1
|
Alnajjar S, Larios-Mora A, Van-Geelen A, Gallup J, Koul A, Rigaux P, Roymans D, Ackermann M. Therapeutic efficacy of JNJ-49214698, an RSV fusion inhibitor, in RSV-infected neonatal lambs. J Gen Virol 2024; 105:002056. [PMID: 39661432 PMCID: PMC11634040 DOI: 10.1099/jgv.0.002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory infection, hospitalization and death in infants worldwide. No fully effective RSV therapy using direct antivirals is marketed. Since clinical efficacy data from naturally infected patients for such antivirals are not available yet, animal studies are indispensable to predict therapeutic intervention. Here, we report the impact of an RSV fusion inhibitor, JNJ-49214698, on severe RSV-associated acute lower respiratory tract infection (ALRTI) in neonatal lambs. Randomized animals were treated once daily with 25 mg/kg JNJ-49214698, starting either before RSV infection, 1 day post-infection or as late as peak lung viral load on Day 3 post-infection. Treatment efficacy was assessed by scoring clinical signs of illness, development of RSV-induced gross and microscopic lung lesions and measuring virus titres in the lungs. Treatment with JNJ-49214698 was very effective in all treatment groups. Even in animals for which treatment was delayed until peak viral load was reached, a reduced amount and severity of gross and microscopic lesions, as well as RSV titres and RNA levels, were found. These results strongly suggest that treatment with small-molecule fusion inhibitors is an effective strategy to treat patients who are diagnosed with an RSV-induced ALRTI.
Collapse
Affiliation(s)
- Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
- Lambcure, LLC, Portland, OR, USA
| | - Alejandro Larios-Mora
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | | - Anil Koul
- Respiratory Infections Discovery, Janssen Infectious Diseases, Beerse, Belgium
| | - Peter Rigaux
- Respiratory Infections Discovery, Janssen Infectious Diseases, Beerse, Belgium
| | - Dirk Roymans
- Respiratory Infections Discovery, Janssen Infectious Diseases, Beerse, Belgium
| | | |
Collapse
|
2
|
Zhang G, Zhao B, Liu J. The Development of Animal Models for Respiratory Syncytial Virus (RSV) Infection and Enhanced RSV Disease. Viruses 2024; 16:1701. [PMID: 39599816 PMCID: PMC11598872 DOI: 10.3390/v16111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The development of immunoprophylactic products against respiratory syncytial virus (RSV) has resulted in notable advancements, leading to an increased demand for preclinical experiments and placing greater demands on animal models. Nevertheless, the field of RSV research continues to face the challenge of a lack of ideal animal models. Despite the demonstration of efficacy in animal studies, numerous RSV vaccine candidates have been unsuccessful in clinical trials, primarily due to the lack of suitable animal models. The most commonly utilized animal models for RSV research are cotton rats, mice, lambs, and non-human primates. These animals have been extensively employed in mechanistic studies and in the development and evaluation of vaccines and therapeutics. However, each model only exemplifies some, but not all, aspects of human RSV disease. The aim of this study was to provide a comprehensive summary of the disease symptoms, viral replication, pathological damage, and enhanced RSV disease (ERD) conditions across different RSV animal models. Furthermore, the advantages and disadvantages of each model are discussed, with the intention of providing a valuable reference for related RSV research.
Collapse
Affiliation(s)
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| |
Collapse
|
3
|
Grosse S, Cooymans L, Embrechts W, McGowan D, Jacoby E, Stoops B, Gupta K, Ackermann M, Alnajjar S, Guillemont J, Jin Z, Kesteleyn B, Matcha K, Sriboonyapirat P, Truong A, Van Den Berg J, Yu X, Herschke F, Roymans D, Raboisson P, Rigaux P, Jonckers THM. Discovery of gem-Dimethyl-hydroxymethylpyridine Derivatives as Potent Non-nucleoside RSV Polymerase Inhibitors. J Med Chem 2024; 67:13723-13736. [PMID: 39105710 DOI: 10.1021/acs.jmedchem.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Respiratory syncytial virus (RSV) is an RNA virus infecting the upper and lower respiratory tract and is recognized as a major respiratory health threat, particularly to older adults, immunocompromised individuals, and young children. Around 64 million children and adults are infected every year worldwide. Despite two vaccines and a new generation monoclonal antibody recently approved, no effective antiviral treatment is available. In this manuscript, we present the medicinal chemistry efforts resulting in the identification of compound 28 (JNJ-8003), a novel RSV non-nucleoside inhibitor displaying subnanomolar activity in vitro as well as prominent efficacy in mice and a neonatal lamb models.
Collapse
Affiliation(s)
- Sandrine Grosse
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Ludwig Cooymans
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Werner Embrechts
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | | | - Edgar Jacoby
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Bart Stoops
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kusum Gupta
- Neuron23 Inc. 343 Oyster Point Blvd, South San Francisco, California 94080, United States
| | | | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, U.K
| | | | - Zhinan Jin
- Janssen Pharmaceutica NV, Brisbane, California 94005, United States
| | - Bart Kesteleyn
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kiran Matcha
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | | | - Anh Truong
- Neuron23 Inc. 343 Oyster Point Blvd, South San Francisco, California 94080, United States
| | - Joke Van Den Berg
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Xiaodi Yu
- Janssen Pharmaceutica NV, Spring House, Pennsylvania 19477 United States
| | - Florence Herschke
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Dirk Roymans
- DNS Life Sciences Consulting, Brandhoefstraat 63, 2300 Turnhout, Belgium
| | - Pierre Raboisson
- Galapagos, General De Wittelaan L112, A3, 2800 Mechelen, Belgium
| | - Peter Rigaux
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Tim H M Jonckers
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| |
Collapse
|
4
|
McSweeney MD, Alnajjar S, Schaefer AM, Richardson Z, Wolf W, Stewart I, Sriboonyapirat P, McCallen J, Farmer E, Nzati B, Lord S, Farrer B, Moench TR, Kumar PA, Arora H, Pickles RJ, Hickey AJ, Ackermann M, Lai SK. Inhaled "Muco-Trapping" Monoclonal Antibody Effectively Treats Established Respiratory Syncytial Virus (RSV) Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306729. [PMID: 38225749 DOI: 10.1002/advs.202306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the immunocompromised, and the elderly. RSV infects the airway epithelium via the apical membrane and almost exclusively sheds progeny virions back into the airway mucus (AM), making RSV difficult to target by systemically administered therapies. An inhalable "muco-trapping" variant of motavizumab (Mota-MT), a potent neutralizing mAb against RSV F is engineered. Mota-MT traps RSV in AM via polyvalent Fc-mucin bonds, reducing the fraction of fast-moving RSV particles in both fresh pediatric and adult AM by ≈20-30-fold in a Fc-glycan dependent manner, and facilitates clearance from the airways of mice within minutes. Intranasal dosing of Mota-MT eliminated viral load in cotton rats within 2 days. Daily nebulized delivery of Mota-MT to RSV-infected neonatal lambs, beginning 3 days after infection when viral load is at its maximum, led to a 10 000-fold and 100 000-fold reduction in viral load in bronchoalveolar lavage and lung tissues relative to placebo control, respectively. Mota-MT-treated lambs exhibited reduced bronchiolitis, neutrophil infiltration, and airway remodeling than lambs receiving placebo or intramuscular palivizumab. The findings underscore inhaled delivery of muco-trapping mAbs as a promising strategy for the treatment of RSV and other acute respiratory infections.
Collapse
Affiliation(s)
| | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Alison M Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian Stewart
- RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Justin McCallen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen Farmer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Sam Lord
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | - Brian Farrer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Priya A Kumar
- Department of Anesthesiology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Outcomes Research Consortium, Cleveland, OH, 44195, USA
| | - Harendra Arora
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Raymond J Pickles
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Mark Ackermann
- USDA/ARS-National Animal Disease Center, Ames, IA, 50010, USA
| | - Samuel K Lai
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
5
|
Gauthier TW, Ping XD, Harris FL, Brown LAS. Liposomal Glutathione Augments Immune Defenses against Respiratory Syncytial Virus in Neonatal Mice Exposed in Utero to Ethanol. Antioxidants (Basel) 2024; 13:137. [PMID: 38397736 PMCID: PMC10886408 DOI: 10.3390/antiox13020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
We previously reported that maternal alcohol use increased the risk of sepsis in premature and term newborns. In the neonatal mouse, fetal ethanol (ETOH) exposure depleted the antioxidant glutathione (GSH), which promoted alveolar macrophage (AM) immunosuppression and respiratory syncytial virus (RSV) infections. In this study, we explored if oral liposomal GSH (LGSH) would attenuate oxidant stress and RSV infections in the ETOH-exposed mouse pups. C57BL/6 female mice were pair-fed a liquid diet with 25% of calories from ethanol or maltose-dextrin. Postnatal day 10 pups were randomized to intranasal saline, LGSH, and RSV. After 48 h, we assessed oxidant stress, AM immunosuppression, pulmonary RSV burden, and acute lung injury. Fetal ETOH exposure increased oxidant stress threefold, lung RSV burden twofold and acute lung injury threefold. AMs were immunosuppressed with decreased RSV clearance. However, LGSH treatments of the ETOH group normalized oxidant stress, AM immune phenotype, the RSV burden, and acute lung injury. These studies suggest that the oxidant stress caused by fetal ETOH exposure impaired AM clearance of infectious agents, thereby increasing the viral infection and acute lung injury. LGSH treatments reversed the oxidative stress and restored AM immune functions, which decreased the RSV infection and subsequent acute lung injury.
Collapse
Affiliation(s)
- Theresa W. Gauthier
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory University, Atlanta, GA 30322, USA; (X.-D.P.); (F.L.H.); (L.A.S.B.)
| | | | | | | |
Collapse
|
6
|
Edirisinghe HS, Rajapaksa AE, Royce SG, Sourial M, Bischof RJ, Anderson J, Sarila G, Nguyen CD, Mulholland K, Do LAH, Licciardi PV. Aerosol Delivery of Palivizumab in a Neonatal Lamb Model of Respiratory Syncytial Virus Infection. Viruses 2023; 15:2276. [PMID: 38005952 PMCID: PMC10675108 DOI: 10.3390/v15112276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Palivizumab has been an approved preventative monoclonal antibody for respiratory syncytial virus (RSV) infection for over two decades. However, due to its high cost and requirement for multiple intramuscular injections, its use has been limited mostly to high-income countries. Following our previous study showing the successful lung deposition of aerosolised palivizumab in lambs, this current study evaluated the "proof-of-principle" effect of aerosolised palivizumab delivered as a therapeutic to neonatal lambs following RSV infection. (2) Methods: Neonatal lambs were intranasally inoculated with RSV-A2 on day 0 (day 3 post-birth) and treated with aerosolised palivizumab 3 days later (day 3 post-inoculation). Clinical symptoms, RSV viral load and inflammatory response were measured post-inoculation. (3) Results: Aerosolised therapeutic delivery of palivizumab did not reduce RSV viral loads in the nasopharynx nor the bronchoalveolar lavage fluid, but resulted in a modest reduction in inflammatory response at day 6 post-inoculation compared with untreated lambs. (4) Conclusions: This proof-of-principle study shows some evidence of aerosolised palivizumab reducing RSV inflammation, but further studies using optimized protocols are needed in order to validate these findings.
Collapse
Affiliation(s)
- Hasindu S. Edirisinghe
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Anushi E. Rajapaksa
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
- Royal Children’s Hospital, Melbourne 3052, Australia
- Royal Women’s Hospital, Melbourne 3052, Australia
| | - Simon G. Royce
- Monash Biomedicine Discovery Institute, Monash University, Melbourne 3168, Australia;
| | - Magdy Sourial
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Royal Children’s Hospital, Melbourne 3052, Australia
| | - Robert J. Bischof
- Institute of Innovation, Science and Sustainability, Federation University, Melbourne 3806, Australia;
| | - Jeremy Anderson
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Gulcan Sarila
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Cattram D. Nguyen
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
| | - Kim Mulholland
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Lien Anh Ha Do
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Paul V. Licciardi
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
7
|
Lloyd JB, Clune T, Jacobson C, Schröder J. Detection of ovine respiratory syncytial virus in pneumonic lungs from apparently healthy sheep slaughtered at 5 abattoirs in Australia. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:303-305. [PMID: 37790264 PMCID: PMC10542950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 10/05/2023]
Abstract
Respiratory disease is one of the main diseases of sheep in many regions globally. Respiratory syncytial virus (RSV) causes severe disease in humans and in calves, but little is known about the role of RSV in sheep. We studied the prevalence of ovine RSV in sheep processed at 5 abattoirs in southern Australia. Bronchial swab samples were collected from 182 consignments of lambs up to 12 months of age and 71 consignments of adult sheep; these were tested for the presence of the virus using a qPCR based on the F gene sequence. Six of the 253 abattoir consignments (2.4%) tested positive for ovine RSV. Four of the positive consignments were lambs and 2 were adult sheep. To our knowledge, this is the first report of the ovine strain of RSV in sheep with pneumonia from Australia. Further research is needed to clarify the role of RSV in pneumonia in sheep.
Collapse
Affiliation(s)
- Joan B Lloyd
- Joan Lloyd Consulting Pty Ltd, PO Box 496, West Ryde, New South Wales 1685, Australia (Lloyd), Centre for Animal Production and Health, Food Futures Institute, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia (Clune, Jacobson), Gemini R&D Services, PO Box 5002, Terranora, New South Wales 2486, Australia (Schröder)
| | - Tom Clune
- Joan Lloyd Consulting Pty Ltd, PO Box 496, West Ryde, New South Wales 1685, Australia (Lloyd), Centre for Animal Production and Health, Food Futures Institute, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia (Clune, Jacobson), Gemini R&D Services, PO Box 5002, Terranora, New South Wales 2486, Australia (Schröder)
| | - Caroline Jacobson
- Joan Lloyd Consulting Pty Ltd, PO Box 496, West Ryde, New South Wales 1685, Australia (Lloyd), Centre for Animal Production and Health, Food Futures Institute, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia (Clune, Jacobson), Gemini R&D Services, PO Box 5002, Terranora, New South Wales 2486, Australia (Schröder)
| | - Johann Schröder
- Joan Lloyd Consulting Pty Ltd, PO Box 496, West Ryde, New South Wales 1685, Australia (Lloyd), Centre for Animal Production and Health, Food Futures Institute, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia (Clune, Jacobson), Gemini R&D Services, PO Box 5002, Terranora, New South Wales 2486, Australia (Schröder)
| |
Collapse
|
8
|
Cai L, Xu H, Cui Z. Factors Limiting the Translatability of Rodent Model-Based Intranasal Vaccine Research to Humans. AAPS PharmSciTech 2022; 23:191. [PMID: 35819736 PMCID: PMC9274968 DOI: 10.1208/s12249-022-02330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
The intranasal route of vaccination presents an attractive alternative to parenteral routes and offers numerous advantages, such as the induction of both mucosal and systemic immunity, needle-free delivery, and increased patient compliance. Despite demonstrating promising results in preclinical studies, however, few intranasal vaccine candidates progress beyond early clinical trials. This discrepancy likely stems in part from the limited predictive value of rodent models, which are used frequently in intranasal vaccine research. In this review, we explored the factors that limit the translatability of rodent-based intranasal vaccine research to humans, focusing on the differences in anatomy, immunology, and disease pathology between rodents and humans. We also discussed approaches that minimize these differences and examined alternative animal models that would produce more clinically relevant research.
Collapse
Affiliation(s)
- Lucy Cai
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, USA
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA.
| |
Collapse
|
9
|
Parray HA, Shukla S, Perween R, Khatri R, Shrivastava T, Singh V, Murugavelu P, Ahmed S, Samal S, Sharma C, Sinha S, Luthra K, Kumar R. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol 2021; 105:6315-6332. [PMID: 34423407 PMCID: PMC8380517 DOI: 10.1007/s00253-021-11488-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.
Collapse
Affiliation(s)
- Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
10
|
Streptococcus pneumoniae serotype 22F infection in respiratory syncytial virus infected neonatal lambs enhances morbidity. PLoS One 2021; 16:e0235026. [PMID: 33705390 PMCID: PMC7951856 DOI: 10.1371/journal.pone.0235026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of viral bronchiolitis resulting in hospitalization and a frequent cause of secondary respiratory bacterial infection, especially by Streptococcus pneumoniae (Spn) in infants. While murine studies have demonstrated enhanced morbidity during a viral/bacterial co-infection, human meta-studies have conflicting results. Moreover, little knowledge about the pathogenesis of emerging Spn serotype 22F, especially the co-pathologies between RSV and Spn, is known. Here, colostrum-deprived neonate lambs were divided into four groups. Two of the groups were nebulized with RSV M37, and the other two groups were mock nebulized. At day three post-RSV infection, one RSV group (RSV/Spn) and one mock-nebulized group (Spn only) were inoculated with Spn intratracheally. At day six post-RSV infection, bacterial/viral loads were assessed along with histopathology and correlated with clinical symptoms. Lambs dually infected with RSV/Spn trended with higher RSV titers, but lower Spn. Additionally, lung lesions were observed to be more frequent in the RSV/Spn group characterized by increased interalveolar wall thickness accompanied by neutrophil and lymphocyte infiltration and higher myeloperoxidase. Despite lower Spn in lungs, co-infected lambs had more significant morbidity and histopathology, which correlated with a different cytokine response. Thus, enhanced disease severity during dual infection may be due to lesion development and altered immune responses rather than bacterial counts.
Collapse
|
11
|
Vendeville S, Tahri A, Hu L, Demin S, Cooymans L, Vos A, Kwanten L, Van den Berg J, Battles MB, McLellan JS, Koul A, Raboisson P, Roymans D, Jonckers THM. Discovery of 3-({5-Chloro-1-[3-(methylsulfonyl)propyl]-1H-indol-2-yl}methyl)-1-(2,2,2-trifluoroethyl)-1,3-dihydro-2H-imidazo[4,5-c]pyridin-2-one (JNJ-53718678), a Potent and Orally Bioavailable Fusion Inhibitor of Respiratory Syncytial Virus. J Med Chem 2020; 63:8046-8058. [DOI: 10.1021/acs.jmedchem.0c00226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sandrine Vendeville
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Abdellah Tahri
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Lili Hu
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Samuel Demin
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ludwig Cooymans
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ann Vos
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Leen Kwanten
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Joke Van den Berg
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Michael B. Battles
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anil Koul
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Pierre Raboisson
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dirk Roymans
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Tim H. M. Jonckers
- Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
12
|
Sitthicharoenchai P, Alnajjar S, Ackermann MR. A model of respiratory syncytial virus (RSV) infection of infants in newborn lambs. Cell Tissue Res 2020; 380:313-324. [PMID: 32347384 PMCID: PMC7223741 DOI: 10.1007/s00441-020-03213-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/01/2020] [Indexed: 12/29/2022]
Abstract
Many animal models have been established for respiratory syncytial virus (RSV) infection of infants with the purpose of studying the pathogenesis, immunological response, and pharmaceutical testing and the objective of finding novel therapies and preventive measures. This review centers on a neonatal lamb model of RSV infection that has similarities to RSV infection of infants. It includes a comprehensive description of anatomical and immunological similarities between ovine and human lungs along with comparison of pulmonary changes and immune responses with RSV infection. These features make the newborn lamb an effective model for investigating key aspects of RSV infection in infants. The importance of RSV lamb model application in preclinical therapeutic trials and current updates on new studies with the RSV-infected neonatal lamb are also highlighted.
Collapse
Affiliation(s)
- Panchan Sitthicharoenchai
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA USA
| | - Sarhad Alnajjar
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
- LambCure LLC, Corvallis, OR USA
| | - Mark R. Ackermann
- LambCure LLC, Corvallis, OR USA
- Department of Biomedical Sciences and Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR USA
| |
Collapse
|
13
|
Johnson JK, Harris FL, Ping XD, Gauthier TW, Brown LAS. Role of zinc insufficiency in fetal alveolar macrophage dysfunction and RSV exacerbation associated with fetal ethanol exposure. Alcohol 2019; 80:5-16. [PMID: 30580016 DOI: 10.1016/j.alcohol.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND We previously reported that maternal alcohol use significantly increases the risk of sepsis in premature and term newborns. In the mouse, fetal ethanol exposure results in an immunosuppressed phenotype for the alveolar macrophage (AM) and decreases bacterial phagocytosis. In pregnant mice, ethanol decreased AM zinc homeostasis, which contributed to immunosuppression and impaired AM phagocytosis. In this study, we explored whether ethanol-induced zinc insufficiency extended to the pup AMs and contributed to immunosuppression and exacerbated viral lung infections. METHODS C57BL/6 female mice were fed a liquid diet with 25% ethanol-derived calories or pair-fed a control diet with 25% of calories as maltose-dextrin. Some pup AMs were treated in vitro with zinc acetate before measuring zinc pools or transporter expression and bacteria phagocytosis. Some dams were fed additional zinc supplements in the ethanol or control diets, and then we assessed pup AM zinc pools, zinc transporters, and the immunosuppressant TGFβ1. On postnatal day 10, some pups were given intranasal saline or respiratory syncytial virus (RSV), and then AM RSV phagocytosis and the RSV burden in the airway lining fluid were assessed. RESULTS Fetal ethanol exposure decreased pup AM zinc pools, zinc transporter expression, and bacterial clearance, but in vitro zinc treatments reversed these alterations. In addition, the expected ethanol-induced increase in TGFβ1 and immunosuppression were associated with decreased RSV phagocytosis and exacerbated RSV infections. However, additional maternal zinc supplements blocked the ethanol-induced perturbations in the pup AM zinc homeostasis and TGFβ1 immunosuppression, thereby improving RSV phagocytosis and attenuating the RSV burden in the lung. CONCLUSION These studies suggest that, despite normal maternal dietary zinc intake, in utero alcohol exposure results in zinc insufficiency, which contributes to compromised neonatal AM immune functions, thereby increasing the risk of bacterial and viral infections.
Collapse
|
14
|
Carvajal JJ, Avellaneda AM, Salazar-Ardiles C, Maya JE, Kalergis AM, Lay MK. Host Components Contributing to Respiratory Syncytial Virus Pathogenesis. Front Immunol 2019; 10:2152. [PMID: 31572372 PMCID: PMC6753334 DOI: 10.3389/fimmu.2019.02152] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most prevalent viral etiological agent of acute respiratory tract infection. Although RSV affects people of all ages, the disease is more severe in infants and causes significant morbidity and hospitalization in young children and in the elderly. Host factors, including an immature immune system in infants, low lymphocyte levels in patients under 5 years old, and low levels of RSV-specific neutralizing antibodies in the blood of adults over 65 years of age, can explain the high susceptibility to RSV infection in these populations. Other host factors that correlate with severe RSV disease include high concentrations of proinflammatory cytokines such as interleukins (IL)-6, IL-8, tumor necrosis factor (TNF)-α, and thymic stromal lymphopoitein (TSLP), which are produced in the respiratory tract of RSV-infected individuals, accompanied by a strong neutrophil response. In addition, data from studies of RSV infections in humans and in animal models revealed that this virus suppresses adaptive immune responses that could eliminate it from the respiratory tract. Here, we examine host factors that contribute to RSV pathogenesis based on an exhaustive review of in vitro infection in humans and in animal models to provide insights into the design of vaccines and therapeutic tools that could prevent diseases caused by RSV.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Camila Salazar-Ardiles
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge E. Maya
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, Vasquez AE, Kalergis AM. Current Animal Models for Understanding the Pathology Caused by the Respiratory Syncytial Virus. Front Microbiol 2019; 10:873. [PMID: 31130923 PMCID: PMC6510261 DOI: 10.3389/fmicb.2019.00873] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the main etiologic agent of severe lower respiratory tract infections that affect young children throughout the world, associated with significant morbidity and mortality, becoming a serious public health problem globally. Up to date, no licensed vaccines are available to prevent severe hRSV-induced disease, and the generation of safe-effective vaccines has been a challenging task, requiring constant biomedical research aimed to overcome this ailment. Among the difficulties presented by the study of this pathogen, it arises the fact that there is no single animal model that resembles all aspects of the human pathology, which is due to the specificity that this pathogen has for the human host. Thus, for the study of hRSV, different animal models might be employed, depending on the goal of the study. Of all the existing models, the murine model has been the most frequent model of choice for biomedical studies worldwide and has been of great importance at contributing to the development and understanding of vaccines and therapies against hRSV. The most notable use of the murine model is that it is very useful as a first approach in the development of vaccines or therapies such as monoclonal antibodies, suggesting in this way the direction that research could have in other preclinical models that have higher maintenance costs and more complex requirements in its management. However, several additional different models for studying hRSV, such as other rodents, mustelids, ruminants, and non-human primates, have been explored, offering advantages over the murine model. In this review, we discuss the various applications of animal models to the study of hRSV-induced disease and the advantages and disadvantages of each model, highlighting the potential of each model to elucidate different features of the pathology caused by the hRSV infection.
Collapse
Affiliation(s)
- María José Altamirano-Lagos
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E. Díaz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Andrés Mansilla
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rivera-Pérez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Soto
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Abel E. Vasquez
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Gray ME, Meehan J, Sullivan P, Marland JRK, Greenhalgh SN, Gregson R, Clutton RE, Ward C, Cousens C, Griffiths DJ, Murray A, Argyle D. Ovine Pulmonary Adenocarcinoma: A Unique Model to Improve Lung Cancer Research. Front Oncol 2019; 9:335. [PMID: 31106157 PMCID: PMC6498990 DOI: 10.3389/fonc.2019.00335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Lung cancer represents a major worldwide health concern; although advances in patient management have improved outcomes for some patients, overall 5-year survival rates are only around 15%. In vitro studies and mouse models are commonly used to study lung cancer and their use has increased the molecular understanding of the disease. Unfortunately, mouse models are poor predictors of clinical outcome and seldom mimic advanced stages of the human disease. Animal models that more accurately reflect human disease are required for progress to be made in improving treatment outcomes and prognosis. Similarities in pulmonary anatomy and physiology potentially make sheep better models for studying human lung function and disease. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer that is caused by the jaagsiekte sheep retrovirus. The disease is endemic in many countries throughout the world and has several features in common with human lung adenocarcinomas, including histological classification and activation of common cellular signaling pathways. Here we discuss the in vivo and in vitro OPA models that are currently available and describe the advantages of using pre-clinical naturally occurring OPA cases as a translational animal model for human lung adenocarcinoma. The challenges and options for obtaining these OPA cases for research purposes, along with their use in developing novel techniques for the evaluation of chemotherapeutic agents or for monitoring the tumor microenvironment in response to treatment, are also discussed.
Collapse
Affiliation(s)
- Mark E. Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- School of Engineering and Physical Sciences, Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, United Kingdom
| | - Paul Sullivan
- School of Engineering, Institute for Integrated Micro and Nano Systems, The King's Buildings, Edinburgh, United Kingdom
| | - Jamie R. K. Marland
- School of Engineering, Institute for Integrated Micro and Nano Systems, The King's Buildings, Edinburgh, United Kingdom
| | - Stephen N. Greenhalgh
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachael Gregson
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Eddie Clutton
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carol Ward
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| | - David J. Griffiths
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| | - Alan Murray
- School of Engineering, Institute for Integrated Micro and Nano Systems, The King's Buildings, Edinburgh, United Kingdom
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Larios Mora A, Detalle L, Gallup JM, Van Geelen A, Stohr T, Duprez L, Ackermann MR. Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs. MAbs 2019; 10:778-795. [PMID: 29733750 PMCID: PMC6150622 DOI: 10.1080/19420862.2018.1470727] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory disease in infants and young children worldwide. Currently, treatment is supportive and no vaccines are available. The use of newborn lambs to model hRSV infection in human infants may provide a valuable tool to assess safety and efficacy of new antiviral drugs and vaccines. ALX-0171 is a trivalent Nanobody targeting the hRSV fusion (F) protein and its therapeutic potential was evaluated in newborn lambs infected with a human strain of RSV followed by daily ALX-0171 nebulization for 3 or 5 consecutive days. Colostrum-deprived newborn lambs were infected with hRSV-M37 before being treated by daily nebulization with either ALX-0171 or placebo. Two different treatment regimens were examined: day 1–5 or day 3–5 post-infection. Lambs were monitored daily for general well-being and clinical parameters. Respiratory tissues and bronchoalveolar lavage fluid were collected at day 6 post-inoculation for the quantification of viral lesions, lung viral titers, viral antigen and lung histopathology. Administration by inhalation of ALX-0171 was well-tolerated in these hRSV-infected newborn lambs. Robust antiviral effects and positive effects on hRSV-induced lung lesions and reduction in symptoms of illness were noted. These effects were still apparent when treatment start was delayed and coincided with peak viral loads (day 3 post-infection) and at a time point when signs of RSV disease were apparent. The latter design is expected to have high translational value for planned clinical trials. These results are indicative of the therapeutic potential of ALX-0171 in infants.
Collapse
Affiliation(s)
- Alejandro Larios Mora
- a College of Veterinary Medicine, Department of Veterinary Pathology , Iowa State University , Ames , IA , USA
| | | | - Jack M Gallup
- a College of Veterinary Medicine, Department of Veterinary Pathology , Iowa State University , Ames , IA , USA
| | - Albert Van Geelen
- a College of Veterinary Medicine, Department of Veterinary Pathology , Iowa State University , Ames , IA , USA
| | | | | | - Mark R Ackermann
- a College of Veterinary Medicine, Department of Veterinary Pathology , Iowa State University , Ames , IA , USA
| |
Collapse
|
18
|
Garg R, Latimer L, Gomis S, Gerdts V, Potter A, van Drunen Littel-van den Hurk S. Maternal vaccination with a novel chimeric glycoprotein formulated with a polymer-based adjuvant provides protection from human parainfluenza virus type 3 in newborn lambs. Antiviral Res 2018; 162:54-60. [PMID: 30550799 DOI: 10.1016/j.antiviral.2018.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/11/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
Human parainfluenza virus 3 (PIV3) and respiratory syncytial virus (RSV) are major causative agents of serious respiratory tract illness in newborns and infants. Maternal vaccination could be a promising approach to provide immediate protection against severe PIV3 and RSV infection in young infants. Previously, we demonstrated that maternal immunization with a subunit vaccine consisting of the RSV fusion (F) protein formulated with TriAdj, an adjuvant consisting of poly(I:C), immune defense regulatory peptide and polyphosphazene, protects newborn lambs from RSV. In the present study we evaluated the protective efficacy of a novel bivalent RSV-PIV3 vaccine candidate, FRipScHN/TriAdj, as a maternal vaccine against PIV3 infection in a neonatal lamb model. This vaccine consists of the pre-fusion form of the RSV F protein linked to the haemagglutinin-neuraminidase (HN) of PIV3, formulated with TriAdj. First, we successfully established PIV3 infection in neonatal lambs. Lambs infected with human PIV3 showed gross pathology, bronchointerstitial pneumonia and viral replication in the lungs. Subsequently, ewes were immunized with FRipScHN/TriAdj. RSV FRipSc- and PIV3 HN-specific antibodies with virus-neutralizing activity were detected in both the serum and the colostrum of the vaccinated ewes. The newborn lambs had RSV- and PIV3- neutralizing antibodies in their serum, which demonstrates that maternal antibodies were transferred to the neonates. At three days of age, the newborn lambs received an intrapulmonary challenge with PIV3. The lung pathology and virus production were significantly reduced in lambs that had received PIV3-specific maternal antibodies compared to lambs born to non-vaccinated ewes. These results suggest that maternal vaccination with a bivalent FRipScHN/TriAdj vaccine might be an effective method to provide protection against both PIV3 and RSV in neonates.
Collapse
Affiliation(s)
- R Garg
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - L Latimer
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - S Gomis
- Veterinary Pathology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - V Gerdts
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5B4E, Canada
| | - A Potter
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5B4E, Canada
| | - S van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
19
|
Shoemake BM, Vander Ley BL, Newcomer BW, Heller MC. Efficacy of Oral Administration of Sodium Iodide to Prevent Bovine Respiratory Disease Complex. J Vet Intern Med 2018; 32:516-524. [PMID: 29377356 PMCID: PMC5787159 DOI: 10.1111/jvim.14903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/08/2017] [Accepted: 11/17/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The prevention of bovine respiratory disease complex (BRD) in beef cattle is important to maintaining health and productivity of calves in feeding operations. OBJECTIVE Determine whether BRD bacterial and viral pathogens are susceptible to the lactoperoxidase/hydrogen peroxide/iodide (LPO/H2 O2 /I- ) system in vitro and to determine whether the oral administration of sodium iodide (NaI) could achieve sufficient concentrations of iodine (I) in the respiratory secretions of weaned beef calves to inactivate these pathogens in vivo. ANIMALS Sixteen weaned, apparently healthy, commercial beef calves from the University of Missouri, College of Veterinary Medicine teaching herd. METHODS In vitro viral and bacterial assays were performed to determine susceptibility to the LPO/H2 O2 /I- system at varying concentrations of NaI. Sixteen randomly selected, healthy crossbred beef weanlings were administered 70 mg/kg NaI, or water, orally in a blinded, placebo-controlled trial. Blood and nasal secretions were collected for 72 hours and analyzed for I- concentration. RESULTS Bovine herpesvirus-1, parainfluenza-3, Mannheimia haemolytica and Bibersteinia trehalosi were all inactivated or inhibited in vitro by the LPO/H2 O2 /I- reaction. Oral administration of NaI caused a marked increase in nasal fluid I concentration with a Cmax = 181 (1,420 μM I), T12 , a sufficient concentration to inactivate these pathogens in vitro. CONCLUSIONS AND CLINICAL IMPORTANCE In vitro, the LPO/H2 O2 /I- system inactivates and inhibits common pathogens associated with BRD. The administration of oral NaI significantly increases the I concentration of nasal fluid indicating that this system might be useful in preventing bovine respiratory infections.
Collapse
Affiliation(s)
- B M Shoemake
- College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - B L Vander Ley
- Great Plains Veterinary Educational Center, University of Nebraska-Lincoln, Clay Center, NE
| | - B W Newcomer
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - M C Heller
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
20
|
Roymans D, Alnajjar SS, Battles MB, Sitthicharoenchai P, Furmanova-Hollenstein P, Rigaux P, Berg JVD, Kwanten L, Ginderen MV, Verheyen N, Vranckx L, Jaensch S, Arnoult E, Voorzaat R, Gallup JM, Larios-Mora A, Crabbe M, Huntjens D, Raboisson P, Langedijk JP, Ackermann MR, McLellan JS, Vendeville S, Koul A. Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor. Nat Commun 2017; 8:167. [PMID: 28761099 PMCID: PMC5537225 DOI: 10.1038/s41467-017-00170-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/07/2017] [Indexed: 01/16/2023] Open
Abstract
Respiratory syncytial virus is a major cause of acute lower respiratory tract infection in young children, immunocompromised adults, and the elderly. Intervention with small-molecule antivirals specific for respiratory syncytial virus presents an important therapeutic opportunity, but no such compounds are approved today. Here we report the structure of JNJ-53718678 bound to respiratory syncytial virus fusion (F) protein in its prefusion conformation, and we show that the potent nanomolar activity of JNJ-53718678, as well as the preliminary structure–activity relationship and the pharmaceutical optimization strategy of the series, are consistent with the binding mode of JNJ-53718678 and other respiratory syncytial virus fusion inhibitors. Oral treatment of neonatal lambs with JNJ-53718678, or with an equally active close analog, efficiently inhibits established acute lower respiratory tract infection in the animals, even when treatment is delayed until external signs of respiratory syncytial virus illness have become visible. Together, these data suggest that JNJ-53718678 is a promising candidate for further development as a potential therapeutic in patients at risk to develop respiratory syncytial virus acute lower respiratory tract infection. Respiratory syncytial virus causes lung infections in children, immunocompromised adults, and in the elderly. Here the authors show that a chemical inhibitor to a viral fusion protein is effective in reducing viral titre and ameliorating infection in rodents and neonatal lambs.
Collapse
Affiliation(s)
- Dirk Roymans
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Sarhad S Alnajjar
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50010, USA
| | - Michael B Battles
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | | | | | - Peter Rigaux
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Joke Van den Berg
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Leen Kwanten
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Marcia Van Ginderen
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Nick Verheyen
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Luc Vranckx
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Steffen Jaensch
- Computational Biology, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Eric Arnoult
- Computational Chemistry, Janssen R&D LLC, 1400 Mckean Road, Spring House, PA, 19477, USA
| | - Richard Voorzaat
- Janssen Vaccines and Prevention, Newtonweg 1, 2333-CP, Leiden, The Netherlands
| | - Jack M Gallup
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50010, USA
| | - Alejandro Larios-Mora
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50010, USA
| | - Marjolein Crabbe
- Non-Clinical Statistics, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Dymphy Huntjens
- Clinical Pharmacology and Pharmacometrics, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Pierre Raboisson
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Mark R Ackermann
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA, 50010, USA
| | - Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | - Sandrine Vendeville
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Anil Koul
- Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
21
|
Investigation on mycoplasma populations in pneumonic dairy lamb lungs using a DNA microarray assay. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2016.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Gauthier TW, Brown LAS. In utero alcohol effects on foetal, neonatal and childhood lung disease. Paediatr Respir Rev 2017; 21:34-37. [PMID: 27613232 PMCID: PMC5303127 DOI: 10.1016/j.prrv.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
Maternal alcohol use during pregnancy exposes both premature and term newborns to the toxicity of alcohol and its metabolites. Foetal alcohol exposure adversely effects the lung. In contrast to the adult "alcoholic lung" phenotype, an inability to identify the newborn exposed to alcohol in utero has limited our understanding of its effect on adverse pulmonary outcomes. This paper will review advances in biomarker development of in utero alcohol exposure. We will highlight the current understanding of in utero alcohol's toxicity to the developing lung and immune defense. Finally, we will present recent clinical evidence describing foetal alcohol's association with adverse pulmonary outcomes including bronchopulmonary dysplasia, viral infections such as respiratory syncytial virus and allergic asthma/atopy. With research to define alcohol's effect on the lung and translational studies accurately identifying the exposed offspring, the full extent of alcohol's effects on clinical respiratory outcomes of the newborn or child can be determined.
Collapse
|
23
|
Muralidharan A, Li C, Wang L, Li X. Immunopathogenesis associated with formaldehyde-inactivated RSV vaccine in preclinical and clinical studies. Expert Rev Vaccines 2016; 16:351-360. [DOI: 10.1080/14760584.2017.1260452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologics, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Changgui Li
- Department of Viral Vaccine III, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, PR China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologics, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Ruckwardt TJ, Morabito KM, Graham BS. Determinants of early life immune responses to RSV infection. Curr Opin Virol 2016; 16:151-157. [PMID: 26986236 DOI: 10.1016/j.coviro.2016.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Abstract
Respiratory syncytial virus causes significant morbidity and mortality in both developed and developing countries, and a vaccine that adequately protects from severe disease remains an important unmet need. RSV disease has an inordinate impact on the very young, and the physical and immunological immaturity of early life complicates vaccine design. Defining and targeting the functional capacities of early life immune responses and controlling responses during primary antigen exposure with selected vaccine delivery approaches will be important for protecting infants by active immunization. Alternatively, vaccination of older children and pregnant mothers may ameliorate disease burden indirectly until infants reach about six months of age, when they can generate more effective anti-RSV immune responses.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Youssef G, Wallace WAH, Dagleish MP, Cousens C, Griffiths DJ. Ovine pulmonary adenocarcinoma: a large animal model for human lung cancer. ILAR J 2016; 56:99-115. [PMID: 25991702 DOI: 10.1093/ilar/ilv014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Recent progress in understanding the molecular pathogenesis of this disease has resulted in novel therapeutic strategies targeting specific groups of patients. Further studies are required to provide additional advances in diagnosis and treatment. Animal models are valuable tools for studying oncogenesis in lung cancer, particularly during the early stages of disease where tissues are rarely available from human cases. Mice have traditionally been used for studying lung cancer in vivo, and a variety of spontaneous and transgenic models are available. However, it is recognized that other species may also be informative for studies of cancer. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by retrovirus infection and has several features in common with adenocarcinoma of humans, including a similar histological appearance and activation of common cell signaling pathways. Additionally, the size and organization of human lungs are much closer to those of sheep lungs than to those of mice, which facilitates experimental approaches in sheep that are not available in mice. Thus OPA presents opportunities for studying lung tumor development that can complement conventional murine models. Here we describe the potential applications of OPA as a model for human lung adenocarcinoma with an emphasis on the various in vivo and in vitro experimental systems available.
Collapse
Affiliation(s)
- Gehad Youssef
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - William A H Wallace
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Mark P Dagleish
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Chris Cousens
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - David J Griffiths
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| |
Collapse
|
26
|
Broadbent L, Groves H, Shields MD, Power UF. Respiratory syncytial virus, an ongoing medical dilemma: an expert commentary on respiratory syncytial virus prophylactic and therapeutic pharmaceuticals currently in clinical trials. Influenza Other Respir Viruses 2016; 9:169-78. [PMID: 25847510 PMCID: PMC4474493 DOI: 10.1111/irv.12313] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 12/30/2022] Open
Abstract
As the most important viral cause of severe respiratory disease in infants and increasing recognition as important in the elderly and immunocompromised, respiratory syncytial virus (RSV) is responsible for a massive health burden worldwide. Prophylactic antibodies were successfully developed against RSV. However, their use is restricted to a small group of infants considered at high risk of severe RSV disease. There is still no specific therapeutics or vaccines to combat RSV. As such, it remains a major unmet medical need for most individuals. The World Health Organisations International Clinical Trials Registry Platform (WHO ICTRP) and PubMed were used to identify and review all RSV vaccine, prophylactic and therapeutic candidates currently in clinical trials. This review presents an expert commentary on all RSV-specific prophylactic and therapeutic candidates that have entered clinical trials since 2008.
Collapse
Affiliation(s)
- Lindsay Broadbent
- Centre for Infection & Immunity, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Helen Groves
- Centre for Infection & Immunity, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Michael D Shields
- Centre for Infection & Immunity, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK.,The Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Ultan F Power
- Centre for Infection & Immunity, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
27
|
Garg R, Latimer L, Wang Y, Simko E, Gerdts V, Potter A, van Drunen Littel-van den Hurk S. Maternal immunization with respiratory syncytial virus fusion protein formulated with a novel combination adjuvant provides protection from RSV in newborn lambs. Vaccine 2016; 34:261-269. [DOI: 10.1016/j.vaccine.2015.11.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/08/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
|
28
|
Renukaradhya GJ, Narasimhan B, Mallapragada SK. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Control Release 2015; 219:622-631. [PMID: 26410807 PMCID: PMC4760633 DOI: 10.1016/j.jconrel.2015.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
29
|
Jorquera PA, Anderson L, Tripp RA. Understanding respiratory syncytial virus (RSV) vaccine development and aspects of disease pathogenesis. Expert Rev Vaccines 2015; 15:173-87. [PMID: 26641318 DOI: 10.1586/14760584.2016.1115353] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infections causing bronchiolitis and some mortality in young children and the elderly. Despite decades of research there is no licensed RSV vaccine. Although significant advances have been made in understanding the immune factors responsible for inducing vaccine-enhanced disease in animal models, less information is available for humans. In this review, we discuss the different types of RSV vaccines and their target population, the need for establishing immune correlates for vaccine efficacy, and how the use of different animal models can help predict vaccine efficacy and clinical outcomes in humans.
Collapse
Affiliation(s)
- Patricia A Jorquera
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| | - Lydia Anderson
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| | - Ralph A Tripp
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| |
Collapse
|
30
|
Rivera CA, Gómez RS, Díaz RA, Céspedes PF, Espinoza JA, González PA, Riedel CA, Bueno SM, Kalergis AM. Novel therapies and vaccines against the human respiratory syncytial virus. Expert Opin Investig Drugs 2015; 24:1613-30. [DOI: 10.1517/13543784.2015.1099626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Garg R, Latimer L, Gerdts V, Potter A, van Drunen Littel-van den Hurk S. The respiratory syncytial virus fusion protein formulated with a novel combination adjuvant induces balanced immune responses in lambs with maternal antibodies. Vaccine 2015; 33:1338-44. [DOI: 10.1016/j.vaccine.2015.01.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
|
32
|
Kim YI, DeVincenzo JP, Jones BG, Rudraraju R, Harrison L, Meyers R, Cehelsky J, Alvarez R, Hurwitz JL. Respiratory syncytial virus human experimental infection model: provenance, production, and sequence of low-passaged memphis-37 challenge virus. PLoS One 2014; 9:e113100. [PMID: 25415360 PMCID: PMC4240712 DOI: 10.1371/journal.pone.0113100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/19/2014] [Indexed: 01/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children and is responsible for as many as 199,000 childhood deaths annually worldwide. To support the development of viral therapeutics and vaccines for RSV, a human adult experimental infection model has been established. In this report, we describe the provenance and sequence of RSV Memphis-37, the low-passage clinical isolate used for the model's reproducible, safe, experimental infections of healthy, adult volunteers. The predicted amino acid sequences for major proteins of Memphis-37 are compared to nine other RSV A and B amino acid sequences to examine sites of vaccine, therapeutic, and pathophysiologic interest. Human T- cell epitope sequences previously defined by in vitro studies were observed to be closely matched between Memphis-37 and the laboratory strain RSV A2. Memphis-37 sequences provide baseline data with which to assess: (i) virus heterogeneity that may be evident following virus infection/transmission, (ii) the efficacy of candidate RSV vaccines and therapeutics in the experimental infection model, and (iii) the potential emergence of escape mutants as a consequence of experimental drug treatments. Memphis-37 is a valuable tool for pre-clinical research, and to expedite the clinical development of vaccines, therapeutic immunomodulatory agents, and other antiviral drug strategies for the protection of vulnerable populations against RSV disease.
Collapse
Affiliation(s)
- Young-In Kim
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Children's Foundation Research Institute of Le Bonheur Children's Hospital, Memphis, Tennessee, United States of America
| | - John P. DeVincenzo
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Children's Foundation Research Institute of Le Bonheur Children's Hospital, Memphis, Tennessee, United States of America
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Rajeev Rudraraju
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Lisa Harrison
- Children's Foundation Research Institute of Le Bonheur Children's Hospital, Memphis, Tennessee, United States of America
| | - Rachel Meyers
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Jeff Cehelsky
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Rene Alvarez
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Julia L. Hurwitz
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|