1
|
Peters AE, Ford EA, Roman SD, Bromfield EG, Nixon B, Pringle KG, Sutherland JM. Impact of Bisphenol A and its alternatives on oocyte health: a scoping review. Hum Reprod Update 2024; 30:653-691. [PMID: 39277428 PMCID: PMC11532624 DOI: 10.1093/humupd/dmae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disrupting chemical released from plastic materials, including food packaging and dental sealants, persisting in the environment and ubiquitously contaminating ecosystems and human populations. BPA can elicit an array of damaging health effects and, alarmingly, 'BPA-free' alternatives mirror these harmful effects. Bisphenol exposure can negatively impact female fertility, damaging both the ovary and oocytes therein. Such damage can diminish reproductive capacity, pregnancy success, and offspring health. Despite global government regulations in place to indicate 'safe' BPA exposure levels, these policies have not considered the effects of bisphenols on oocyte health. OBJECTIVE AND RATIONALE This scoping review was conducted to evaluate evidence on the effects of BPA and BPA alternatives on standardized parameters of oocyte health. In doing so, this review addresses a critical gap in the literature providing a comprehensive, up-to-date synthesis of the effects of bisphenols on oocyte health. SEARCH METHODS This scoping review was conducted in accordance with PRISMA guidelines. Four databases, Medline, Embase, Scopus, and Web of Science, were searched twice (23 February 2022 and 1 August 2023) to capture studies assessing mammalian oocyte health post-bisphenol exposure. Search terms regarding oocytes, ovarian follicles, and bisphenols were utilized to identify relevant studies. Manuscripts written in English and reporting the effect of any bisphenol on mammalian oocyte health from all years were included. Parameters for toxicological studies were evaluated, including the number of bisphenol concentrations/doses tested, dosing regimen, biological replicates and/or animal numbers, and statistical information (for human studies). Standardized parameters of oocyte health including follicle counts, oocyte yield, oocyte meiotic capacity, morphology of oocyte and cumulus cells, and oocyte meiotic spindle integrity were extracted across the studies. OUTCOMES After screening 3147 studies, 107 studies of either humans or mammalian animal models or humans were included. Of the in vitro exposure studies, 96.3% (26/27) and 94.1% (16/17) found at least one adverse effect on oocyte health using BPA or BPA alternatives (including BHPF, BPAF, BPB, BPF, and BPS), respectively. These included increased meiotic cell cycle arrest, altered morphology, and abnormal meiotic spindle/chromosomal alignment. In vivo, 85.7% (30/35) of studies on BPA and 92.3% (12/13) on BPA alternatives documented adverse effects on follicle development, morphology, or spindle/chromosome alignment. Importantly, these effects were recorded using levels below those deemed 'safe' for human exposure. Over half (11/21) of all human observational studies showed associations between higher urinary BPA levels and reduced antral follicle counts or oocyte yield in IVF patients. Recommendations are presented based on the identified shortcomings of the current evidence, incorporating elements of FDA requirements for future research in the field. WIDER IMPLICATIONS These data highlight the detrimental impacts of low-level BPA and BPA alternative exposure, contributing to poor oocyte quality and reduced fertility. These outcomes are valuable in promoting the revision of current policies and guidelines pertaining to BPA exposure internationally. This study serves as a valuable resource to scientists, providing key recommendations on study design, reporting elements, and endpoint measures to strengthen future studies. Ultimately, this review highlights oocyte health as a fundamentally important endpoint in reproductive toxicological studies, indicating an important direction for future research into endocrine disrupting chemicals to improve fertility outcomes.
Collapse
Affiliation(s)
- Alexandra E Peters
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emmalee A Ford
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- The Research Centre, Family Planning Australia, Newington, NSW, Australia
| | - Shaun D Roman
- Department of Research, NSW Health Pathology, Newcastle, NSW, Australia
| | - Elizabeth G Bromfield
- Faculty of Science, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessie M Sutherland
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
2
|
Raimondo S, Chiusano ML, Gentile M, Gentile T, Cuomo F, Gentile R, Danza D, Siani L, Crescenzo C, Palmieri M, Iaccarino S, Iaccarino M, Fortunato A, Liguori F, Esposito A, Zullo C, Sosa L, Sosa L, Ferrara I, Piscopo M, Notari T, Lacatena R, Gentile A, Montano L. Comparative analysis of the bioaccumulation of bisphenol A in the blood serum and follicular fluid of women living in two areas with different environmental impacts. Front Endocrinol (Lausanne) 2024; 15:1392550. [PMID: 39439569 PMCID: PMC11495266 DOI: 10.3389/fendo.2024.1392550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bisphenol A (BPA) is a common contaminant widely used in many industrial sectors. Because of its wide use and dispersion, it can be accumulated in living human bodies through both oral assumption and nondietary routes. BPA exhibits hormone-like properties, falling under the class of endocrine disruptors; therefore, it can alter relevant physiological functions. In particular, in women, it can affect folliculogenesis and therefore reproduction, contributing not only to infertility, but also to endometriosis and premature puberty. Methods We conducted a multicenter study on 91 women undergoing a first in vitro fertilization (IVF) treatment in the Campania region (Southern Italy). We investigated the presence and concentration of BPA in serum and follicular fluids to assess the effects of airborne BPA contamination. The analysis was conducted on 32 women living in a low environmental impact (LEI) area, from the Sele Valley River and Cilento region, and 59 women living in a high environmental impact (HEI) area, the so-called "Land of Fires", a highly contaminated territory widely exposed to illegal waste practices. Results A higher average BPA content in both blood serum and follicular fluid was revealed in the HEI group when compared with the LEI group. In addition, we revealed higher average BPA content in blood serum than in folliclular fluid in the HEI area, with opposite average content in the two fluids in the LEI zone. In addition, our results also showed a lack of correlation between BPA content in follicular and serum fluids both in the overall population and in the HEI and LEI groups, with peculiar trends in different subsets of women. Conclusion From our results, we revealed a heterogeneity in the distribution of BPA content between serum and follicular fluid. Further studies are needed to unravel the bioaccumulation mechanisms of BPA in highly polluted and nonpolluted areas.
Collapse
Affiliation(s)
- Salvatore Raimondo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariacira Gentile
- Residential Program in laboratory Medicine, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Tommaso Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Felice Cuomo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Raffaella Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Domenico Danza
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | - Laura Siani
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | | | | | - Stefania Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | - Mirella Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | | | | | - Antonio Esposito
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | - Clelia Zullo
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | | | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Notari
- Andrology Unit, Check-Up PolyDiagnostics and Research Laboratory, Salerno, Italy
| | - Raffaele Lacatena
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “St. Francis of Assisi Hospital”, Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
3
|
Rajkumar DS, Padmanaban R. Impact of bisphenol A and analogues eluted from resin-based dental materials on cellular and molecular processes: An insight on underlying toxicity mechanisms. J Appl Toxicol 2024. [PMID: 38711185 DOI: 10.1002/jat.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
Dental resin systems, used for artificial replacement of teeth and their surrounding structures, have gained popularity due to the Food and Drug Administration's (FDA) recommendation to reduce dental amalgam use in high-risk populations and medical circumstances. Bisphenol A (BPA), an endocrine-disrupting chemical, is an essential monomer within dental resin in the form of various analogues and derivatives. Leaching of monomers from resins results in toxicity, affecting hormone metabolism and causing long-term health risks. Understanding cellular-level toxicity profiles of bisphenol derivatives is crucial for conducting toxicity studies in in vivo models. This review provides insights into the unique expression patterns of BPA and its analogues among different cell types and their underlying toxicity mechanisms. Lack of a consistent cell line for toxic effects necessitates exploring various cell lines. Among the individual monomers, BisGMA was found to be the most toxic; however, BisDMA and BADGE generates BPA endogenously and found to elicit severe adverse reactions. In correlating in vitro data with in vivo findings, further research is necessary to classify the elutes as human carcinogens or xenoestrogens. Though the basic mechanisms underlying toxicity were believed to be the production of intracellular reactive oxygen species and a corresponding decline in glutathione levels, several underlying mechanisms were identified to stimulate cellular responses at low concentrations. The review calls for further research to assess the synergistic interactions of co-monomers and other components in dental resins. The review emphasizes the clinical relevance of these findings, highlighting the necessity for safer dental materials and underscoring the potential health risks associated with current dental resin systems.
Collapse
Affiliation(s)
- Divya Sangeetha Rajkumar
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
4
|
Delaroche L, Besnard L, Ouary V, Bazin F, Cassuto G. Disposables used cumulatively in routine IVF procedures could display toxicity. Hum Reprod 2024; 39:936-954. [PMID: 38438162 PMCID: PMC11063546 DOI: 10.1093/humrep/deae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Indexed: 03/06/2024] Open
Abstract
STUDY QUESTION Is there a cumulative toxicity of disposables used in IVF procedures? SUMMARY ANSWER A toxicity may be detected when consumables are used cumulatively, while no toxicity is detected when the same consumables are used and tested individually. WHAT IS KNOWN ALREADY Many components of items used in IVF laboratories may impair human embryonic development. Consequently, it is necessary to screen all reagents and materials which could be in contact with gametes and embryos. Toxicity tests, such as the mouse embryo assay and the human sperm motility assay (HSMA), are used by manufacturers as quality control tools to demonstrate the safety of their products. This evaluation is currently individually performed for each single consumable. However, during an IVF cycle, several devices are used sequentially, potentially creating a cumulative exposure to chemical contaminants, which could not be detected for individually tested consumables. STUDY DESIGN, SIZE, DURATION The objective of this observational study conducted from March 2021 to October 2022 was to evaluate with the HSMA methodology if there was a cumulative toxicity when several disposables are sequentially used. Fourteen categories of consumables currently used in routine IVF procedures were studied, which included devices used for sperm and oocyte collection (cups, condoms, and oocyte aspiration needles), manipulation (flasks, tubes, tips, pipettes, embryo transfer catheters, syringes, and gloves), culture (dishes), and storage (straws). PARTICIPANTS/MATERIALS, SETTING, METHODS After obtaining patient consent, the surplus semen assessed as having normal parameters according to the World Health Organization 2010 criteria were used to perform the HSMAs. First, each consumable was tested individually. Then, associations of three, four, and five consumables, previously validated as non-toxic when tested individually, were analyzed. HSMAs were conducted three times to ensure reproducibility, with a defined toxicity threshold of a sperm motility index (SMI) below 0.85 in at least two of three tests. MAIN RESULTS AND THE ROLE OF CHANCE Thirty-six references of disposables were first individually tested across 53 lots. Forty-nine (92%) demonstrated compliance. However, four (8%) devices revealed toxicity: one lot of 1 ml syringes, two lots of sperm cups, and one lot of 25 cm2 flasks. These four references were excluded from the IVF routine procedures. A total of 48 combinations of consumables were assessed, involving 41 lots from 32 references that were previously individually tested. Among the evaluated combinations, 17 out of 48 (35%) associations exhibited toxicity with a SMI below 0.85 for two of the three tests (n = 8) or all the three tests (n = 9). Notably, three out of 17 (18%) of the three-consumable associations, five out of 16 (31%) of the four-consumable associations, and nine out of 15 (60%) of the five-consumable associations were found not compliant. The toxicity did not originate from a single consumable, because only consumables that were individually pre-validated as non-toxic were included in the combinations, but the toxicity had a cumulative origin. The risk of cumulative toxicity increased with the number of consumables included in the association (Cochran-Mantel-Haenszel statistic, P = 0.013). LIMITATIONS, REASONS FOR CAUTION The high proportion of non-compliant combinations of disposables can be attributed directly to the extreme rigorous extraction conditions employed during the tests, which could deviate from the conditions encountered in routine clinical use. Also, the methodology employed in the HSMAs (e.g. toxicity extraction duration, sperm concentrations, and protein supplementation of the medium) can influence the sensitivity of the tests. WIDER IMPLICATIONS OF THE FINDINGS This study highlights the significance of performing toxicity testing on devices before introducing them into clinical practice. Disposables should be tested individually to detect immediate toxicities and also in combination. Our results advocate rationalizing the number of consumables used in each IVF procedure and re-evaluating the use of glass consumables. STUDY FUNDING/COMPETING INTEREST(S) This study received fundings from GCS Ramsay Santé pour l'Enseignement et la Recherche (Paris, France) and the Centre de Biologie Médicale BIOGROUP (Le Chesnay-Rocquencourt, France). The authors declare that they have no conflict of interest that could be perceived as prejudicing the impartiality of the reported research. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Lucie Delaroche
- Ramsay Santé, Hôpital Privé de Parly 2, Institut Fertilité Maternité Parly 2, Le Chesnay-Rocquencourt, France
- Centre de Biologie Médicale BIOGROUP, Hôpital Privé de Parly 2, Le Chesnay-Rocquencourt, France
| | - Lucile Besnard
- Centre de Biologie Médicale BIOGROUP, Hôpital Privé de Parly 2, Le Chesnay-Rocquencourt, France
| | | | | | | |
Collapse
|
5
|
Rajabi-Toustani R, Hu Q, Wang S, Qiao H. How Do Environmental Toxicants Affect Oocyte Maturation Via Oxidative Stress? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:69-95. [PMID: 39030355 DOI: 10.1007/978-3-031-55163-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.
Collapse
Affiliation(s)
- Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qinan Hu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuangqi Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
| |
Collapse
|
6
|
Zhang M, Zhang J, Wang D, Liu Z, Xing K, Wang Y, Jiao M, Wang Y, Shi B, Zhang H, Zhang Y. C-X-C motif chemokine ligand 12 improves the developmental potential of bovine oocytes by activating SH2 domain-containing tyrosine phosphatase 2 during maturation†. Biol Reprod 2023; 109:282-298. [PMID: 37498179 DOI: 10.1093/biolre/ioad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
In vitro maturation of mammalian oocytes is an important means in assisted reproductive technology. Most bovine immature oocytes complete nuclear maturation, but less than half develop to the blastocyst stage after fertilization. Thus, inefficient in vitro production is mainly caused by a suboptimal in vitro culture process, in which oocyte quality appears to be the limiting factor. In our study, a potential maternal regulator, C-X-C motif chemokine ligand 12, was identified by analyzing transcriptome data. C-X-C motif chemokine ligand 12 supplementation promoted the developmental potential of oocytes by improving protein synthesis and reorganizing cortical granules and mitochondria during in vitro maturation, which eventually increased blastocyst formation efficiency and cell number after parthenogenesis, fertilization, and cloning. All these promoting effects by C-X-C motif chemokine ligand 12 were achieved by activating SH2 domain-containing tyrosine phosphatase 2, thereby promoting the mitogen-activated protein kinase signaling pathway. These findings provide an in vitro maturation system that closely resembles the maternal environment to provide high-quality oocytes for in vitro production.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Debao Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangning Xing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Gordon CE, Combelles CM, Lanes A, Patel J, Racowsky C. Cumulus cell co-culture in media drops does not improve rescue in vitro maturation of vitrified-warmed immature oocytes. F&S SCIENCE 2023; 4:185-192. [PMID: 37201752 DOI: 10.1016/j.xfss.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To assess whether co-culture with vitrified-warmed cumulus cells (CCs) in media drops improves rescue in vitro maturation (IVM) of previously vitrified immature oocytes. Previous studies have shown improved rescue IVM of fresh immature oocytes when cocultured with CCs in a three-dimensional matrix. However, the scheduling and workload of embryologists would benefit from a simpler IVM approach, particularly in the setting of time-sensitive oncofertility oocyte cryopreservation (OC) cases. Although the yield of developmentally competent mature metaphase II (MII) oocytes is increased when rescue IVM is performed before cryopreservation, it is unknown whether maturation of previously vitrified immature oocytes is improved after coculture with CCs in a simple system not involving a three-dimensional matrix. DESIGN Randomized controlled trial. SETTING Academic hospital. PATIENTS A total of 320 (160 germinal vesicles [GVs] and 160 metaphase I [MI]) immature oocytes and autologous CC clumps were vitrified from patients who were undergoing planned OC or intracytoplasmic sperm injection from July 2020 until September 2021. INTERVENTIONS On warming, the oocytes were randomized to culture in IVM media with CCs (+CC) or without CCs (-CC). Germinal vesicles and MI oocytes were cultured in 25 μL (SAGE IVM medium) for 32 hours and 20-22 hours, respectively. MAIN OUTCOME MEASURES Oocytes with a polar body (MII) were randomized to confocal microscopy for analysis of spindle integrity and chromosomal alignment to assess nuclear maturity or to parthenogenetic activation to assess cytoplasmic maturity. Wilcoxon rank sum tests for continuous variables and the chi square or Fisher's exact test for categorical variables assessed statistical significance. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated. RESULTS Patient demographic characteristics were similar for both the GV and MI groups after randomization to +CC vs. -CC. No statistically significant differences were observed between +CC vs. -CC groups regarding the percentage of MII from either GV (42.5% [34/80] vs. 52.5% [42/80]; RR 0.81; 95% CI: 0.57-1.15]) or MI (76.3% [61/80]; vs. 72.5% [58/80]; RR 1.05; 95% CI: 0.88-1.26]) oocytes. An increased percentage of GV-matured MIIs underwent parthenogenetic activation in the +CC group (92.3% [12/13] vs. 70.8% [17/24]), but the difference was not statistically significant (RR 1.30; 95% CI: 0.97-1.75), whereas the activation rate was identical for MI-matured oocytes (74.3% [26/35] vs. 75.0% [18/24], CC+ vs. CC-; RR 0.99; 95% CI: 0.74-1.32). No significant differences were observed between +CC vs. -CC groups for cleavage of parthenotes from GV-matured oocytes (91.7% [11/12] vs. 82.4% [14/17]) or blastulation (0 for both) or for MI-matured oocytes (cleavage: 80.8% [21/26] vs. 94.4% [17/18]; blastulation: 0 [0/26] vs. 16.7% [3/18]). Further, no significant differences were observed between +CC vs. -CC for GV-matured oocytes regarding incidence of bipolar spindles (38.9% [7/18] vs. 33.3% [5/15]) or aligned chromosomes (22.2% [4/18] vs. 0.0 [0/15]); or for MI-matured oocytes (bipolar spindle: 38.9% [7/18] vs. 42.9% [2/28]); aligned chromosomes (35.3% [6/17] vs. 24.1% [7/29]). CONCLUSIONS Cumulus cell co-culture in this simple two-dimensional system does not improve rescue IVM of vitrified, warmed immature oocytes, at least by the markers assessed here. Further work is required to assess the efficacy of this system given its potential to provide flexibility in a busy, in vitro fertilization clinic.
Collapse
Affiliation(s)
- Catherine E Gordon
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts.
| | | | - Andrea Lanes
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts
| | - Jay Patel
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts
| | - Catherine Racowsky
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts; Department of Obstetrics, Gynecology and Reproductive Medicine, Hôpital Foch, Suresnes, France
| |
Collapse
|
8
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
9
|
Žalmanová T, Hošková K, Prokešová Š, Nevoral J, Ješeta M, Benc M, Yi YJ, Moravec J, Močáryová B, Martínková S, Fontana J, Elkalaf M, Trnka J, Žáková J, Petr J. The bisphenol S contamination level observed in human follicular fluid affects the development of porcine oocytes. Front Cell Dev Biol 2023; 11:1145182. [PMID: 37091980 PMCID: PMC10115966 DOI: 10.3389/fcell.2023.1145182] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bisphenol S (BPS), the main replacement for bisphenol A (BPA), is thought to be toxic, but limited information is available on the effects of Bisphenol S on ovarian follicles. In our study, we demonstrated the presence of Bisphenol S in the follicular fluid of women at a concentration of 22.4 nM. The effect of such concentrations of Bisphenol S on oocyte maturation and subsequent embryo development is still unknown. Therefore, we focused on the effect of Bisphenol S on in vitro oocyte maturation, fertilization, and embryo development. As a model, we used porcine oocytes, which show many physiological similarities to human oocytes. Oocytes were exposed to Bisphenol S concentrations similar to those detected in female patients in the ART clinic. We found a decreased ability of oocytes to successfully complete meiotic maturation. Mature oocytes showed an increased frequency of meiotic spindle abnormalities and chromosome misalignment. Alarming associations of oocyte Bisphenol S exposure with the occurrence of aneuploidy and changes in the distribution of mitochondria and mitochondrial proteins were demonstrated for the first time. However, the number and quality of blastocysts derived from oocytes that successfully completed meiotic maturation under the influence of Bisphenol S was not affected.
Collapse
Affiliation(s)
- Tereza Žalmanová
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
- *Correspondence: Tereza Žalmanová,
| | - Kristýna Hošková
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
| | - Šárka Prokešová
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
| | - Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Michal Ješeta
- Department of Obstetrics and Gynecology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Michal Benc
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University of Nitra, Nitra, Slovakia
| | - Young-Joo Yi
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon, Republic of Korea
| | - Jiří Moravec
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Beáta Močáryová
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Josef Fontana
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Moustafa Elkalaf
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Žáková
- Department of Obstetrics and Gynecology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Jaroslav Petr
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czechia
| |
Collapse
|
10
|
Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol 2023; 24:27-44. [PMID: 36068367 DOI: 10.1038/s41580-022-00517-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes - a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.
Collapse
Affiliation(s)
- Chloe Charalambous
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandre Webster
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
11
|
Tepla O, Topurko Z, Jirsova S, Moosova M, Fajmonova E, Cabela R, Komrskova K, Kratochvilova I, Masata J. Timing of ICSI with Respect to Meiotic Spindle Status. Int J Mol Sci 2022; 24:ijms24010105. [PMID: 36613547 PMCID: PMC9820079 DOI: 10.3390/ijms24010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to evaluate the efficiency of using meiotic spindle (MS) visibility and relative position to the polar body (PB) as indicators of oocyte maturation in order to optimize intracytoplasmic sperm injection (ICSI) timing. This was a cohort study of patients younger than 40 years with planned ICSI, the timing of which was determined by MS status, compared with those without MS evaluation. The angle between PB and MS and MS visibility were evaluated by optical microscope with polarizing filter. Oocytes with MS evaluation were fertilized according to MS status either 5-6 h after ovum pick-up (OPU) or 7-8 h after OPU. Oocytes without MS evaluation were all fertilized 5-6 h after OPU. For patients over 35 years visualization of MS influenced pregnancy rate (PR): 182 patients with MS visualization had 32% PR (58/182); while 195 patients without MS visualization had 24% PR (47/195). For patients under 35 years, visualization of MS did not influence PR: 140 patients with MS visualization had 41% PR (58/140), while 162 patients without MS visualization had 41% PR (66/162). Visualization of MS therefore appears to be a useful parameter for assessment of oocyte maturity and ICSI timing for patients older than 35.
Collapse
Affiliation(s)
- Olga Tepla
- Department of Obstetrics and Gynaecology First Faculty of Medicine, Charles University and General University Hospital in Prague, Apolinarska 18, 128 08 Prague, Czech Republic
| | - Zinovij Topurko
- Department of Obstetrics and Gynaecology First Faculty of Medicine, Charles University and General University Hospital in Prague, Apolinarska 18, 128 08 Prague, Czech Republic
| | - Simona Jirsova
- Department of Obstetrics and Gynaecology First Faculty of Medicine, Charles University and General University Hospital in Prague, Apolinarska 18, 128 08 Prague, Czech Republic
| | - Martina Moosova
- Department of Obstetrics and Gynaecology First Faculty of Medicine, Charles University and General University Hospital in Prague, Apolinarska 18, 128 08 Prague, Czech Republic
| | - Eva Fajmonova
- Department of Obstetrics and Gynaecology First Faculty of Medicine, Charles University and General University Hospital in Prague, Apolinarska 18, 128 08 Prague, Czech Republic
| | - Radek Cabela
- Department of Obstetrics and Gynaecology First Faculty of Medicine, Charles University and General University Hospital in Prague, Apolinarska 18, 128 08 Prague, Czech Republic
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| | - Irena Kratochvilova
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Jaromir Masata
- Department of Obstetrics and Gynaecology First Faculty of Medicine, Charles University and General University Hospital in Prague, Apolinarska 18, 128 08 Prague, Czech Republic
| |
Collapse
|
12
|
Abdoli S, Masoumi SZ, Kazemi F. Environmental and occupational factors and higher risk of couple infertility: a systematic review study. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Infertility is a global health problem that represents an increasing trend due to new lifestyles following technological advances since individuals are facing more risk factors than before. The present systematic review study aimed to investigate the impact of environmental and occupational factors on reproductive parameters and increased risk of couple infertility.
Main body
Scopus, PubMed, SID, and Web of Science databases were searched for the available observational (i.e., cohort, case-control, and cross-sectional) systematic review, meta-analysis, and clinical trial studies between 2007 and 2019. To this end, keywords such as ‘Environmental exposure’, ‘Occupational exposure’, ‘Environmental pollutants’, ‘Environmental pollution’, ‘Couple infertility’, ‘Sterility’, and ‘Sub-fertility’ were used. The retrieved investigations examined the impact of environmental and occupational risk factors on reproductive indices and increased infertility risk. Totally, 66 out of 9519 papers were evaluated after considering the inclusion and exclusion criteria. The reported risk factors in the reviewed studies were heavy metals, cigarette smoking, and exposure to chemicals through consumer goods, urban life, and proximity to main roads. In addition, occupational factors included heavy physical activity, prolonged sitting, exposure to a hot environment, contact with formaldehyde, pesticides, insecticides, mechanical vibration, and contact with ionizing radiation, all of which affected the reproductive parameters. However, some researchers found no significant associations in this regard.
Short conclusion
In general, individuals with known impairments in reproductive parameters were more exposed to risk factors. Nonetheless, more studies are needed to determine the risk of infertility in the population.
Collapse
|
13
|
Zhan W, Yang H, Zhang J, Chen Q. Association between co-exposure to phenols and phthalates mixture and infertility risk in women. ENVIRONMENTAL RESEARCH 2022; 215:114244. [PMID: 36058272 DOI: 10.1016/j.envres.2022.114244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Exposure to phenols and phthalates has been separately linked to increased risks of infertility in women of reproductive age. However, the combined effect of phenols and phthalates exposure on infertility has not been explored. METHODS Data from the National Health and Nutrition Examination Surveys (NHANES) were used. A total of 857 women of reproductive age (18-45 years) with available information on urinary phenol and phthalate metabolites, reproductive questionnaires, and covariates were included in the present study. The definition of infertility was based on self-reports. Multivariable logistic regression, principal component analysis (PCA), and Bayesian kernel machine regression (BKMR) with stratified variable selection were applied to determine what associations were found between combined exposure to these mixtures and risk of infertility among women of reproductive age. RESULTS After adjusting for potential confounders, bisphenol A (BPA), mono(3-carboxypropyl) phthalate (MCPP) and four di(2-ethylhexyl) phthalate (DEHP) metabolites [mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP)] were positively associated with infertility. PCA revealed that the DEHP-BPA factor's PC score was significantly positively related to the likelihood of infertility [adjusted odds ratio (aOR) = 1.45; 1.08, 1.82]. The DEHP-BPA component consistently had the highest group posterior inclusion probability (PIP) in BKMR models. The BKMR model also found that MEOHP, MEHHP, and BPA were positively associated with infertility risk when the remaining combination concentrations were held at their median values. In addition, we observed that the probability of infertility increased dramatically as the quantiles of total mixture concentration increased. CONCLUSION Our findings indicate that a combination of phenol and phthalate metabolites is linked to infertility among reproductive-age women. BPA and DEHP, in particular, are significantly related to the risk of infertility.
Collapse
Affiliation(s)
- Wenqiang Zhan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yang
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Yang L, Baumann C, De La Fuente R, Viveiros MM. Bisphenol Exposure Disrupts Cytoskeletal Organization and Development of Pre-Implantation Embryos. Cells 2022; 11:3233. [PMID: 36291100 PMCID: PMC9600733 DOI: 10.3390/cells11203233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
The endocrine disrupting activity of bisphenol compounds is well documented, but less is known regarding their impact on cell division and early embryo formation. Here, we tested the effects of acute in vitro exposure to bisphenol A (BPA) and its common substitute, bisphenol F (BPF), during critical stages of mouse pre-implantation embryo development, including the first mitotic division, cell polarization, as well as morula and blastocyst formation. Timing of initial cleavage was determined by live-cell imaging, while subsequent divisions, cytoskeletal organization and lineage marker labeling were assessed by high-resolution fluorescence microscopy. Our analysis reveals that brief culture with BPA or BPF impeded cell division and disrupted embryo development at all stages tested. Surprisingly, BPF was more detrimental to the early embryo than BPA. Notably, poor embryo development was associated with cytoskeletal disruptions of the actomyosin network, apical domain formation during cell polarization, actin ring zippering for embryo sealing and altered cell lineage marker profiles. These results underscore that bisphenols can disrupt cytoskeletal integrity and remodeling that is vital for early embryo development and raise concerns regarding the use of BPF as a 'safe' BPA substitute.
Collapse
Affiliation(s)
- Luhan Yang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602, USA
| | - Maria M. Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Ješeta M, Franzová K, Machynová S, Kalina J, Kohoutek J, Mekiňová L, Crha I, Kempisty B, Kašík M, Žáková J, Ventruba P, Navrátilová J. The Bisphenols Found in the Ejaculate of Men Does Not Pass through the Testes. TOXICS 2022; 10:toxics10060311. [PMID: 35736919 PMCID: PMC9230672 DOI: 10.3390/toxics10060311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023]
Abstract
Exposure to bisphenols is related to negative effects on male reproduction. The bisphenols exposure is associated with several modes of action including negative impact on the blood–testis barrier (BTB) in testes or direct effect on spermatozoa. Bisphenols have been detected in human seminal plasma, but the possible mechanism of seminal transfer of bisphenols is not clear. Some authors consider the transfer through the blood–testis barrier to be crucial. Therefore, in this work, we compared normozoospermic men and men after vasectomy who have interrupted vas deferens and their ejaculate does not contain testicular products. We measured the concentration of bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) in the urine and seminal plasma of these men using liquid chromatography tandem mass spectrometry (LC/MSMS). We found that the ratio of urinary and seminal plasma content of bisphenols did not differ in normozoospermic men or men after vasectomy. From the obtained data, it can be concluded that the pathways of transport of bisphenols into seminal plasma are not primarily through the testicular tissue, but this pathway is applied similarly to other routes of transmission by a corresponding ejaculate volume ratio. To a much greater extent than through testicular tissue, bisphenols enter the seminal plasma mainly as part of the secretions of the accessory glands.
Collapse
Affiliation(s)
- Michal Ješeta
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, 16500 Prague, Czech Republic
- Correspondence:
| | - Kateřina Franzová
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
| | - Simona Machynová
- Department of Urology, Faculty of Medicine, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (S.M.); (M.K.)
| | - Jiří Kalina
- RECETOX Centre, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (J.K.); (J.N.)
| | - Jiří Kohoutek
- RECETOX Centre, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (J.K.); (J.N.)
| | - Lenka Mekiňová
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
| | - Igor Crha
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
- Department of Health Sciences, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Marek Kašík
- Department of Urology, Faculty of Medicine, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (S.M.); (M.K.)
| | - Jana Žáková
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
| | - Pavel Ventruba
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (K.F.); (L.M.); (I.C.); (J.Ž.); (P.V.)
| | - Jana Navrátilová
- RECETOX Centre, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (J.K.); (J.N.)
| |
Collapse
|
16
|
Loup B, Poumerol E, Jouneau L, Fowler PA, Cotinot C, Mandon-Pépin B. BPA disrupts meiosis I in oogonia by acting on pathways including cell cycle regulation, meiosis initiation and spindle assembly. Reprod Toxicol 2022; 111:166-177. [PMID: 35667523 DOI: 10.1016/j.reprotox.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
The negative in utero effects of bisphenol A (BPA) on female reproduction are of concern since the ovarian reserve of primordial follicles is constituted during the fetal period. This time-window is difficult to access, particularly in humans. Animal models and explant culture systems are, therefore, vital tools for investigating EDC impacts on primordial germ cells (PGCs). Here, we investigated the effects of BPA on prophase I meiosis in the fetal sheep ovary. We established an in vitro model of early gametogenesis through retinoic acid (RA)-induced differentiation of sheep PGCs that progressed through meiosis. Using this system, we demonstrated that BPA (3×10-7 M & 3×10-5M) exposure for 20 days disrupted meiotic initiation and completion in sheep oogonia and induced transcriptomic modifications of exposed explants. After exposure to the lowest concentrations of BPA (3×10-7M), only 2 probes were significantly up-regulated corresponding to NR2F1 and TMEM167A transcripts. In contrast, after exposure to 3×10-5M BPA, 446 probes were deregulated, 225 were down- and 221 were up-regulated following microarray analysis. Gene Ontology (GO) annotations of differentially expressed genes revealed that pathways mainly affected were involved in cell-cycle phase transition, meiosis and spindle assembly. Differences in key gene expression within each pathway were validated by qRT-PCR. This study provides a novel model for direct examination of the molecular pathways of environmental toxicants on early female gametogenesis and novel insights into the mechanisms by which BPA affects meiosis I. BPA exposure could thereby disrupt ovarian reserve formation by inhibiting meiotic progression of oocytes I and consequently by increasing atresia of primordial follicles containing defective oocytes.
Collapse
Affiliation(s)
- Benoit Loup
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Elodie Poumerol
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Corinne Cotinot
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | | |
Collapse
|
17
|
Zahra A, Kerslake R, Kyrou I, Randeva HS, Sisu C, Karteris E. Impact of Environmentally Relevant Concentrations of Bisphenol A (BPA) on the Gene Expression Profile in an In Vitro Model of the Normal Human Ovary. Int J Mol Sci 2022; 23:5334. [PMID: 35628146 PMCID: PMC9141570 DOI: 10.3390/ijms23105334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs), including the xenoestrogen Bisphenol A (BPA), can interfere with hormonal signalling. Despite increasing reports of adverse health effects associated with exposure to EDCs, there are limited data on the effect of BPA in normal human ovaries. In this paper, we present a detailed analysis of the transcriptomic landscape in normal Human Epithelial Ovarian Cells (HOSEpiC) treated with BPA (10 and 100 nM). Gene expression profiles were determined using high-throughput RNA sequencing, followed by functional analyses using bioinformatics tools. In total, 272 and 454 differentially expressed genes (DEGs) were identified in 10 and 100 nM BPA-treated HOSEpiCs, respectively, compared to untreated controls. Biological pathways included mRNA surveillance pathways, oocyte meiosis, cellular senescence, and transcriptional misregulation in cancer. BPA exposure has a considerable impact on 10 genes: ANAPC2, AURKA, CDK1, CCNA2, CCNB1, PLK1, BUB1, KIF22, PDE3B, and CCNB3, which are also associated with progesterone-mediated oocyte maturation pathways. Future studies should further explore the effects of BPA and its metabolites in the ovaries in health and disease, making use of validated in vitro and in vivo models to generate data that will address existing knowledge gaps in basic biology, hazard characterisation, and risk assessment associated with the use of xenoestrogens such as BPA.
Collapse
Affiliation(s)
- Aeman Zahra
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Rachel Kerslake
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Cristina Sisu
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Emmanouil Karteris
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| |
Collapse
|
18
|
Casale M. Improving the health and treatment success rates of in vitro fertilization patients with traditional Chinese medicine: Need for more robust evidence and innovative approaches. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:187-192. [PMID: 35216931 DOI: 10.1016/j.joim.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Maximising access to and the success of fertility treatments should be a priority for global reproductive health, as should overall patient well-being. The demand for in vitro fertilization (IVF) and other assisted fertility treatments has increased over the past decade and is likely to further increase in years to come. Nevertheless, there is still considerable unmet demand for infertility support worldwide. Moreover, the high emotional, physical and financial burden experienced by individuals undergoing IVF cycles can be a risk for their mental and physical health, which in turn can influence treatment continuation and the likelihood of IVF success. Studies from various parts of the world show that most individuals undergoing IVF also use adjunct alternative medicines and procedures, the most common being traditional Chinese medicine (TCM). The complementary and synergistic role of TCM for individuals undergoing IVF is an area that merits further attention and research, both for its potential positive effects on IVF success rates and for its broader physical and mental health benefits. However, much of the existing evidence is not sufficiently robust or consistent for findings to be adopted with confidence. This commentary argues that much work must be done to understand the efficacy and clinical best practices for these integrated approaches. This can be achieved in part by developing more robust and clinically relevant randomized controlled trial protocols, collecting and triangulating evidence through a variety of study designs and methods, and strengthening the collection and pooling of clinic-level data.
Collapse
Affiliation(s)
- Marisa Casale
- School of Public Health, University of the Western Cape, Bellville 7535, South Africa.
| |
Collapse
|
19
|
Fujiki J, Uchida M, Tsunoda S, Maeda N, Inoue H, Yokota H, Iwano H. Bisphenol A-sulfate conjugate disrupts AURKA transcription and cell cycle in BeWo cytotrophoblasts. Mol Cell Endocrinol 2022; 545:111561. [PMID: 35041905 DOI: 10.1016/j.mce.2022.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Bisphenol A (BPA) has been shown to exhibit various toxic effects, including the induction of reproductive disorders. Generally, BPA is converted to conjugated metabolites, leading to bio-inactivation. On the other hand, the toxicity of conjugated metabolites is not fully understood. Notably, the placenta develops the sulfate-sulfatase pathway, which transports and reactivates sulfated steroids. Therefore, we investigated the potential adverse effects of the BPA-sulfate conjugate (BPA-S) on human placenta-derived BeWo cytotrophoblasts. In the present study, high-concentration BPA-S (100 μM) induced significant inhibition of BeWo growth, with effects similar to those seen with unconjugated BPA (100 μM and 100 nM). This growth inhibition was restored by treatment of the cells with an inhibitor of the organic anion-transporting peptides (OATPs) (bromosulphophthalein) or with a sulfatase (STS) inhibitor (STX64). BeWo exhibits expression of the genes encoding OATP1A2 and OATP4A1 as known sulfated steroid transporters and STS, suggesting that BPA-S suppresses cell growth activity via the sulfate-sulfatase pathway. In addition, cell cycle analysis revealed that BPA-S (100 μM) increased the fraction of cytotrophoblasts in the G2/M phases and significantly decreased the accumulation of the transcript encoding Aurora kinase A (AURKA), which is a critical regulator of cellular division. These results suggested that BPA-S triggers cell cycle arrest and inhibits proliferation of BeWo cytotrophoblasts by decreased AURKA, an effect that is mediated by the sulfate-sulfatase pathway. Overall, these findings provide insights into the reactivation of sulfated endocrine-disrupting chemicals and subsequent adverse effects.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan.
| | - Megumi Uchida
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Sakurako Tsunoda
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Naoyuki Maeda
- Laboratory of Meat Science and Technology, Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Hiroki Inoue
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Hiroshi Yokota
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| |
Collapse
|
20
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
21
|
Montjean D, Neyroud AS, Yefimova MG, Benkhalifa M, Cabry R, Ravel C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int J Mol Sci 2022; 23:3350. [PMID: 35328771 PMCID: PMC8950994 DOI: 10.3390/ijms23063350] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Similar to environmental factors, EDCs (endocrine-disrupting chemicals) can influence gene expression without modifying the DNA sequence. It is commonly accepted that the transgenerational inheritance of parentally acquired traits is conveyed by epigenetic alterations also known as "epimutations". DNA methylation, acetylation, histone modification, RNA-mediated effects and extracellular vesicle effects are the mechanisms that have been described so far to be responsible for these epimutations. They may lead to the transgenerational inheritance of diverse phenotypes in the progeny when they occur in the germ cells of an affected individual. While EDC-induced health effects have dramatically increased over the past decade, limited effects on sperm epigenetics have been described. However, there has been a gain of interest in this issue in recent years. The gametes (sperm and oocyte) represent targets for EDCs and thus a route for environmentally induced changes over several generations. This review aims at providing an overview of the epigenetic mechanisms that might be implicated in this transgenerational inheritance.
Collapse
Affiliation(s)
- Debbie Montjean
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
| | - Anne-Sophie Neyroud
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
| | - Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St-Petersburg, Russia;
| | - Moncef Benkhalifa
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Rosalie Cabry
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Célia Ravel
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
- CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, University Rennes, 35000 Rennes, France
| |
Collapse
|
22
|
Ozturk S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle 2022; 21:547-571. [PMID: 35072590 PMCID: PMC8942507 DOI: 10.1080/15384101.2022.2026704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/26/2023] Open
Abstract
Mammalian oocytes undergo two rounds of developmental arrest during maturation: at the diplotene of the first meiotic prophase and metaphase of the second meiosis. These arrests are strictly regulated by follicular cells temporally producing the secondary messengers, cAMP and cGMP, and other factors to regulate maturation promoting factor (composed of cyclin B1 and cyclin-dependent kinase 1) levels in the oocytes. Out of these normally appearing developmental arrests, permanent arrests may occur in the oocytes at germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stage. This issue may arise from absence or altered expression of the oocyte-related genes playing key roles in nuclear and cytoplasmic maturation. Additionally, the assisted reproductive technology (ART) applications such as ovarian stimulation and in vitro culture conditions both of which harbor various types of chemical agents may contribute to forming the permanent arrests. In this review, the molecular determinants of developmental and permanent arrests occurring in the mammalian oocytes are comprehensively evaluated in the light of current knowledge. As number of permanently arrested oocytes at different stages is increasing in ART centers, potential approaches for inducing permanent arrests to obtain competent oocytes are discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
23
|
Yang H, Kolben T, Meister S, Paul C, van Dorp J, Eren S, Kuhn C, Rahmeh M, Mahner S, Jeschke U, von Schönfeldt V. Factors Influencing the In Vitro Maturation (IVM) of Human Oocyte. Biomedicines 2021; 9:1904. [PMID: 34944731 PMCID: PMC8698296 DOI: 10.3390/biomedicines9121904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
In vitro maturation (IVM) of oocytes is a promising assisted reproductive technology (ART) deemed as a simple and safe procedure. It is mainly used in patients with impaired oocyte maturation and in fertility preservation for women facing the risk of losing fertility. However, to date, it is still not widely used in clinical practice because of its underperformance. The influencing factors, such as biphasic IVM system, culture medium, and the supplementation, have a marked effect on the outcomes of oocyte IVM. However, the role of different culture media, supplements, and follicular priming regimens in oocyte IVM have yet to be fully clarified and deserve further investigation.
Collapse
Affiliation(s)
- Huixia Yang
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Corinna Paul
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Julia van Dorp
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Sibel Eren
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Martina Rahmeh
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (S.M.); (V.v.S.)
| |
Collapse
|
24
|
Priya K, Setty M, Babu UV, Pai KSR. Implications of environmental toxicants on ovarian follicles: how it can adversely affect the female fertility? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67925-67939. [PMID: 34628616 PMCID: PMC8718383 DOI: 10.1007/s11356-021-16489-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/07/2021] [Indexed: 05/06/2023]
Abstract
The pool of primordial follicles formed in the ovaries during early development determines the span and quality of fertility in the reproductive life of a woman. As exposure to occupational and environmental toxicants (ETs) has become inevitable, consequences on female fertility need to be established. This review focuses on the ETs, especially well-studied prototypes of the classes endocrine disrupting chemicals (EDCs), heavy metals, agrochemicals, cigarette smoke, certain chemicals used in plastic, cosmetic and sanitary product industries etc that adversely affect the female fertility. Many in vitro, in vivo and epidemiological studies have indicated that these ETs have the potential to affect folliculogenesis and cause reduced fertility in women. Here, we emphasize on four main conditions: polycystic ovary syndrome, primary ovarian insufficiency, multioocytic follicles and meiotic defects including aneuploidies which can be precipitated by ETs. These are considered main causes for reduced female fertility by directly altering the follicular recruitment, development and oocytic meiosis. Although substantial experimental evidence is drawn with respect to the detrimental effects, it is clear that establishing the role of one ET as a risk factor in a single condition is difficult as multiple conditions have common risk factors. Therefore, it is important to consider this as a matter of public and wildlife health.
Collapse
Affiliation(s)
- Keerthi Priya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manjunath Setty
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Uddagiri Venkanna Babu
- Phytochemistry Department, R & D Centre, The Himalaya Drug Company, Makali, Tumkur Road, Bangalore, Karnataka, 562162, India
| | - Karkala Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
25
|
Kinetics of phosphotungstic acid-catalyzed condensation of levulinic acid with phenol to diphenolic acid: Temperature-controlled regioselectivity. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Counteracting Environmental Chemicals with Coenzyme Q10: An Educational Primer for Use with "Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline". Genetics 2021; 216:879-890. [PMID: 33268390 DOI: 10.1534/genetics.120.303577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/05/2020] [Indexed: 02/08/2023] Open
Abstract
Environmental toxicants are chemicals that negatively affect human health. Although there are numerous ways to limit exposure, the ubiquitous nature of certain environmental toxicants makes it impossible to avoid them entirely. Consequently, scientists are continuously working toward developing strategies for combating their harmful effects. Using the nematode Caenorhabditis elegans, a model with many genetic and physiological similarities to humans, researchers in the Colaiácovo laboratory have identified several molecular mechanisms by which the toxic agent bisphenol A (BPA) interferes with reproduction. Here, we address their recent discovery that a widely available compound, Coenzyme Q10 (CoQ10), can rescue BPA-induced damage. This work is significant in that it poses a low-cost method for improving reproductive success in humans. The goal of this primer is to assist educators and students with navigating the paper entitled "Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline." It is ideally suited for integration into an upper-level undergraduate course such as Genetics, Cell and Molecular Biology, Developmental Biology, or Toxicology. The primer provides background information on the history of BPA, the utility of the C. elegans germ line as a model for studying reproductive toxicity, and research methods including assessment of programmed cell death, fluorescent microscopy applications, and assays to quantify gene expression. Questions for deeper exploration in-class or online are provided.Related article in GENETICS: Hornos Carneiro MF, Shin N, Karthikraj R, Barbosa F Jr, Kannan K, Colaiácovo MP. Antioxidant CoQ10 restores fertility by rescuing bisphenol A-induced oxidative DNA damage in the Caenorhabditis elegans Germline. Genetics 214:381-395.
Collapse
|
27
|
Hattori H, Atsumi Y, Nakajo Y, Aono N, Koizumi M, Toya M, Igarashi H, Kyono K. Obstetrical and Neonatal Outcomes of 3,028 Singletons Born After Advanced ART Techniques: Ejaculated Sperm Intracytoplasmic Sperm Injection, Artificial Oocyte Activation, in Vitro Maturation and Testicular Sperm Extraction. FERTILITY & REPRODUCTION 2021. [DOI: 10.1142/s2661318221500031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: To evaluate obstetrical and neonatal outcomes of singletons conceived after advanced assisted reproductive technology (ART) techniques: conventional IVF pregnancies (C-IVF), ejaculated sperm intracytoplasmic sperm injection (ICSI), assisted oocyte activation (AOA), in vitro maturation (IVM), and testicular sperm extraction (TESE). Methods: The subjects were 3,028 singletons who were born after fresh or frozen embryo transfer. The subjects were separated into five groups: C-IVF (n = 855), ICSI (n = 1,869), AOA (n = 42), IVM (n = 32), and TESE (n = 230). We evaluated obstetrical and neonatal outcomes calculating the adjusted odds ratio (AOR) using multivariable logistic regression analyses for fresh and frozen embryos and for cleavage and blastocyst transfer. The C-IVF group was used as a background control for the ICSI group. Moreover, the TESE, AOA, and IVM groups were compared to the ICSI group to evaluate the effects of the ICSI procedure itself. Results: The incidence of perinatal complications was significantly lower in the ICSI-fresh group (AOR = 0.29, 95% CI: 0.10–0.83, p ¡ 0.05). Regarding sex ratio, the IVM was significantly associated with sex ratio imbalance toward female in both fresh and frozen groups (AOR = 0.30, 95% CI: 0.10–0.96, AOR = 0.27, 95% CI: 0.07–0.98, p ¡ 0.05). On the other hand, there were no significant differences in preterm birth rate, low birth weight rate and congenital abnormalities rate between conventional IVF, ICSI, and the other groups. Conclusions: There were no negative effects on obstetrical and neonatal outcomes between conventional IVF and ICSI. Although this was a limited sample size study, advanced ART technologies such as AOA, IVM, and TESE also seem to have a low risk of adverse impact on obstetrical and neonatal outcomes but may have a slight impact on sex ratio.
Collapse
Affiliation(s)
- Hiromitsu Hattori
- Kyono ART Clinic Sendai, 1-1-1 3F, Honcho, Aobaku, Sendai, Miyagi, 980-0014, Japan
| | - Yuko Atsumi
- Kyono ART Clinic Sendai, 1-1-1 3F, Honcho, Aobaku, Sendai, Miyagi, 980-0014, Japan
| | - Yukiko Nakajo
- Kyono ART Clinic Sendai, 1-1-1 3F, Honcho, Aobaku, Sendai, Miyagi, 980-0014, Japan
| | - Nobuya Aono
- Kyono ART Clinic Sendai, 1-1-1 3F, Honcho, Aobaku, Sendai, Miyagi, 980-0014, Japan
- Kyono ART Clinic Takanawa, Takanawa Court 5F, 3-13-1, Takanawa, Minatoku, Tokyo, 108-0074, Japan
| | - Masae Koizumi
- Kyono ART Clinic Sendai, 1-1-1 3F, Honcho, Aobaku, Sendai, Miyagi, 980-0014, Japan
| | - Mayumi Toya
- Kyono ART Clinic Sendai, 1-1-1 3F, Honcho, Aobaku, Sendai, Miyagi, 980-0014, Japan
| | - Hideki Igarashi
- Kyono ART Clinic Sendai, 1-1-1 3F, Honcho, Aobaku, Sendai, Miyagi, 980-0014, Japan
| | - Koichi Kyono
- Kyono ART Clinic Sendai, 1-1-1 3F, Honcho, Aobaku, Sendai, Miyagi, 980-0014, Japan
- Kyono ART Clinic Takanawa, Takanawa Court 5F, 3-13-1, Takanawa, Minatoku, Tokyo, 108-0074, Japan
| |
Collapse
|
28
|
Yang L, Baumann C, De La Fuente R, Viveiros MM. Mechanisms underlying disruption of oocyte spindle stability by bisphenol compounds. Reproduction 2021; 159:383-396. [PMID: 31990668 DOI: 10.1530/rep-19-0494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
Accurate chromosome segregation relies on correct chromosome-microtubule interactions within a stable bipolar spindle apparatus. Thus, exposure to spindle disrupting compounds can impair meiotic division and genomic stability in oocytes. The endocrine disrupting activity of bisphenols such as bisphenol A (BPA) is well recognized, yet their damaging effects on spindle microtubules (MTs) is poorly understood. Here, we tested the effect(s) of acute exposure to BPA and bisphenol F (BPF) on assembled spindle stability in ovulated oocytes. Brief (4 h) exposure to increasing concentrations (5, 25, and 50 µg/mL) of BPA or BPF disrupted spindle organization in a dose-dependent manner, resulting in significantly shorter spindles with highly unfocused poles and fragmented pericentrin. The chromosomes remained congressed in an abnormally elongated metaphase-like configuration, yet normal end-on chromosome-MT attachments were reduced in BPF-treated oocytes. Live-cell imaging revealed a rapid onset of bisphenol-mediated spindle MT disruption that was reversed upon compound removal. Moreover, MT stability and regrowth were impaired in BPA-exposed oocytes, with few cold-stable MTs and formation of multipolar spindles upon MT regrowth. MT-associated kinesin-14 motor protein (HSET/KIFC1) labeling along the spindle was also lower in BPA-treated oocytes. Conversely, cold stable MTs and HSET labeling persisted after BPF exposure. Notably, inhibition of Aurora Kinase A limited bisphenol-mediated spindle pole widening, revealing a potential interaction. These results demonstrate rapid MT disrupting activity by bisphenols, which is highly detrimental to meiotic spindle stability and organization. Moreover, we identify an important link between these defects and altered distribution of key spindle associated factors as well as Aurora Kinase A activity.
Collapse
Affiliation(s)
- Luhan Yang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Rabindranth De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Regenerative Biosciences Center (RBC), University of Georgia, Athens, Georgia, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Regenerative Biosciences Center (RBC), University of Georgia, Athens, Georgia, USA
| |
Collapse
|
29
|
Silva JF, Moreira BP, Rato L, de Lourdes Pereira M, Oliveira PF, Alves MG. Is Technical-Grade Chlordane an Obesogen? Curr Med Chem 2021; 28:548-568. [PMID: 31965937 DOI: 10.2174/0929867327666200121122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
The prevalence of obesity has tripled in recent decades and is now considered an alarming public health problem. In recent years, a group of endocrine disruptors, known as obesogens, have been directly linked to the obesity epidemic. Its etiology is generally associated with a sedentary lifestyle, a high-fat diet and genetic predisposition, but environmental factors, such as obesogens, have also been reported as contributors for this pathology. In brief, obesogens are exogenous chemical compounds that alter metabolic processes and/or energy balance and appetite, thus predisposing to weight gain. Although this theory is still recent, the number of compounds with suspected obesogenic activity has steadily increased over the years, though many of them remain a matter of debate. Technical-grade chlordane is an organochlorine pesticide widely present in the environment, albeit at low concentrations. Highly lipophilic compounds can be metabolized by humans and animals into more toxic and stable compounds that are stored in fat tissue and consequently pose a danger to the human body, including the physiology of adipose tissue, which plays an important role in weight regulation. In addition, technical-grade chlordane is classified as a persistent organic pollutant, a group of chemicals whose epidemiological studies are associated with metabolic disorders, including obesity. Herein, we discuss the emerging roles of obesogens as threats to public health. We particularly discuss the relevance of chlordane persistence in the environment and how its effects on human and animal health provide evidence for its role as an endocrine disruptor with possible obesogenic activity.
Collapse
Affiliation(s)
- Juliana F Silva
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Bruno P Moreira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Luís Rato
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Maria de Lourdes Pereira
- Department of Medical Sciences & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| |
Collapse
|
30
|
Bahelka I, Stupka R, Čítek J, Šprysl M. The impact of bisphenols on reproductive system and on offspring in pigs - A review 2011-2020. CHEMOSPHERE 2021; 263:128203. [PMID: 33297166 DOI: 10.1016/j.chemosphere.2020.128203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study summarizes the knowledge about effects of bisphenol A (BPA) and its analogues on reproduction of pigs and some parameters of their offspring during period 2011-2020. Bisphenols are known as one of the most harmful environmental toxicants with endocrine-disrupting properties. One study in the reference period related to male reproductive system. Treatment with an antagonist of G-protein coupled estrogen receptor (GPER) - G15, and bisphenol A and its analogues, tetrabromobisphenol A (TBBPA) and tetrachromobisphenol A (TCBPA) diversely disrupted protein molecules controlling the biogenesis and function of microRNA in Leydig cells. Nine studies examined the effect of BPA, bisphenol S (BPS) or fluorene-9-bisphenol (BHPF) on female reproductive system. From the possible protective effect's point of view seems to be perspective the administration of melatonin in BPA-exposed oocytes. Finally, two studies were found to evaluate the maternal exposure to BPA on offspring's meat quality, muscle metabolism and oxidative stress. Administration of methyl donor improved antioxidant enzymes activity and reduced oxidative stress in piglets.
Collapse
Affiliation(s)
- Ivan Bahelka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic.
| | - Roman Stupka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Michal Šprysl
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| |
Collapse
|
31
|
Abd-El-Moneim OM, Abd El-Rahim AH, Mohamed AAER, Farag IM, Mohamed Abdalla A. Enhancement effects of ethanolic extract of Fagonia cretica on Bisphenol A (BPA)-induced genotoxicity and biochemical changes in rats. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2020; 44:67. [DOI: 10.1186/s42269-020-00295-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/27/2020] [Indexed: 09/01/2023]
Abstract
Abstract
Background
Fagonia cretica L. was considered to be a medical plant that was used for the treatment of different diseases, so the current study was designed to clarify whether Fagonia cretica extract (FCE) can avoid Bisphenol A (BPA)-induced genotoxicity and biochemical alterations in rats. Sixty-three male rats were used in this experiment. These animals were distributed into nine groups (seven rats each): negative control, control of corn oil, positive control that were administrated BPA in corn oil (10 mg/kg. b.w.) for 3 weeks, three protection groups received the same dose of BPA in corn oil at the same period together with FCE (3.3, 4.2 and 5.0 g/kg) daily for 3 weeks, and three therapeutic groups received FCE alone at the same doses for 10 days after cessation of BPA treatment. Genetic and biochemical studies were conducted. Genetic studies involved DNA comet assay, micronucleus test, chromosome examination, and mitotic index analysis. Biochemical studies involved liver function (AST, ALT, ALph, and Bilirubin), kidney function (urea and creatinine contents), protein profile, MDA, and endogenous antioxidative system (SOD, CAT, and ACHE) as well as nucleic acid (DNA and RNA) contents in the liver, kidney, and brain tissues.
Results
The results demonstrated that the treatment with BPA induced a significant elevation in genetic abnormalities and deleterious effects in biochemical parameters in relation to untreated control. FCE treatment was found to be significantly diminished the massive damage in the genetic constituents and dangerous alterations in biochemical parameters with respect to BPA treatment alone. These enhancements were increased by increasing the dose level of FCE. Moreover, better results were clarified by utilizing FCE as a protective agent than its utilization as a therapeutic agent especially by using the high dose (5.0 g/kg), in which mostly genetic and biochemical alterations were observed to be restored towards natural levels.
Conclusions
These findings clarified a new insight into the protective effect of FCE in minimizing BPA-induced genotoxicity and biochemical changes in rats detecting the capability of such medicinal plant for alleviating the adverse effect of BPA.
Collapse
|
32
|
Ma JY, Li S, Chen LN, Schatten H, Ou XH, Sun QY. Why is oocyte aneuploidy increased with maternal aging? J Genet Genomics 2020; 47:659-671. [PMID: 33184002 DOI: 10.1016/j.jgg.2020.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
One of the main causes of pregnancy failure and fetus abortion is oocyte aneuploidy, which is increased with maternal aging. Numerous possible causes of oocyte aneuploidy in aged women have been proposed, including cross-over formation defect, cohesin loss, spindle deformation, spindle assembly checkpoint malfunction, microtubule-kinetochore attachment failure, kinetochore mis-orientation, mitochondria dysfunction-induced increases in reactive oxygen species, protein over-acetylation, and DNA damage. However, it still needs to be answered if these aneuploidization factors have inherent relations, and how to prevent chromosome aneuploidy in aged oocytes. Epidemiologically, oocyte aneuploidy has been found to be weakly associated with higher homocysteine concentrations, obesity, ionizing radiation and even seasonality. In this review, we summarize the research progress and present an integrated view of oocyte aneuploidization.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Lei-Ning Chen
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
33
|
Mustieles V, D'Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. ENVIRONMENT INTERNATIONAL 2020; 144:105811. [PMID: 32866736 DOI: 10.1016/j.envint.2020.105811] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Human biomonitoring (HBM) studies have demonstrated widespread and daily exposure to bisphenol A (BPA). Moreover, BPA structural analogues (e.g. BPS, BPF, BPAF), used as BPA replacements, are being increasingly detected in human biological matrices. BPA and some of its analogues are classified as endocrine disruptors suspected of contributing to adverse health outcomes such as altered reproduction and neurodevelopment, obesity, and metabolic disorders among other developmental and chronic impairments. One of the aims of the H2020 European Human Biomonitoring Initiative (HBM4EU) is the implementation of effect biomarkers at large scales in future HBM studies in a systematic and standardized way, in order to complement exposure data with mechanistically-based biomarkers of early adverse effects. This review aimed to identify and prioritize existing biomarkers of effect for BPA, as well as to provide relevant mechanistic and adverse outcome pathway (AOP) information in order to cover knowledge gaps and better interpret effect biomarker data. A comprehensive literature search was performed in PubMed to identify all the epidemiologic studies published in the last 10 years addressing the potential relationship between bisphenols exposure and alterations in biological parameters. A total of 5716 references were screened, out of which, 119 full-text articles were analyzed and tabulated in detail. This work provides first an overview of all epigenetics, gene transcription, oxidative stress, reproductive, glucocorticoid and thyroid hormones, metabolic and allergy/immune biomarkers previously studied. Then, promising effect biomarkers related to altered neurodevelopmental and reproductive outcomes including brain-derived neurotrophic factor (BDNF), kisspeptin (KiSS), and gene expression of nuclear receptors are prioritized, providing mechanistic insights based on in vitro, animal studies and AOP information. Finally, the potential of omics technologies for biomarker discovery and its implications for risk assessment are discussed. To the best of our knowledge, this is the first effort to comprehensively identify bisphenol-related biomarkers of effect for HBM purposes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephan Couderq
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | | | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Inger-Lise Steffensen
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Hubert Dirven
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Robert Barouki
- University Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France. Institut national de la santé et de la recherche médicale (INSERM, National Institute of Health & Medical Research) UMR S-1124, Paris, France
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
34
|
Hu P, Vinturache A, Li H, Tian Y, Yuan L, Cai C, Lu M, Zhao J, Zhang Q, Gao Y, Liu Z, Ding G. Urinary Organophosphate Metabolite Concentrations and Pregnancy Outcomes among Women Conceiving through in Vitro Fertilization in Shanghai, China. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:97007. [PMID: 32997523 PMCID: PMC7526721 DOI: 10.1289/ehp7076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Animal studies suggest that pesticide exposure elicits endocrine changes, increases embryo implantation failure, and decreases litter size. However, only a few epidemiological studies have evaluated the effects of pesticides on the outcomes of in vitro fertilization (IVF) pregnancies. OBJECTIVES This study examined the associations between preconception organophosphate pesticides (OP) exposure and pregnancy outcomes among women undergoing IVF in a Chinese population. METHODS This study included 522 women with infertility who underwent IVF. Women were recruited from a prospective study, the China National Birth Cohort (CNBC), from Shanghai, China, between July 2017 and December 2018. Demographic and clinical information were collected from medical records and through questionnaires. Preconception exposure to OP was assessed by measuring six nonspecific dialkylphosphate (DAP) metabolites [diethylthiophosphate (DETP), diethylphosphate (DEP), diethyldithiophosphate (DEDTP), dimethylthiophosphate (DMTP), dimethylphosphate (DMP), dimethyldithiophosphate (DMDTP)] in urine samples collected at recruitment. Generalized estimating equation (GEE) models were used to evaluate the associations between OP and pregnancy outcomes. RESULTS Compared with women in the lowest quartile (Q1) of individual DEP and Σ4DAP (the sum of DMP, DMTP, DEP, and DETP), women in the highest quartile (Q4) had lower odds of successful implantation, clinical pregnancy, and live birth, and most of the negative trends were significant (p-trends<0.05). There were no significant associations between urinary DAP concentrations and early IVF outcomes, including total and mature oocyte counts, best embryo quality, fertilization, E2 trigger levels, and endometrial wall thickness. CONCLUSION Preconception OP exposure was inversely associated with successful implantation, clinical pregnancy, and live birth in women who underwent IVF. https://doi.org/10.1289/EHP7076.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Respiratory Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, Queen Elizabeth II Hospital, Alberta, Canada
| | - Hong Li
- Departments of Nursing, International Peace Maternity and Children Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Yuan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cai
- Department of Respiratory Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Lu
- Department of Respiratory Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiuru Zhao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qianqian Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Liu
- Departments of Neonatology, International Peace Maternity and Children Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Gallo A, Boni R, Tosti E. Gamete quality in a multistressor environment. ENVIRONMENT INTERNATIONAL 2020; 138:105627. [PMID: 32151884 DOI: 10.1016/j.envint.2020.105627] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 05/25/2023]
Abstract
Over the past few decades, accumulated evidence confirms that the global environment conditions are changing rapidly. Urban industrialization, agriculture and globalization have generated water, air and soil pollution, giving rise to an environment with a growing number of stress factors, which has a serious impact on the fitness, reproduction and survival of living organisms. The issue raises considerable concern on biodiversity conservation, which is now at risk: it is estimated that a number of species will be extinct in the near future. Sexual reproduction is the process that allows the formation of a new individual and is underpinned by gamete quality defined as the ability of spermatozoa and oocytes to interact during fertilization leading to the creation and development of a normal embryo. This review aimed to provide the current state of knowledge regarding the impact of a broad spectrum of environmental stressors on diverse parameters used to estimate and evaluate gamete quality in humans and in canonical animal models used for experimental research. Effects of metals, biocides, herbicides, nanoparticles, plastics, temperature rise, ocean acidification, air pollution and lifestyle on the physiological parameters that underlie gamete fertilization competence are described supporting the concept that environmental stressors represent a serious hazard to gamete quality with reproductive disorders and living organism failure. Although clear evidence is still limited, gamete capacity to maintain and/or recover physiological conditions is recently demonstrated providing further clues about the plasticity of organisms and their tolerance to the pressures of pollution that may facilitate the reproduction and the persistence of species within the scenario of global change. Changes in the global environment must be urgently placed at the forefront of public attention, with a massive effort invested in further studies aimed towards implementing current knowledge and identifying new methodologies and markers to predict impairment of gamete quality.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy.
| |
Collapse
|
36
|
Rodosthenous RS, Baccarelli AA, Mansour A, Adir M, Israel A, Racowsky C, Hauser R, Bollati V, Machtinger R. Supraphysiological Concentrations of Bisphenol A Alter the Expression of Extracellular Vesicle-Enriched miRNAs From Human Primary Granulosa Cells. Toxicol Sci 2020; 169:5-13. [PMID: 30690568 DOI: 10.1093/toxsci/kfz020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bisphenol A (BPA) is a widely used chemical that has been detected in follicular fluid and associated with adverse reproductive effects. Granulosa cells have an important role in follicular growth and oocyte maturation, however, little is known about the biological mechanisms of BPA toxicity on human granulosa cells. In this study, we exposed primary granulosa cells to different concentrations of BPA (0, 20, 200, 2000, and 20 000 ng/ml) and used quantitative polymerase chain reaction to measure the expression levels of miRNAs enriched in extracellular vesicles (EV-enriched miRNAs), and cellular levels of selected target genes of differentially expressed EV-enriched miRNAs. We found that exposure to 20 000 ng/ml BPA was associated with decreased levels of EV-miR-27b-3p (FC = 0.58, p = .04) and increased levels of its biologically relevant target genes FADD (FC = 1.22, p = .01), IGF1 (FC = 1.59, p = .06), and PPARG (FC = 1.73, p = .001) as compared with the control. In addition, we observed that under the same exposure conditions, the expression levels of miR-27b-3p in granulosa cells were also downregulated (FC = 0.65, p = .03) as compared with the control. Our findings suggest that both cellular and extracellular changes in gene expression may mediate BPA toxicity in granulosa cells.
Collapse
Affiliation(s)
| | - Andrea A Baccarelli
- Human Epigenetics Laboratory, Columbia University, Mailman School of Public Health, New York, New York
| | - Abdallah Mansour
- Sheba Medical Center, Ramat-Gan and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Michal Adir
- Sheba Medical Center, Ramat-Gan and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ariel Israel
- Department of Family Medicine, Clalit Health Services, Jerusalem, Israel
| | - Catherine Racowsky
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Ronit Machtinger
- Sheba Medical Center, Ramat-Gan and Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
38
|
Gao CJ, Kannan K. Phthalates, bisphenols, parabens, and triclocarban in feminine hygiene products from the United States and their implications for human exposure. ENVIRONMENT INTERNATIONAL 2020; 136:105465. [PMID: 31945693 DOI: 10.1016/j.envint.2020.105465] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 05/23/2023]
Abstract
Feminine hygiene products, a category of daily necessities, can be a source of exposure to plasticizers and antimicrobial agents in women. Nevertheless, studies on the occurrence of chemicals in feminine hygiene products have received little attention. In this study, 24 endocrine-disrupting chemicals (EDCs), comprising nine phthalates, six parabens, eight bisphenols, and triclocarban (TCC) were measured in seven categories of feminine hygiene products (i.e., pads, panty liners, tampons, wipes, bactericidal creams and solutions, and deodorant sprays and powders; N = 77) collected in the Albany area of New York State in the United States. Dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), di-iso-butyl phthalate (DIBP), di(2-ethylhexyl) phthalate (DEHP), methyl paraben (MeP), and ethyl paraben (EtP) were found in all pad, panty liner, and tampon samples. Panty liners contained the highest concentrations of DMP (median: 249 ng/g), DEP (386 ng/g), DBP (393 ng/g), and DIBP (299 ng/g) and tampons contained the highest concentrations of DEHP (267 ng/g). MeP, EtP, and propyl paraben (PrP) were the major parabens found in feminine hygiene products. Bactericidal creams and solutions contained median concentrations of MeP, EtP and PrP at 2840, 734, and 278 ng/g, respectively. The estimated exposure doses of phthalates, parabens, and bisphenols through the dermal absorption pathway from the use of pads, panty liners, and tampons were significant. In comparison with the exposure doses reported previously from other sources and pathways, the significance of feminine hygiene products as sources of EDC exposure was delineated. The dermal absorption doses from the use of feminine hygiene products, under different exposure scenarios, were 0.19-27.9% and 0.01-6.2% of the total exposure doses of phthalates and bisphenols, respectively. This is the first study to report the occurrence of phthalates, parabens, bisphenols, and TCC in feminine hygiene products from the United States.
Collapse
Affiliation(s)
- Chong-Jing Gao
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, United States; Department of Pediatrics, New York University School of Medicine, New York, New York 10016, United States.
| |
Collapse
|
39
|
Desmarchais A, Téteau O, Papillier P, Jaubert M, Druart X, Binet A, Maillard V, Elis S. Bisphenol S Impaired In Vitro Ovine Early Developmental Oocyte Competence. Int J Mol Sci 2020; 21:ijms21041238. [PMID: 32059612 PMCID: PMC7072985 DOI: 10.3390/ijms21041238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Bisphenol A (BPA) is a widespread compound in the plastic industry that is especially used to produce baby bottles, food packaging and metal cans. BPA, an endocrine disruptor, leads to alterations in reproductive function and therefore has been banned from the food industry. Unregulated BPA analogues, particularly Bisphenol S (BPS), have emerged and are now used in the plastic industry. Thus, this study aimed to examine the acute effects of low and environmental doses of BPS on ewe oocyte quality and developmental competence, and its mechanism of action, during in vitro maturation. METHODS Ewe cumulus-oocyte complexes underwent in vitro maturation in the presence or absence of BPS (1 nM, 10 nM, 100 nM, 1 µM or 10 µM). Oocytes were then subjected to in vitro fertilisation and development. RESULTS 1 µM BPS induced a 12.7% decrease in the cleavage rate (p = 0.004) and a 42.6% decrease in the blastocyst rate (p = 0.017) compared to control. The blastocyst rate reduction was also observed with 10 nM BPS. Furthermore, 10 µM BPS reduced the oocyte maturation rate, and 1 µM BPS decreased cumulus cell progesterone secretion. PR and AMH gene expression were reduced in cumulus cells. BPS induced a 5-fold increase in MAPK 3/1 activation (p = 0.04). CONCLUSIONS BPS impaired ewe oocyte developmental competence. The data suggest that BPS might not be a safe BPA analogue. Further studies are required to elucidate its detailed mechanism of action.
Collapse
Affiliation(s)
- Alice Desmarchais
- UMR PRC, CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly, France; (A.D.); (O.T.); (P.P.); (M.J.); (X.D.); (A.B.); (V.M.)
| | - Ophélie Téteau
- UMR PRC, CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly, France; (A.D.); (O.T.); (P.P.); (M.J.); (X.D.); (A.B.); (V.M.)
| | - Pascal Papillier
- UMR PRC, CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly, France; (A.D.); (O.T.); (P.P.); (M.J.); (X.D.); (A.B.); (V.M.)
| | - Manon Jaubert
- UMR PRC, CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly, France; (A.D.); (O.T.); (P.P.); (M.J.); (X.D.); (A.B.); (V.M.)
| | - Xavier Druart
- UMR PRC, CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly, France; (A.D.); (O.T.); (P.P.); (M.J.); (X.D.); (A.B.); (V.M.)
| | - Aurélien Binet
- UMR PRC, CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly, France; (A.D.); (O.T.); (P.P.); (M.J.); (X.D.); (A.B.); (V.M.)
- CHRU de Tours, 37000 Tours, France
| | - Virginie Maillard
- UMR PRC, CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly, France; (A.D.); (O.T.); (P.P.); (M.J.); (X.D.); (A.B.); (V.M.)
| | - Sebastien Elis
- UMR PRC, CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly, France; (A.D.); (O.T.); (P.P.); (M.J.); (X.D.); (A.B.); (V.M.)
- Correspondence: ; Tel.: +33-2-47427598; Fax: +33-2-47427743
| |
Collapse
|
40
|
Jiao X, Ding Z, Meng F, Zhang X, Wang Y, Chen F, Duan Z, Wu D, Zhang S, Miao Y, Huo L. The toxic effects of Fluorene-9-bisphenol on porcine oocyte in vitro maturation. ENVIRONMENTAL TOXICOLOGY 2020; 35:152-158. [PMID: 31696613 DOI: 10.1002/tox.22851] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 05/15/2023]
Abstract
Fluorene-9-bisphenol (9,9-bis(4-hydroxyphenyl)-fluorene [BHPF]) is a bisphenol A (BPA) substitute used in the production of "BPA-free" plastics, now has been identified is harmful to living organisms. Our previous study showed that BHPF impaired mouse denuded oocyte in vitro maturation. However, there is a question that whether BHPF is still able to affect oocyte maturation in the presence of dense cumulus cells. In the present study, we checked the toxic effects of BHPF on porcine oocyte maturation which is derived from COCs in vitro culture. Our results showed that BHPF (50 μM) inhibited the expansion of cumulus cells, led to a significant decrease in polar body extrusion (PBE). Importantly, BHPF resulted in abnormal spindle assembly, ATP level decrease, reactive oxygen species (ROS) accumulation and early apoptosis in porcine oocytes, which are all negative to oocyte maturation. Furthermore, BHPF also declined porcine oocyte quality by disturbing the cortical granules (CGs) distribution. In conclusion, our study showed that BHPF still inhibited oocyte maturation even in the presence of cumulus cells leading to abnormal spindle assembly, ATP decrease, increased ROS level, early apoptosis, and disturbed CGs distribution in porcine oocytes, and also indicates that BHPF has a wide range toxic effects on oocyte in different species.
Collapse
Affiliation(s)
- Xiaofei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiyu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongsheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zequn Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shouxin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yiliang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lijun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
41
|
Swain JE. Controversies in ART: can the IVF laboratory influence preimplantation embryo aneuploidy? Reprod Biomed Online 2019; 39:599-607. [DOI: 10.1016/j.rbmo.2019.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/17/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
|
42
|
Level of Bisphenol A in Follicular Fluid and Serum and Oocyte Morphology in Patients Undergoing IVF Treatment. J Family Reprod Health 2019; 13:154-159. [PMID: 32201490 PMCID: PMC7072031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: To assess the correlation between the levels of BPA in the serum and follicular fluid (FF) using oocyte morphology. Materials and methods: In this cross-sectional research, oocyte, FF, and serum samples were obtained from a sample population consisting of 90 women undergone in vitro fertilization in Ganjavian Hospital in Dezful, Iran during October 2017-March 2018. The ELISA kit was utilized for the measurement of the BPA levels. In addition, oocyte morphology simultaneous with inverted optical microscopy. Results: Follicular fluid BPA levels had no significant effect on MII oocytes (p ≥ 0.05). However, the mean levels of degenerated oocytes and germinal vesicle (GV) were significantly higher in the women with high BPA levels in the FF (p ≤ 0.05). Moreover, the mean counts of MII oocytes and oocytes were significantly higher in the women with serum BPA levels of ≤ 50 ng/ml (p ≤ 0.05), while the mean count of GV oocytes was significantly higher in the women with serum BPA levels of ≥ 150 ng/ml (p ≤ 0.05). Conclusion: According to the results, higher FF BPA levels were associated with the higher counts of GVs and oocytes, while oocytes with higher maturity can be achieved in lower levels of BPA in the serum of patients.
Collapse
|
43
|
Li Q, Zhao Z. Influence of N-acetyl-L-cysteine against bisphenol a on the maturation of mouse oocytes and embryo development: in vitro study. BMC Pharmacol Toxicol 2019; 20:43. [PMID: 31331389 PMCID: PMC6647297 DOI: 10.1186/s40360-019-0323-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bisphenol A (BPA), an endocrine disruptor, is a widely used chemical that has adverse effects on animal development and reproduction. The current research aimed to evaluate the effect of BPA on the in vitro maturation (IVM) and subsequent embryo development of mouse oocytes following in vitro fertilization (IVF). METHODS IVM was performed in the presence of different concentrations (0, 20, 50, or 100 μg/mL) of BPA. Nuclear maturation, IVF efficiency and embryonic development were determined. The levels of reactive oxygen species (ROS) and glutathione (GSH) in the BPA (50 μg/mL) group were evaluated. We explored the ability of N-acetyl-L-cysteine (NAC) in the IVM medium to rescue the BPA-induced damage by examining changes in nuclear maturation, IVF rate, blastocyst formation, ROS levels and GSH content. RESULTS Compared with the control, BPA (50 μg/mL) supplementation during oocyte IVM significantly inhibited nuclear maturation and decreased fertilization and blastocyst formation rates. In addition, BPA exposure increased ROS levels and decreased GSH content in oocytes. The addition of NAC weakened the BPA-induced suppression of nuclear maturation, relieved the BPA-induced downregulation of the fertilization and blastocyst formation rates, and mitigated the increased ROS levels and decreased GSH content. CONCLUSION BPA affects mouse oocyte maturation and subsequent early embryonic developmental competence following IVF by increasing intracytoplasmic oxidative stress in mature oocytes. NAC can reduce these harmful effects to a certain extent.
Collapse
Affiliation(s)
- Qian Li
- College of Life Science, Yantai University, Yantai, China.
| | - Zhenjun Zhao
- College of Life Science, Yantai University, Yantai, China.
| |
Collapse
|
44
|
Jiao XF, Liang QM, Wu D, Ding ZM, Zhang JY, Chen F, Wang YS, Zhang SX, Miao YL, Huo LJ. Effects of Acute Fluorene-9-Bisphenol Exposure on Mouse Oocyte in vitro Maturation and Its Possible Mechanisms. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:243-253. [PMID: 30499614 DOI: 10.1002/em.22258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/29/2018] [Accepted: 10/03/2018] [Indexed: 05/15/2023]
Abstract
Fluorene-9-bisphenol (BHPF), a substitute of bisphenol A (BPA) used in the production of the so-called "BPA-free" plastics, has now been shown to be released from commercial plastic bottles into drinking water and has strong anti-estrogenic activity in mice, which suggests that BHPF is also an environmental toxin. However, whether BHPF exposure has effects on mouse oocyte development is unknown. In this study, the influence of acute exposure to BHPF (50-150 μM, 12 hr) on mouse oocyte maturation and its possible mechanisms were investigated. Of note, 50-μM BHPF had no effects on the maturation of mouse oocytes, whereas 100- and 150-μM BHPF significantly blocked germinal vesicle breakdown and led to the failure of first polar body extrusion. Particularly, 100-μM BHPF exposure severely decreased the cellular adenosine triphosphate in a time-dependent manner, which finally brought out the loss of spindles. In addition, the actin cytoskeleton was also impaired. The defective mitochondrial dynamics and decreased mitochondrial DNA implied the damage of mitochondria in BHPF-treated oocytes. Increased PINK1, Beclin1, and LC3B protein level and decreased TOMM20 and TOMM17A protein level illustrated that mitophagy was induced, which also confirmed that BHPF exposure impaired the cellular mitochondria. Moreover, BHPF induced reactive oxygen species accumulation and early apoptosis. Oocyte quality was also impaired by BHPF exposure through altering histone modifications evidenced by increased H3K9me3 and H3K27me3 levels. Collectively, our results indicated that BHPF exposure disrupted mouse oocyte maturation and reduced oocyte quality through affecting cytoskeleton architecture, mitochondrial function, oxidative stress, apoptosis, and histone modifications. Environ. Mol. Mutagen. 60:243-253, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiu-Man Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
45
|
Zhang X, Jiang L, Tian Y, Xia Y, Yan L, Wu C, Zhang T, Zhu J. Establishment of in-vitro three dimensional rat follicle culture system and validation of the applicability as an in vitro female reproductive toxicity testing system. Toxicol In Vitro 2019; 58:161-169. [PMID: 30902691 DOI: 10.1016/j.tiv.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaofang Zhang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| | - Lijuan Jiang
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Yijun Tian
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| | - Yi Xia
- Changning District Center for Disease Control and Prevention, Shanghai 200335, China
| | - Lang Yan
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| | - Changzhi Wu
- Jiangxi maternal and child health care hospital, Jiangxi 330006, China
| | - Tianbao Zhang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China.
| | - Jiangbo Zhu
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
46
|
Campen KA, Kucharczyk KM, Bogin B, Ehrlich JM, Combelles CMH. Spindle abnormalities and chromosome misalignment in bovine oocytes after exposure to low doses of bisphenol A or bisphenol S. Hum Reprod 2019. [PMID: 29538760 DOI: 10.1093/humrep/dey050] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION What are the effects of exposure to bisphenol A (BPA) or bisphenol S (BPS) during IVM on bovine oocyte maturation, spindle morphology and chromosome alignment? SUMMARY ANSWER Exposure to BPA or BPS during IVM resulted in increased spindle abnormalities and chromosome misalignment, even at very low concentrations. WHAT IS KNOWN ALREADY BPA is an endocrine disrupting chemical that alters oocyte maturation, spindle morphology and chromosome alignment in a range of species. The use of BPA substitutes, such as BPS, is increasing and these substitutes often display different potencies and mechanisms of action compared with BPA. STUDY DESIGN, SIZE, DURATION Bovine cumulus-oocyte complexes (COCs) underwent IVM with BPA or BPS for 24 h, together with vehicle-only controls. Overall, 10 different concentrations of BPA or BPS were used ranging from 1 fM to 50 μM in order to detect low dose or non-monotonic effects. An incomplete block design was utilized for the study, with at least three replicates per block. A total of 939 oocytes (250 of which were controls) were used for the BPA experiments, and 432 (110 controls) for the BPS experiments. Following the IVM period, the oocytes were denuded and fixed for immunocytochemistry. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunocytochemistry was used to label the chromatin, actin, and microtubules in the fixed oocytes. The meiotic stage was assessed using immunofluorescence, and the metaphase-II (MII) oocytes were further assessed for spindle morphology and chromosome alignment (in all MII oocytes regardless of spindle morphology) using immunofluorescence and confocal microscopy. Significant differences between the treatment and control groups were determined using chi-square and Fisher's exact tests. MAIN RESULTS AND THE ROLE OF CHANCE There was no effect of BPA or BPS on the proportion of bovine oocytes that reached MII (P > 0.05). BPA and BPS increased spindle abnormalities in MII oocytes at almost all concentrations tested, including those as low as 1 fM (P = 0.013) or 10 fM (P < 0.0001), respectively, compared to control. Oocytes with flattened spindles with broad poles were observed at a higher frequency at some concentrations of BPA (P = 0.0002 and P = 0.002 for 10 nM and 50 μM, respectively) or BPS (P = 0.01 for 100 nM BPS), while this spindle phenotype was absent in the controls. BPA increased chromosome misalignment at concentrations of 10 fM, 10 nM and 50 μM (P < 0.0001 to P = 0.043 depending on the dose). BPS increased chromosome misalignment at concentrations of 10 fM, 100 pM, 10 nM, 100 nM and 50 μM (P < 0.0001 to P = 0.013 depending on the dose). LIMITATIONS REASONS FOR CAUTION Exposures to BPA or BPS were performed during the IVM of COCs to allow for determination of direct effects of these chemicals on oocyte maturation. Whole follicle culture or in vivo studies will confirm whether follicular cell interactions modify the effects of BPA or BPS on oocyte meiotic maturation. Investigation into the effects of BPA or BPS on other oocyte functions will determine whether these chemicals alter oocyte quality via mechanisms independent of the meiotic endpoints characterized here. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study show that both BPA and BPS induce spindle abnormalities and chromosome misalignment in bovine in a non-monotonic manner, and at concentrations that are orders of magnitude below those measured in humans. Taken in context with previous studies on the effects of BPA in a range of species, our data support the literature that BPA may reduce oocyte quality and lead to subsequent infertility. Additionally, these results contribute to the burgeoning field of research on BPS and suggest that BPS may indeed be a 'regrettable substitution' for BPA. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by funding from the National Institutes of Health (NIH) (Grant 1R15ES024520-01). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Kelly A Campen
- Biology Department, Middlebury College, Middlebury, VT 05753, USA.,Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37902, USA
| | | | - Benjamin Bogin
- Biology Department, Middlebury College, Middlebury, VT 05753, USA
| | - Julie M Ehrlich
- Biology Department, Middlebury College, Middlebury, VT 05753, USA
| | | |
Collapse
|
47
|
Marzouk T, Sathyanarayana S, Kim AS, Seminario AL, McKinney CM. A Systematic Review of Exposure to Bisphenol A from Dental Treatment. JDR Clin Trans Res 2019; 4:106-115. [PMID: 30931707 DOI: 10.1177/2380084418816079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Dental composite restorations and dental sealants containing bisphenol A glycidyl methacrylate (BisGMA) are commonly used materials in dentistry. Bisphenol A (BPA) is used to manufacture BisGMA and can be a by-product in BisGMA-based dental materials. BPA is an endocrine-disrupting chemical that may affect reproductive, psychological, cognitive, and endocrine-related health. We conducted a systematic review of clinical studies that measured urinary BPA (uBPA) concentrations before and after dental treatment to evaluate the extent to which individuals are exposed to BPA from dental treatment. METHODS Eligibility included studies that measured uBPA concentrations before and after dental treatment with any type of resin-based dental material. We searched PubMed, Cochrane, Web of Science, Virtual Health Library, Science Direct, ProQuest, and Clinical Trials with no date or language restrictions to identify published studies. We summarized eligible studies across participant characteristics, amount of treatment, and time of follow-up measures. Because methods of measuring uBPA varied, our primary outcome was the direction and percentage change between baseline and 24 h posttreatment and at later time points as available. RESULTS We identified 1,190 abstracts and 7 eligible studies: 4 in children and 3 in adults. In all studies, BPA concentrations increased 24 h after treatment. The 2 studies with the largest sample sizes found statistically significant increases >40% in uBPA concentrations at 24 h posttreatment (both P values <0.01). The 1 study to examine uBPA concentrations beyond 1 mo posttreatment found that concentrations returned to baseline by 14 d after treatment and remained at baseline 6 mo after treatment. CONCLUSIONS Our findings suggest that uBPA concentrations increase 24 h after dental treatment. One study showed that uBPA concentrations return to baseline by 14 d. Additional research is needed to determine the magnitude of change from pre- to post-dental treatment and the trajectory of uBPA concentrations posttreatment. KNOWLEDGE TRANSFER STATEMENT BPA is an endocrine-disrupting chemical that may have negative human health effects. Our findings suggest that urinary BPA concentrations increase in the short term after dental treatment. The extent to which such an increase may affect the health of patients remains an open question, particularly since there are no established thresholds for safety or harm related to BPA exposure.
Collapse
Affiliation(s)
- T Marzouk
- 1 Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - S Sathyanarayana
- 2 Department of Pediatrics / Seattle Children's Research Institute, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - A S Kim
- 3 Department of Pediatric Dentistry, University of Washington, Seattle, WA, USA
| | - A L Seminario
- 3 Department of Pediatric Dentistry, University of Washington, Seattle, WA, USA.,4 Department of Global Health, University of Washington, Seattle, WA, USA
| | - C M McKinney
- 5 Division of Craniofacial Medicine, Department of Pediatrics / Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
48
|
Almeida S, Raposo A, Almeida-González M, Carrascosa C. Bisphenol A: Food Exposure and Impact on Human Health. Compr Rev Food Sci Food Saf 2018; 17:1503-1517. [PMID: 33350146 DOI: 10.1111/1541-4337.12388] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is an industrial compound used extensively to produce synthetic polymers, such as epoxy resins, which are incorporated into the inner coating of metal cans, and also to manufacture polycarbonates with applications in bottles, including bottles of water. Several studies have reported on the transfer of this compound to food. Regarding human exposure to BPA, food intake can be considered the most serious among all the routes, not only because it potentially reaches more people in different age groups (including infants, an especially vulnerable group), but also because it inadvertently occurs over long time periods. BPA is considered an endocrine disruptor and several studies have proposed a relationship between exposure to BPA and the appearance of adverse health effects, such as cancer, infertility, diabetes, and obesity, among others. In 2015 however, the European Food Safety Authority concluded in its last scientific opinion that this compound does not pose any risk to the exposed population's health. Therefore, the EU regards BPA as an authorized product to be used as food contact material. Although BPA intake through food is apparently below the set limits, research into BPA and its potential negative effects is still ongoing. This review contains the most recent in vitro and in vivo studies on BPA toxicity and its harmful effects on health, and it intends to address human exposure to BPA, namely through dietary exposure and its impact on human health.
Collapse
Affiliation(s)
- Susana Almeida
- CBIOS (Research Center for Biosciences and Health Technologies), Univ. Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Univ. Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Maira Almeida-González
- Toxicology Unit, Research Inst. of Biomedical and Health Sciences (IUIBS), Univ. de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Conrado Carrascosa
- Dept. of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Univ. de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413, Arucas, Spain
| |
Collapse
|
49
|
Wang B, Zhou W, Zhu W, Chen L, Wang W, Tian Y, Shen L, Zhang J. Associations of female exposure to bisphenol A with fecundability: Evidence from a preconception cohort study. ENVIRONMENT INTERNATIONAL 2018; 117:139-145. [PMID: 29751163 DOI: 10.1016/j.envint.2018.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/22/2018] [Accepted: 05/01/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Human exposure to bisphenol A (BPA) is common. The reproductive toxicity of BPA has been well characterized. However, the impact of BPA exposure on fecundability in healthy women is less clear, and evidence from eastern countries is lacking. OBJECTIVES We aimed to prospectively assess the associations of BPA with female fecundability, as measured by time to pregnancy (TTP). METHODS From 2013 to 2015, we included 700 Chinese couples attempting pregnancy in two preconception care clinics and followed for 12 months or until a pregnancy occurred. The concentrations of BPA were determined in preconception urine samples of female partners. Cox's proportional models for discrete survival time were used to estimate fecundability odds ratios (FORs). Odds ratios (ORs) for infertility (TTP > 12 months) were estimated using logistic regression models. RESULTS After adjusting for potential confounders, each ln-unit increase in urinary concentrations of BPA was associated with a 13% reduction in fecundability (FOR = 0.87; 95% CI: 0.78, 0.98) and a 23% increase in odds of infertility (OR = 1.23; 95% CI: 1.00, 1.50). Women in the highest quartile of urinary BPA had a 30% reduction in fecundability (FOR = 0.70, 95% CI: 0.51, 0.96) and a 64% increase in odds of infertility when compared to those in the lowest quartile (OR = 1.64, 95% CI: 0.90, 2.98). The associations of urinary BPA concentrations with fecundability (FOR = 0.80, 95% CI: 0.67, 0.95) and infertility (OR = 1.43, 95% CI: 1.05, 1.93) were strengthened among women over 30 years of age. CONCLUSIONS Our results suggest that preconception concentrations of BPA in female urine were associated with decreased fecundability, particularly among women at older ages. These findings should be confirmed in future human studies.
Collapse
Affiliation(s)
- Bin Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenting Zhu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Hatırnaz Ş, Ata B, Hatırnaz ES, Dahan MH, Tannus S, Tan J, Tan SL. Oocyte in vitro maturation: A sytematic review. Turk J Obstet Gynecol 2018; 15:112-125. [PMID: 29971189 PMCID: PMC6022428 DOI: 10.4274/tjod.23911] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
In vitro maturation (IVM) is one of the most controversial aspects of assisted reproductive technology. Although it has been studied extensively, it is still not a conventional treatment option and is accepted as an alternative treatment. However, studies have shown that IVM can be used in almost all areas where in vitro fertilization (IVF) is used and it has a strong place in fertility protection and Ovarian Hyperstimulation syndrome management. The aim of this systematic review was to address all aspects of the current knowledge of IVM treatment together with the evolution of IVM and IVF.
Collapse
Affiliation(s)
- Şafak Hatırnaz
- Medicana International Hospital, In Vitro Fertilization Center, Samsun, Turkey
| | - Barış Ata
- Koç University Faculty of Medicine, Department of Obstetrics and Gynecology, In Vitro Fertilization Center, İstanbul, Turkey
| | | | - Michael Haim Dahan
- Mc Gill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Samer Tannus
- Mc Gill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Justin Tan
- Mc Gill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Seang Lin Tan
- Originelle Women and Reproductive Medicine Center, Clinic of Obstetrics and Gynecology, Montreal, Quebec, Canada
| |
Collapse
|