1
|
Wang Q, Wang H, Dwivedi Y. Integrated Long Noncoding RNA and Messenger RNA Expression Analysis Identifies Molecules Specifically Associated With Resiliency and Susceptibility to Depression and Antidepressant Response. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100365. [PMID: 39257693 PMCID: PMC11385423 DOI: 10.1016/j.bpsgos.2024.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 09/12/2024] Open
Abstract
Background Depression involves maladaptive processes impairing an individual's ability to interface with the environment appropriately. Long noncoding RNAs (lncRNAs) are gaining traction for their role in higher-order brain functioning. Recently, we reported that lncRNA coexpression modules may underlie abnormal responses to stress in rats showing depression-like behavior. The current study explored the global expression regulation of lncRNAs and messenger RNAs (mRNAs) in the hippocampus of rats showing susceptibility (learned helplessness [LH]) or resiliency (non-LH) to depression and fluoxetine response to LH (LH+FLX). Methods Multiple comparison analysis was performed with an analysis of variance via the aov and summary function in the R platform to identify the differential expression of mRNAs and lncRNAs among LH, non-LH, tested control, and LH+FLX groups. Weighted gene coexpression network analysis was used to identify distinctive modules and pathways associated with each phenotype. A machine learning analysis was conducted to screen the critical target genes. Based on the combined analysis, the regulatory effects of lncRNAs on mRNA expression were explored. Results Multiple comparison analyses revealed differentially expressed mRNAs and lncRNAs with each phenotype. Integrated bioinformatics analysis identified novel transcripts, specific modules, and regulatory pairs of mRNA-lncRNA in each phenotype. In addition, the machine learning approach predicted lncRNA-regulated Spp2 and Olr25 genes in developing LH behavior, whereas joint analysis of mRNA-lncRNA pairs identified Mboat7, Lmod1, I l 18, and Rfx5 genes in depression-like behavior and Adam6 and Tpra1 in antidepressant response. Conclusions The study shows a novel role for lncRNAs in the development of specific depression phenotypes and in identifying newer targets for therapeutic development.
Collapse
Affiliation(s)
- Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huizhen Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
2
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
3
|
Luan X, Xing H, Guo F, Liu W, Jiao Y, Liu Z, Wang X, Gao S. The role of ncRNAs in depression. Heliyon 2024; 10:e27307. [PMID: 38496863 PMCID: PMC10944209 DOI: 10.1016/j.heliyon.2024.e27307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Depressive disorders have a significant impact on public health, and depression have an unsatisfactory recurrence rate and are challenging to treat. Non-coding RNAs (ncRNAs) are RNAs that do not code protein, which have been shown to be crucial for transcriptional regulation. NcRNAs are important to the onset, progress and treatment of depression because they regulate various physiological functions. This makes them distinctively useful as biomarkers for diagnosing and tracking responses to therapy among individuals with depression. It is important to seek out and summarize the research findings on the impact of ncRNAs on depression since significant advancements have been made in this area recently. Hence, we methodically outlined the findings of published researches on ncRNAs and depression, focusing on microRNAs. Above all, this review aims to improve our understanding of ncRNAs and provide new insights of the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Xinchi Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Han Xing
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Weiyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yang Jiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhenyu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xuezhe Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Falconnier C, Caparros-Roissard A, Decraene C, Lutz PE. Functional genomic mechanisms of opioid action and opioid use disorder: a systematic review of animal models and human studies. Mol Psychiatry 2023; 28:4568-4584. [PMID: 37723284 PMCID: PMC10914629 DOI: 10.1038/s41380-023-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.
Collapse
Affiliation(s)
- Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Alba Caparros-Roissard
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Charles Decraene
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives UMR 7364, 67000, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
5
|
Zhong XL, Du Y, Chen L, Cheng Y. The emerging role of long noncoding RNA in depression and its implications in diagnostics and therapeutic responses. J Psychiatr Res 2023; 164:251-258. [PMID: 37385004 DOI: 10.1016/j.jpsychires.2023.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Depression is one of the most common mental illnesses, affecting more than 350 million people worldwide. However, the occurrence of depression is a complex process involving genetic, physiological, psychological, and social factors, and the underlying mechanisms of its pathogenesis remain unclear. With advances in sequencing technology and epigenetic studies, increasing research evidence suggests that long noncoding RNAs (lncRNAs) play nonnegligible roles in the development of depression and may be involved in the pathogenesis of depression through multiple pathways, including regulating neurotrophic factors and other growth factors and affecting synaptic function. In addition, significant alterations in lncRNA expression profiles in peripheral blood and different brain regions of patients and model animals with depression suggest that lncRNAs may function as biomarkers for the differential diagnosis of depression and other psychiatric disorders and may also be potential therapeutic targets. In this paper, the biological functions of lncRNAs are briefly described, and the functional roles and abnormal expression of lncRNAs in the development, diagnosis and treatment of depression are reviewed.
Collapse
Affiliation(s)
- Xiao-Lin Zhong
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
6
|
Peng S, Zhou Y, Xiong L, Wang Q. Identification of novel targets and pathways to distinguish suicide dependent or independent on depression diagnosis. Sci Rep 2023; 13:2488. [PMID: 36781900 PMCID: PMC9925752 DOI: 10.1038/s41598-023-29101-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, postmortem brain studies have revealed that some molecular, cellular, and circuit changes associated with suicide, have an independent or additive effect on depression. The aim of the present study is to identify potential phenotypic, tissue, and sex-specific novel targets and pathways to distinguish depression or suicide from major depressive disorder (MDD) comorbid with suicide. The mRNA expression profiling datasets from two previous independent postmortem brain studies of suicide and depression (GSE102556 and GSE101521) were retrieved from the GEO database. Machine learning analysis was used to differentiate three regrouped gene expression profiles, i.e., MDD with suicide, MDD without suicide, and suicide without depression. Weighted correlation network analysis (WGCNA) was further conducted to identify the key modules and hub genes significantly associated with each of these three sub-phenotypes. TissueEnrich approaches were used to find the essential brain tissues and the difference of tissue enriched genes between depression with or without suicide. Dysregulated gene expression cross two variables, including phenotypes and tissues, were determined by global analysis with Vegan. RRHO analysis was applied to examine the difference in global expression pattern between male and female groups. Using the optimized machine learning model, several ncRNAs and mRNAs with higher AUC and MeanDecreaseGini, including GCNT1P1 and AC092745.1, etc., were identified as potential molecular targets to distinguish suicide with, or without MDD and depression without suicide. WGCNA analysis identified some key modules significantly associated with these three phenotypes, and the gene biological functions of the key modules mainly relate to ncRNA and miRNA processing, as well as oxidoreductase and dehydrogenase activity. Hub genes such as RP11-349A22.5, C20orf196, MAPK8IP3 and RP11-697N18.2 were found in these key modules. TissueEnrich analysis showed that nucleus accumbens and subiculum were significantly changed among the 6 brain regions studied. Global analysis with Vegan and RRHO identified PRS26, ARNT and SYN3 as the most significantly differentially expressed genes across phenotype and tissues, and there was little overlap between the male and female groups. In this study, we have identified novel gene targets, as well as annotated functions of co-expression patterns and hub genes that are significantly distinctive between depression with suicide, depression without suicide, and suicide without depression. Moreover, global analysis across three phenotypes and tissues confirmed the evidence of sex difference in mood disorders.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lan Xiong
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Transcriptomic Studies of Antidepressant Action in Rodent Models of Depression: A First Meta-Analysis. Int J Mol Sci 2022; 23:ijms232113543. [DOI: 10.3390/ijms232113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Antidepressants (ADs) are, for now, the best everyday treatment we have for moderate to severe major depressive episodes (MDEs). ADs are among the most prescribed drugs in the Western Hemisphere; however, the trial-and-error prescription strategy and side-effects leave a lot to be desired. More than 60% of patients suffering from major depression fail to respond to the first AD they are prescribed. For those who respond, full response is only observed after several weeks of treatment. In addition, there are no biomarkers that could help with therapeutic decisions; meanwhile, this is already true in cancer and other fields of medicine. For years, many investigators have been working to decipher the underlying mechanisms of AD response. Here, we provide the first systematic review of animal models. We thoroughly searched all the studies involving rodents, profiling transcriptomic alterations consecutive to AD treatment in naïve animals or in animals subjected to stress-induced models of depression. We have been confronted by an important heterogeneity regarding the drugs and the experimental settings. Thus, we perform a meta-analysis of the AD signature of fluoxetine (FLX) in the hippocampus, the most studied target. Among genes and pathways consistently modulated across species, we identify both old players of AD action and novel transcriptional biomarker candidates that warrant further investigation. We discuss the most prominent transcripts (immediate early genes and activity-dependent synaptic plasticity pathways). We also stress the need for systematic studies of AD action in animal models that span across sex, peripheral and central tissues, and pharmacological classes.
Collapse
|
9
|
Roy B, Ochi S, Dwivedi Y. M6A RNA Methylation-Based Epitranscriptomic Modifications in Plasticity-Related Genes via miR-124-C/EBPα-FTO-Transcriptional Axis in the Hippocampus of Learned Helplessness Rats. Int J Neuropsychopharmacol 2022; 25:1037-1049. [PMID: 36161325 PMCID: PMC9743968 DOI: 10.1093/ijnp/pyac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Impaired synaptic plasticity has been linked to dynamic gene regulatory network changes. Recently, gene regulation has been introduced with the emerging concept of unique N6-methyladenosine (m6A)-based reversible transcript methylation. In this study, we tested whether m6A RNA methylation may potentially serve as a link between the stressful insults and altered expression of plasticity-related genes. METHODS Expression of plasticity genes Nr3c1, Creb1, Ntrk2; m6A-modifying enzymes Fto, methyltransferase like (Mettl)-3 and 14; DNA methylation enzymes Dnmt1, Dnmt3a; transcription factor C/ebp-α; and miRNA-124-3p were determined by quantitative polymerase chain reaction (qPCR) in the hippocampus of rats that showed susceptibility to develop stress-induced depression (learned helplessness). M6A methylation of plasticity-related genes was determined following m6A mRNA immunoprecipitation. Chromatin immunoprecipitation was used to examine the endogenous binding of C/EBP-α to the Fto promoter. MiR-124-mediated post-transcriptional inhibition of Fto via C/EBPα was determined using an in vitro model. RESULTS Hippocampus of learned helplessness rats showed downregulation of Nr3c1, Creb1, and Ntrk2 along with enrichment in their m6A methylation. A downregulation in demethylating enzyme Fto and upregulation in methylating enzyme Mettl3 were also noted. The Fto promoter was hypomethylated due to the lower expression of Dnmt1 and Dnmt3a. At the same time, there was a lower occupancy of transcription factor C/EBPα on the Fto promoter. Conversely, C/ebp-α transcript was downregulated via induced miR-124-3p expression. CONCLUSIONS Our study mechanistically linked defective C/EBP-α-FTO-axis, epigenetically influenced by induced expression of miR-124-3p, in modifying m6A enrichment in plasticity-related genes. This could potentially be linked with abnormal neuronal plasticity in depression.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama atBirmingham, Birmingham, Alabama, USA
| | - Shinichiro Ochi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama atBirmingham, Birmingham, Alabama, USA,Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yogesh Dwivedi
- Correspondence: Yogesh Dwivedi, PhD, Elesabeth Ridgely Shook Professor, Director of Translational Research, UAB Mood Disorder Program, Codirector, Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 2nd Avenue South, Birmingham, AL, USA ()
| |
Collapse
|
10
|
Gururajan A, Bastiaanssen TFS, Ventura Silva AP, Moloney GM, Cryan JF. The impact of psychosocial defeat stress on the bed nucleus of the stria terminalis transcriptome in adult male mice. Eur J Neurosci 2021; 55:67-77. [PMID: 34904308 DOI: 10.1111/ejn.15567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/07/2021] [Accepted: 12/05/2021] [Indexed: 01/07/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a focal point for the convergence of inputs from canonical stress-sensitive structures to fine-tune the response to stress. However, its role in mediating phenotypes of stress resilience or susceptibility is yet to be fully defined. In this study, we carried out unbiased RNA-sequencing to analyse the BNST transcriptomes of adult male mice, which were classified as resilient or susceptible following a 10-day chronic psychosocial defeat stress paradigm. Pairwise comparisons revealed 20 differentially expressed genes in resilience (6) and susceptible (14) mice compared with controls. An in silico validation of our data against an earlier study revealed significant concordance in gene expression profiles associated with resilience to chronic stress. Enrichment analysis revealed that resilience is linked to functions including retinoic acid hydrolase activity, phospholipase inhibitor and tumour necrosis factor (TNF)-receptor activities, whereas susceptibility is linked to alterations in amino acid transporter activity. We also identified differential usage of 134 exons across 103 genes associated with resilience and susceptibility; enrichment analysis for genes with differential exon usage in resilient mice was linked to functions including adrenergic receptor binding mice and oxysterol binding in susceptible mice. Our findings highlight the important and underappreciated role of the BNST in stress resilience and susceptibility and reveal research avenues for follow-up investigations.
Collapse
Affiliation(s)
- Anand Gururajan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Psychology, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ana Paula Ventura Silva
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Cunningham AM, Walker DM, Ramakrishnan A, Doyle MA, Bagot RC, Cates HM, Peña CJ, Issler O, Lardner CK, Browne C, Russo SJ, Shen L, Nestler EJ. Sperm Transcriptional State Associated with Paternal Transmission of Stress Phenotypes. J Neurosci 2021; 41:6202-6216. [PMID: 34099514 PMCID: PMC8287983 DOI: 10.1523/jneurosci.3192-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
Paternal stress can induce long-lasting changes in germ cells potentially propagating heritable changes across generations. To date, no studies have investigated differences in transmission patterns between stress-resilient and stress-susceptible mice. We tested the hypothesis that transcriptional alterations in sperm during chronic social defeat stress (CSDS) transmit increased susceptibility to stress phenotypes to the next generation. We demonstrate differences in offspring from stressed fathers that depend on paternal category (resilient vs susceptible) and offspring sex. Importantly, artificial insemination (AI) reveals that sperm mediates some of the behavioral phenotypes seen in offspring. Using RNA-sequencing (RNA-seq), we report substantial and distinct changes in the transcriptomic profiles of sperm following CSDS in susceptible versus resilient fathers, with alterations in long noncoding RNAs (lncRNAs) predominating especially in susceptibility. Correlation analysis revealed that these alterations were accompanied by a loss of regulation of protein-coding genes by lncRNAs in sperm of susceptible males. We also identify several co-expression gene modules that are enriched in differentially expressed genes (DEGs) in sperm from either resilient or susceptible fathers. Taken together, these studies advance our understanding of intergenerational epigenetic transmission of behavioral experience.SIGNIFICANCE STATEMENT This manuscript contributes to the complex factors that influence the paternal transmission of stress phenotypes. By leveraging the segregation of males exposed to chronic social defeat stress (CSDS) into either resilient or susceptible categories we were able to identify the phenotypic differences in the paternal transmission of stress phenotypes across generations between the two lineages. Importantly, this work also alludes to the significance of both long noncoding RNAs (lncRNAs) and protein coding genes (PCGs) mediating the paternal transmission of stress. The knowledge gained from these data are of particular interest in understanding the risk for the development of psychiatric disorders such as anxiety and depression.
Collapse
Affiliation(s)
- Ashley M Cunningham
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Deena M Walker
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Aarthi Ramakrishnan
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Marie A Doyle
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Rosemary C Bagot
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Hannah M Cates
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Catherine J Peña
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Orna Issler
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Casey K Lardner
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Caleb Browne
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Scott J Russo
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Li Shen
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Eric J Nestler
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| |
Collapse
|
12
|
Kawatake-Kuno A, Murai T, Uchida S. The Molecular Basis of Depression: Implications of Sex-Related Differences in Epigenetic Regulation. Front Mol Neurosci 2021; 14:708004. [PMID: 34276306 PMCID: PMC8282210 DOI: 10.3389/fnmol.2021.708004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms. Males and females also differ in their responsiveness to antidepressants. These clinical findings suggest that sex-dependent molecular and neural mechanisms may underlie the development of depression and the actions of antidepressant medications. This review discusses recent advances regarding the role of epigenetics in stress and depression. The first section presents a brief introduction of the basic mechanisms of epigenetic regulation, including histone modifications, DNA methylation, and non-coding RNAs. The second section reviews their contributions to neural plasticity, the risk of depression, and resilience against depression, with a particular focus on epigenetic modulators that have causal relationships with stress and depression in both clinical and animal studies. The third section highlights studies exploring sex-dependent epigenetic alterations associated with susceptibility to stress and depression. Finally, we discuss future directions to understand the etiology and pathophysiology of MDD, which would contribute to optimized and personalized therapy.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Bian Q, Chen J, Wu J, Ding F, Li X, Ma Q, Zhang L, Zou X, Chen J. Bioinformatics analysis of a TF-miRNA-lncRNA regulatory network in major depressive disorder. Psychiatry Res 2021; 299:113842. [PMID: 33751989 DOI: 10.1016/j.psychres.2021.113842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is a highly prevalent disease and one of the main causes of disability worldwide. Although many studies have partially revealed the occurrence and development process of MDD, the pathogeny and molecular mechanisms are not fully understood. Weighted gene coexpression network analysis (WGCNA) was used to explore the co-expression modules and hub genes in MDD. A protein-protein interaction (PPI) network of the most significant module and a TF-miRNA-lncRNA regulatory network of MDD were constructed using bioinformatics analysis tools. A KEGG pathway and gene ontology (GO) functional enrichment analysis of the genes in the significant module was performed using DAVID. Five hub genes in the PPI network and 10 genes in the TF-miRNA-lncRNA regulatory network with high degree values were identified, which may provide new insights for the investigation of key pathways, diagnostic bio-markers, and therapeutic targets of MDD. This study brings a novel perspective and provides valuable information to explore the molecular mechanism of MDD.
Collapse
Affiliation(s)
- Qinglai Bian
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiajia Wu
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengmin Ding
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Xiaojuan Zou
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Zhang CL, Li YJ, Lu S, Zhang T, Xiao R, Luo HR. Fluoxetine ameliorates depressive symptoms by regulating lncRNA expression in the mouse hippocampus. Zool Res 2021; 42:28-42. [PMID: 33420763 PMCID: PMC7840451 DOI: 10.24272/j.issn.2095-8137.2020.294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Depression is a prevalent mental disorder that is associated with aging and contributes to increased mortality and morbidity. The overall prevalence of geriatric depression with clinically significant symptoms is currently on the rise. Recent studies have demonstrated that altered expressions of long non-coding RNAs (lncRNAs) in the brain affect neurodevelopment and manifest modulating functions during the depression. However, most lncRNAs have not yet been studied. Herein, we analyzed the transcriptome of dysregulated lncRNAs to reveal their expressions in a mouse model exhibiting depressive-like behaviors, as well as their corresponding response following antidepressant fluoxetine treatment. A chronic unpredictable mild stress (CUMS) mouse model was applied. A six-week fluoxetine intervention in CUMS-induced mice attenuated depressive-like behaviors. In addition, differential expression analysis of lncRNAs was performed following RNA-sequencing. A total of 282 lncRNAs (134 up-regulated and 148 down-regulated) were differentially expressed in CUMS-induced mice relative to non-stressed counterparts ( P<0.05). Moreover, 370 differentially expressed lncRNAs were identified in CUMS-induced mice after fluoxetine intervention. Gene Ontology (GO) analyses showed an association between significantly dysregulated lncRNAs and protein binding, oxygen binding, and transport activity, while the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these dysregulated lncRNAs might be involved in inflammatory response pathways. Fluoxetine effectively ameliorated the symptoms of depression in CUMS-induced mice by regulating the expression of lncRNAs in the hippocampus. The findings herein provide valuable insights into the potential mechanism underlying depression in elderly people.
Collapse
Affiliation(s)
- Chuan-Ling Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medical Chemistry, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,School of Pharmacy, Inner Mongolia Medical University, Huhhot, Inner Mongolia 010110, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Jia Li
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, Inner Mongolia 010059, China
| | - Shuang Lu
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, Inner Mongolia 010059, China
| | - Ting Zhang
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, Inner Mongolia 010059, China
| | - Rui Xiao
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, Inner Mongolia 010059, China. E-mail:
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medical Chemistry, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwestern Medical University, Luzhou, Sichuan 646000, China. E-mail:
| |
Collapse
|
15
|
Wu Y, Rong W, Jiang Q, Wang R, Huang H. Downregulation of lncRNA GAS5 Alleviates Hippocampal Neuronal Damage in Mice with Depression-Like Behaviors Via Modulation of MicroRNA-26a/EGR1 Axis. J Stroke Cerebrovasc Dis 2021; 30:105550. [PMID: 33341564 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accumulating evidences have demonstrated the roles of several long non-coding RNAs (lncRNAs) in depression. We aim to examine the capabilities of lncRNA growth arrest-specific transcript 5 (GAS5) on mice with depression-like behaviors and the mechanism of action. METHODS Fifty-six healthy mice were selected for model establishment. Morris water maze test and trapeze test were performed for evaluating learning and memory ability. The binding relationship between lncRNA GAS5 and microRNA-26a (miR-26a) and the target relationship between miR-26a and EGR1 were verified by dual-luciferase reporter gene assay. The apoptosis of neurons in the hippocampal CA1 region of mice was detected by TUNEL staining. The expression of inflammatory factors, lncRNA GAS5, miR-26a, early growth response gene 1 (EGR1), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway- and apoptosis-related factors in hippocampal tissues was tested by RT-qPCR and western blot analysis. RESULTS miR-26a expression was down-regulated while EGR1 and lncRNA GAS5 expression were up-regulated in hippocampal tissues of mice with depression-like behaviors. LncRNA GAS5 specifically bound to miR-26a and miR-26a targeted EGR1. Silencing of lncRNA GAS5 curtailed the release of inflammatory factors and the apoptosis of hippocampal neuron of mice with depression-like behaviors. EGR1 suppressed PI3K/AKT pathway activation to promote the release of inflammatory factors and the apoptosis of hippocampal neurons in mice with depression-like behaviors. CONCLUSION Our study provides evidence that silencing of lncRNA GAS5 could activate PI3K/AKT pathway to protect hippocampal neurons against damage in mice with depression-like behaviors by regulating the miR-26a/EGR1 axis.
Collapse
Affiliation(s)
- Yigao Wu
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Wei Rong
- Department of Clinical Medical Psychology, The Second People's Hospital of Wuhu, Wuhu 241001, Anhui, PR China.
| | - Qin Jiang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Ruiquan Wang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Huilan Huang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| |
Collapse
|
16
|
Blokhin IO, Khorkova O, Saveanu RV, Wahlestedt C. Molecular mechanisms of psychiatric diseases. Neurobiol Dis 2020; 146:105136. [PMID: 33080337 DOI: 10.1016/j.nbd.2020.105136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
For most psychiatric diseases, pathogenetic concepts as well as paradigms underlying neuropsychopharmacologic approaches currently revolve around neurotransmitters such as dopamine, serotonin, and norepinephrine. However, despite the fact that several generations of neurotransmitter-based psychotropics including atypical antipsychotics, selective serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors are available, the effectiveness of these medications is limited, and relapse rates in psychiatric diseases are relatively high, indicating potential involvement of other pathogenetic pathways. Indeed, recent high-throughput studies in genetics and molecular biology have shown that pathogenesis of major psychiatric illnesses involves hundreds of genes and numerous pathways via such fundamental processes as DNA methylation, transcription, and splicing. Current review summarizes these and other molecular mechanisms of such psychiatric illnesses as schizophrenia, major depressive disorder, and alcohol use disorder and suggests a conceptual framework for future studies.
Collapse
Affiliation(s)
- Ilya O Blokhin
- Center for Therapeutic Innovation, University of Miami, Miami, FL, United States of America; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America; Jackson Memorial Hospital, Miami, FL, United States of America
| | - Olga Khorkova
- OPKO Health Inc., Miami, FL, United States of America
| | - Radu V Saveanu
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, United States of America; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America.
| |
Collapse
|
17
|
Abstract
In this issue of Neuron, Issler et al. (2020) have identified the neuronal, long intergenic noncoding RNA LINC00473 as a potential molecular risk factor for the increased susceptibility for depression in females.
Collapse
|
18
|
Gu XH, Xu LJ, Zheng LL, Yang YJ, Tang ZY, Wu HJ, Chen ZZ, Wang W. Long non-coding RNA uc.80- overexpression promotes M2 polarization of microglias to ameliorate depression in rats. IUBMB Life 2020; 72:2194-2203. [PMID: 32780551 DOI: 10.1002/iub.2353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
Microglia polarization is associated with the pathogenesis of depression. A previous study shows that long non-coding RNA uc.80- is down-regulated in the hippocampus of depressed rats. Thus, this article aims to investigate the role of uc.80- in microglia polarization in depression. We first established depression model rats by chronic unpredictable mild stress (CUMS) regiment. We found that hippocampus of depressed rats exhibited an increase of M1 microglias and a decrease of M2 microglias. uc.80- was down-regulated in hippocampus of depressed rats. Furthermore, the detection of behaviouristics of depressed rats showed that uc.80- overexpression alleviated depression of rats. In addition, uc.80- overexpression promoted M2 polarization of microglias in vivo and in vitro. uc.80- overexpression led to a decrease in apoptosis of hippocampal neurons in vivo and in vitro. In conclusion, our study confirms that lncRNA uc.80- overexpression ameliorates depression in rats by promoting M2 polarization of microglias. Thus, our work suggests that uc.80- may be a target gene for depression treatment.
Collapse
Affiliation(s)
- Xun-Hu Gu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li-Jun Xu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li-Li Zheng
- Department of Pharmacy, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yuan-Jian Yang
- Department of Medical Experimental Center, Jiangxi Mental Hospital, Nanchang, Jiangxi, China
| | - Zhen-Yu Tang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Han-Jun Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhen-Zhen Chen
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Wang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
19
|
Issler O, van der Zee YY, Ramakrishnan A, Wang J, Tan C, Loh YHE, Purushothaman I, Walker DM, Lorsch ZS, Hamilton PJ, Peña CJ, Flaherty E, Hartley BJ, Torres-Berrío A, Parise EM, Kronman H, Duffy JE, Estill MS, Calipari ES, Labonté B, Neve RL, Tamminga CA, Brennand KJ, Dong Y, Shen L, Nestler EJ. Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression. Neuron 2020; 106:912-926.e5. [PMID: 32304628 PMCID: PMC7305959 DOI: 10.1016/j.neuron.2020.03.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/27/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022]
Abstract
Depression is a common disorder that affects women at twice the rate of men. Here, we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene LINC00473 as downregulated in prefrontal cortex (PFC) of depressed females but not males. Using viral-mediated gene transfer to express LINC00473 in adult mouse PFC neurons, we mirrored the human sex-specific phenotype by inducing stress resilience solely in female mice. This sex-specific phenotype was accompanied by changes in synaptic function and gene expression selectively in female mice and, along with studies of human neuron-like cells in culture, implicates LINC00473 as a CREB effector. Together, our studies identify LINC00473 as a female-specific driver of stress resilience that is aberrant in female depression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Behavior, Animal
- Depression/genetics
- Depression/metabolism
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Down-Regulation
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Middle Aged
- Neurons/metabolism
- Prefrontal Cortex/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Seq
- Resilience, Psychological
- Sex Factors
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Young Adult
Collapse
Affiliation(s)
- Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junshi Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chunfeng Tan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong-Hwee E Loh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Immanuel Purushothaman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zachary S Lorsch
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J Hamilton
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine J Peña
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Flaherty
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigham J Hartley
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia E Duffy
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Molly S Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin S Calipari
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benoit Labonté
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
20
|
Epigenetic Mechanisms in the Neurodevelopmental Theory of Depression. DEPRESSION RESEARCH AND TREATMENT 2020; 2020:6357873. [PMID: 32373361 PMCID: PMC7196148 DOI: 10.1155/2020/6357873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022]
Abstract
The genome (genes), epigenome, and environment work together from the earliest stages of human life to produce a phenotype of human health or disease. Epigenetic modifications, including among other things: DNA methylation, modifications of histones and chromatin structure, as well as functions of noncoding RNA, are coresponsible for specific patterns of gene expression. This refers also to mental disorders, including depressive disorders. Early childhood experiences accompanied by severe stressors (considered a risk factor for depression in adult life) are linked with changes in gene expression. They include genes involved in a response to stress (hypothalamic-pituitary-adrenal axis, HPA), associated with autonomic nervous system hyperactivity and with cortical, and subcortical processes of neuroplasticity and neurodegeneration. These are, among others: gene encoding glucocorticoid receptor, FK506 binding protein 5 gene (FKBP5), gene encoding arginine vasopressin and oestrogen receptor alpha, 5-hydroxy-tryptamine transporter gene (SLC6A4), and gene encoding brain-derived neurotrophic factor. How about personality? Can the experiences unique to every human being, the history of his or her development and gene-environment interactions, through epigenetic mechanisms, shape the features of our personality? Can we pass on these features to future generations? Hence, is the risk of depression inherent in our biological nature? Can we change our destiny?
Collapse
|
21
|
The importance of long non-coding RNAs in neuropsychiatric disorders. Mol Aspects Med 2019; 70:127-140. [DOI: 10.1016/j.mam.2019.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022]
|
22
|
Torres-Berrío A, Issler O, Parise EM, Nestler EJ. Unraveling the epigenetic landscape of depression: focus on early life stress
. DIALOGUES IN CLINICAL NEUROSCIENCE 2019; 21:341-357. [PMID: 31949402 PMCID: PMC6952747 DOI: 10.31887/dcns.2019.21.4/enestler] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Depression is a devastating psychiatric disorder caused by a combination of genetic predisposition and life events, mainly exposure to stress. Early life stress (ELS) in particular is known to "scar" the brain, leading to an increased susceptibility to developing depression later in life via epigenetic mechanisms. Epigenetic processes lead to changes in gene expression that are not due to changes in DNA sequence, but achieved via modulation of chromatin modifications, DNA methylation, and noncoding RNAs. Here we review common epigenetic mechanisms including the enzymes that take part in reading, writing, and erasing specific epigenetic marks. We then describe recent developments in understanding how ELS leads to changes in the epigenome that are manifested in increased susceptibility to depression-like abnormalities in animal models. We conclude with highlighting the need for future studies that will potentially enable the utilisation of the understanding of epigenetic changes linked to ELS for the development of much-needed novel therapeutic strategies and biomarker discovery.
.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Orna Issler
- Author affiliations: Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Eric M Parise
- Author affiliations: Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Eric J Nestler
- Author affiliations: Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| |
Collapse
|
23
|
Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci 2019; 20:686-701. [DOI: 10.1038/s41583-019-0221-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
|
24
|
Co-expression network modeling identifies key long non-coding RNA and mRNA modules in altering molecular phenotype to develop stress-induced depression in rats. Transl Psychiatry 2019; 9:125. [PMID: 30944317 PMCID: PMC6447569 DOI: 10.1038/s41398-019-0448-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 01/30/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have recently emerged as one of the critical epigenetic controllers, which participate in several biological functions by regulating gene transcription, mRNA splicing, protein interaction, etc. In a previous study, we reported that lncRNAs may play a role in developing depression pathophysiology. In the present study, we have examined how lncRNAs are co-expressed with gene transcripts and whether specific lncRNA/mRNA modules are associated with stress vulnerability or resiliency to develop depression. Differential regulation of lncRNAs and coding RNAs were determined in hippocampi of three group of rats comprising learned helplessness (LH, depression vulnerable), non-learned helplessness (NLH, depression resilient), and tested controls (TC) using a single-microarray-based platform. Weighted gene co-expression network analysis (WGCNA) was conducted to correlate the expression status of protein-coding transcripts with lncRNAs. The associated co-expression modules, hub genes, and biological functions were analyzed. We found signature co-expression networks as well as modules that underlie normal as well as aberrant response to stress. We also identified specific hub and driver genes associated with vulnerability and resilience to develop depression. Altogether, our study provides evidence that lncRNA associated complex trait-specific networks may play a crucial role in developing depression.
Collapse
|