1
|
Vijayan K. K. V, De Paris K. Nonhuman primate models of pediatric viral diseases. Front Cell Infect Microbiol 2024; 14:1493885. [PMID: 39691699 PMCID: PMC11649651 DOI: 10.3389/fcimb.2024.1493885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious diseases are the leading cause of death in infants and children under 5 years of age. In utero exposure to viruses can lead to spontaneous abortion, preterm birth, congenital abnormalities or other developmental defects, often resulting in lifelong health sequalae. The underlying biological mechanisms are difficult to study in humans due to ethical concerns and limited sample access. Nonhuman primates (NHP) are closely related to humans, and pregnancy and immune ontogeny in infants are very similar to humans. Therefore, NHP are a highly relevant model for understanding fetal and postnatal virus-host interactions and to define immune mechanisms associated with increased morbidity and mortality in infants. We will discuss NHP models of viruses causing congenital infections, respiratory diseases in early life, and HIV. Cytomegalovirus (CMV) remains the most common cause of congenital defects worldwide. Measles is a vaccine-preventable disease, yet measles cases are resurging. Zika is an example of an emerging arbovirus with devastating consequences for the developing fetus and the surviving infant. Among the respiratory viruses, we will discuss influenza and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We will finish with HIV as an example of a lifelong infection without a cure or vaccine. The review will highlight (i) the impact of viral infections on fetal and infant immune development, (ii) how differences in infant and adult immune responses to infection alter disease outcome, and emphasize the invaluable contribution of pediatric NHP infection models to the design of effective treatment and prevention strategies, including vaccines, for human infants.
Collapse
Affiliation(s)
- Vidya Vijayan K. K.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC, United States
- Children’s Research Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Fonseca JA, King AC, Chahroudi A. More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure. Curr HIV/AIDS Rep 2024; 21:11-29. [PMID: 38227162 PMCID: PMC10859349 DOI: 10.1007/s11904-023-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW An HIV cure that eliminates the viral reservoir or provides viral control without antiretroviral therapy (ART) is an urgent need in children as they face unique challenges, including lifelong ART adherence and the deleterious effects of chronic immune activation. This review highlights the importance of nonhuman primate (NHP) models in developing an HIV cure for children as these models recapitulate the viral pathogenesis and persistence. RECENT FINDINGS Several cure approaches have been explored in infant NHPs, although knowledge gaps remain. Broadly neutralizing antibodies (bNAbs) show promise for controlling viremia and delaying viral rebound after ART interruption but face administration challenges. Adeno-associated virus (AAV) vectors hold the potential for sustained bNAb expression. Therapeutic vaccination induces immune responses against simian retroviruses but has yet to impact the viral reservoir. Combining immunotherapies with latency reversal agents (LRAs) that enhance viral antigen expression should be explored. Current and future cure approaches will require adaptation for the pediatric immune system and unique features of virus persistence, for which NHP models are fundamental to assess their efficacy.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis C King
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
3
|
Van Zandt AR, MacLean AG. Advances in HIV therapeutics and cure strategies: findings obtained through non-human primate studies. J Neurovirol 2023; 29:389-399. [PMID: 37635184 PMCID: PMC11636591 DOI: 10.1007/s13365-023-01162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Human immunodeficiency virus (HIV), the main contributor of the ongoing AIDS epidemic, remains one of the most challenging and complex viruses to target and eradicate due to frequent genome mutation and immune evasion. Despite the development of potent antiretroviral therapies, HIV remains an incurable infection as the virus persists in latent reservoirs throughout the body. To innovate a safe and effective cure strategy for HIV in humans, animal models are needed to better understand viral proliferation, disease progression, and therapeutic response. Nonhuman primates infected with simian immunodeficiency virus (SIV) provide an ideal model to study HIV infection and pathogenesis as they are closely related to humans genetically and express phenotypically similar immune systems. Examining the clinical outcomes of novel treatment strategies within nonhuman primates facilitates our understanding of HIV latency and advances the development of a true cure to HIV.
Collapse
Affiliation(s)
- Alison R Van Zandt
- Tulane National Primate Research Center, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Covington, LA, USA.
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
- Tulane Center for Aging, New Orleans, LA, USA.
| |
Collapse
|
4
|
Baroncini L, Bredl S, Nicole KP, Speck RF. The Humanized Mouse Model: What Added Value Does It Offer for HIV Research? Pathogens 2023; 12:pathogens12040608. [PMID: 37111494 PMCID: PMC10142098 DOI: 10.3390/pathogens12040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In the early 2000s, novel humanized mouse models based on the transplantation of human hematopoietic stem and progenitor cells (HSPCs) into immunocompromised mice were introduced (hu mice). The human HSPCs gave rise to a lymphoid system of human origin. The HIV research community has greatly benefitted from these hu mice. Since human immunodeficiency virus (HIV) type 1 infection results in a high-titer disseminated HIV infection, hu mice have been of great value for all types of HIV research from pathogenesis to novel therapies. Since the first description of this new generation of hu mice, great efforts have been expended to improve humanization by creating other immunodeficient mouse models or supplementing mice with human transgenes to improve human engraftment. Many labs have their own customized hu mouse models, making comparisons quite difficult. Here, we discuss the different hu mouse models in the context of specific research questions in order to define which characteristics should be considered when determining which hu mouse model is appropriate for the question posed. We strongly believe that researchers must first define their research question and then determine whether a hu mouse model exists, allowing the research question to be studied.
Collapse
Affiliation(s)
- Luca Baroncini
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Simon Bredl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kadzioch P Nicole
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Roberto F Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
5
|
Breed MW, Perez HL, Otto M, Villaruz AE, Weese JS, Alvord GW, Donohue DE, Washington F, Kramer JA. Bacterial Genotype, Carrier Risk Factors, and an Antimicrobial Stewardship Approach Relevant To Methicillin-resistant Staphylococcus Aureus Prevalence in a Population of Macaques Housed in a Research Facility. Comp Med 2023; 73:134-144. [PMID: 36941053 PMCID: PMC10162382 DOI: 10.30802/aalas-cm-22-000018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/31/2022] [Accepted: 10/27/2022] [Indexed: 03/22/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains a significant problem for human and animal health and can negatively affect the health status of macaques and other nonhuman primates (NHP) in research colonies. However, few publications provide guidance on the prevalence, genotype, or risk factors for macaques with MRSA and even fewer on how to effectively respond to MRSA once identified in a population. After having a clinical case of MRSA in a rhesus macaque, we sought to determine the MRSA carrier prevalence, risk factors, and genotypes of MRSA in a population of research NHPs. Over a 6-wk period in 2015, we collected nasal swabs from 298 NHPs. MRSA was isolated from 28% (n = 83). We then reviewed each macaque's medical record for a variety of variables including animal housing room, sex, age, number of antibiotic courses, number of surgical interventions, and SIV status. Analysis of these data suggests that MRSA carriage is associated with the room location, age of the animal, SIV status, and the number of antibiotic courses. We used multilocus sequence typing and spa typing on a subset of MRSA and MSSA isolates to determine whether the MRSA present in NHPs was comparable with common human strains. Two MRSA sequence types were predominant: ST188 and a novel MRSA genotype, neither of which is a common human isolate in the United States. We subsequently implemented antimicrobial stewardship practices (significantly reducing antimicrobial use) and then resampled the colony in 2018 and found that MRSA carriage had fallen to 9% (26/285). These data suggest that, as in humans, macaques may have a high carrier status of MRSA despite low clinically apparent disease. Implementing strategic antimicrobial stewardship practices resulted in a marked reduction in MRSA carriage in the NHP colony, highlighting the importance of limiting antimicrobial use when possible.
Collapse
Affiliation(s)
- Matthew W Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Bethesda, Maryland;,
| | - Hannah L Perez
- Salem Animal Hospital, Salem, Virginia; National Institutes of Health, Bethesda, Maryland
| | - Michael Otto
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Amer E Villaruz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - J Scott Weese
- Centre for Public Health and Zoonoses, Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada; National Institutes of Health, Bethesda, Maryland
| | - Gregory W Alvord
- Statistical Consulting, Data Management Services, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Duncan E Donohue
- Statistical Consulting, Data Management Services, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Joshua A Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Bethesda, Maryland
| |
Collapse
|
6
|
E Gryshyna A, Chatterjee T, J DeBerry J, Aggarwal S. Assessment of pain-related behaviors in HIV-1 transgenic rats as a model of HIV-associated chronic pain. Mol Pain 2023; 19:17448069231213554. [PMID: 37902051 PMCID: PMC10637165 DOI: 10.1177/17448069231213554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV)-associated chronic pain is a debilitating comorbid condition that affects 25-85% of people with HIV. The use of opioids to alleviate pain has given rise to opioid dependency in this cohort. Therefore, there is an urgent need to understand mechanisms and identify novel therapeutics for HIV-associated chronic pain. Several animal models have been developed to study HIV-related comorbidities. HIV-1 transgenic (Tg) rats have been shown to serve as a reliable model that mimic the deficits observed in people with HIV, such as neurological and immune system alterations. However, pain-related behavior in these animals has not been extensively evaluated. In this study, we measured evoked and spontaneous behavior in HIV-1Tg male and female rats. The results indicated that HIV-1Tg rats exhibit similar behavior to those with HIV-1-related neuropathy, specifically, cold sensitivity. Consequently, HIV-1Tg rats can serve as a model of neuropathy to study pain-related mechanisms and therapeutics targeted toward individuals living with HIV-1.
Collapse
Affiliation(s)
- Anastasiia E Gryshyna
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tanima Chatterjee
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer J DeBerry
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Nagornykh AM, Tyumentseva MA, Tyumentsev AI, Akimkin VG. Anatomical and physiological aspects of the HIV infection pathogenesis in animal models. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the entire pathogenesis of HIV infection, from penetration at the gates of infection to the induction of severe immunodeficiency, is an essential tool for the development of new treatment methods. Less than 40 years of research into the mechanisms of HIV infection that lead to the development of acquired immunodeficiency syndrome have accumulated a huge amount of information, but HIV's own unique variability identifies new whitespaces.
Despite the constant improvement of the protocols of antiretroviral therapy and the success of its use, it has not yet been possible to stop the spread of HIV infection. The development of new protocols and the testing of new groups of antiretroviral drugs is possible, first of all, due to the improvement of animal models of the HIV infection pathogenesis. Their relevance, undoubtedly increases, but still depends on specific research tasks, since none of the in vivo models can comprehensively simulate the mechanism of the infection pathology in humans which leads to multi-organ damage.
The aim of the review was to provide up-to-date information on known animal models of HIV infection, focusing on the method of their infection and anatomical, physiological and pathological features.
Collapse
|
8
|
Hawash MBF, El-Deeb MA, Gaber R, Morsy KS. The buried gems of disease tolerance in animals: Evolutionary and interspecies comparative approaches: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals. Bioessays 2022; 44:e2200080. [PMID: 36050881 DOI: 10.1002/bies.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/07/2022]
Abstract
Host defense mechanisms are categorized into different strategies, namely, avoidance, resistance and tolerance. Resistance encompasses mechanisms that directly kill the pathogen while tolerance is mainly concerned with alleviating the harsh consequences of the infection regardless of the pathogen burden. Resistance is well-known strategy in immunology while tolerance is relatively new. Studies addressed tolerance mainly using mouse models revealing a wide range of interesting tolerance mechanisms. Herein, we aim to emphasize on the interspecies comparative approaches to explore potential new mechanisms of disease tolerance. We will discuss mechanisms of tolerance with focus on those that were revealed using comparative study designs of mammals followed by summarizing the reasons for adopting comparative approaches on disease tolerance studies. Disease tolerance is a relatively new concept in immunology, we believe combining comparative studies with model organism study designs will enhance our understanding to tolerance and unveil new mechanisms of tolerance.
Collapse
Affiliation(s)
- Mohamed B F Hawash
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biochemistry and Molecular Biomedicine Department, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Mohamed A El-Deeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Rahma Gaber
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Kareem S Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
Zapata JP, de St Aubin E, Rodriguez-Diaz CE, Malave-Rivera S. Using a Structural-Ecological Model to Facilitate Adoption of Preexposure Prophylaxis Among Latinx Sexual Minority Men: A Systematic Literature Review. JOURNAL OF LATINX PSYCHOLOGY 2022; 10:169-190. [PMID: 37456610 PMCID: PMC10348365 DOI: 10.1037/lat0000204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Research has consistently shown that individual, interpersonal, community and structural factors influence the degree to which individuals' access and utilize health care services, and these factors may play a role in explaining racial and ethnic differences in health care outcomes. Differences in HIV prevalence and treatment between Latinx adults and white adults in the U.S. must be considered in the context of these factors. However, much of the existing research connecting these factors and HIV/AIDS outcomes in Latinxs remains disparate, limited in scope, and has yet not been applied to the use of biomedical HIV preventions. The following systematic literature review examined research related to PrEP in Latinx sexual minority men (SMM) to build a structural-ecological framework of the existing research, while identifying gaps in the literature and areas for future research. We searched two electronic databases using a systematic review protocol, screened 71 unique records, and identified 23 articles analyzing data from Latinx SMM and intended and/or actual PrEP-use in the United States. Based on the present review, disparities in PrEP uptake by Latinx SMM could be explained, in part, by examining how all levels of the structural-ecological framework uniquely contributes to how Latinx SMM engage with HIV prevention measures and come to understand PrEP. It is clear from the existing literature base that some of the most prominent barriers deterring Latinx SMM from seeking PrEP services are the lack of information surrounding PrEP and HIV/gay stigmas. However, higher order structural-level risks can facilitate or reduce access to PrEP. We propose a structural-ecological model to help visualize multi-level domains of unique stressors that limit the implementation of PrEP among Latinxs. At this stage, the available literature provides little guidance beyond suggesting that culturally adapted interventions can be effective in this population. The model developed here provides that needed specificity regarding targeted interventions that will fit the needs of this population.
Collapse
Affiliation(s)
| | - Ed de St Aubin
- Department of Psychology, Marquette University, Milwaukee, WI, USA
| | - Carlos E Rodriguez-Diaz
- Department of Prevention and Community Health, The George Washington UniversityMilken, Institute School of Public Health
| | - Souhail Malave-Rivera
- Center for Evaluation and Sociomedical Research, Graduate School of Public Health, University of Puerto Rico Medical sciences Campus
| |
Collapse
|
10
|
Annisaa FLN, Saepuloh U, Iskandriati D, Pamungkas J. Identification and molecular characterization of simian endogenous retrovirus in Macaca fascicularis and Macaca nemestrina from captive breeding facilities in Bogor, Indonesia. Vet World 2022; 15:1827-1834. [PMID: 36185511 PMCID: PMC9394155 DOI: 10.14202/vetworld.2022.1827-1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Endogenous retroviruses (ERVs) found in all vertebrates, including non-human primates (NHPs), are known to be genetically inherited. Thus, recent studies have explored ERVs for human immunodeficiency virus vaccine development using human ERV (HERV) due to the hypervariability of exogenous retroviruses which cause conventional vaccines to be ineffective. HERV was also found to be able to induce an immune response in cancer patients. This study aimed to identify and molecularly characterize ERVs from Indonesian NHPs: Macaca fascicularis and Macaca nemestrina. Then, we described the phylogenetic relationship of these isolates with those of the simian ERVs (SERVs) characterized in other species and countries. Materials and Methods First, 5 mL of whole blood samples was taken from 131 long-tailed macaques and 58 pig-tailed macaques in captive breeding facilities at Bogor, Indonesia, for DNA extraction. Next, the DNA samples were screened using the SYBR Green real-time polymerase chain reaction (PCR) technique with specific primers for env (simian retroviruses [SRV]1-5 7585U19 and SRV1-5 7695L21). Positive SERV results were those with cycle threshold (CT) values < 24 (CT < 24) and melting temperature (TM) ranges of 80°C-82°C. Then, whole-genome nucleotide sequences from two pig-tailed macaques samples detected as positive SERV were generated using a nucleic acid sequencing technique which utilized the walking primer method. Subsequently, the sequences were analyzed using bioinformatics programs, such as 4Peaks, Clustal Omega, and BLAST (NCBI). Subsequently, a phylogenetic tree was constructed using the neighbor-joining method in MEGA X. Results SYBR Green real-time PCR amplification results indicated that SERV (Mn B1 and Mn B140910)-positive samples had CT values of 22.37-22.54 and TM of 82°C. Moreover, whole-genome sequences resulted in 7991 nucleotide sequences, comprising long terminal repeat, gag, pro, pol, and env genes identical between the sequenced samples. Furthermore, the phylogenetic tree results indicated that both samples from M. nemestrina had 99%-100% nucleotide identities to the Mn 92227 sample identified at the National Primate Center University of Washington (NaPRC UW) which was imported from Indonesia in 1998, confirmed as a novel SERV strain. The phylogenetic tree results also indicated that although SERV whole-genome nucleotide and env amino acid sequences were clustered with SRV-2 (identity values of 82% and 79%, respectively), they had a 99%-100% nucleotide identity to Mn 92227. Meanwhile, the gag, pro, and pol amino acids were clustered with SRV-1, SRV-3, SRV-4, SRV-5, SRV-8, and SERV/1997, with 82% and 88% identity values. Conclusion Based on the SYBR Green real-time PCR profiles generated, similarities with Mn 92227 were observed. Subsequent phylogenetic analysis confirmed that both samples (Mn B1 and Mn B140919) from pig-tailed macaques in the country of origin were novel SERV strains at NaPRC UW. Therefore, it could be used in biomedical research on ERVs.
Collapse
Affiliation(s)
| | - Uus Saepuloh
- Primate Research Center, IPB University, Bogor 16128, Indonesia
| | | | - Joko Pamungkas
- Primate Research Center, IPB University, Bogor 16128, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
11
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
12
|
Bolon B, Everitt JI. Selected Resources for Pathology Evaluation of Nonhuman Primates in Nonclinical Safety Assessment. Toxicol Pathol 2022; 50:725-732. [PMID: 35481786 DOI: 10.1177/01926233221091763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Humans and nonhuman primates (NHPs) share numerous anatomical and physiological characteristics, thereby explaining the importance of NHPs as essential animal models for translational medicine and nonclinical toxicity testing. Researchers, toxicologic pathologists, toxicologists, and regulatory reviewers must be familiar with normal and abnormal NHP biological traits when designing, performing, and interpreting data sets from NHP studies. The current compilation presents a list of essential books, journal articles, and websites that provide context to safety assessment and research scientists working with NHP models. The resources used most frequently by the authors have been briefly annotated to permit readers to rapidly ascertain their applicability to particular research endeavors. The references are aimed primarily for toxicologic pathologists working with cynomolgus and rhesus macaques and common marmosets in efficacy and safety assessment studies.
Collapse
Affiliation(s)
| | - Jeffrey I Everitt
- Duke University, Department of Pathology, Durham, North Carolina, USA
| |
Collapse
|
13
|
Lu Y, Zhang MX, Pang W, Song TZ, Zheng HY, Tian RR, Zheng YT. Transcription Factor ZNF683 Inhibits SIV/HIV Replication through Regulating IFNγ Secretion of CD8+ T Cells. Viruses 2022; 14:v14040719. [PMID: 35458449 PMCID: PMC9030044 DOI: 10.3390/v14040719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary microbial invasion frequently occurs during AIDS progression in HIV patients. Inflammatory cytokines and other immunoregulatory factors play important roles in this process. We previously established an AIDS model of SIVmac239 infection in northern pig-tailed macaques (NPMs), which were divided into rapid progressor (RP) and slow progressor (SP) groups according to their AIDS progression rates. In this study, we performed 16S rDNA and transcriptome sequencing of the lungs to reveal the molecular mechanism underlying the difference in progression rate between the RPs and SPs. We found that microbial invasion in the RP group was distinct from that in the SP group, showing marker flora of the Family XI, Enterococcus and Ezakiella, and more Lactobacilli. Through pulmonary transcriptome analysis, we found that the transcription factor ZNF683 had higher expression in the SP group than in the RP group. In subsequent functional experiments, we found that ZNF683 increased the proliferation and IFNγ secretion ability of CD8+ T cells, thus decreasing SIV or HIV replication, which may be related to AIDS progression in SIVmac239-infected NPMs. This study helps elucidate the various complexities of disease progression in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ming-Xu Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
| | - Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
| | - Ren-Rong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Correspondence: ; Tel.: +86-871-65295684
| |
Collapse
|
14
|
Obregon-Perko V, Bricker KM, Mensah G, Uddin F, Rotolo L, Vanover D, Desai Y, Santangelo PJ, Jean S, Wood JS, Connor-Stroud FC, Ehnert S, Berendam SJ, Liang S, Vanderford TH, Bar KJ, Shaw GM, Silvestri G, Kumar A, Fouda GG, Permar SR, Chahroudi A. Dynamics and origin of rebound viremia in SHIV-infected infant macaques following interruption of long-term ART. JCI Insight 2021; 6:152526. [PMID: 34699383 PMCID: PMC8675190 DOI: 10.1172/jci.insight.152526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Understanding viral rebound in pediatric HIV-1 infection may inform the development of alternatives to lifelong antiretroviral therapy (ART) to achieve viral remission. We thus investigated viral rebound after analytical treatment interruption (ATI) in 10 infant macaques orally infected with SHIV.C.CH505 and treated with long-term ART. Rebound viremia was detected within 7 to 35 days of ATI in 9 of 10 animals, with posttreatment control of viremia seen in 5 of 5 Mamu-A*01+ macaques. Single-genome sequencing revealed that initial rebound virus was similar to viral DNA present in CD4+ T cells from blood, rectum, and lymph nodes before ATI. We assessed the earliest sites of viral reactivation immediately following ATI using ImmunoPET imaging. The largest increase in signal that preceded detectable viral RNA in plasma was found in the gastrointestinal (GI) tract, a site with relatively high SHIV RNA/DNA ratios in CD4+ T cells before ATI. Thus, the GI tract may be an initial source of rebound virus, but as ATI progresses, viral reactivation in other tissues likely contributes to the composition of plasma virus. Our study provides potentially novel insight into the features of viral rebound in pediatric infection and highlights the application of a noninvasive technique to monitor areas of HIV-1 expression in children.
Collapse
Affiliation(s)
| | - Katherine M. Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gloria Mensah
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ferzan Uddin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Laura Rotolo
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Daryll Vanover
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yesha Desai
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip J. Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sherrie Jean
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jennifer S. Wood
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | - Stephanie Ehnert
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Stella J. Berendam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Shan Liang
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thomas H. Vanderford
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Wallace DR. HIV-associated neurotoxicity and cognitive decline: Therapeutic implications. Pharmacol Ther 2021; 234:108047. [PMID: 34848202 DOI: 10.1016/j.pharmthera.2021.108047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
As our understanding of changes to the neurological system has improved, it has become clear that patients who have contracted human immunodeficiency virus type 1 (HIV-1) can potentially suffer from a cascade of neurological issues, including neuropathy, dementia, and declining cognitive function. The progression from mild to severe symptoms tends to affect motor function, followed by cognitive changes. Central nervous system deficits that are observed as the disease progresses have been reported as most severe in later-stage HIV infection. Examining the full spectrum of neuronal damage, generalized cortical atrophy is a common hallmark, resulting in the death of multiple classes of neurons. With antiretroviral therapy (ART), we can partially control disease progression, slowing the onset of the most severe symptoms such as, reducing viral load in the brain, and developing HIV-associated dementia (HAD). HAD is a severe and debilitating outcome from HIV-related neuropathologies. HIV neurotoxicity can be direct (action directly on the neuron) or indirect (actions off-site that affect normal neuronal function). There are two critical HIV-associated proteins, Tat and gp120, which bear responsibility for many of the neuropathologies associated with HAD and HIV-associated neurocognitive disorder (HAND). A cascade of systems is involved in HIV-related neurotoxicity, and determining a critical point where therapeutic strategies can be employed is of the utmost importance. This review will provide an overview of the existing hypotheses on HIV-neurotoxicity and the potential for the development of therapeutics to aid in the treatment of HIV-related nervous system dysfunction.
Collapse
Affiliation(s)
- David R Wallace
- Oklahoma State University Center for Health Sciences, School of Biomedical Science, 1111 West 17(th) Street, Tulsa, OK 74107-1898, USA.
| |
Collapse
|
16
|
Shively CA, Lacreuse A, Frye BM, Rothwell ES, Moro M. Nonhuman primates at the intersection of aging biology, chronic disease, and health: An introduction to the American Journal of Primatology Special Issue on aging, cognitive decline, and neuropathology in nonhuman primates. Am J Primatol 2021; 83:e23309. [PMID: 34403529 PMCID: PMC8935964 DOI: 10.1002/ajp.23309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 11/06/2022]
Abstract
Aging across the Primate Order is poorly understood because ages of individuals are often unknown, there is a dearth of aged animals available for study, and because aging is best characterized by longitudinal studies which are difficult to carry out in long-lived species. The human population is aging rapidly, and advanced age is a primary risk factor for several chronic diseases and conditions that impact healthspan. As lifespan has increased, diseases and disorders of the central nervous system (CNS) have become more prevalent, and Alzheimer's disease and related dementias have become epidemic. Nonhuman primate (NHP) models are key to understanding the aging primate CNS. This Special Issue presents a review of current knowledge about NHP CNS aging across the Primate Order. Similarities and differences to human aging, and their implications for the validity of NHP models of aging are considered. Topics include aging-related brain structure and function, neuropathologies, cognitive performance, social behavior and social network characteristics, and physical, sensory, and motor function. Challenges to primate CNS aging research are discussed. Together, this collection of articles demonstrates the value of studying aging in a breadth of NHP models to advance our understanding of human and nonhuman primate aging and healthspan.
Collapse
Affiliation(s)
- Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
- Alzheimer’s Disease Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Brett M. Frye
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Emily S. Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Manuel Moro
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Maryland, USA
| |
Collapse
|
17
|
Hendricks CM, Cordeiro T, Gomes AP, Stevenson M. The Interplay of HIV-1 and Macrophages in Viral Persistence. Front Microbiol 2021; 12:646447. [PMID: 33897659 PMCID: PMC8058371 DOI: 10.3389/fmicb.2021.646447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
HIV-1 has evolved mechanisms to evade host cell immune responses and persist for lifelong infection. Latent cellular reservoirs are responsible for this persistence of HIV-1 despite the powerful effects of highly active antiretroviral therapies (HAART) to control circulating viral load. While cellular reservoirs have been extensively studied, much of these studies have focused on peripheral blood and resting memory CD4+ T cells containing latent HIV-1 provirus; however, efforts to eradicate cellular reservoirs have been stunted by reservoirs found in tissues compartments that are not easily accessible. These tissues contain resting memory CD4+ T cells and tissue resident macrophages, another latent cellular reservoir to HIV-1. Tissue resident macrophages have been associated with HIV-1 infection since the 1980s, and evidence has continued to grow regarding their role in HIV-1 persistence. Specific biological characteristics play a vital role as to why macrophages are latent cellular reservoirs for HIV-1, and in vitro and in vivo studies exhibit how macrophages contribute to viral persistence in individuals and animals on antiretroviral therapies. In this review, we characterize the role and evolutionary advantages of macrophage reservoirs to HIV-1 and their contribution to HIV-1 persistence. In acknowledging the interplay of HIV-1 and macrophages in the host, we identify reasons why current strategies are incapable of eliminating HIV-1 reservoirs and why efforts must focus on eradicating reservoirs to find a future functional cure.
Collapse
Affiliation(s)
- Chynna M Hendricks
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thaissa Cordeiro
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ana Paula Gomes
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mario Stevenson
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
18
|
Obregon-Perko V, Bricker KM, Mensah G, Uddin F, Kumar MR, Fray EJ, Siliciano RF, Schoof N, Horner A, Mavigner M, Liang S, Vanderford T, Sass J, Chan C, Berendam SJ, Bar KJ, Shaw GM, Silvestri G, Fouda GG, Permar SR, Chahroudi A. Simian-Human Immunodeficiency Virus SHIV.C.CH505 Persistence in ART-Suppressed Infant Macaques Is Characterized by Elevated SHIV RNA in the Gut and a High Abundance of Intact SHIV DNA in Naive CD4 + T Cells. J Virol 2020; 95:e01669-20. [PMID: 33087463 PMCID: PMC7944446 DOI: 10.1128/jvi.01669-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.
Collapse
Affiliation(s)
| | - Katherine M Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gloria Mensah
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ferzan Uddin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Nils Schoof
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anna Horner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shan Liang
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thomas Vanderford
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Julian Sass
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Stella J Berendam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Genevieve G Fouda
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Perinatal HIV-1 infection is associated with an increased risk for neurologic impairments. With limited access to clinical specimens, animal models could advance our understanding of pediatric central nervous system (CNS) disease and viral persistence. Here, we summarize current findings on HIV-1 CNS infection from nonhuman primate (NHP) models and discuss their implications for improving pediatric clinical outcomes. RECENT FINDINGS SIV/SHIV can be found in the CNS of infant macaques within 48 h of challenge. Recent studies show an impermeable BBB during SIV infection, suggesting neuroinvasion in post-partum infection is likely not wholly attributed to barrier dysfunction. Histopathological findings reveal dramatic reductions in hippocampal neuronal populations and myelination in infected infant macaques, providing a link for cognitive impairments seen in pediatric cases. Evidence from humans and NHPs support the CNS as a functional latent reservoir, harbored in myeloid cells that may require unique eradication strategies. Studies in NHP models are uncovering early events, causes, and therapeutic targets of CNS disease as well as highlighting the importance of age-specific studies that capture the distinct features of pediatric HIV-1 infection.
Collapse
Affiliation(s)
| | - Katherine Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
20
|
McIntosh EDG. Development of vaccines against the sexually transmitted infections gonorrhoea, syphilis, Chlamydia, herpes simplex virus, human immunodeficiency virus and Zika virus. Ther Adv Vaccines Immunother 2020; 8:2515135520923887. [PMID: 32647779 PMCID: PMC7325543 DOI: 10.1177/2515135520923887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/07/2020] [Indexed: 01/13/2023] Open
Abstract
The success in preventing hepatitis B virus and human papillomavirus infections by means of vaccination paves the way for the development of other vaccines to prevent sexually transmitted infections (STIs) such as gonorrhoea, syphilis, chlamydia, herpes simplex virus, human immunodeficiency virus and Zika virus. The current status of vaccine development for these infections will be explored in this review. The general principles for success include the need for prevention of latency, persistence and repeat infections. A reduction in transmission of STIs would reduce the global burden of disease. Therapeutic activity of vaccines against STIs would be advantageous over preventative activity alone, and prevention of congenital and neonatal infections would be an added benefit. There would be an added value in the prevention of long-term consequences of STIs. It may be possible to re-purpose ‘old’ vaccines for new indications. One of the major challenges is the determination of the target populations for STI vaccination.
Collapse
Affiliation(s)
- Edwin David G McIntosh
- FEO - Faculty Education Office (Medicine), Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
21
|
Antibiotic-induced microbiome perturbations are associated with significant alterations to colonic mucosal immunity in rhesus macaques. Mucosal Immunol 2020; 13:471-480. [PMID: 31797911 PMCID: PMC7183431 DOI: 10.1038/s41385-019-0238-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
The diverse bacterial communities that colonize the gastrointestinal tract play an essential role in maintaining immune homeostasis through the production of critical metabolites such as short-chain fatty acids (SCFAs) and this can be disrupted by antibiotic use. However, few studies have addressed the effects of specific antibiotics longitudinally on the microbiome and immunity. We evaluated the effects of four specific antibiotics: enrofloxacin, cephalexin, paromomycin, and clindamycin, in healthy female rhesus macaques. All antibiotics disrupted the microbiome, including reduced abundances of fermentative bacteria and increased abundances of potentially pathogenic bacteria, including Enterobacteriaceae in the stool, and decreased Helicobacteraceae in the colon. This was associated with decreased SCFAs, indicating altered bacterial metabolism. Importantly, antibiotic use also substantially altered local immune responses, including increased neutrophils and Th17 cells in the colon. Furthermore, we observed increased soluble CD14 in plasma, indicating microbial translocation. These data provide a longitudinal evaluation of antibiotic-induced changes to the composition and function of colonic bacterial communities associated with specific alterations in mucosal and systemic immunity.
Collapse
|
22
|
Orihuela CJ, Maus UA, Brown JS. Can animal models really teach us anything about pneumonia? Pro. Eur Respir J 2020; 55:55/1/1901539. [DOI: 10.1183/13993003.01539-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023]
|
23
|
Khanal S, Fennessey CM, O'Brien SP, Thorpe A, Reid C, Immonen TT, Smith R, Bess JW, Swanstrom AE, Del Prete GQ, Davenport MP, Okoye AA, Picker LJ, Lifson JD, Keele BF. In Vivo Validation of the Viral Barcoding of Simian Immunodeficiency Virus SIVmac239 and the Development of New Barcoded SIV and Subtype B and C Simian-Human Immunodeficiency Viruses. J Virol 2019; 94:e01420-19. [PMID: 31597757 PMCID: PMC6912102 DOI: 10.1128/jvi.01420-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Genetically barcoded viral populations are powerful tools for evaluating the overall viral population structure as well as assessing the dynamics and evolution of individual lineages in vivo over time. Barcoded viruses are generated by inserting a small, genetically unique tag into the viral genome, which is retained in progeny virus. We recently reported barcoding the well-characterized molecular clone simian immunodeficiency virus (SIV) SIVmac239, resulting in a synthetic swarm (SIVmac239M) containing approximately 10,000 distinct viral clonotypes for which all genetic differences were within a 34-base barcode that could be tracked using next-generation deep sequencing. Here, we assessed the population size, distribution, and authenticity of individual viral clonotypes within this synthetic swarm using samples from 120 rhesus macaques infected intravenously. The number of replicating barcodes in plasma correlated with the infectious inoculum dose, and the primary viral growth rate was similar in all infected animals regardless of the inoculum size. Overall, 97% of detectable clonotypes in the viral stock were identified in the plasma of at least one infected animal. Additionally, we prepared a second-generation barcoded SIVmac239 stock (SIVmac239M2) with over 16 times the number of barcoded variants of the original stock and an additional barcoded stock with suboptimal nucleotides corrected (SIVmac239Opt5M). We also generated four barcoded stocks from subtype B and C simian-human immunodeficiency virus (SHIV) clones. These new SHIV clones may be particularly valuable models to evaluate Env-targeting approaches to study viral transmission or viral reservoir clearance. Overall, this work further establishes the reliability of the barcoded virus approach and highlights the feasibility of adapting this technique to other viral clones.IMPORTANCE We recently developed and published a description of a barcoded simian immunodeficiency virus that has a short random sequence inserted directly into the viral genome. This allows for the tracking of individual viral lineages with high fidelity and ultradeep sensitivity. This virus was used to infect 120 rhesus macaques, and we report here the analysis of the barcodes of these animals during primary infection. We found that the vast majority of barcodes were functional in vivo We then expanded the barcoding approach in a second-generation SIVmac239 stock (SIVmac239M2) with over 16 times the number of barcoded variants of the original stock and a barcoded stock of SIVmac239Opt5M whose sequence had 5 changes from the wild-type SIVmac239 sequence. We also generated 4 barcoded stocks from subtype B and C SHIV clones each containing a human immunodeficiency virus (HIV) type 1 envelope. These virus models are functional and can be useful for studying viral transmission and HIV cure/reservoir research.
Collapse
Affiliation(s)
- Sirish Khanal
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Abigail Thorpe
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Rodman Smith
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Julian W Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Adrienne E Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Miles P Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Afam A Okoye
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Louis J Picker
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| |
Collapse
|
24
|
Abstract
Viruses are causative agents for many diseases and infect all living organisms on the planet. Development of effective therapies has relied on our ability to isolate and culture viruses in vitro, allowing mechanistic studies and strategic interventions. While this reductionist approach is necessary, testing the relevance of in vitro findings often takes a very long time. New developments in imaging technologies are transforming our experimental approach where viral pathogenesis can be studied in vivo at multiple spatial and temporal resolutions. Here, we outline a vision of a top-down approach using noninvasive whole-body imaging as a guide for in-depth characterization of key tissues, physiologically relevant cell types, and pathways of spread to elucidate mechanisms of virus spread and pathogenesis. Tool development toward imaging of infectious diseases is expected to transform clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| |
Collapse
|
25
|
Martínez-Cerdeño V, Noctor SC. Cortical evolution 2018: Advantages of animal model species. J Comp Neurol 2018; 527:1766-1768. [PMID: 30394535 DOI: 10.1002/cne.24536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Verónica Martínez-Cerdeño
- UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California.,UC Davis School of Medicine, MIND Institute, Sacramento, California
| | - Stephen C Noctor
- UC Davis School of Medicine, MIND Institute, Sacramento, California.,UC Davis School of Medicine, Department of Psychiatry and Behavioral Sciences, Sacramento, California
| |
Collapse
|
26
|
Harding JD. Nonhuman Primates and Translational Research: Progress, Opportunities, and Challenges. ILAR J 2017; 58:141-150. [PMID: 29253273 PMCID: PMC5886318 DOI: 10.1093/ilar/ilx033] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/15/2023] Open
Abstract
Nonhuman primates (NHPs) are the closest animal models to humans regarding genetics, physiology and behavior. Therefore, NHPs are usually a critical component in translational research projects aimed at developing therapeutics, vaccines, devices or other interventions aimed at preventing, curing or ameliorating human disease. NHPs are often used in conjunction with other animal models, such as rodents, and results obtained using NHPs must often be used as the final criterion for establishing the potential efficacy of a pharmaceutical or vaccine before transition to human clinical trails. In some cases, NHPs may be the only relevant animal models for a particlular translational study. This issue of the ILAR journal brings together, in one place, articles that discuss the use of NHP models for studying human diseases that are highly prevalent and that cause extraordinary human suffering and financial and social burdens. Topics covered in detail include: tuberculosis; viral hepatitis; HIV/AIDS; neurodegenerative disorders; Substance abuse disorders; vision and prevention of blindness; disorder associated with psychosocial processes, such as anxiety, depression and loneliness; cardiovascular disease; metabolic disease, such as obesity and metabolic syndrome; respiratory disease; and female reproduction, prenatal development and women's health. Proper husbandry of NHPs that reduces stress and maintains animal health is critical for the development of NHP models. This issue of the journal includes a review of procedures for environmental enrichment, which helps assure animal health and wellbeing. Taken together, these articles provide detailed reviews of the use of NHP models for translational investigations and discuss successes, limitations, challenges and opportunities associated with this research.
Collapse
Affiliation(s)
- John D Harding
- John D. Harding, PhD, recently retired after several years of service at the National Institutes of Health in Bethesda, Maryland, where he was program officer for grants funding the US National Primate Research Centers.
| |
Collapse
|