inherited blood disorders, at a time when we had only hints that somatic mutations were also important. It seemed clear that if we understood not only what genetic changes caused what diseases but also the mechanisms through which those genetic changes contribute to cause disease, we could improve management. Thus, I investigated many aspects of the glucose-6-phosphate dehydrogenase system, including cloning of the gene, and in the study of paroxysmal nocturnal hemoglobinuria (PNH), I found that it is a clonal disorder; subsequently, we were able to explain how a nonmalignant clone can expand, and I was involved in the first trial of PNH treatment by complement inhibition. I was fortunate to do clinical and research hematology in five countries; in all of them, I learned from mentors, from colleagues, and from patients.
Collapse
Affiliation(s)
- Lucio Luzzatto
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
- University of Florence, Florence, Italy;
| |
Collapse
|
7
|
Mohamed W. Leveraging genetic diversity to understand monogenic Parkinson's disease's landscape in AfrAbia. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2023; 12:108-122. [PMID: 37736165 PMCID: PMC10509492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Parkinson's disease may be caused by a single highly deleterious and penetrant pathogenic variant in 5-10% of cases (monogenic). Research into these mutational disorders yields important pathophysiological insights. This article examines the phenotype, genotype, pathophysiology, and geographic and ethnic distribution of genetic forms of disease. Well established Parkinson's disease (PD) causal variants can follow an autosomal dominant (SNCA, LRRK2, and VPS35) and autosomal recessive pattern of inheritance (PRKN, PINK1, and DJ). Parkinson's disease is a worldwide condition, yet the AfrAbia population is understudied in this regard. No prevalence or incidence investigations have been conducted yet. Few studies on genetic risk factors for PD in AfrAbia communities have been reported which supported the notion that the prevalence and incidence rates of PD in AfrAbia are generally lower than those reported for European and North American populations. There have been only a handful of documented genetic studies of PD in AfrAbia and very limited cohort and case-control research studies on PD have been documented. In this article, we provide a summary of prior conducted research on monogenic PD in Africa and highlight data gaps and promising new research directions. We emphasize that monogenic Parkinson's disease is influenced by distinctions in ethnicity and geography, thereby reinforcing the need for global initiatives to aggregate large numbers of patients and identify novel candidate genes. The current article increases our knowledge of the genetics of Parkinson's disease (PD) and helps to further our knowledge on the genetic factors that contribute to PD, such as the lower penetrance and varying clinical expressivity of known genetic variants, particularly in AfrAbian PD patients.
Collapse
Affiliation(s)
- Wael Mohamed
- Basic Medical Science Department, Kulliyah of Medicine, International Islamic University Malaysia Kuantan, Pahang, Malaysia
| |
Collapse
|
8
|
Reitz C, Pericak-Vance MA, Foroud T, Mayeux R. A global view of the genetic basis of Alzheimer disease. Nat Rev Neurol 2023; 19:261-277. [PMID: 37024647 PMCID: PMC10686263 DOI: 10.1038/s41582-023-00789-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
The risk of Alzheimer disease (AD) increases with age, family history and informative genetic variants. Sadly, there is still no cure or means of prevention. As in other complex diseases, uncovering genetic causes of AD could identify underlying pathological mechanisms and lead to potential treatments. Rare, autosomal dominant forms of AD occur in middle age as a result of highly penetrant genetic mutations, but the most common form of AD occurs later in life. Large-scale, genome-wide analyses indicate that 70 or more genes or loci contribute to AD. One of the major factors limiting progress is that most genetic data have been obtained from non-Hispanic white individuals in Europe and North America, preventing the development of personalized approaches to AD in individuals of other ethnicities. Fortunately, emerging genetic data from other regions - including Africa, Asia, India and South America - are now providing information on the disease from a broader range of ethnicities. Here, we summarize the current knowledge on AD genetics in populations across the world. We predominantly focus on replicated genetic discoveries but also include studies in ethnic groups where replication might not be feasible. We attempt to identify gaps that need to be addressed to achieve a complete picture of the genetic and molecular factors that drive AD in individuals across the globe.
Collapse
Affiliation(s)
- Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Margaret A Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.
- Department of Neurology, Columbia University, New York, NY, USA.
- Department of Epidemiology, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Majara L, Kalungi A, Koen N, Tsuo K, Wang Y, Gupta R, Nkambule LL, Zar H, Stein DJ, Kinyanda E, Atkinson EG, Martin AR. Low and differential polygenic score generalizability among African populations due largely to genetic diversity. HGG ADVANCES 2023; 4:100184. [PMID: 36873096 PMCID: PMC9982687 DOI: 10.1016/j.xhgg.2023.100184] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
African populations are vastly underrepresented in genetic studies but have the most genetic variation and face wide-ranging environmental exposures globally. Because systematic evaluations of genetic prediction had not yet been conducted in ancestries that span African diversity, we calculated polygenic risk scores (PRSs) in simulations across Africa and in empirical data from South Africa, Uganda, and the United Kingdom to better understand the generalizability of genetic studies. PRS accuracy improves with ancestry-matched discovery cohorts more than from ancestry-mismatched studies. Within ancestrally and ethnically diverse South African individuals, we find that PRS accuracy is low for all traits but varies across groups. Differences in African ancestries contribute more to variability in PRS accuracy than other large cohort differences considered between individuals in the United Kingdom versus Uganda. We computed PRS in African ancestry populations using existing European-only versus ancestrally diverse genetic studies; the increased diversity produced the largest accuracy gains for hemoglobin concentration and white blood cell count, reflecting large-effect ancestry-enriched variants in genes known to influence sickle cell anemia and the allergic response, respectively. Differences in PRS accuracy across African ancestries originating from diverse regions are as large as across out-of-Africa continental ancestries, requiring commensurate nuance.
Collapse
Affiliation(s)
- Lerato Majara
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- MRC Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Allan Kalungi
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Mental Health Project, Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) & London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Nastassja Koen
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Kristin Tsuo
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rahul Gupta
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Lethukuthula L. Nkambule
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Heather Zar
- Department of Paediatrics and Child Health, Red Cross Children’s Hospital and Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Eugene Kinyanda
- Mental Health Project, Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) & London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Elizabeth G. Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alicia R. Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
10
|
Gokul A, Arumugam T, Ramsuran V. Genetic Ethnic Differences in Human 2'-5'-Oligoadenylate Synthetase and Disease Associations: A Systematic Review. Genes (Basel) 2023; 14:527. [PMID: 36833454 PMCID: PMC9956131 DOI: 10.3390/genes14020527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Recently, several studies have highlighted a skewed prevalence of infectious diseases within the African continent. Furthermore, a growing number of studies have demonstrated unique genetic variants found within the African genome are one of the contributing factors to the disease severity of infectious diseases within Africa. Understanding the host genetic mechanisms that offer protection against infectious diseases provides an opportunity to develop unique therapeutic interventions. Over the past two decades, several studies have linked the 2'-5'-oligoadenylate synthetase (OAS) family with a range of infectious diseases. More recently, the OAS-1 gene has also been associated with disease severity caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to a global pandemic. The OAS family serves as an antiviral factor through the interaction with Ribonuclease-Latent (RNase-L). This review explores the genetic variants observed within the OAS genes and the associations with various viral infections and how previously reported ethnic-specific polymorphisms drive clinical significance. This review provides an overview of OAS genetic association studies with a particular focus on viral diseases affecting individuals of African descent.
Collapse
Affiliation(s)
- Anmol Gokul
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
11
|
Giudicelli GC, De Souza CMB, Veronese FV, Pereira LV, Hünemeier T, Vianna FSL. Precision medicine implementation challenges for APOL1 testing in chronic kidney disease in admixed populations. Front Genet 2022; 13:1016341. [PMID: 36588788 PMCID: PMC9797503 DOI: 10.3389/fgene.2022.1016341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a public health problem that presents genetic and environmental risk factors. Two alleles in the Apolipoprotein L1 (APOL1) gene were associated with chronic kidney disease; these alleles are common in individuals of African ancestry but rare in European descendants. Genomic studies on Afro-Americans have indicated a higher prevalence and severity of chronic kidney disease in people of African ancestry when compared to other ethnic groups. However, estimates in low- and middle-income countries are still limited. Precision medicine approaches could improve clinical outcomes in carriers of risk alleles in the Apolipoprotein L1 gene through early diagnosis and specific therapies. Nevertheless, to enhance the definition of studies on these variants, it would be necessary to include individuals with different ancestry profiles in the sample, such as Latinos, African Americans, and Indigenous peoples. There is evidence that measuring genetic ancestry improves clinical care for admixed people. For chronic kidney disease, this knowledge could help establish public health strategies for monitoring patients and understanding the impact of the Apolipoprotein L1 genetic variants in admixed populations. Therefore, researchers need to develop resources, methodologies, and incentives for vulnerable and disadvantaged communities, to develop and implement precision medicine strategies and contribute to consolidating diversity in science and precision medicine in clinical practice.
Collapse
Affiliation(s)
- Giovanna Câmara Giudicelli
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia de Genética Médica Populacional, Porto Alegre, RS, Brazil
| | - Celia Mariana Barbosa De Souza
- Departamento de Nefrologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francisco Veríssimo Veronese
- Departamento de Nefrologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lygia V. Pereira
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Institut de Biologia Evolutiva, CSIC/Universitat Pompeu Fabra, Barcelona, Spain
| | - Fernanda Sales Luiz Vianna
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia de Genética Médica Populacional, Porto Alegre, RS, Brazil
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Medicina Personalizada Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Wonkam A, Munung NS, Dandara C, Esoh KK, Hanchard NA, Landoure G. Five Priorities of African Genomics Research: The Next Frontier. Annu Rev Genomics Hum Genet 2022; 23:499-521. [PMID: 35576571 DOI: 10.1146/annurev-genom-111521-102452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To embrace the prospects of accurately diagnosing thousands of monogenic conditions, predicting disease risks for complex traits or diseases, tailoring treatment to individuals' pharmacogenetic profiles, and potentially curing some diseases, research into African genomic variation is a scientific imperative. African genomes harbor millions of uncaptured variants accumulated over 300,000 years of modern humans' evolutionary history, with successive waves of admixture, migration, and natural selection combining with extensive ecological diversity to create a broad and exceptional genomic complexity. Harnessing African genomic complexity, therefore, will require sustained commitment and equitable collaboration from the scientific community and funding agencies. African governments must support academic public research and industrial partnerships that build the necessary genetic medicine workforce, utilize the emerging genomic big data to develop expertise in computer science and bioinformatics, and evolve national and global governance frameworks that recognize the ethical implications of data-driven genomic research and empower its application in African social, cultural, economic, and religious contexts. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , , .,Current affiliation: McKusick-Nathans Institute of Genetic Medicine and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Nchangwi S Munung
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Collet Dandara
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Kevin K Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Neil A Hanchard
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Guida Landoure
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques, and Technology of Bamako, Bamako, Mali;
| |
Collapse
|
13
|
Choudhury A, Brandenburg JT, Chikowore T, Sengupta D, Boua PR, Crowther NJ, Agongo G, Asiki G, Gómez-Olivé FX, Kisiangani I, Maimela E, Masemola-Maphutha M, Micklesfield LK, Nonterah EA, Norris SA, Sorgho H, Tinto H, Tollman S, Graham SE, Willer CJ, Hazelhurst S, Ramsay M. Meta-analysis of sub-Saharan African studies provides insights into genetic architecture of lipid traits. Nat Commun 2022; 13:2578. [PMID: 35546142 PMCID: PMC9095599 DOI: 10.1038/s41467-022-30098-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Genetic associations for lipid traits have identified hundreds of variants with clear differences across European, Asian and African studies. Based on a sub-Saharan-African GWAS for lipid traits in the population cross-sectional AWI-Gen cohort (N = 10,603) we report a novel LDL-C association in the GATB region (P-value=1.56 × 10−8). Meta-analysis with four other African cohorts (N = 23,718) provides supporting evidence for the LDL-C association with the GATB/FHIP1A region and identifies a novel triglyceride association signal close to the FHIT gene (P-value =2.66 × 10−8). Our data enable fine-mapping of several well-known lipid-trait loci including LDLR, PMFBP1 and LPA. The transferability of signals detected in two large global studies (GLGC and PAGE) consistently improves with an increase in the size of the African replication cohort. Polygenic risk score analysis shows increased predictive accuracy for LDL-C levels with the narrowing of genetic distance between the discovery dataset and our cohort. Novel discovery is enhanced with the inclusion of African data. Genetic associations and polygenic scores for lipid traits have low transferability to African individuals. Here, the authors perform a large sub-Sarahan African lipid GWAS and find that larger datasets and better global representation in discovery GWAS help to bridge this gap.
Collapse
Affiliation(s)
- Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tinashe Chikowore
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,South African Medical Research Council/University of the Witwatersrand Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Palwende Romuald Boua
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santè, Nanoro, Burkina Faso
| | - Nigel J Crowther
- Department of Chemical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana.,C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Gershim Asiki
- African Population and Health Research Center, Nairobi, Kenya
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Eric Maimela
- Department of Public Health, School of Health Care Sciences, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa
| | - Matshane Masemola-Maphutha
- Department of Pathology and Medical Sciences, School of Health Care Sciences, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa
| | - Lisa K Micklesfield
- South African Medical Research Council/University of the Witwatersrand Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Shane A Norris
- South African Medical Research Council/University of the Witwatersrand Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santè, Nanoro, Burkina Faso
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santè, Nanoro, Burkina Faso
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48019, USA
| | | | | | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
14
|
Serum proteomics links suppression of tumor immunity to ancestry and lethal prostate cancer. Nat Commun 2022; 13:1759. [PMID: 35365620 PMCID: PMC8975871 DOI: 10.1038/s41467-022-29235-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
There is evidence that tumor immunobiology and immunotherapy response may differ between African American and European American prostate cancer patients. Here, we determine if men of African descent harbor a unique systemic immune-oncological signature and measure 82 circulating proteins in almost 3000 Ghanaian, African American, and European American men. Protein signatures for suppression of tumor immunity and chemotaxis are elevated in men of West African ancestry. Importantly, the suppression of tumor immunity protein signature associates with metastatic and lethal prostate cancer, pointing to clinical importance. Moreover, two markers, pleiotrophin and TNFRSF9, predict poor disease survival specifically among African American men. These findings indicate that immune-oncology marker profiles differ between men of African and European descent. These differences may contribute to the disproportionate burden of lethal prostate cancer in men of African ancestry. The elevated peripheral suppression of tumor immunity may have important implication for guidance of cancer therapy which could particularly benefit African American patients. Ancestry-related differences in immunobiology may explain the health disparities observed in prostate cancer patients, with men of African origin bearing the highest prostate cancer burden. By measuring immune-related proteins in serum samples, here the authors report that systemic cytokines linked to suppression of tumor immunity are upregulated in men of African ancestry and associated with reduced survival.
Collapse
|
15
|
Fatumo S, Chikowore T, Choudhury A, Ayub M, Martin AR, Kuchenbaecker K. A roadmap to increase diversity in genomic studies. Nat Med 2022; 28:243-250. [PMID: 35145307 PMCID: PMC7614889 DOI: 10.1038/s41591-021-01672-4] [Citation(s) in RCA: 222] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
Abstract
Two decades ago, the sequence of the first human genome was published. Since then, advances in genome technologies have resulted in whole-genome sequencing and microarray-based genotyping of millions of human genomes. However, genetic and genomic studies are predominantly based on populations of European ancestry. As a result, the potential benefits of genomic research-including better understanding of disease etiology, early detection and diagnosis, rational drug design and improved clinical care-may elude the many underrepresented populations. Here, we describe factors that have contributed to the imbalance in representation of different populations and, leveraging our experiences in setting up genomic studies in diverse global populations, we propose a roadmap to enhancing inclusion and ensuring equal health benefits of genomics advances. Our Perspective highlights the importance of sincere, concerted global efforts toward genomic equity to ensure the benefits of genomic medicine are accessible to all.
Collapse
Affiliation(s)
- Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI and LSHTM, Entebbe, Uganda.
- The Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Tinashe Chikowore
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad Ayub
- Division of Psychiatry, University College London, London, UK
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Karoline Kuchenbaecker
- Division of Psychiatry, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| |
Collapse
|
16
|
Role of Precision Oncology in Type II Endometrial and Prostate Cancers in the African Population: Global Cancer Genomics Disparities. Int J Mol Sci 2022; 23:ijms23020628. [PMID: 35054814 PMCID: PMC8776204 DOI: 10.3390/ijms23020628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
Precision oncology can be defined as molecular profiling of tumors to identify targetable alterations. Emerging research reports the high mortality rates associated with type II endometrial cancer in black women and with prostate cancer in men of African ancestry. The lack of adequate genetic reference information from the African genome is one of the major obstacles in exploring the benefits of precision oncology in the African context. Whilst external factors such as the geography, environment, health-care access and socio-economic status may contribute greatly towards the disparities observed in type II endometrial and prostate cancers in black populations compared to Caucasians, the contribution of African ancestry to the contribution of genetics to the etiology of these cancers cannot be ignored. Non-coding RNAs (ncRNAs) continue to emerge as important regulators of gene expression and the key molecular pathways involved in tumorigenesis. Particular attention is focused on activated/repressed genes and associated pathways, while the redundant pathways (pathways that have the same outcome or activate the same downstream effectors) are often ignored. However, comprehensive evidence to understand the relationship between type II endometrial cancer, prostate cancer and African ancestry remains poorly understood. The sub-Saharan African (SSA) region has both the highest incidence and mortality of both type II endometrial and prostate cancers. Understanding how the entire transcriptomic landscape of these two reproductive cancers is regulated by ncRNAs in an African cohort may help elucidate the relationship between race and pathological disparities of these two diseases. This review focuses on global disparities in medicine, PCa and ECa. The role of precision oncology in PCa and ECa in the African population will also be discussed.
Collapse
|
17
|
Ghoorah AW, Chaplain T, Rindra R, Goorah S, Chinien G, Jaufeerally-Fakim Y. Population Structure of the South West Indian Ocean Islands: Implications for Precision Medicine. Front Genet 2021; 12:758563. [PMID: 34899843 PMCID: PMC8653818 DOI: 10.3389/fgene.2021.758563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
Precision medicine has brought new hopes for patients around the world with the applications of novel technologies for understanding genetics of complex diseases and their translation into clinical services. Such applications however require a foundation of skills, knowledge and infrastructure to translate genetics for health care. The crucial element is no doubt the availability of genomics data for the target populations, which is seriously lacking for most parts of Africa. We discuss here why it is vital to prioritize genomics data for the South West Indian Ocean region where a mosaic of ethnicities co-exist. The islands of the SWIO, which comprise Madagascar, La Reunion, Mauritius, Seychelles and Comoros, have been the scene for major explorations and trade since the 17th century being on the route to Asia. This part of the world has lived through active passage of slaves from East Africa to Arabia and further. Today’s demography of the islands is a diverse mix of ancestries including European, African and Asian. The extent of admixtures has yet to be resolved. Except for a few studies in Madagascar, there is very little published data on human genetics for these countries. Isolation and small population sizes have likely resulted in reduced genetic variation and possible founder effects. There is a significant prevalence of diabetes, particularly in individuals of Indian descent, while breast and prostate cancers are on the rise. The island of La Reunion is a French overseas territory with a high standard of health care and close ties to Mauritius. Its demography is comparable to that of Mauritius but with a predominantly mixed population and a smaller proportion of people of Indian descent. On the other hand, Madagascar’s African descendants inhabit mostly the lower coastal zones of the West and South regions, while the upper highlands are occupied by peoples of mixed African-Indonesian ancestries. Historical records confirm the Austronesian contribution to the Madagascar genomes. With the rapid progress in genomic medicine, there is a growing demand for sequencing services in the clinical settings to explore the incidence of variants in candidate disease genes and other markers. Genome sequence data has become a priority in order to understand the population sub-structures and to identify specific pathogenic variants among the different groups of inhabitants on the islands. Genomic data is increasingly being used to advise families at risk and propose diagnostic screening measures to enhance the success of therapies. This paper discusses the complexity of the islands’ populations and argues for the needs for genotyping and understanding the genetic factors associated with disease risks. The benefits to patients and improvement in health services through a concerted regional effort are depicted. Some private patients are having recourse to external facilities for molecular profiling with no return of data for research. Evidence of disease variants through sequencing represents a valuable source of medical data that can guide policy decisions at the national level. There are presently no such records for future implementation of strategies for genomic medicine.
Collapse
Affiliation(s)
| | - Toto Chaplain
- University of Toamasina, Barikadimy, Toamasina, Madagascar
| | | | | | | | | |
Collapse
|
18
|
Aldersley T, Lawrenson J, Human P, Shaboodien G, Cupido B, Comitis G, De Decker R, Fourie B, Swanson L, Joachim A, Magadla P, Ngoepe M, Swanson L, Revell A, Ramesar R, Brooks A, Saacks N, De Koning B, Sliwa K, Anthony J, Osman A, Keavney B, Zühlke L. PROTEA, A Southern African Multicenter Congenital Heart Disease Registry and Biorepository: Rationale, Design, and Initial Results. Front Pediatr 2021; 9:763060. [PMID: 34746065 PMCID: PMC8564377 DOI: 10.3389/fped.2021.763060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Objectives: The PartneRships in cOngeniTal hEart disease (PROTEA) project aims to establish a densely phenotyped and genotyped Congenital Heart Disease (CHD) cohort for southern Africa. This will facilitate research into the epidemiology and genetic determinants of CHD in the region. This paper introduces the PROTEA project, characterizes its initial cohort, from the Western Cape Province of South Africa, and compares the proportion or "cohort-prevalences" of CHD-subtypes with international findings. Methods: PROTEA is a prospective multicenter CHD registry and biorepository. The initial cohort was recruited from seven hospitals in the Western Cape Province of South Africa from 1 April 2017 to 31 March 2019. All patients with structural CHD were eligible for inclusion. Descriptive data for the preliminary cohort are presented. In addition, cohort-prevalences (i.e., the proportion of patients within the cohort with a specific CHD-subtype) of 26 CHD-subtypes in PROTEA's pediatric cohort were compared with the cohort-prevalences of CHD-subtypes in two global birth-prevalence studies. Results: The study enrolled 1,473 participants over 2 years, median age was 1.9 (IQR 0.4-7.1) years. Predominant subtypes included ventricular septal defect (VSD) (339, 20%), atrial septal defect (ASD) (174, 11%), patent ductus arteriosus (185, 11%), atrioventricular septal defect (AVSD) (124, 7%), and tetralogy of Fallot (121, 7%). VSDs were 1.8 (95% CI, 1.6-2.0) times and ASDs 1.4 (95% CI, 1.2-1.6) times more common in global prevalence estimates than in PROTEA's pediatric cohort. AVSDs were 2.1 (95% CI, 1.7-2.5) times more common in PROTEA and pulmonary stenosis and double outlet right ventricle were also significantly more common compared to global estimates. Median maternal age at delivery was 28 (IQR 23-34) years. Eighty-two percent (347/425) of mothers used no pre-conception supplementation and 42% (105/250) used no first trimester supplements. Conclusions: The cohort-prevalence of certain mild CHD subtypes is lower than for international estimates and the cohort-prevalence of certain severe subtypes is higher. PROTEA is not a prevalence study, and these inconsistencies are unlikely the result of true differences in prevalence. However, these findings may indicate under-diagnosis of mild to moderate CHD and differences in CHD management and outcomes. This reemphasizes the need for robust CHD epidemiological research in the region.
Collapse
Affiliation(s)
- Thomas Aldersley
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - John Lawrenson
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Stellenbosch, Cape Town, South Africa
| | - Paul Human
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town and Groote Schuur and Red Cross Children's Hospitals, Cape Town, South Africa
| | - Gasnat Shaboodien
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Blanche Cupido
- Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - George Comitis
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Rik De Decker
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Barend Fourie
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Stellenbosch, Cape Town, South Africa
| | - Lenise Swanson
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Alexia Joachim
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Phaphama Magadla
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Malebogo Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Cape Town, South Africa
| | - Liam Swanson
- Department of Mechanical Engineering, University of Cape Town, Cape Town, South Africa
| | - Alistair Revell
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Raj Ramesar
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Andre Brooks
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town and Groote Schuur and Red Cross Children's Hospitals, Cape Town, South Africa
| | - Nicole Saacks
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Bianca De Koning
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Karen Sliwa
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - John Anthony
- Division of Maternal and Foetal Medicine, The Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Ayesha Osman
- Division of Maternal and Foetal Medicine, The Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Liesl Zühlke
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Ngo Nkondjock VR, Cheteu Wabo TM, Kosgey JC, Zhang Y, Amporfro DA, Adnan H, Shah I, Li Y. Insulin Resistance, Serum Calcium and Hypertension: A Cross-Sectional Study of a Multiracial Population, and a Similarity Assessment of Results from a Single-Race Population's Study. Diabetes Metab Syndr Obes 2021; 14:3361-3373. [PMID: 34335037 PMCID: PMC8318711 DOI: 10.2147/dmso.s259409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recent research suggests the need to assess more ethnic disparities in hypertension (HTN). On the other hand, studies reveal impressive mortality rates due to cardiovascular diseases for some race and ethnic groups compared to others. METHODS We referred to a recent study on serum calcium (SC) and insulin resistance associated with HTN incidence to compare different race groups in the latter found relationship. We compare the current study outcomes with those from the Wu et al study. RESULTS From 425 participants of the National Health and Nutrition Examination Survey (NHANES) data, we found a significant association between race and hypertension; Cramer's V (0.006) = 0.21 when adjusted with non-hypertensives and hypertensives. Mc Auley index (McA) was negatively related to hypertension, r (355) = -0.24, p < 0.0001. SC associated with HTN in all race groups significance persisted only in non-Hispanic Whites after multivariate adjustments R 2 of 74.1 (p = 0.03). McA was a mediator on SC-HTN in non-Hispanic Whites (NHW) (CoefIE = 13.25, [CI] = 1.42-32.13), and a moderator in other Hispanics interaction (0.04) = 0.27 and NHW interaction (0.001) = 0.028. CONCLUSION SC was associated with hypertension, similarly to the baseline study. SC and HTN association persisted in NHW compared to other race groups. Homeostasis model assessment (HOMA-IR) was not a mediator on SC-HTN, but with McA, this in NHW only. McA played a moderator role in OH and NHW. We suggest that race is a factor implicated in our findings, which may be investigated further in future research.
Collapse
Affiliation(s)
- Victorine Raïssa Ngo Nkondjock
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | - Thérèse Martin Cheteu Wabo
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | | | - Yunlong Zhang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | - Daniel Adjei Amporfro
- Department of Social Medicine and Health Services Management, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | - Humara Adnan
- Department of Biostatistics and Epidemiology, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | - Imran Shah
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| | - Ying Li
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
20
|
Olawoye O, Chuka-Okosa C, Akpa O, Realini T, Hauser M, Ashaye A. Eyes of Africa: The Genetics of Blindness: Study Design and Methodology. BMC Ophthalmol 2021; 21:272. [PMID: 34243759 PMCID: PMC8267233 DOI: 10.1186/s12886-021-02029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This report describes the design and methodology of the "Eyes of Africa: The Genetics of Blindness," a collaborative study funded through the Human Heredity and Health in Africa (H3Africa) program of the National Institute of Health. METHODS This is a case control study that is collecting a large well phenotyped data set among glaucoma patients and controls for a genome wide association study. (GWAS). Multiplex families segregating Mendelian forms of early-onset glaucoma will also be collected for exome sequencing. DISCUSSION A total of 4500 cases/controls have been recruited into the study at the end of the 3rd funded year of the study. All these participants have been appropriately phenotyped and blood samples have been received from these participants. Recent GWAS of POAG in African individuals demonstrated genome-wide significant association with the APBB2 locus which is an association that is unique to individuals of African ancestry. This study will add to the existing knowledge and understanding of POAG in the African population.
Collapse
Affiliation(s)
- Olusola Olawoye
- Department of Ophthalmology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Chimdi Chuka-Okosa
- Department of Ophthalmology, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Onoja Akpa
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tony Realini
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, USA
| | - Michael Hauser
- Department of Medicine, Duke University, NC Durham, USA
- Department of Ophthalmology, Duke University, NC Durham, USA
| | - Adeyinka Ashaye
- Department of Ophthalmology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
21
|
Abstract
Behavioral genetics and cultural evolution have both revolutionized our understanding of human behavior-largely independent of each other. Here we reconcile these two fields under a dual inheritance framework, offering a more nuanced understanding of the interaction between genes and culture. Going beyond typical analyses of gene-environment interactions, we describe the cultural dynamics that shape these interactions by shaping the environment and population structure. A cultural evolutionary approach can explain, for example, how factors such as rates of innovation and diffusion, density of cultural sub-groups, and tolerance for behavioral diversity impact heritability estimates, thus yielding predictions for different social contexts. Moreover, when cumulative culture functionally overlaps with genes, genetic effects become masked, unmasked, or even reversed, and the causal effects of an identified gene become confounded with features of the cultural environment. The manner of confounding is specific to a particular society at a particular time, but a WEIRD (Western, educated, industrialized, rich, democratic) sampling problem obscures this boundedness. Cultural evolutionary dynamics are typically missing from models of gene-to-phenotype causality, hindering generalizability of genetic effects across societies and across time. We lay out a reconciled framework and use it to predict the ways in which heritability should differ between societies, between socioeconomic levels and other groupings within some societies but not others, and over the life course. An integrated cultural evolutionary behavioral genetic approach cuts through the nature-nurture debate and helps resolve controversies in topics such as IQ.
Collapse
|
22
|
African genetic diversity and adaptation inform a precision medicine agenda. Nat Rev Genet 2021; 22:284-306. [PMID: 33432191 DOI: 10.1038/s41576-020-00306-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 01/29/2023]
Abstract
The deep evolutionary history of African populations, since the emergence of modern humans more than 300,000 years ago, has resulted in high genetic diversity and considerable population structure. Selected genetic variants have increased in frequency due to environmental adaptation, but recent exposures to novel pathogens and changes in lifestyle render some of them with properties leading to present health liabilities. The unique discoverability potential from African genomic studies promises invaluable contributions to understanding the genomic and molecular basis of health and disease. Globally, African populations are understudied, and precision medicine approaches are largely based on data from European and Asian-ancestry populations, which limits the transferability of findings to the continent of Africa. Africa needs innovative precision medicine solutions based on African data that use knowledge and implementation strategies aligned to its climatic, cultural, economic and genomic diversity.
Collapse
|
23
|
Abstract
Historically, rheumatic diseases have not received much attention in Africa, particularly in sub-Saharan Africa, possibly owing to a focus on the overwhelming incidence of infectious diseases and the decreased life span of the general population in this region. Global attention and support, together with better health policies and planning, have improved outcomes for many infectious diseases; thus, increasing attention is being turned to chronic non-communicable diseases. Rheumatic diseases were previously considered to be rare among Africans but there is now a growing interest in these conditions, particularly as the number of rheumatologists on the continent increases. This interest has resulted in a growing number of publications from Africa on the more commonly encountered rheumatic diseases, as well as case reports of rare diseases. Despite the limited amount of available data, some aspects of the epidemiology, genetics and clinical and laboratory features of rheumatic diseases in African populations are known, as is some detail on the use of therapeutics. Similarities and differences in these conditions can be seen across the multi-ethnic and genetically diverse African continent, and it is hoped that increased awareness of rheumatic diseases in Africa will lead to earlier diagnosis and better outcomes for patients. The prevalence of rheumatic diseases is increasing in African countries, leading to an increased need for specialist rheumatologists and disease-modifying drugs. In this Review, the authors outline what is currently known about the state of rheumatic diseases in Africa. In the past, there has been an emphasis on communicable diseases in Africa, but attention has now shifted towards non-communicable diseases such as rheumatic diseases. Common rheumatic diseases are seen in Africa and are both comparable and different from presentations seen outside of Africa. Diverse genetic and environmental factors affect the presentation of common rheumatic diseases among different African nations. A shortage of appropriately trained staff, laboratory testing capacity and effective medications exists across the whole continent. Advocacy and research are needed to increase awareness of the risk factors, presentations and management of rheumatic diseases in Africa. Specialized treatment guidelines are needed for resource-poor countries in Africa.
Collapse
|
24
|
Hamdi Y, Zass L, Othman H, Radouani F, Allali I, Hanachi M, Okeke CJ, Chaouch M, Tendwa MB, Samtal C, Mohamed Sallam R, Alsayed N, Turkson M, Ahmed S, Benkahla A, Romdhane L, Souiai O, Tastan Bishop Ö, Ghedira K, Mohamed Fadlelmola F, Mulder N, Kamal Kassim S. Human OMICs and Computational Biology Research in Africa: Current Challenges and Prospects. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:213-233. [PMID: 33794662 PMCID: PMC8060717 DOI: 10.1089/omi.2021.0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Following the publication of the first human genome, OMICs research, including genomics, transcriptomics, proteomics, and metagenomics, has been on the rise. OMICs studies revealed the complex genetic diversity among human populations and challenged our understandings of genotype-phenotype correlations. Africa, being the cradle of the first modern humans, is distinguished by a large genetic diversity within its populations and rich ethnolinguistic history. However, the available human OMICs tools and databases are not representative of this diversity, therefore creating significant gaps in biomedical research. African scientists, students, and publics are among the key contributors to OMICs systems science. This expert review examines the pressing issues in human OMICs research, education, and development in Africa, as seen through a lens of computational biology, public health relevant technology innovation, critically-informed science governance, and how best to harness OMICs data to benefit health and societies in Africa and beyond. We underscore the disparities between North and Sub-Saharan Africa at different levels. A harmonized African ethnolinguistic classification would help address annotation challenges associated with population diversity. Finally, building on the existing strategic research initiatives, such as the H3Africa and H3ABioNet Consortia, we highly recommend addressing large-scale multidisciplinary research challenges, strengthening research collaborations and knowledge transfer, and enhancing the ability of African researchers to influence and shape national and international research, policy, and funding agendas. This article and analysis contribute to a deeper understanding of past and current challenges in the African OMICs innovation ecosystem, while also offering foresight on future innovation trajectories.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Lyndon Zass
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Fouzia Radouani
- Chlamydiae and Mycoplasmas Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mariem Hanachi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Faculty of Science of Bizerte, Zarzouna, University of Carthage, Tunis, Tunisia
| | - Chiamaka Jessica Okeke
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Melek Chaouch
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Maureen Bilinga Tendwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Chaimae Samtal
- Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz–Sidi Mohammed Ben Abdellah University, Fez, Morocco
- University of Mohamed Premier, Oujda, Morocco
| | - Reem Mohamed Sallam
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Nihad Alsayed
- Centre for Bioinformatics and Systems Biology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Michael Turkson
- The National Institute for Mathematical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samah Ahmed
- Centre for Bioinformatics and Systems Biology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Faculty of Science of Bizerte, Zarzouna, University of Carthage, Tunis, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Faisal Mohamed Fadlelmola
- Centre for Bioinformatics and Systems Biology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samar Kamal Kassim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
25
|
Huynh-Le MP, Fan CC, Karunamuni R, Thompson WK, Martinez ME, Eeles RA, Kote-Jarai Z, Muir K, Schleutker J, Pashayan N, Batra J, Grönberg H, Neal DE, Donovan JL, Hamdy FC, Martin RM, Nielsen SF, Nordestgaard BG, Wiklund F, Tangen CM, Giles GG, Wolk A, Albanes D, Travis RC, Blot WJ, Zheng W, Sanderson M, Stanford JL, Mucci LA, West CML, Kibel AS, Cussenot O, Berndt SI, Koutros S, Sørensen KD, Cybulski C, Grindedal EM, Menegaux F, Khaw KT, Park JY, Ingles SA, Maier C, Hamilton RJ, Thibodeau SN, Rosenstein BS, Lu YJ, Watya S, Vega A, Kogevinas M, Penney KL, Huff C, Teixeira MR, Multigner L, Leach RJ, Cannon-Albright L, Brenner H, John EM, Kaneva R, Logothetis CJ, Neuhausen SL, De Ruyck K, Pandha H, Razack A, Newcomb LF, Fowke JH, Gamulin M, Usmani N, Claessens F, Gago-Dominguez M, Townsend PA, Bush WS, Roobol MJ, Parent MÉ, Hu JJ, Mills IG, Andreassen OA, Dale AM, Seibert TM. Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nat Commun 2021; 12:1236. [PMID: 33623038 PMCID: PMC7902617 DOI: 10.1038/s41467-021-21287-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any and aggressive (Gleason score ≥ 7, stage T3-T4, PSA ≥ 10 ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n = 71,856), Asian (n = 2,382), and African (n = 6,253) genetic ancestries (p < 10-180). Comparing the 80th/20th PHS2 percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS2 risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset.
Collapse
Affiliation(s)
- Minh-Phuong Huynh-Le
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Wesley K Thompson
- Division of Biostatistics and Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Maria Elena Martinez
- Moores Cancer Center, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | | | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Oxford Road, Manchester, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Johanna Schleutker
- Institute of Biomedicine, Kiinamyllynkatu 10, FI-20014 University of Turku, Turku, Finland
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Nora Pashayan
- University College London, Department of Applied Health Research, London, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge, UK
- Department of Applied Health Research, University College London, London, UK
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Jenny L Donovan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Faculty of Medical Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sune F Nielsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Alicja Wolk
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Catharine M L West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Radiotherapy Related Research, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Adam S Kibel
- Division of Urologic Surgery, Brigham and Womens Hospital, Boston, MA, USA
| | - Olivier Cussenot
- Sorbonne Universite, GRC n°5, AP-HP, Tenon Hospital, 4 Rue de la Chine, Paris, France
- CeRePP, Tenon Hospital, Paris, France
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Florence Menegaux
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif Cédex, France
- Paris-Sud University, UMRS 1018, Villejuif Cedex, France
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge, Cambridge, UK
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Sue A Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Surgery (Urology), University of Toronto, Toronto, ON, Canada
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Barry S Rosenstein
- Department of Radiation Oncology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | | | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Santiago De Compostela, Spain
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Kathryn L Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Chad Huff
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Luc Multigner
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Robin J Leach
- Department of Urology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Esther M John
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| | - Christopher J Logothetis
- The University of Texas M. D. Anderson Cancer Center, Department of Genitourinary Medical Oncology, Houston, TX, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Kim De Ruyck
- Ghent University, Faculty of Medicine and Health Sciences, Basic Medical Sciences, Gent, Belgium
| | | | - Azad Razack
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lisa F Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Jay H Fowke
- Department of Medicine and Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Epidemiology, Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marija Gamulin
- Department of Oncology, University Hospital Centre Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Nawaid Usmani
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Frank Claessens
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saúde, SERGAS, Santiago de Compostela, Spain
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Paul A Townsend
- Division of Cancer Sciences, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Health Innovation Manchester, University of Manchester, Manchester, UK
| | - William S Bush
- Case Western Reserve University, Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Cleveland, OH, USA
| | - Monique J Roobol
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Jennifer J Hu
- The University of Miami School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
|
27
|
Cole BS, Gudiseva HV, Pistilli M, Salowe R, McHugh CP, Zody MC, Chavali VRM, Ying GS, Moore JH, O'Brien JM. The Role of Genetic Ancestry as a Risk Factor for Primary Open-angle Glaucoma in African Americans. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 33605984 PMCID: PMC7900887 DOI: 10.1167/iovs.62.2.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose POAG is the leading cause of irreversible blindness in African Americans. In this study, we quantitatively assess the association of autosomal ancestry with POAG risk in a large cohort of self-identified African Americans. Methods Subjects recruited to the Primary Open-Angle African American Glaucoma Genetics (POAAGG) study were classified as glaucoma cases or controls by fellowship-trained glaucoma specialists. POAAGG subjects were genotyped using the MEGA Ex array (discovery cohort, n = 3830; replication cohort, n = 2135). Population structure was interrogated using principal component analysis in the context of the 1000 Genomes Project superpopulations. Results The majority of POAAGG samples lie on an axis between African and European superpopulations, with great variation in admixture. Cases had a significantly lower mean value of the ancestral component q0 than controls for both cohorts (P = 6.14-4; P = 3-6), consistent with higher degree of African ancestry. Among POAG cases, higher African ancestry was also associated with thinner central corneal thickness (P = 2-4). Admixture mapping showed that local genetic ancestry was not a significant risk factor for POAG. A polygenic risk score, comprised of 23 glaucoma-associated single nucleotide polymorphisms from the NHGRI-EBI genome-wide association study catalog, was significant in both cohorts (P < 0.001), suggesting that both known POAG single nucleotide polymorphisms and an omnigenic ancestry effect influence POAG risk. Conclusions In sum, the POAAGG study population is very admixed, with a higher degree of African ancestry associated with an increased POAG risk. Further analyses should consider social and environmental factors as possible confounding factors for disease predisposition.
Collapse
Affiliation(s)
- Brian S. Cole
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Harini V. Gudiseva
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Maxwell Pistilli
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca Salowe
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | | | - Michael C. Zody
- New York Genome Center, New York City, New York, United States
| | - Venkata R. M. Chavali
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gui Shuang Ying
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jason H. Moore
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Joan M. O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
28
|
Atkinson EG, Maihofer AX, Kanai M, Martin AR, Karczewski KJ, Santoro ML, Ulirsch JC, Kamatani Y, Okada Y, Finucane HK, Koenen KC, Nievergelt CM, Daly MJ, Neale BM. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat Genet 2021; 53:195-204. [PMID: 33462486 PMCID: PMC7867648 DOI: 10.1038/s41588-020-00766-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
Admixed populations are routinely excluded from genomic studies due to concerns over population structure. Here, we present a statistical framework and software package, Tractor, to facilitate the inclusion of admixed individuals in association studies by leveraging local ancestry. We test Tractor with simulated and empirical two-way admixed African-European cohorts. Tractor generates accurate ancestry-specific effect-size estimates and P values, can boost genome-wide association study (GWAS) power and improves the resolution of association signals. Using a local ancestry-aware regression model, we replicate known hits for blood lipids, discover novel hits missed by standard GWAS and localize signals closer to putative causal variants.
Collapse
Affiliation(s)
- Elizabeth G Atkinson
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Adam X Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marcos L Santoro
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jacob C Ulirsch
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Hilary K Finucane
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karestan C Koenen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
29
|
Oluwole OG, Esoh KK, Wonkam-Tingang E, Manyisa N, Noubiap JJ, Chimusa ER, Wonkam A. Whole exome sequencing identifies rare coding variants in novel human-mouse ortholog genes in African individuals diagnosed with non-syndromic hearing impairment. Exp Biol Med (Maywood) 2021; 246:197-206. [PMID: 32996353 PMCID: PMC7871117 DOI: 10.1177/1535370220960388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
Physiologically, the human and murine hearing systems are very similar, justifying the extensive use of mice in experimental models for hearing impairment (HI). About 340 murine HI genes have been reported; however, whether variants in all human-mouse ortholog genes contribute to HI has been rarely investigated. In humans, nearly 120 HI genes have been identified to date, with GJB2 and GJB6 variants accounting for half of congenital HI cases, of genetic origin, in populations of European and Asian ancestries, but not in most African populations. The contribution of variants in other known genes of HI among the populations of African ancestry is poorly studied and displays the lowest pick-up rate. We used whole exome sequencing (WES) to investigate pathogenic and likely pathogenic (PLP) variants in 34 novel human-mouse orthologs HI genes, in 40 individuals from Cameroon and South Africa diagnosed with non-syndromic hearing impairment (NSHI), and compared the data to WES data of 129 ethnically matched controls. In addition, protein modeling for selected PLP gene variants, gene enrichment, and network analyses were performed. A total of 4/38 murine genes, d6wsu163e, zfp719, grp152 and minar2, had no human orthologs. WES identified three rare PLP variants in 3/34 human-mouse orthologs genes in three unrelated Cameroonian patients, namely: OCM2, c.227G>C p.(Arg76Thr) and LRGI1, c.1657G>A p.(Gly533Arg) in a heterozygous state, and a PLP variant MCPH1, c.2311C>G p.(Pro771Ala) in a homozygous state. In silico functional analyses suggest that these human-mouse ortholog genes functionally co-expressed interactions with well-established HI genes: GJB2 and GJB6. The study found one homozygous variant in MCPH1, likely to explain HI in one patient, and suggests that human-mouse ortholog variants could contribute to the understanding of the physiology of hearing in humans.
Collapse
Affiliation(s)
- Oluwafemi G Oluwole
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Kevin K Esoh
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Noluthando Manyisa
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Jean Jacques Noubiap
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
30
|
Abstract
Stroke is a leading cause of disability, dementia and death worldwide. Approximately 70% of deaths from stroke and 87% of stroke-related disability occur in low-income and middle-income countries. At the turn of the century, the most common diseases in Africa were communicable diseases, whereas non-communicable diseases, including stroke, were considered rare, particularly in sub-Saharan Africa. However, evidence indicates that, today, Africa could have up to 2-3-fold greater rates of stroke incidence and higher stroke prevalence than western Europe and the USA. In Africa, data published within the past decade show that stroke has an annual incidence rate of up to 316 per 100,000, a prevalence of up to 1,460 per 100,000 and a 3-year fatality rate greater than 80%. Moreover, many Africans have a stroke within the fourth to sixth decades of life, with serious implications for the individual, their family and society. This age profile is particularly important as strokes in younger people tend to result in a greater loss of self-worth and socioeconomic productivity than in older individuals. Emerging insights from research into stroke epidemiology, genetics, prevention, care and outcomes offer great prospects for tackling the growing burden of stroke on the continent. In this article, we review the unique profile of stroke in Africa and summarize current knowledge on stroke epidemiology, genetics, prevention, acute care, rehabilitation, outcomes, cost of care and awareness. We also discuss knowledge gaps, emerging priorities and future directions of stroke medicine for the more than 1 billion people who live in Africa.
Collapse
|
31
|
Alosaimi S, van Biljon N, Awany D, Thami PK, Defo J, Mugo JW, Bope CD, Mazandu GK, Mulder NJ, Chimusa ER. Simulation of African and non-African low and high coverage whole genome sequence data to assess variant calling approaches. Brief Bioinform 2020; 22:6042242. [PMID: 33341897 DOI: 10.1093/bib/bbaa366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/14/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Current variant calling (VC) approaches have been designed to leverage populations of long-range haplotypes and were benchmarked using populations of European descent, whereas most genetic diversity is found in non-European such as Africa populations. Working with these genetically diverse populations, VC tools may produce false positive and false negative results, which may produce misleading conclusions in prioritization of mutations, clinical relevancy and actionability of genes. The most prominent question is which tool or pipeline has a high rate of sensitivity and precision when analysing African data with either low or high sequence coverage, given the high genetic diversity and heterogeneity of this data. Here, a total of 100 synthetic Whole Genome Sequencing (WGS) samples, mimicking the genetics profile of African and European subjects for different specific coverage levels (high/low), have been generated to assess the performance of nine different VC tools on these contrasting datasets. The performances of these tools were assessed in false positive and false negative call rates by comparing the simulated golden variants to the variants identified by each VC tool. Combining our results on sensitivity and positive predictive value (PPV), VarDict [PPV = 0.999 and Matthews correlation coefficient (MCC) = 0.832] and BCFtools (PPV = 0.999 and MCC = 0.813) perform best when using African population data on high and low coverage data. Overall, current VC tools produce high false positive and false negative rates when analysing African compared with European data. This highlights the need for development of VC approaches with high sensitivity and precision tailored for populations characterized by high genetic variations and low linkage disequilibrium.
Collapse
Affiliation(s)
- Shatha Alosaimi
- Faculty of Health Sciences, Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Noëlle van Biljon
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Denis Awany
- Faculty of Health Sciences, Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Prisca K Thami
- Faculty of Health Sciences, Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Joel Defo
- Faculty of Health Sciences, Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jacquiline W Mugo
- Faculty of Health Sciences, Division of Computational Biology, Department of Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Christian D Bope
- Faculty of Sciences, Department of Mathematics and Computer Science, University of Kinshasa, Kinshasa, DRC
| | - Gaston K Mazandu
- Faculty of Health Sciences, Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Division of Computational Biology, Department of Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicola J Mulder
- Faculty of Health Sciences, Division of Computational Biology, Department of Biomedical Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Emile R Chimusa
- Faculty of Health Sciences, Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
32
|
Abu Ghosh Z, Alamia S, Shaul C, Caraco Y. Comparison of CYP2C9 Activity in Ethiopian and Non-Ethiopian Jews Using Phenytoin as a Probe. Front Pharmacol 2020; 11:566842. [PMID: 33071782 PMCID: PMC7542311 DOI: 10.3389/fphar.2020.566842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
The pharmacokinetics of CYP2C9 substrates is characterized by substantial interethnic variability. The objective of the study was to compare CYP2C9 activity by using Phenytoin Metabolic Ratio (PMR) between Ethiopian and non-Ethiopian Jews. PMR was derived from the ratio of p-HPPH in 24 h urine collection to plasma phenytoin, 12 h (PMR24/12) or 24 h (PMR24/24) after the administration of 300 mg phenytoin. Analysis of CYP2C9*2, *3, *5, *6, *8, and *11 was carried by direct sequencing. PMR was significantly correlated with CYP2C9 genotype in both groups (p < 0.002). Mean PMR values were similar among Ethiopians and non-Ethiopians despite the fact that the fraction of non-carriers of CYP2C9 variant alleles was significantly different (85 vs. 53%, respectively, p < 0.001). However, among non-carriers of CYP2C9*2, *3, *5, *6, *8, and *11 variant alleles, PMR24/12 and PMR24/24 values were 30 and 34% greater respectively in the non-Ethiopians group (p < 0.001). In conclusion-CYP2C9 activity as measured by PMR is similar in Ethiopian and non-Ethiopian Jews. However, among non-carriers of CYP2C9 variant alleles accounting for 85% of Ethiopian Jews, CYP2C9 activity is decreased by approximately one third as compared with non-Ethiopian Jews. Unique genetic CYP2C9 polymorphisms occurring only in Ethiopians may account for this difference.
Collapse
Affiliation(s)
- Zahi Abu Ghosh
- Clinical Pharmacology Unit, Division of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shoshana Alamia
- Clinical Pharmacology Unit, Division of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Chanan Shaul
- Clinical Pharmacology Unit, Division of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yoseph Caraco
- Clinical Pharmacology Unit, Division of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
33
|
Qu L, Wang L, He F, Han Y, Yang L, Wang MD, Zhu H. The Landscape of Micro-Inversions Provide Clues for Population Genetic Analysis of Humans. Interdiscip Sci 2020; 12:499-514. [PMID: 32929667 PMCID: PMC7658078 DOI: 10.1007/s12539-020-00392-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/04/2022]
Abstract
Background Variations in the human genome have been studied extensively. However, little is known about the role of micro-inversions (MIs), generally defined as small (< 100 bp) inversions, in human evolution, diversity, and health. Depicting the pattern of MIs among diverse populations is critical for interpreting human evolutionary history and obtaining insight into genetic diseases. Results In this paper, we explored the distribution of MIs in genomes from 26 human populations and 7 nonhuman primate genomes and analyzed the phylogenetic structure of the 26 human populations based on the MIs. We further investigated the functions of the MIs located within genes associated with human health. With hg19 as the reference genome, we detected 6968 MIs among the 1937 human samples and 24,476 MIs among the 7 nonhuman primate genomes. The analyses of MIs in human genomes showed that the MIs were rarely located in exonic regions. Nonhuman primates and human populations shared only 82 inverted alleles, and Africans had the most inverted alleles in common with nonhuman primates, which was consistent with the “Out of Africa” hypothesis. The clustering of MIs among the human populations also coincided with human migration history and ancestral lineages. Conclusions We propose that MIs are potential evolutionary markers for investigating population dynamics. Our results revealed the diversity of MIs in human populations and showed that they are essential to construct human population relationships and have a potential effect on human health. Electronic supplementary material The online version of this article (10.1007/s12539-020-00392-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Qu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, 30332, USA
| | - Luotong Wang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.,Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Feifei He
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.,Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Yilun Han
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.,Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Longshu Yang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.,Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - May D Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, 30332, USA
| | - Huaiqiu Zhu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China. .,Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, 30332, USA. .,Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Peñas-LLedó E, Terán E, Sosa-Macías M, Galaviz-Hernández C, Gil JP, Nair S, Diwakar S, Hernández I, Lara-Riegos J, Ramírez-Roa R, Verde I, Tarazona-Santos E, Molina-Guarneros J, Moya G, Rägo L, LLerena A. Challenges and Opportunities for Clinical Pharmacogenetic Research Studies in Resource-limited Settings: Conclusions From the Council for International Organizations of Medical Sciences-Ibero-American Network of Pharmacogenetics and Pharmacogenomics Meeting. Clin Ther 2020; 42:1595-1610.e5. [PMID: 32782137 DOI: 10.1016/j.clinthera.2020.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The symposium Health and Medicines in Indigenous Populations of America was organized by the Council for International Organizations of Medical Sciences (CIOMS) Working Group on Clinical Research in Resource-Limited Settings (RLSs) and the Ibero-American Network of Pharmacogenetics and Pharmacogenomics (RIBEF). It was aimed to share and evaluate investigators' experiences on challenges and opportunities on clinical research and pharmacogenetics. METHODS A total of 33 members from 22 countries participated in 2 sessions: RIBEF studies on population pharmacogenetics about the relationship between ancestry with relevant drug-related genetic polymorphisms and the relationship between genotype and phenotype in Native Americans (session 1) and case examples of clinical studies in RLSs from Asia (cancer), America (diabetes and women health), and Africa (malaria) in which the participants were asked to answer in free text their experiences on challenges and opportunities to solve the problems (session 2). Later, a discourse analysis grouping common themes by affinity was conducted. FINDINGS The main result of session 1 was that the pharmacogenetics-related ancestry of the population should be considered when designing clinical studies in RLSs. In session 2, 21 challenges and 20 opportunities were identified. The social aspects represent the largest proportion of the challenges (43%) and opportunities (55%), and some of them seem to be common. IMPLICATIONS The main discussion points were gathered in the Declaration of Mérida/T'Hó and announced on the Parliament of Extremadura during the CIOMS-RIBEF meeting in 4 of the major Latin American autochthonous languages (Náhualth, Mayan, Miskito, and Kichwa). The declaration highlighted the following: (1) the relevance of population pharmacogenetics, (2) the sociocultural contexts (interaction with traditional medicine), and (3) the education needs of research teams for clinical research in vulnerable and autochthonous populations.
Collapse
Affiliation(s)
- Eva Peñas-LLedó
- INUBE Extremadura Biosanitary University Research Institute, University of Extremadura, Badajoz, Spain; University of Conscientiousness Project, Campus PHI, Acebo, Extremadura, Spain
| | | | - Marta Sosa-Macías
- Instituto Politécnico Nacional, CIIDIR Unidad Durango, Durango, Mexico
| | | | | | | | | | | | | | | | | | - Eduardo Tarazona-Santos
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Graciela Moya
- Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Lembit Rägo
- CIOMS Council for International Organizations of Medical Sciences, Geneva, Switzerland
| | - Adrián LLerena
- INUBE Extremadura Biosanitary University Research Institute, University of Extremadura, Badajoz, Spain; University of Conscientiousness Project, Campus PHI, Acebo, Extremadura, Spain.
| |
Collapse
|
35
|
Joseph JJ, Zhou X, Zilbermint M, Stratakis CA, Faucz FR, Lodish MB, Berthon A, Wilson JG, Hsueh WA, Golden SH, Lin S. The Association of ARMC5 with the Renin-Angiotensin-Aldosterone System, Blood Pressure, and Glycemia in African Americans. J Clin Endocrinol Metab 2020; 105:5841631. [PMID: 32436940 PMCID: PMC7308077 DOI: 10.1210/clinem/dgaa290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
Abstract
CONTEXT Armadillo repeat containing 5 (ARMC5) on chromosome 16 is an adrenal gland tumor suppressor gene associated with primary aldosteronism, especially among African Americans (AAs). We examined the association of ARMC5 variants with aldosterone, plasma renin activity (PRA), blood pressure, glucose, and glycosylated hemoglobin A1c (HbA1c) in community-dwelling AAs. METHODS The Jackson Heart Study is a prospective cardiovascular cohort study in AAs with baseline data collection from 2000 to 2004. Kernel machine method was used to perform a single joint test to analyze for an overall association between the phenotypes of interest (aldosterone, PRA, systolic and diastolic blood pressure [SBP, DBP], glucose, and HbA1c) and the ARMC5 single nucleotide variants (SNVs) adjusted for age, sex, BMI, and medications; followed by Baysian Lasso methodology to identify sets of SNVs in terms of associated haplotypes with specific phenotypes. RESULTS Among 3223 participants (62% female; mean age 55.6 (SD ± 12.8) years), the average SBP and DBP were 127 and 76 mmHg, respectively. The average fasting plasma glucose and HbA1c were 101 mg/dL and 6.0%, respectively. ARMC5 variants were associated with all 6 phenotypes. Haplotype TCGCC (ch16:31476015-31476093) was negatively associated, whereas haplotype CCCCTTGCG (ch16:31477195-31477460) was positively associated with SBP, DBP, and glucose. Haplotypes GGACG (ch16:31477790-31478013) and ACGCG (ch16:31477834-31478113) were negatively associated with aldosterone and positively associated with HbA1c and glucose, respectively. Haplotype GCGCGAGC (ch16:31471193-ch16:31473597(rs114871627) was positively associated with PRA and negatively associated with HbA1c. CONCLUSIONS ARMC5 variants are associated with aldosterone, PRA, blood pressure, fasting glucose, and HbA1c in community-dwelling AAs, suggesting that germline mutations in ARMC5 may underlie cardiometabolic disease in AAs.
Collapse
Affiliation(s)
- Joshua J Joseph
- The Ohio State University, Columbus, Ohio
- Correspondence and Reprint Requests: Joshua J. Joseph, MD, Department of Medicine, The Ohio State University Wexner Medical Center, 566 McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210; Phone: 614-346-8878; Fax: 614-366-0345;
| | | | - Mihail Zilbermint
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Section on Endocrinology and Genetics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Johns Hopkins Community Physicians at Suburban Hospital, Bethesda, Maryland
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Maya B Lodish
- Division of Pediatric Endocrinology and Diabetes, University of California, San Francisco, San Francisco, California
| | - Annabel Berthon
- Institut Cochin, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Paris Descartes, Paris, France
| | - James G Wilson
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Sherita H Golden
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shili Lin
- The Ohio State University, Columbus, Ohio
| |
Collapse
|
36
|
Interaction between Metabolic Genetic Risk Score and Dietary Fatty Acid Intake on Central Obesity in a Ghanaian Population. Nutrients 2020; 12:nu12071906. [PMID: 32605047 PMCID: PMC7400498 DOI: 10.3390/nu12071906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a multifactorial condition arising from the interaction between genetic and lifestyle factors. We aimed to assess the impact of lifestyle and genetic factors on obesity-related traits in 302 healthy Ghanaian adults. Dietary intake and physical activity were assessed using a 3 day repeated 24 h dietary recall and global physical activity questionnaire, respectively. Twelve single nucleotide polymorphisms (SNPs) were used to construct 4-SNP, 8-SNP and 12-SNP genetic risk scores (GRSs). The 4-SNP GRS showed significant interactions with dietary fat intakes on waist circumference (WC) (Total fat, Pinteraction = 0.01; saturated fatty acids (SFA), Pinteraction = 0.02; polyunsaturated fatty acids (PUFA), Pinteraction = 0.01 and monounsaturated fatty acids (MUFA), Pinteraction = 0.01). Among individuals with higher intakes of total fat (>47 g/d), SFA (>14 g/d), PUFA (>16 g/d) and MUFA (>16 g/d), individuals with ≥3 risk alleles had a significantly higher WC compared to those with <3 risk alleles. This is the first study of its kind in this population, suggesting that a higher consumption of dietary fatty acid may have the potential to increase the genetic susceptibility of becoming centrally obese. These results support the general dietary recommendations to decrease the intakes of total fat and SFA, to reduce the risk of obesity, particularly in individuals with a higher genetic predisposition to central obesity.
Collapse
|
37
|
Dekker MCJ, Coulibaly T, Bardien S, Ross OA, Carr J, Komolafe M. Parkinson's Disease Research on the African Continent: Obstacles and Opportunities. Front Neurol 2020; 11:512. [PMID: 32636796 PMCID: PMC7317302 DOI: 10.3389/fneur.2020.00512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
The burden of Parkinson's disease (PD) is becoming increasingly important in the context of an aging African population. Although PD has been extensively investigated with respect to its environmental and genetic etiology in various populations across the globe, studies on the African continent remain limited. In this Perspective article, we review some of the obstacles that are limiting research and creating barriers for future studies. We summarize what research is being done in four sub-Saharan countries and what the key elements are that are needed to take research to the next level. We note that there is large variation in neurological and genetic research capacity across the continent, and many opportunities for unexplored areas in African PD research. Only a handful of countries possess appropriate infrastructure and personnel, whereas the majority have yet to develop such capacity. Resource-constrained environments strongly determines the possibilities of performing research locally, and unidirectional export of biological samples and genetic data remains a concern. Local-regional partnerships, in collaboration with global PD consortia, should form an ethically appropriate solution, which will lead to a reduction in inequality and promote capacity building on the African continent.
Collapse
Affiliation(s)
- Marieke C J Dekker
- Department of Medicine and Pediatrics, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Toumany Coulibaly
- Service de Neurologie, Centre Hospitalier Universitaire du Point "G", Bamako, Mali
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States.,Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Jonathan Carr
- Division of Neurology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Morenikeji Komolafe
- Department of Medicine, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
38
|
Ndadza A, Thomford NE, Mukanganyama S, Wonkam A, Ntsekhe M, Dandara C. The Genetics of Warfarin Dose-Response Variability in Africans: An Expert Perspective on Past, Present, and Future. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:152-166. [PMID: 30883300 DOI: 10.1089/omi.2019.0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coumarins such as warfarin are prescribed for prevention and treatment of thromboembolic disorders. Warfarin remains the most widely prescribed and an anticoagulant of choice in Africa. Warfarin use is, however, limited by interindividual variability in pharmacokinetics and a narrow therapeutic index. The difference in patients' pharmacodynamic responses to warfarin has been attributed to genetic variation in warfarin metabolism and molecular targets (e.g., CYP2C9 and VKORC1) and host-environment interactions. This expert review offers a synthesis of human genetics studies in Africans with respect to pharmacogenetics-informed warfarin dosing. We identify areas that need future research attention or could benefit from harnessing existing pharmacogenetics knowledge toward rational and optimal therapeutics with warfarin in African patients. A literature search was conducted until January 2019. A total of 343 articles were retrieved from nine African countries: Botswana, Ethiopia, Egypt, Ghana, Kenya, South Africa, Sudan, Tanzania, and Mozambique. We found 19 studies on genetics of warfarin treatment specifically among Africans. Genes examined included CYP2C9, VKORC1, CYP4F2, APOE, CALU, GGCX, and EPHX1. CYP2C9*2 and *3 alleles were highly frequent among Egyptians, while rare in other African populations. CYP2C9*5, *8, *9, and *11, and VKORC1 Asp36Tyr genetic variants explained warfarin variability in Africans better, compared to CYP2C9*2 and *3. In Africa, there is limited pharmacogenetics data on warfarin. Therefore, future research and funding commitments should be prioritized to ensure safe and effective use of warfarin in Africa. Lessons learned in Africa from the science of pharmacogenetics would inform rational therapeutics in hematology, cardiology, and surgical specialties worldwide.
Collapse
Affiliation(s)
- Arinao Ndadza
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Ambroise Wonkam
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mpiko Ntsekhe
- 3 Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
39
|
Bentley AR, Callier SL, Rotimi CN. Evaluating the promise of inclusion of African ancestry populations in genomics. NPJ Genom Med 2020; 5:5. [PMID: 32140257 PMCID: PMC7042246 DOI: 10.1038/s41525-019-0111-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
The lack of representation of diverse ancestral backgrounds in genomic research is well-known, and the resultant scientific and ethical limitations are becoming increasingly appreciated. The paucity of data on individuals with African ancestry is especially noteworthy as Africa is the birthplace of modern humans and harbors the greatest genetic diversity. It is expected that greater representation of those with African ancestry in genomic research will bring novel insights into human biology, and lead to improvements in clinical care and improved understanding of health disparities. Now that major efforts have been undertaken to address this failing, is there evidence of these anticipated advances? Here, we evaluate the promise of including diverse individuals in genomic research in the context of recent literature on individuals of African ancestry. In addition, we discuss progress and achievements on related technological challenges and diversity among scientists conducting genomic research.
Collapse
Affiliation(s)
- Amy R. Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Shawneequa L. Callier
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
- Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC USA
| | - Charles N. Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
40
|
Oluwole OG, Kuivaniemi H, Abrahams S, Haylett WL, Vorster AA, van Heerden CJ, Kenyon CP, Tabb DL, Fawale MB, Sunmonu TA, Ajose A, Olaogun MO, Rossouw AC, van Hillegondsberg LS, Carr J, Ross OA, Komolafe MA, Tromp G, Bardien S. Targeted next-generation sequencing identifies novel variants in candidate genes for Parkinson's disease in Black South African and Nigerian patients. BMC MEDICAL GENETICS 2020; 21:23. [PMID: 32019516 PMCID: PMC7001245 DOI: 10.1186/s12881-020-0953-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The prevalence of Parkinson's disease (PD) is increasing in sub-Saharan Africa, but little is known about the genetics of PD in these populations. Due to their unique ancestry and diversity, sub-Saharan African populations have the potential to reveal novel insights into the pathobiology of PD. In this study, we aimed to characterise the genetic variation in known and novel PD genes in a group of Black South African and Nigerian patients. METHODS We recruited 33 Black South African and 14 Nigerian PD patients, and screened them for sequence variants in 751 genes using an Ion AmpliSeq™ Neurological Research panel. We used bcftools to filter variants and annovar software for the annotation. Rare variants were prioritised using MetaLR and MetaSVM prediction scores. The effect of a variant on ATP13A2's protein structure was investigated by molecular modelling. RESULTS We identified 14,655 rare variants with a minor allele frequency ≤ 0.01, which included 2448 missense variants. Notably, no common pathogenic mutations were identified in these patients. Also, none of the known PD-associated mutations were found highlighting the need for more studies in African populations. Altogether, 54 rare variants in 42 genes were considered deleterious and were prioritized, based on MetaLR and MetaSVM scores, for follow-up studies. Protein modelling showed that the S1004R variant in ATP13A2 possibly alters the conformation of the protein. CONCLUSIONS We identified several rare variants predicted to be deleterious in sub-Saharan Africa PD patients; however, further studies are required to determine the biological effects of these variants and their possible role in PD. Studies such as these are important to elucidate the genetic aetiology of this disorder in patients of African ancestry.
Collapse
Affiliation(s)
- Oluwafemi G Oluwole
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shameemah Abrahams
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - William L Haylett
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Alvera A Vorster
- DNA Sequencing Unit, Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| | - Carel J van Heerden
- DNA Sequencing Unit, Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| | - Colin P Kenyon
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - David L Tabb
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Michael B Fawale
- Neurology Unit, Department of Medicine, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Taofiki A Sunmonu
- Neurology Unit, Department of Medicine, Federal Medical Centre, Owo, Nigeria
| | - Abiodun Ajose
- Department of Chemical Pathology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Matthew O Olaogun
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Anastasia C Rossouw
- Division of Neurology, Department of Medicine, Faculty of Health Sciences, Walter Sisulu University, East London, South Africa
| | - Ludo S van Hillegondsberg
- Division of Neurology, Department of Medicine, Faculty of Health Sciences, Walter Sisulu University, East London, South Africa
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Clinical Genomics, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | - Morenikeji A Komolafe
- Neurology Unit, Department of Medicine, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa.
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa.
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
41
|
Ahsan T, Urmi NJ, Sajib AA. Heterogeneity in the distribution of 159 drug-response related SNPs in world populations and their genetic relatedness. PLoS One 2020; 15:e0228000. [PMID: 31971968 PMCID: PMC6977754 DOI: 10.1371/journal.pone.0228000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022] Open
Abstract
Interethnic variability in drug response arises from genetic differences associated with drug metabolism, action and transport. These genetic variations can affect drug efficacy as well as cause adverse drug reactions (ADRs). We retrieved drug-response related single nucleotide polymorphism (SNP) associated data from databases and analyzed to elucidate population specific distribution of 159 drug-response related SNPs in twenty six populations belonging to five super-populations (African, Admixed Americans, East Asian, European and South Asian). Significant interpopulation differences exist in the minor (variant) allele frequencies (MAFs), linkage disequilibrium (LD) and haplotype distributions among these populations. 65 of the drug-response related alleles, which are considered as minor (variant) in global population, are present as the major alleles (frequency ≥0.5) in at least one or more populations. Populations that belong to the same super-population have similar distribution pattern for majority of the variant alleles. These drug response related variant allele frequencies and their pairwise LD measure (r2) can clearly distinguish the populations in a way that correspond to the known evolutionary history of human and current geographic distributions, while D' cannot. The data presented here may aid in identifying drugs that are more appropriate and/or require pharmacogenetic testing in these populations. Our findings emphasize on the importance of distinct, ethnicity-specific clinical guidelines, especially for the African populations, to avoid ADRs and ensure effective drug treatment.
Collapse
Affiliation(s)
- Tamim Ahsan
- Department of Genetic Engineering & Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | | | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
42
|
Potential risks and solutions for sharing genome summary data from African populations. BMC Med Genomics 2019; 12:152. [PMID: 31684976 PMCID: PMC6830006 DOI: 10.1186/s12920-019-0604-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/16/2019] [Indexed: 11/21/2022] Open
Abstract
Genome data from African population can substantially assist the global effort to identify aetiological genetic variants, but open access to aggregated genomic data from these populations poses some significant risks of community- and population- level harms. A recent amendment to National Institutes of Health policy, following various engagements with predominantly North American scientists, requires that genomic summary results must be made available openly on the internet without access oversight or controls. The policy does recognise that some sensitive, identifiable population groups might be harmed by such exposure of their data, and allows for exemption in these cases. African populations have a very wide and complex genomic landscape, and because of this diversity, individual African populations may be uniquely re-identified by their genomic profiles and genome summary data. Given this identifiability, combined with additional vulnerabilities such as poor access to health care, socioeconomic challenges and the risk of ethnic discrimination, it would be prudent for the National Institutes of Health to recognise the potential of their current policy for community harms to Africans; and to exempt all African populations as sensitive or vulnerable populations with regard to the unregulated exposure of their genome summary data online. Three risk-mitigating mechanisms for sharing genome summary results from African populations to inform global genomic health research are proposed here; namely use of the Beacon Protocol developed by the Global Alliance for Genomics and Health, user access control through the planned African Genome Variation Database, and regional aggregation of population data to protect individual African populations from re-identification and associated harms.
Collapse
|
43
|
Doumatey AP, Ekoru K, Adeyemo A, Rotimi CN. Genetic Basis of Obesity and Type 2 Diabetes in Africans: Impact on Precision Medicine. Curr Diab Rep 2019; 19:105. [PMID: 31520154 DOI: 10.1007/s11892-019-1215-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Recent advances in genomics provide opportunities for novel understanding of the biology of human traits with the goal of improving human health. Here, we review recent obesity and type 2 diabetes (T2D)-related genomic studies in African populations and discuss the implications of limited genomics studies on health disparity and precision medicine. RECENT FINDINGS Genome-wide association studies in Africans have yielded genetic discovery that would otherwise not be possible; these include identification of novel loci associated with obesity (SEMA-4D, PRKCA, WARS2), metabolic syndrome (CA-10, CTNNA3), and T2D (AGMO, ZRANB3). ZRANB3 was recently demonstrated to influence beta cell mass and insulin response. Despite these promising results, genomic studies in African populations are still limited and thus genomics tools and approaches such as polygenic risk scores and precision medicine are likely to have limited utility in Africans with the unacceptable possibility of exacerbating prevailing health disparities. African populations provide unique opportunities for increasing our understanding of the genetic basis of cardiometabolic disorders. We highlight the need for more coordinated and sustained efforts to increase the representation of Africans in genomic studies both as participants and scientists.
Collapse
Affiliation(s)
- Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A, Room 4047, Bethesda, MD, 20862, USA
| | - Kenneth Ekoru
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A, Room 4047, Bethesda, MD, 20862, USA
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A, Room 4047, Bethesda, MD, 20862, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A, Room 4047, Bethesda, MD, 20862, USA.
| |
Collapse
|
44
|
ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response. Nat Commun 2019; 10:3195. [PMID: 31324766 PMCID: PMC6642147 DOI: 10.1038/s41467-019-10967-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Genome analysis of diverse human populations has contributed to the identification of novel genomic loci for diseases of major clinical and public health impact. Here, we report a genome-wide analysis of type 2 diabetes (T2D) in sub-Saharan Africans, an understudied ancestral group. We analyze ~18 million autosomal SNPs in 5,231 individuals from Nigeria, Ghana and Kenya. We identify a previously-unreported genome-wide significant locus: ZRANB3 (Zinc Finger RANBP2-Type Containing 3, lead SNP p = 2.831 × 10−9). Knockdown or genomic knockout of the zebrafish ortholog results in reduction in pancreatic β-cell number which we demonstrate to be due to increased apoptosis in islets. siRNA transfection of murine Zranb3 in MIN6 β-cells results in impaired insulin secretion in response to high glucose, implicating Zranb3 in β-cell functional response to high glucose conditions. We also show transferability in our study of 32 established T2D loci. Our findings advance understanding of the genetics of T2D in non-European ancestry populations. Type 2 diabetes (T2D) is prevalent in populations worldwide, however, mostly studied in European and mixed-ancestry populations. Here, the authors perform a genome-wide association study for T2D in over 5,000 sub-Saharan Africans and identify a locus, ZRANB3, that is specific for this population.
Collapse
|
45
|
Bien SA, Wojcik GL, Hodonsky CJ, Gignoux CR, Cheng I, Matise TC, Peters U, Kenny EE, North KE. The Future of Genomic Studies Must Be Globally Representative: Perspectives from PAGE. Annu Rev Genomics Hum Genet 2019; 20:181-200. [PMID: 30978304 DOI: 10.1146/annurev-genom-091416-035517] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has seen a technological revolution in human genetics that has empowered population-level investigations into genetic associations with phenotypes. Although these discoveries rely on genetic variation across individuals, association studies have overwhelmingly been performed in populations of European descent. In this review, we describe limitations faced by single-population studies and provide an overview of strategies to improve global representation in existing data sets and future human genomics research via diversity-focused, multiethnic studies. We highlight the successes of individual studies and meta-analysis consortia that have provided unique knowledge. Additionally, we outline the approach taken by the Population Architecture Using Genomics and Epidemiology (PAGE) study to develop best practices for performing genetic epidemiology in multiethnic contexts. Finally, we discuss how limiting investigations to single populations impairs findings in the clinical domain for both rare-variant identification and genetic risk prediction.
Collapse
Affiliation(s)
- Stephanie A Bien
- Department of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ,
| | - Genevieve L Wojcik
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Chani J Hodonsky
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; ,
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado 80045, USA;
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94158, USA;
| | - Tara C Matise
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08554, USA;
| | - Ulrike Peters
- Department of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ,
| | - Eimear E Kenny
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; ,
| |
Collapse
|
46
|
Nemat-Gorgani N, Guethlein LA, Henn BM, Norberg SJ, Chiaroni J, Sikora M, Quintana-Murci L, Mountain JL, Norman PJ, Parham P. Diversity of KIR, HLA Class I, and Their Interactions in Seven Populations of Sub-Saharan Africans. THE JOURNAL OF IMMUNOLOGY 2019; 202:2636-2647. [PMID: 30918042 DOI: 10.4049/jimmunol.1801586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
HLA class I and KIR sequences were determined for Dogon, Fulani, and Baka populations of western Africa, Mbuti of central Africa, and Datooga, Iraqw, and Hadza of eastern Africa. Study of 162 individuals identified 134 HLA class I alleles (41 HLA-A, 60 HLA-B, and 33 HLA-C). Common to all populations are three HLA-C alleles (C1+C*07:01, C1+C*07:02, and C2+C*06:02) but no HLA-A or -B Unexpectedly, no novel HLA class I was identified in these previously unstudied and anthropologically distinctive populations. In contrast, of 227 KIR detected, 22 are present in all seven populations and 28 are novel. A high diversity of HLA A-C-B haplotypes was observed. In six populations, most haplotypes are represented just once. But in the Hadza, a majority of haplotypes occur more than once, with 2 having high frequencies and 10 having intermediate frequencies. The centromeric (cen) part of the KIR locus exhibits an even balance between cenA and cenB in all seven populations. The telomeric (tel) part has an even balance of telA to telB in East Africa, but this changes across the continent to where telB is vestigial in West Africa. All four KIR ligands (A3/11, Bw4, C1, and C2) are present in six of the populations. HLA haplotypes of the Iraqw and Hadza encode two KIR ligands, whereas the other populations have an even balance between haplotypes encoding one and two KIR ligands. Individuals in these African populations have a mean of 6.8-8.4 different interactions between KIR and HLA class I, compared with 2.9-6.5 for non-Africans.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, NY 11794
| | | | - Jacques Chiaroni
- UMR 7268-Anthropologie Bio-Culturelle, Droit, Éthique et Santé, Aix-Marseille Université, l'Etablissement Français du Sang, Centre National de la Recherche Scientifique, 13344 Marseille, France
| | - Martin Sikora
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | | | | | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO 80045; and.,Department of Immunology, University of Colorado, Denver, CO 80045
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
47
|
Hetu M, Koutouki K, Joly Y. Genomics for All: International Open Science Genomics Projects and Capacity Building in the Developing World. Front Genet 2019; 10:95. [PMID: 30828348 PMCID: PMC6384230 DOI: 10.3389/fgene.2019.00095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/29/2019] [Indexed: 11/13/2022] Open
Abstract
Genomic medicine applications have the potential to considerably improve health care in developing countries in the coming years. However, if developing countries do not improve their capacity for research and development (R&D) in the field, they might be left out of the genomics revolution. Large-scale and widely accessible databases for storing and analyzing genomic data are crucial tools for the advancement of genomic medicine. Building developing countries' capacity in genomics is accordingly closely linked to their involvement in international human genomics research initiatives. The purpose of this paper is to conduct a pilot study on the impact of international open science genomics projects on capacity building in R&D in developing countries. Using indicators we developed in previous work to measure the performance of international open science genomics projects, we analyse the policies and practices of four key projects in the field: the International HapMap Project, the Human Heredity and Health in Africa Initiative, the Malaria Genomic Epidemiology Network and the Structural Genomics Consortium. The results show that these projects play an important role in genomics capacity building in developing countries, but play a more limited role with regard to the potential redistribution of the benefits of research to the populations of these countries. We further suggest concrete initiatives that could facilitate the involvement of researchers from developing countries in the international genomics research community and accelerate capacity building in the developing world.
Collapse
Affiliation(s)
- Martin Hetu
- Department of Human Genetics, Faculty of Medicine, Centre of Genomics and Policy, McGill University, Montreal, QC, Canada
| | | | - Yann Joly
- Department of Human Genetics, Faculty of Medicine, Centre of Genomics and Policy, McGill University, Montreal, QC, Canada
| |
Collapse
|
48
|
Martin AR, Teferra S, Möller M, Hoal EG, Daly MJ. The critical needs and challenges for genetic architecture studies in Africa. Curr Opin Genet Dev 2018; 53:113-120. [PMID: 30240950 PMCID: PMC6494470 DOI: 10.1016/j.gde.2018.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Human genetic studies have long been vastly Eurocentric, raising a key question about the generalizability of these study findings to other populations. Because humans originated in Africa, these populations retain more genetic diversity, and yet individuals of African descent have been tremendously underrepresented in genetic studies. The diversity in Africa affords ample opportunities to improve fine-mapping resolution for associated loci, discover novel genetic associations with phenotypes, build more generalizable genetic risk prediction models, and better understand the genetic architecture of complex traits and diseases subject to varying environmental pressures. Thus, it is both ethically and scientifically imperative that geneticists globally surmount challenges that have limited progress in African genetic studies to date. Additionally, African investigators need to be meaningfully included, as greater inclusivity and enhanced research capacity afford enormous opportunities to accelerate genomic discoveries that translate more effectively to all populations. We review the advantages, challenges, and examples of genetic architecture studies of complex traits and diseases in Africa. For example, with greater genetic diversity comes greater ancestral heterogeneity; this higher level of understudied diversity can yield novel genetic findings, but some methods that assume homogeneous population structure and work well in European populations may work less well in the presence of greater heterogeneity in African populations. Consequently, we advocate for methodological development that will accelerate studies important for all populations, especially those currently underrepresented in genetics.
Collapse
Affiliation(s)
- Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Solomon Teferra
- Department of Psychiatry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, USA
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Eileen G Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The prevalence of obesity continues to rise, fueling a global public health crisis characterized by dramatic increases in type 2 diabetes, cardiovascular disease, and many cancers. In the USA, several minority populations, who bear much of the obesity burden (47% in African Americans and Hispanic/Latinos, compared to 38% in European descent groups), are particularly at risk of downstream chronic disease. Compounding these disparities, most genome-wide association studies (GWAS)-including those of obesity-have largely been conducted in populations of European or East Asian ancestry. In fact, analysis of the GWAS Catalog found that while the proportion of participants of non-European or non-Asian descent had risen from 4% in 2009 to 19% in 2016, African-ancestry participants are still just 3% of GWAS, Hispanic/Latinos are < 0.5%, and other ancestries are < 0.3% or not represented at all. This review summarizes recent developments in obesity genomics in US minority populations, with the goal of reducing obesity health disparities and improving public health programs and access to precision medicine. RECENT FINDINGS GWAS of populations with the highest burden of obesity are essential to narrow candidate variants for functional follow-up, to identify additional ancestry-specific variants that contribute to individual genetic susceptibility, and to advance both public health and precision medicine approaches to obesity. Given the global public health burden posed by obesity and downstream chronic conditions which disproportionately affect non-European populations, GWAS of obesity-related traits in diverse populations is essential to (1) locate causal variants in GWAS-identified regions through fine mapping, (2) identify variants which influence obesity across ancestries through generalization, and (3) discover novel ancestry-specific variants which may be low frequency in European populations but common in other groups. Recent efforts to expand obesity genomic studies to understudied and underserved populations, including AAAGC, PAGE, and HISLA, are working to reduce obesity health disparities, improve public health, and bring the promise of precision medicine to all.
Collapse
Affiliation(s)
- Kristin L Young
- Department of Epidemiology, University of North Carolina at Chapel Hill, 123 West Franklin Street, Suite 410, CB# 8050, Chapel Hill, NC, 27516, USA.
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, 123 West Franklin Street, Suite 410, CB# 8050, Chapel Hill, NC, 27516, USA
| | | | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, 123 West Franklin Street, Suite 410, CB# 8050, Chapel Hill, NC, 27516, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
50
|
Adedokun SA, Seamans BN, Cox NT, Liou G, Akindele AA, Li Y, Ojurongbe O, Thomas BN. Interleukin-4 and STAT6 promoter polymorphisms but not interleukin-10 or 13 are essential for schistosomiasis and associated disease burden among Nigerian children. INFECTION GENETICS AND EVOLUTION 2018; 65:28-34. [PMID: 30010060 DOI: 10.1016/j.meegid.2018.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 01/21/2023]
Abstract
Schistosomiasis is endemic in many parts of rural Africa, with previous reports showing interleukin-13 polymorphisms as drivers of infectivity and disease severity in West Africa while IL-13/IL-4 polymorphisms contributes to patterns of reinfection in East Africa. We have shown that there is a genetic delineation in susceptibility to and severity of infectious diseases in Africa, in addition to sub-continental differences in disease pattern. Therefore, which immunoregulatory biomarkers are essential in driving S. haematobium infection or regulate disease burden among Nigerian school children? One hundred and thirty one age and sex-matched schistosome-infected children and 275 uninfected controls, of same ethnicity, recruited from southwestern Nigeria, were screened for variability of cytokine genes, IL-10 (rs1800872), IL-13 (rs7719175), IL-4 (rs2243250) and STAT6 (rs3024974), utilizing a polymerase chain reaction-restriction fragment length polymorphism assay. We found no difference in genotypic or allelic frequencies of IL-10 and IL-13 promoter polymorphisms alone or in association with disease. Contrariwise, we report significant differences in the frequencies of IL-4 and STAT6 variants between groups. For IL-4, the rs2243250 T/T variant was significantly different for genotypes (71.6% versus 51.2%; p < .0004) and alleles (82.6% versus 71.1%; p < .001) between disease and control groups respectively. For STAT6 (rs3024974), the frequencies of genotypes C/C and C/T are 75.4% and 24.6%, both showing an association with disease; none of the infected subjects had the T/T variant. Despite minor differences in disease covariates, we found no association between IL-4 and STAT6 variants with age, gender or anemia. However, mean egg count (indicative of disease burden), was regulated based on IL-4 variants, with highest burden in infected subjects with rs2243250 T/T variant (mean egg count: 207.5 eggs/10 ml of urine) versus rs2243250 C/T heterozygotes (mean egg count: 84.3 eggs/10 ml of urine) versus rs2243250 C/C (mean egg count: 127.9 eggs/10 ml of urine). Comparing rs2243250 C/T versus rs2243250 T/T (p < .008) or rs2243250 C/C + C/T versus rs2243250 T/T (p < .016) reveals an association with disease burden. We conclude that the IL-4 promoter gene is a susceptibility factor for schistosomiasis, and essential to regulate disease burden, with worse disease among carriers of the rs2243250 T/T variant. The absence of the STAT6, rs3024974T/T variant among infected subjects reveal the necessity of the STAT6 promoter gene in driving susceptibility to schistosomiasis in Nigeria.
Collapse
Affiliation(s)
- Samuel A Adedokun
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.
| | - Brooke N Seamans
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States.
| | - Natalya T Cox
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States.
| | - Gialeigh Liou
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States.
| | - Akeem A Akindele
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria; Department of Community Medicine, Ladoke Akintola University of Technology, Osogbo, Nigeria.
| | - Yi Li
- School of Statistics, Shanxi University of Finance & Economics, Shanxi, China.
| | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.
| | - Bolaji N Thomas
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria; Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States.
| |
Collapse
|