1
|
Sun S, Chen Y, Ouyang Y, Tang Z. Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases. Clin Rev Allergy Immunol 2024; 68:2. [PMID: 39751934 DOI: 10.1007/s12016-024-09011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention. This review presents a summary of the significant functions of SWI/SNF complexes during the overall process from the development to the activation of innate and adaptive immune cells. In addition, the correlation between various SWI/SNF subunits and diverse inflammatory diseases is explored. Further investigations are warranted in terms of the mechanism of SWI/SNF complexes' preference for binding sites and opposite pro-/anti-inflammatory effects. In conclusion, further efforts are needed to evaluate the druggability of targeting SWI/SNF complexes in inflammatory diseases, and we hope this review will inspire the development of novel immune modulators in clinical practice.
Collapse
Affiliation(s)
- Shunan Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuzhen Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
2
|
Bu L, Huang S, Rao Z, Wu C, Sun BY, Liu Y, He L, Zhao D. CHD6 eviction of promoter nucleosomes maintains housekeeping transcriptional program in prostate cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102397. [PMID: 39717618 PMCID: PMC11665337 DOI: 10.1016/j.omtn.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024]
Abstract
CHD6, a member of the chromodomain helicase DNA-binding protein family, has been implicated in various diseases and tumors. However, its precise binding model of CHD6 on regulatory functional genes remains poorly understood. In this study, we discovered sharp peaks of CHD6, as the first member of CHD family for housekeeping process, binding only to the promoter region of genes in the C4-2 cell line. These genes, with conserved sharp CHD6 peaks across tumor cells, likely represent housekeeping genes ADNP and GOLGA5. Genes with sharp CHD6 peaks exhibit stable and low expression levels, sharing epigenetic features similar to housekeeping genes. Furthermore, this regulatory model also exists in both HEK293 cells and cardiomyocytes. Overall, the results of this study demonstrate that CHD6 binds to the promoter regions of housekeeping genes, regulating their histone modifications, chromatin structure, and gene expression.
Collapse
Affiliation(s)
- Lina Bu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Shaodong Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Ziyan Rao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Chenyang Wu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Bryan-Yu Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanhua Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lin He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Xiao CK, Ren Y, Chen Q, Yang Y, Tang L, Xu L, Ren Z. H4K20me3, H3K4me2 and H3K9me2 mediate the effect of ER on prognosis in breast cancer. Epigenetics 2024; 19:2343593. [PMID: 38643489 PMCID: PMC11037280 DOI: 10.1080/15592294.2024.2343593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Previous studies have indicated that histone methylations act as mediators in the relationship between oestrogen receptor (ER) and breast cancer prognosis, yet the mediating role has never been assessed. Therefore, we investigated seven histone methylations (H3K4me2, H3K4me3, H3K9me1, H3K9me2, H3K9me3, H3K27me3 and H4K20me3) to determine whether they mediate the prognostic impact of ER on breast cancer. Tissue microarrays were constructed from 1045 primary invasive breast tumours, and the expressions of histone methylations were examined by immunohistochemistry. Multifactorial logistic regression was used to analyse the associations between ER and histone methylations. Cox proportional hazard model was performed to assess the relationship between histone methylations and breast cancer prognosis. The mediation effects of histone methylations were evaluated by model-based causal mediation analysis. High expressions of H3K9me1, H3K9me2, H3K4me2, H3K27me3, H4K20me3 were associated with ER positivity, while high expression of H3K9me3 was associated ER negativity. Higher H3K9me2, H3K4me2 and H4K20me3 levels were associated with better prognosis. The association between ER and breast cancer prognosis was most strongly mediated by H4K20me3 (29.07% for OS; 22.42% for PFS), followed by H3K4me2 (11.5% for OS; 10.82% for PFS) and least by H3K9me2 (9.35% for OS; 7.34% for PFS). H4K20me3, H3K4me2 and H3K9me2 mediated the relationship between ER and breast cancer prognosis, which would help to further elucidate the impact of ER on breast cancer prognosis from an epigenetic perspective and provide new ideas for breast cancer treatment.
Collapse
Affiliation(s)
- Cheng-Kun Xiao
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuexiang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qianxin Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuanzhong Yang
- The Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Luying Tang
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Xu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
- School of Public Health, the University of Hong Kong, Hong Kong, China
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Zefang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Ma X, Thela SR, Zhao F, Yao B, Wen Z, Jin P, Zhao J, Chen L. Deep5hmC: predicting genome-wide 5-hydroxymethylcytosine landscape via a multimodal deep learning model. Bioinformatics 2024; 40:btae528. [PMID: 39196755 PMCID: PMC11379467 DOI: 10.1093/bioinformatics/btae528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024] Open
Abstract
MOTIVATION 5-Hydroxymethylcytosine (5hmC), a crucial epigenetic mark with a significant role in regulating tissue-specific gene expression, is essential for understanding the dynamic functions of the human genome. Despite its importance, predicting 5hmC modification across the genome remains a challenging task, especially when considering the complex interplay between DNA sequences and various epigenetic factors such as histone modifications and chromatin accessibility. RESULTS Using tissue-specific 5hmC sequencing data, we introduce Deep5hmC, a multimodal deep learning framework that integrates both the DNA sequence and epigenetic features such as histone modification and chromatin accessibility to predict genome-wide 5hmC modification. The multimodal design of Deep5hmC demonstrates remarkable improvement in predicting both qualitative and quantitative 5hmC modification compared to unimodal versions of Deep5hmC and state-of-the-art machine learning methods. This improvement is demonstrated through benchmarking on a comprehensive set of 5hmC sequencing data collected at four developmental stages during forebrain organoid development and across 17 human tissues. Compared to DeepSEA and random forest, Deep5hmC achieves close to 4% and 17% improvement of Area Under the Receiver Operating Characteristic (AUROC) across four forebrain developmental stages, and 6% and 27% across 17 human tissues for predicting binary 5hmC modification sites; and 8% and 22% improvement of Spearman correlation coefficient across four forebrain developmental stages, and 17% and 30% across 17 human tissues for predicting continuous 5hmC modification. Notably, Deep5hmC showcases its practical utility by accurately predicting gene expression and identifying differentially hydroxymethylated regions (DhMRs) in a case-control study of Alzheimer's disease (AD). Deep5hmC significantly improves our understanding of tissue-specific gene regulation and facilitates the development of new biomarkers for complex diseases. AVAILABILITY AND IMPLEMENTATION Deep5hmC is available via https://github.com/lichen-lab/Deep5hmC.
Collapse
Affiliation(s)
- Xin Ma
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, United States
| | - Sai Ritesh Thela
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, United States
| | - Fengdi Zhao
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Gainesville, FL 32603, United States
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, United States
| |
Collapse
|
5
|
Wu P, Liu Z, Zheng L, Zhou Z, Wang W, Lu C. Comprehensive multimodal and multiomic profiling reveals epigenetic and transcriptional reprogramming in lung tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597667. [PMID: 38895479 PMCID: PMC11185586 DOI: 10.1101/2024.06.06.597667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Epigenomic mechanisms are critically involved in mediation of genetic and environmental factors that underlie cancer development. Histone modifications represent highly informative epigenomic marks that reveal activation and repression of gene activities and dysregulation of transcriptional control due to tumorigenesis. Here, we present a comprehensive epigenomic and transcriptomic mapping of 18 tumor and 20 non-neoplastic tissues from non-small cell lung adenocarcinoma patients. Our profiling covers 5 histone marks including activating (H3K4me3, H3K4me1, and H3K27ac) and repressive (H3K27me3 and H3K9me3) marks and the transcriptome using only 20 mg of tissue per sample, enabled by low-input omic technologies. Using advanced integrative bioinformatic analysis, we uncovered cancer-driving signaling cascade networks, changes in 3D genome modularity, and differential expression and functionalities of transcription factors and noncoding RNAs. Many of these identified genes and regulatory molecules showed no significant change in their expression or a single epigenomic modality, emphasizing the power of integrative multimodal and multiomic analysis using patient samples.
Collapse
|
6
|
Riccardi F, Romano G, Licastro D, Pagani F. Age-dependent regulation of ELP1 exon 20 splicing in Familial Dysautonomia by RNA Polymerase II kinetics and chromatin structure. PLoS One 2024; 19:e0298965. [PMID: 38829854 PMCID: PMC11146744 DOI: 10.1371/journal.pone.0298965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/01/2024] [Indexed: 06/05/2024] Open
Abstract
Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.
Collapse
Affiliation(s)
- Federico Riccardi
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano, Trieste, Italy
| | - Giulia Romano
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano, Trieste, Italy
| | - Danilo Licastro
- Laboratorio di Genomica ed Epigenomica, AREA Science Park, Padriciano, Trieste, Italy
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano, Trieste, Italy
| |
Collapse
|
7
|
Brocato ER, Easter R, Morgan A, Kakani M, Lee G, Wolstenholme JT. Adolescent binge ethanol impacts H3K9me3-occupancy at synaptic genes and the regulation of oligodendrocyte development. Front Mol Neurosci 2024; 17:1389100. [PMID: 38840776 PMCID: PMC11150558 DOI: 10.3389/fnmol.2024.1389100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Binge drinking in adolescence can disrupt myelination and cause brain structural changes that persist into adulthood. Alcohol consumption at a younger age increases the susceptibility of these changes. Animal models to understand ethanol's actions on myelin and white matter show that adolescent binge ethanol can alter the developmental trajectory of oligodendrocytes, myelin structure, and myelin fiber density. Oligodendrocyte differentiation is epigenetically regulated by H3K9 trimethylation (H3K9me3). Prior studies have shown that adolescent binge ethanol dysregulates H3K9 methylation and decreases H3K9-related gene expression in the PFC. Methods Here, we assessed ethanol-induced changes to H3K9me3 occupancy at genomic loci in the developing adolescent PFC. We further assessed ethanol-induced changes at the transcription level with qPCR time course approaches in oligodendrocyte-enriched cells to assess changes in oligodendrocyte progenitor and oligodendrocytes specifically. Results Adolescent binge ethanol altered H3K9me3 regulation of synaptic-related genes and genes specific for glutamate and potassium channels in a sex-specific manner. In PFC tissue, we found an early change in gene expression in transcription factors associated with oligodendrocyte differentiation that may lead to the later significant decrease in myelin-related gene expression. This effect appeared stronger in males. Conclusion Further exploration in oligodendrocyte cell enrichment time course and dose response studies could suggest lasting dysregulation of oligodendrocyte maturation at the transcriptional level. Overall, these studies suggest that binge ethanol may impede oligodendrocyte differentiation required for ongoing myelin development in the PFC by altering H3K9me3 occupancy at synaptic-related genes. We identify potential genes that may be contributing to adolescent binge ethanol-related myelin loss.
Collapse
Affiliation(s)
- Emily R. Brocato
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Rachel Easter
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Alanna Morgan
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Meenakshi Kakani
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Grace Lee
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T. Wolstenholme
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
8
|
Ma X, Thela SR, Zhao F, Yao B, Wen Z, Jin P, Zhao J, Chen L. Deep5hmC: Predicting genome-wide 5-Hydroxymethylcytosine landscape via a multimodal deep learning model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583444. [PMID: 38496575 PMCID: PMC10942288 DOI: 10.1101/2024.03.04.583444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
5-hydroxymethylcytosine (5hmC), a critical epigenetic mark with a significant role in regulating tissue-specific gene expression, is essential for understanding the dynamic functions of the human genome. Using tissue-specific 5hmC sequencing data, we introduce Deep5hmC, a multimodal deep learning framework that integrates both the DNA sequence and the histone modification information to predict genome-wide 5hmC modification. The multimodal design of Deep5hmC demonstrates remarkable improvement in predicting both qualitative and quantitative 5hmC modification compared to unimodal versions of Deep5hmC and state-of-the-art machine learning methods. This improvement is demonstrated through benchmarking on a comprehensive set of 5hmC sequencing data collected at four time points during forebrain organoid development and across 17 human tissues. Notably, Deep5hmC showcases its practical utility by accurately predicting gene expression and identifying differentially hydroxymethylated regions in a case-control study of Alzheimer's disease.
Collapse
Affiliation(s)
- Xin Ma
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Sai Ritesh Thela
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Fengdi Zhao
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Gainesville, FL, 32603, USA
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| |
Collapse
|
9
|
Lee BK, Salamah J, Cheeran E, Adu-Gyamfi EA. Dynamic and distinct histone modifications facilitate human trophoblast lineage differentiation. Sci Rep 2024; 14:4505. [PMID: 38402275 PMCID: PMC10894295 DOI: 10.1038/s41598-024-55189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
The placenta serves as an essential organ for fetal growth throughout pregnancy. Histone modification is a crucial regulatory mechanism involved in numerous biological processes and development. Nevertheless, there remains a significant gap in our understanding regarding the epigenetic regulations that influence trophoblast lineage differentiation, a fundamental aspect of placental development. Here, through comprehensive mapping of H3K4me3, H3K27me3, H3K9me3, and H3K27ac loci during the differentiation of trophoblast stem cells (TSCs) into syncytiotrophoblasts (STs) and extravillous trophoblasts (EVTs), we reveal dynamic reconfiguration in H3K4me3 and H3K27ac patterns that establish an epigenetic landscape conducive to proper trophoblast lineage differentiation. We observe that broad H3K4me3 domains are associated with trophoblast lineage-specific gene expression. Unlike embryonic stem cells, TSCs lack robust bivalent domains. Notably, the repression of ST- and EVT-active genes in TSCs is primarily attributed to the weak H3K4me3 signal rather than bivalent domains. We also unveil the inactivation of TSC enhancers precedes the activation of ST enhancers during ST formation. Our results provide a comprehensive global map of diverse histone modifications, elucidating the dynamic histone modifications during trophoblast lineage differentiation.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA.
| | - Joudi Salamah
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Elisha Cheeran
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| |
Collapse
|
10
|
Yang B, Alimperti S, Gonzalez MV, Dentchev T, Kim M, Suh J, Titchenell PM, Ko KI, Seykora J, Benakanakere M, Graves DT. Reepithelialization of Diabetic Skin and Mucosal Wounds Is Rescued by Treatment With Epigenetic Inhibitors. Diabetes 2024; 73:120-134. [PMID: 37874683 PMCID: PMC10784658 DOI: 10.2337/db23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023]
Abstract
Wound healing is a complex, highly regulated process and is substantially disrupted by diabetes. We show here that human wound healing induces specific epigenetic changes that are exacerbated by diabetes in an animal model. We identified epigenetic changes and gene expression alterations that significantly reduce reepithelialization of skin and mucosal wounds in an in vivo model of diabetes, which were dramatically rescued in vivo by blocking these changes. We demonstrate that high glucose altered FOXO1-matrix metallopeptidase 9 (MMP9) promoter interactions through increased demethylation and reduced methylation of DNA at FOXO1 binding sites and also by promoting permissive histone-3 methylation. Mechanistically, high glucose promotes interaction between FOXO1 and RNA polymerase-II (Pol-II) to produce high expression of MMP9 that limits keratinocyte migration. The negative impact of diabetes on reepithelialization in vivo was blocked by specific DNA demethylase inhibitors in vivo and by blocking permissive histone-3 methylation, which rescues FOXO1-impaired keratinocyte migration. These studies point to novel treatment strategies for delayed wound healing in individuals with diabetes. They also indicate that FOXO1 activity can be altered by diabetes through epigenetic changes that may explain other diabetic complications linked to changes in diabetes-altered FOXO1-DNA interactions. ARTICLE HIGHLIGHTS FOXO1 expression in keratinocytes is needed for normal wound healing. In contrast, FOXO1 expression interferes with the closure of diabetic wounds. Using matrix metallopeptidase 9 as a model system, we found that high glucose significantly increased FOXO1-matrix metallopeptidase 9 interactions via increased DNA demethylation, reduced DNA methylation, and increased permissive histone-3 methylation in vitro. Inhibitors of DNA demethylation and permissive histone-3 methylation improved the migration of keratinocytes exposed to high glucose in vitro and the closure of diabetic skin and mucosal wounds in vivo. Inhibition of epigenetic enzymes that alter FOXO1-induced gene expression dramatically improves diabetic healing and may apply to other conditions where FOXO1 has a detrimental role in diabetic complications.
Collapse
Affiliation(s)
- Bo Yang
- Department of Implant Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stella Alimperti
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Michael V. Gonzalez
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Cytokine Storm Treatment & Laboratory, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tzvete Dentchev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Minjung Kim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Justin Suh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul M. Titchenell
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kang I. Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Manju Benakanakere
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
12
|
Guha S, Sesili S, Mir IH, Thirunavukkarasu C. Epigenetics and mitochondrial dysfunction insights into the impact of the progression of non-alcoholic fatty liver disease. Cell Biochem Funct 2023; 41:4-19. [PMID: 36330539 DOI: 10.1002/cbf.3763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
A metabolic problem occurs when regular functions of the body are disrupted due to an undesirable imbalance. Nonalcoholic fatty liver disease (NAFLD) is considered as one of the most common in this category. NAFLD is subclassified and progresses from lipid accumulation to cirrhosis before advancing to hepatocellular cancer. In spite of being a critical concern, the standard treatment is inadequate. Metformin, silymarin, and other nonspecific medications are used in the management of NAFLD. Aside from this available medicine, maintaining a healthy lifestyle has been emphasized as a means of combating this. Epigenetics, which has been attributed to NAFLD, is another essential feature of this disease that has emerged as a result of several sorts of research. The mechanisms by which DNA methylation, noncoding RNA, and histone modification promote NAFLD have been extensively researched. Another organelle, mitochondria, which play a pivotal role in biological processes, contributes to the global threat. Individuals with NAFLD have been documented to have a multitude of alterations and malfunctioning. Mitochondria are mainly concerned with the process of energy production and regulation of the signaling pathway on which the fate of a cell relies. Modulation of mitochondria leads to elevated lipid deposition in the liver. Further, changes in oxidation states result in an impaired balance between the antioxidant system and reactive oxygen species directly linked to mitochondria. Hence mitochondria have a definite role in potentiating NAFLD. In this regard, it is essential to consider the role of epigenetics as well as mitochondrial contribution while developing a medication or therapy with the desired accuracy.
Collapse
Affiliation(s)
- Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Selvam Sesili
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
13
|
Ding ZM, Chen YW, Ahmad MJ, Wang YS, Yang SJ, Duan ZQ, Liu M, Yang CX, Liang AX, Hua GH, Huo LJ. Bisphenol F exposure affects mouse oocyte in vitro maturation through inducing oxidative stress and DNA damage. ENVIRONMENTAL TOXICOLOGY 2022; 37:1413-1422. [PMID: 35218298 DOI: 10.1002/tox.23494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol F (BPF), a substitute for bisphenol A (BPA), is progressively used to manufacture various consumer products. Despite the established reproductive toxicity of BPF, the underlying mechanisms remain to elucidate. This in-vitro study deep in sighted the BPF toxicity on mouse oocyte meiotic maturation and quality. After treating oocytes with BPF (300 μM), the oocyte meiotic progression was blocked, accentuated by a reduced rate in the first polar body extrusion (PBE). Next, we illustrated that BPF induced α-tubulin hyper-acetylation disrupted the spindle assembly and chromosome alignment. Concurrently, BPF resulted in severe oxidative stress and DNA damage, which triggered the early apoptosis in mouse oocytes. Further, altered epigenetic modifications following BPF exposure were proved by increased H3K27me3 levels. Concerning the toxic effects on spindle structure, oxidative stress, and DNA damage in mouse oocytes, BPF toxicity was less severe to oocyte maturation and spindle structure than BPA and induced low oxidative stress. However, compared with BPA, oocytes treated with BPF were more prone to DNA damage, indicating not less intense or even more severe toxic effects of BPF than BPA on some aspects of oocytes maturation. In brief, the present study established that like wise to BPA, BPF could inhibit meiotic maturation and reduce oocyte quality, suggesting it is not a safe substitute for BPA.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Guo-Hua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Kfoury-Beaumont N, Prakasam R, Pondugula S, Lagas JS, Matkovich S, Gontarz P, Yang L, Yano H, Kim AH, Rubin JB, Kroll KL. The H3K27M mutation alters stem cell growth, epigenetic regulation, and differentiation potential. BMC Biol 2022; 20:124. [PMID: 35637482 PMCID: PMC9153095 DOI: 10.1186/s12915-022-01324-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders increase brain tumor risk, suggesting that normal brain development may have protective properties. Mutations in epigenetic regulators are common in pediatric brain tumors, highlighting a potentially central role for disrupted epigenetic regulation of normal brain development in tumorigenesis. For example, lysine 27 to methionine mutation (H3K27M) in the H3F3A gene occurs frequently in Diffuse Intrinsic Pontine Gliomas (DIPGs), the most aggressive pediatric glioma. As H3K27M mutation is necessary but insufficient to cause DIPGs, it is accompanied by additional mutations in tumors. However, how H3K27M alone increases vulnerability to DIPG tumorigenesis remains unclear. RESULTS Here, we used human embryonic stem cell models with this mutation, in the absence of other DIPG contributory mutations, to investigate how H3K27M alters cellular proliferation and differentiation. We found that H3K27M increased stem cell proliferation and stem cell properties. It interfered with differentiation, promoting anomalous mesodermal and ectodermal gene expression during both multi-lineage and germ layer-specific cell specification, and blocking normal differentiation into neuroectoderm. H3K27M mutant clones exhibited transcriptomic diversity relative to the more homogeneous wildtype population, suggesting reduced fidelity of gene regulation, with aberrant expression of genes involved in stem cell regulation, differentiation, and tumorigenesis. These phenomena were associated with global loss of H3K27me3 and concordant loss of DNA methylation at specific genes in H3K27M-expressing cells. CONCLUSIONS Together, these data suggest that H3K27M mutation disrupts normal differentiation, maintaining a partially differentiated state with elevated clonogenicity during early development. This disrupted response to early developmental cues could promote tissue properties that enable acquisition of additional mutations that cooperate with H3K27M mutation in genesis of DMG/DIPG. Therefore, this work demonstrates for the first time that H3K27M mutation confers vulnerability to gliomagenesis through persistent clonogenicity and aberrant differentiation and defines associated alterations of histone and DNA methylation.
Collapse
Affiliation(s)
- N. Kfoury-Beaumont
- Department of Neurosurgery, University of California in San Diego, La Jolla, CA USA
| | - R. Prakasam
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
| | - S. Pondugula
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - J. S. Lagas
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - S. Matkovich
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St Louis, MO USA
| | - P. Gontarz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
| | - L. Yang
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - H. Yano
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO USA
| | - A. H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
| | - J. B. Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO USA
| | - K. L. Kroll
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
| |
Collapse
|
15
|
Li J, Shao Y, Yang Y, Xu C, Jing Z, Li H, Xie B, Tao Y. The Chromatin Modifier Protein FfJMHY Plays an Important Role in Regulating the Rate of Mycelial Growth and Stipe Elongation in Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8050477. [PMID: 35628733 PMCID: PMC9147824 DOI: 10.3390/jof8050477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022] Open
Abstract
Stipe elongation is an important process in the development of the fruiting body and is associated with the commodity quality of agaric fungi. In this study, F. filiformis was used as a model agaric fungus to reveal the function of the chromatin modifier gene containing the JmjC domain in stipe elongation. First, we identified a JmjC domain family gene (FfJmhy) with a 3684 bp length open reading frame (ORF) in F. filiformis. FfJmhy was predicted to have a histone H3K9 demethylation function, and was specifically upregulated during stipe rapid elongation. Further investigation revealed that the silencing of FfJmhy inhibited the mycelial growth, while overexpression of this gene had no effect on the mycelial growth. Comparative analysis revealed that the stipe elongation rate in FfJmhy overexpression strains was significantly increased, while it was largely reduced when FfJmhy was silenced. Taken together, these results suggest that FfJmhy positively regulates the mycelial growth and controls the elongation speed and the length of the stipe. Moreover, cell wall-related enzymes genes, including three exo-β-1,3-glucanases, one β-1,6-glucan synthase, four chitinases, and two expansin proteins, were found to be regulated by FfJmhy. Based on the putative functions of FfJmhy, we propose that this gene enhances the transcription of cell wall-related enzymes genes by demethylating histone H3K9 sites to regulate remodeling of the cell wall in rapid stipe elongation. This study provides new insight into the mechanism of rapid stipe elongation, and it is important to regulate the commodity quality of agaric fungi.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanping Shao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Chang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China;
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|
16
|
Mishra P, Beura S, Sikder S, Dhal AK, Vasudevan M, Roy M, Rakshit J, Budhwar R, Kundu TK, Modak R. vp1524, a Vibrio parahaemolyticus NAD+ dependent deacetylase, regulates host response during infection by induction of host histone deacetylation. J Biochem 2022; 171:673-693. [PMID: 35325168 DOI: 10.1093/jb/mvac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
Gram negative intracellular pathogen V. parahaemolyticus manifests its infection through a series of effector proteins released into the host via the type III secretion system. Most of these effector proteins alter signalling pathways of the host to facilitate survival and proliferation of bacteria inside host cells. Here, we report V. parahaemolyticus (serotype O3:K6) infection induced histone deacetylation in host intestinal epithelial cells, particularly deacetylation of H3K9, H3K56, H3K18 and H4K16 residues. We found a putative NAD+ dependent deacetylase, vp1524 (vpCobB) of Vibrio parahaemolyticus, was overexpressed during infection. Biochemical assays revealed that Vp1524 is a functional NAD+ dependent Sir2 family deacetylase in vitro, which was capable of deacetylating acetylated histones. Furthermore, we observed that vp1524 is expressed and localized to the nuclear periphery of the host cells during infection. Consequently, Vp1524 translocated to nuclear compartments of transfected cells, deacetylated histones, specifically causing deacetylation of those residues (K56, K16, K18) associated with V. parahaemolyticus infection. This infection induced deacetylation resulted in transcriptional repression of several host genes involved in epigenetic regulation, immune response, autophagy etc. Thus, our study shows that a V. parahaemolyticus lysine deacetylase Vp1524 is secreted inside the host cells during infection, modulating host gene expression through histone deacetylation.
Collapse
Affiliation(s)
- Pragyan Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| | - Shibangini Beura
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| | - Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru: 560064, INDIA
| | - Ajit Ku Dhal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| | - Madavan Vasudevan
- Theomics International Pvt Ltd, 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru - 560038, INDIA
| | - Manjima Roy
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| | - Joydeep Rakshit
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| | - Roli Budhwar
- Bionivid Technology Pvt. Ltd., 4C-209 1st Floor 4th Cross Kasturi Nagar Near New Horizon College Bangalore-560043 INDIA
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru: 560064, INDIA.,Division of Neuroscience and Ageing, Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, INDIA
| | - Rahul Modak
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| |
Collapse
|
17
|
Vijayanathan M, Trejo-Arellano MG, Mozgová I. Polycomb Repressive Complex 2 in Eukaryotes-An Evolutionary Perspective. EPIGENOMES 2022; 6:3. [PMID: 35076495 PMCID: PMC8788455 DOI: 10.3390/epigenomes6010003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) represents a group of evolutionarily conserved multi-subunit complexes that repress gene transcription by introducing trimethylation of lysine 27 on histone 3 (H3K27me3). PRC2 activity is of key importance for cell identity specification and developmental phase transitions in animals and plants. The composition, biochemistry, and developmental function of PRC2 in animal and flowering plant model species are relatively well described. Recent evidence demonstrates the presence of PRC2 complexes in various eukaryotic supergroups, suggesting conservation of the complex and its function. Here, we provide an overview of the current understanding of PRC2-mediated repression in different representatives of eukaryotic supergroups with a focus on the green lineage. By comparison of PRC2 in different eukaryotes, we highlight the possible common and diverged features suggesting evolutionary implications and outline emerging questions and directions for future research of polycomb repression and its evolution.
Collapse
Affiliation(s)
- Mallika Vijayanathan
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
| | - María Guadalupe Trejo-Arellano
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
| | - Iva Mozgová
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
- Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
18
|
Abstract
Increasing evidence indicates that non-DNA sequence-based epigenetic information can be inherited across several generations in organisms ranging from yeast to plants to humans. This raises the possibility of heritable 'epimutations' contributing to heritable phenotypic variation and thus to evolution. Recent work has shed light on both the signals that underpin these epimutations, including DNA methylation, histone modifications and non-coding RNAs, and the mechanisms by which they are transmitted across generations at the molecular level. These mechanisms can vary greatly among species and have a more limited effect in mammals than in plants and other animal species. Nevertheless, common principles are emerging, with transmission occurring either via direct replicative mechanisms or indirect reconstruction of the signal in subsequent generations. As these processes become clearer we continue to improve our understanding of the distinctive features and relative contribution of DNA sequence and epigenetic variation to heritable differences in phenotype.
Collapse
|
19
|
Wakim JG, Sandholtz SH, Spakowitz AJ. Impact of chromosomal organization on epigenetic drift and domain stability revealed by physics-based simulations. Biophys J 2021; 120:4932-4943. [PMID: 34687722 DOI: 10.1016/j.bpj.2021.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
We examine the relationship between the size of domains of epigenetic marks and the stability of those domains using our theoretical model that captures the physical mechanisms governing the maintenance of epigenetic modifications. We focus our study on histone H3 lysine-9 trimethylation, one of the most common and consequential epigenetic marks with roles in chromatin compaction and gene repression. Our model combines the effects of methyl spreading by methyltransferases and chromatin segregation into heterochromatin and euchromatin because of preferential heterochromatin protein 1 (HP1) binding. Our model indicates that, although large methylated domains are passed successfully from one chromatin generation to the next, small alterations to the methylation sequence are not maintained during chromatin replication. Using our predictive model, we investigate the size required for an epigenetic domain to persist over chromatin generations while surrounded by a much larger domain of opposite methylation and compaction state. We find that there is a critical size threshold in the hundreds-of-nucleosomes scale above which an epigenetic domain will be reliably maintained over generations. The precise size of the threshold differs for heterochromatic and euchromatic domains. Our results are consistent with natural alterations to the epigenetic sequence occurring during embryonic development and due to age-related epigenetic drift.
Collapse
Affiliation(s)
- Joseph G Wakim
- Department of Chemical Engineering, Stanford University, Stanford, California
| | | | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California; Department of Materials Science and Engineering, Stanford University, Stanford, California; Biophysics Program, Stanford University, Stanford, California; Department of Applied Physics, Stanford University, Stanford, California.
| |
Collapse
|
20
|
Katainen R, Donner I, Räisänen M, Berta D, Kuosmanen A, Kaasinen E, Hietala M, Aaltonen LA. Novel germline variant in the histone demethylase and transcription regulator KDM4C induces a multi-cancer phenotype. J Med Genet 2021; 59:644-651. [PMID: 34281993 PMCID: PMC9252859 DOI: 10.1136/jmedgenet-2021-107747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022]
Abstract
Background Genes involved in epigenetic regulation are central for chromatin structure and gene expression. Specific mutations in these might promote carcinogenesis in several tissue types. Methods We used exome, whole-genome and Sanger sequencing to detect rare variants shared by seven affected individuals in a striking early-onset multi-cancer family. The only variant that segregated with malignancy resided in a histone demethylase KDM4C. Consequently, we went on to study the epigenetic landscape of the mutation carriers with ATAC, ChIP (chromatin immunoprecipitation) and RNA-sequencing from lymphoblastoid cell lines to identify possible pathogenic effects. Results A novel variant in KDM4C, encoding a H3K9me3 histone demethylase and transcription regulator, was found to segregate with malignancy in the family. Based on Roadmap Epigenomics Project data, differentially accessible chromatin regions between the variant carriers and controls enrich to normally H3K9me3-marked chromatin. We could not detect a difference in global H3K9 trimethylation levels. However, carriers of the variant seemed to have more trimethylated H3K9 at transcription start sites. Pathway analyses of ChIP-seq and differential gene expression data suggested that genes regulated through KDM4C interaction partner EZH2 and its interaction partner PLZF are aberrantly expressed in mutation carriers. Conclusions The apparent dysregulation of H3K9 trimethylation and KDM4C-associated genes in lymphoblastoid cells supports the hypothesis that the KDM4C variant is causative of the multi-cancer susceptibility in the family. As the variant is ultrarare, located in the conserved catalytic JmjC domain and predicted pathogenic by the majority of available in silico tools, further studies on the role of KDM4C in cancer predisposition are warranted.
Collapse
Affiliation(s)
- Riku Katainen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Iikki Donner
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Maritta Räisänen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Davide Berta
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Anna Kuosmanen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Eevi Kaasinen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Marja Hietala
- Department of Clinical Genetics, TYKS Turku University Hospital and University of Turku Institute of Biomedicine, Turku, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| |
Collapse
|
21
|
Mendonca A, Sánchez OF, Xie J, Carneiro A, Lin L, Yuan C. Identifying distinct heterochromatin regions using combinatorial epigenetic probes in live cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194725. [PMID: 34174495 DOI: 10.1016/j.bbagrm.2021.194725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
The 3D spatial organization of the genome controls gene expression and cell functionality. Heterochromatin (HC), which is the densely compacted and largely silenced part of the chromatin, is the driver for the formation and maintenance of nuclear organization in the mammalian nucleus. It is functionally divided into highly compact constitutive heterochromatin (cHC) and transcriptionally poised facultative heterochromatin (fHC). Long regarded as a static structure, the highly dynamic nature of the heterochromatin is being slowly understood and studied. These changes in HC occur on various temporal scales during the cell cycle and differentiation processes. Most methods that capture information about the heterochromatin are static techniques that cannot provide a readout of how the HC organization evolves with time. The delineation of specific areas such as fHC are also rendered difficult due to its diffusive nature and lack of specific features. Another degree of complexity in characterizing changes in heterochromatin occurs due to the heterogeneity in the HC organization of individual cells, necessitating single cell studies. Overall, there is a need for live cell compatible tools that can stably track the heterochromatin as it undergoes re-organization. In this work, we present an approach to track cHC and fHC based on the epigenetic hallmarks associated with them. Unlike conventional immunostaining approaches, we use small recombinant protein probes that allow us to dynamically monitor the HC by binding to modifications specific to the cHC and fHC, such as H3K9me3, DNA methylation and H3K27me3. We demonstrate the use of the probes to follow the changes in HC induced by drug perturbations at the single cell level. We also use the probe sets combinatorically to simultaneously track chromatin regions enriched in two selected epigenetic modifications using a FRET based approach that enabled us tracking distinctive chromatin features in situ.
Collapse
Affiliation(s)
- Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Ana Carneiro
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
22
|
Wong X, Cutler JA, Hoskins VE, Gordon M, Madugundu AK, Pandey A, Reddy KL. Mapping the micro-proteome of the nuclear lamina and lamina-associated domains. Life Sci Alliance 2021; 4:e202000774. [PMID: 33758005 PMCID: PMC8008952 DOI: 10.26508/lsa.202000774] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/13/2023] Open
Abstract
The nuclear lamina is a proteinaceous network of filaments that provide both structural and gene regulatory functions by tethering proteins and large domains of DNA, the so-called lamina-associated domains (LADs), to the periphery of the nucleus. LADs are a large fraction of the mammalian genome that are repressed, in part, by their association to the nuclear periphery. The genesis and maintenance of LADs is poorly understood as are the proteins that participate in these functions. In an effort to identify proteins that reside at the nuclear periphery and potentially interact with LADs, we have taken a two-pronged approach. First, we have undertaken an interactome analysis of the inner nuclear membrane bound LAP2β to further characterize the nuclear lamina proteome. To accomplish this, we have leveraged the BioID system, which previously has been successfully used to characterize the nuclear lamina proteome. Second, we have established a system to identify proteins that bind to LADs by developing a chromatin-directed BioID system. We combined the BioID system with the m6A-tracer system which binds to LADs in live cells to identify both LAD proximal and nuclear lamina proteins. In combining these datasets, we have further characterized the protein network at the nuclear lamina, identified putative LAD proximal proteins and found several proteins that appear to interface with both micro-proteomes. Importantly, several proteins essential for LAD function, including heterochromatin regulating proteins related to H3K9 methylation, were identified in this study.
Collapse
Affiliation(s)
- Xianrong Wong
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Immunos, Singapore
| | - Jevon A Cutler
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victoria E Hoskins
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Molly Gordon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anil K Madugundu
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHNS), Bangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHNS), Bangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Fitz-James MH, Tong P, Pidoux AL, Ozadam H, Yang L, White SA, Dekker J, Allshire RC. Large domains of heterochromatin direct the formation of short mitotic chromosome loops. eLife 2020; 9:e57212. [PMID: 32915140 PMCID: PMC7515631 DOI: 10.7554/elife.57212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
During mitosis chromosomes reorganise into highly compact, rod-shaped forms, thought to consist of consecutive chromatin loops around a central protein scaffold. Condensin complexes are involved in chromatin compaction, but the contribution of other chromatin proteins, DNA sequence and histone modifications is less understood. A large region of fission yeast DNA inserted into a mouse chromosome was previously observed to adopt a mitotic organisation distinct from that of surrounding mouse DNA. Here, we show that a similar distinct structure is common to a large subset of insertion events in both mouse and human cells and is coincident with the presence of high levels of heterochromatic H3 lysine nine trimethylation (H3K9me3). Hi-C and microscopy indicate that the heterochromatinised fission yeast DNA is organised into smaller chromatin loops than flanking euchromatic mouse chromatin. We conclude that heterochromatin alters chromatin loop size, thus contributing to the distinct appearance of heterochromatin on mitotic chromosomes.
Collapse
Affiliation(s)
- Maximilian H Fitz-James
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pin Tong
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison L Pidoux
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hakan Ozadam
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Liyan Yang
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Sharon A White
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Robin C Allshire
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Meng F, Jiao XF, Chen F, Zhang XY, Duan ZQ, Ding ZM, Wu D, Wang YS, Zhang SX, Miao YL, Huo LJ. Isobutylparaben Negatively Affects Porcine Oocyte Maturation Through Increasing Oxidative Stress and Cytoskeletal Abnormalities. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:433-444. [PMID: 31922297 DOI: 10.1002/em.22356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
As a member of parabens (PBs), Isobutylparaben (IBP) has a broad-spectrum antimicrobial activity and widely used in personal care products and cosmetics. Recent studies have indicated that usage of IBP poses a potential threat to reproductive health. In this study, we aimed to reveal the effects of acute exposure to IBP on the meiotic maturation of porcine cumulus oocyte complexes. Initial study showed that 200 μM of IBP significantly reduced the rate of the first polar body extrusion with no significant effect on cumulus cell expansion; however, 400 μM of IBP could significantly affect both. Further research revealed that abnormal spindles, misalignment chromosomes, and aberrant distributed actin filaments were detected in IBP-treated oocytes, which indicates that the cytoskeleton architecture of oocyte could be the target of IBP. At the same time, ROS level and apoptosis rate of oocyte were significantly increased by IBP exposure. Moreover, the levels of H3K9me3 and H3K27me3 were significantly induced in oocytes by IBP. Collectively, these results demonstrate that acute exposure to IBP could disrupt porcine oocyte maturation through affecting cytoskeleton, oxidative stress, viability and epigenetic modification. Environ. Mol. Mutagen. 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fei Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi-Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Monaghan L, Massett ME, Bunschoten RP, Hoose A, Pirvan PA, Liskamp RMJ, Jørgensen HG, Huang X. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2019; 9:705. [PMID: 31428579 PMCID: PMC6687838 DOI: 10.3389/fonc.2019.00705] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Growing evidence has demonstrated that epigenetic dysregulation is a common pathological feature in human cancer cells. Global alterations in the epigenetic landscape are prevalent in malignant cells across different solid tumors including, prostate cancer, non-small-cell lung cancer, renal cell carcinoma, and in haemopoietic malignancy. In particular, DNA hypomethylation and histone hypoacetylation have been observed in acute myeloid leukemia (AML) patient blasts, with histone methylation being an emerging area of study. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational modification known to be involved in the regulation of a broad range of biological processes, including the formation of transcriptionally silent heterochromatin. Following the observation of its aberrant methylation status in hematological malignancy and several other cancer phenotypes, recent studies have associated H3K9me3 levels with patient outcome and highlighted key molecular mechanisms linking H3K9me3 profile with AML etiology in a number of large-scale meta-analysis. Consequently, the development and application of small molecule inhibitors which target the histone methyltransferases or demethylase enzymes known to participate in the oncogenic regulation of H3K9me3 in AML represents an advancing area of ongoing study. Here, we provide a comprehensive review on how this particular epigenetic mark is regulated within cells and its emerging role as a potential therapeutic target in AML, along with an update on the current research into advancing the generation of more potent and selective inhibitors against known H3K9 methyltransferases and demethylases.
Collapse
Affiliation(s)
- Laura Monaghan
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew E. Massett
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Alex Hoose
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
26
|
Abstract
Dementia is an overarching term which describes a group of symptoms that result in long-term decline in cognitive functioning that is significant enough to affect daily function. It is caused by a number of different diseases, the most common of which is Alzheimer's disease. Currently, there are no definitive biomarkers for preclinical or diagnostic use, or which differentiate between underlying disease types. The purpose of this review is to highlight several important areas of research on blood-based biomarkers of dementia, with a specific focus on epigenetic biomarkers. A systematic search of the literature identified 77 studies that compared blood DNA methylation between individuals with dementia and controls and 45 studies that measured microRNA. Very few studies were identified that focused on histone modifications. There were many promising findings from studies in the field of blood-based epigenetic biomarkers of dementia, however, a lack of consistency in study design, technologies, and platforms used for the biomarker measurement, as well as statistical analysis methods, have hampered progress. To date, there are very few findings that have been independently replicated across more than one study, indicating a preponderance of false-positive findings and the field has likely been plagued by positive publication bias. Here, we highlight and discuss several of the limitations of existing studies and provide recommendations for how these could be overcome in future research. A robust framework should be followed to enable development of the most valid and reproducible biomarkers with the strongest clinical utility. Defining a series of biomarkers that may be complimentary to each other could permit a stronger multifactorial biomarker to be developed that would allow for not only accurate dementia diagnosis but preclinical detection.
Collapse
Affiliation(s)
- Peter D Fransquet
- Department of Epidemiology and Preventive Medicine, Monash University , Melbourne , Australia.,Disease Epigenetics, Murdoch Children's Research Institute , Parkville , Australia
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University , Melbourne , Australia.,Disease Epigenetics, Murdoch Children's Research Institute , Parkville , Australia
| |
Collapse
|
27
|
Nicetto D, Zaret KS. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr Opin Genet Dev 2019; 55:1-10. [PMID: 31103921 DOI: 10.1016/j.gde.2019.04.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023]
Abstract
Compacted, transcriptionally repressed chromatin, referred to as heterochromatin, represents a major fraction of the higher eukaryotic genome and exerts pivotal functions of silencing repetitive elements, maintenance of genome stability, and control of gene expression. Among the different histone post-translational modifications (PTMs) associated with heterochromatin, tri-methylation of lysine 9 on histone H3 (H3K9me3) is gaining increased attention. Besides its known role in repressing repetitive elements and non-coding portions of the genome, recent observations indicate H3K9me3 as an important player in silencing lineage-inappropriate genes. The ability of H3K9me3 to influence cell identity challenges the original concept of H3K9me3-marked heterochromatin as mainly a constitutive type of chromatin and provides a further level of understanding of how to modulate cell fate control. Here, we summarize the role of H3K9me3 marked heterochromatin and its dynamics in establishing and maintaining cellular identity.
Collapse
Affiliation(s)
- Dario Nicetto
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Dept. Cell and Developmental, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Dept. Cell and Developmental, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
28
|
Huang D, Petrykowska HM, Miller BF, Elnitski L, Ovcharenko I. Identification of human silencers by correlating cross-tissue epigenetic profiles and gene expression. Genome Res 2019; 29:657-667. [PMID: 30886051 PMCID: PMC6442386 DOI: 10.1101/gr.247007.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
Compared to enhancers, silencers are notably difficult to identify and validate experimentally. In search for human silencers, we utilized H3K27me3-DNase I hypersensitive site (DHS) peaks with tissue specificity negatively correlated with the expression of nearby genes across 25 diverse cell lines. These regions are predicted to be silencers since they are physically linked, using Hi-C loops, or associated, using expression quantitative trait loci (eQTL) results, with a decrease in gene expression much more frequently than general H3K27me3-DHSs. Also, these regions are enriched for the binding sites of transcriptional repressors (such as CTCF, MECOM, SMAD4, and SNAI3) and depleted of the binding sites of transcriptional activators. Using sequence signatures of these regions, we constructed a computational model and predicted approximately 10,000 additional silencers per cell line and demonstrated that the majority of genes linked to these silencers are expressed at a decreased level. Furthermore, single nucleotide polymorphisms (SNPs) in predicted silencers are significantly associated with disease phenotypes. Finally, our results show that silencers commonly interact with enhancers to affect the transcriptional dynamics of tissue-specific genes and to facilitate fine-tuning of transcription in the human genome.
Collapse
Affiliation(s)
- Di Huang
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hanna M Petrykowska
- Translational and Functional Genomics Branch, National Human Genome Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Brendan F Miller
- Translational and Functional Genomics Branch, National Human Genome Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
29
|
Tsai E, Casaccia P. Mechano-modulation of nuclear events regulating oligodendrocyte progenitor gene expression. Glia 2019; 67:1229-1239. [PMID: 30734358 DOI: 10.1002/glia.23595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes differentiate from oligodendrocyte progenitor cells (OPCs) in response to distinct extracellular signals. This process requires changes in gene expression resulting from the interplay between transcription factors and epigenetic modulators. Extracellular signals include chemical and physical stimuli. This review focuses on the signaling mechanisms activated in oligodendrocyte progenitors in response to mechanical forces. Of particular interest is a better understanding on how these forces are transduced into the OPC nuclei and subsequently reshape their epigenetic landscape. Here we will introduce the concept of epigenetic regulation of gene expression, first in general and then focusing on the oligodendrocyte lineage. We will then review the current literature on mechano-transduction in distinct cell types, followed by pathways identified in myelinating oligodendrocytes and their progenitors. Overall, the reader will be provided with a comprehensive review of the signaling pathways which allow oligodendrocyte progenitors to "sense" physical forces and transduce them into patterns of gene expression.
Collapse
Affiliation(s)
- Eric Tsai
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patrizia Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Biology and Biochemistry, Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of The City University of New York, New York
| |
Collapse
|
30
|
Xiang Y, Yan K, Zheng Q, Ke H, Cheng J, Xiong W, Shi X, Wei L, Zhao M, Yang F, Wang P, Lu X, Fu L, Lu X, Li F. Histone Demethylase KDM4B Promotes DNA Damage by Activating Long Interspersed Nuclear Element-1. Cancer Res 2018; 79:86-98. [PMID: 30459150 DOI: 10.1158/0008-5472.can-18-1310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/02/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022]
Abstract
The histone demethylase KDM4B is frequently overexpressed in various cancer types, and previous studies have indicated that the primary oncogenic function of KDM4B is its ability to demethylate H3K9me3 in different tumors, resulting in altered gene expression and genome instability. A genome-wide analysis to evaluate the effect of KDM4B on the global or local H3K9me3 level has not been performed. In this study, we assess whole-genome H3K9me3 distribution in cancer cells and find that H3K9me3 is largely enriched in long interspersed nuclear element-1 (LINE-1). A significant proportion of KDM4B-dependent H3K9me3 was located in evolutionarily young LINE-1 elements, which likely retain retrotransposition activity. Ectopic expression of KDM4B promoted LINE-1 expression, while depletion of KDM4B reduced it. Furthermore, KDM4B overexpression enhanced LINE-1 retrotransposition efficacy, copy number, and associated DNA damage, presumably via the histone demethylase activity of KDM4B. Breast cancer cell lines expressing high levels of KDM4B also exhibited increased LINE-1 expression and copy number compared with other cell lines. Pharmacologic inhibition of KDM4B significantly reduced LINE-1 expression and DNA damage in breast cancer cells with excessive KDM4B. Our study not only identifies KDM4B as a novel regulator of LINE-1, but it also suggests an unexpected oncogenic role for KDM4B overexpression in tumorigenesis, providing clues for the development of new cancer prevention strategies and therapies. SIGNIFICANCE: The histone demethylase KDM4B promotes tumorigenesis by inducing retrotransposition and DNA damage.
Collapse
Affiliation(s)
- Ying Xiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Kai Yan
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qian Zheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Haiqiang Ke
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, Hubei, China
| | - Wenjun Xiong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xin Shi
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Min Zhao
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fei Yang
- Department of Cell Biology and Genetics, Yangtze University, Jingzhou, Hubei, China
| | - Ping Wang
- Department of Oncology, Huanggang Central Hospital, Huanggang, Hubei, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Li Fu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xuemei Lu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Feng Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
31
|
Zimmerman D, Patel K, Hall M, Elmer J. Enhancement of transgene expression by nuclear transcription factor Y and CCCTC-binding factor. Biotechnol Prog 2018; 34:1581-1588. [PMID: 30294957 DOI: 10.1002/btpr.2712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/23/2022]
Abstract
If a transgene is effectively delivered to a cell, its expression may still be limited by epigenetic mechanisms that silence the transgene. Indeed, once the transgene reaches the nucleus, it may be bound by histone proteins and condensed into heterochromatin or associated with repressor proteins that block transcription. In this study, we sought to enhance transgene expression by adding binding motifs for several different epigenetic enzymes either upstream or downstream of two promoters (CMV and EF1α). Screening these plasmids revealed that luciferase expression was enhanced 10-fold (10.4 ± 5.8) by the addition of a CCAAT box just upstream of the EF1α promoter to recruit nuclear transcription factor Y (NF-Y), while inserting a CCCTC-binding factor (CTCF) motif downstream of the EF1α promoter enhanced expression at least 14-fold (14.03 ± 6.54). ChIP assays confirmed that NF-Y and CTCF bound to the motifs that were added to each plasmid, but the presence of NF-Y and CTCF did not significantly affect the levels of histone acetylation (H3K9ac) or methylation (H3K9me3). Overall, these results show that transgene expression from the EF1α promoter can be significantly increased with motifs that recruit NF-Y or CTCF. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1581-1588, 2018.
Collapse
Affiliation(s)
- Devon Zimmerman
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| | - Krupa Patel
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| | - Matthew Hall
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| | - Jacob Elmer
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| |
Collapse
|
32
|
Kaur G, Bagam P, Pinkston R, Singh DP, Batra S. Cigarette smoke-induced inflammation: NLRP10-mediated mechanisms. Toxicology 2018; 398-399:52-67. [PMID: 29501574 DOI: 10.1016/j.tox.2018.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive, life-threatening disease that causes irreversible lung damage. Cigarette smoking is the chief etiologic factor for the commencement of this condition. Despite constant efforts to develop therapeutic interventions and to ascertain the molecular mechanism leading to the pathophysiology of this disease, much remains unknown. However, pattern recognition receptors (PRRs), i.e., Toll-like-receptors (TLRs) and NOD-like receptors (NLRs) are believed to play important roles in COPD and could serve as effective therapeutic targets. Although the role of TLRs in COPD has been well studied, the importance of NLRs has not yet been explored in detail. The NLR family member NLRP10 (aka NOD8, PAN5, PYNOD) is the only member of this family of proteins that lacks the leucine rich repeat (LRR) domain responsible for detection of pathogen and danger-associated molecular patterns (PAMPs/DAMPs). Therefore, instead of functioning as a PRR, NLRP10 may have a broader regulatory role. To elucidate the role of NLRP10 in secondhand smoke (SHS)-induced inflammation, we exposed C57Bl/6 (WT) and Nlrp10-deficient mice (Nlrp10-/-) on the C57Bl/6 background to filtered air- or SHS- for 6 weeks (acute exposure) and assessed the resulting molecular events. Leukocyte recruitment in SHS-exposed Nlrp10-/- mice was found to be significantly lower compared to SHS-exposed WT mice. In addition, we observed an important role for NLRP10 in SHS-mediated caspase-1 activation, cytokine/chemokine production (IL-1β, IL-18, MCP-1 and IL-17A), and induction of NF-κB and MAPKs in the lungs of C57Bl/6 mice. The reduced influx of CD4+IL-17A+ and CD8+IL-17A+ cells into the lungs of SHS-exposed Nlrp10-/- mice and impaired differentiation of Nlrp10-/- Th0 cells into Th17 cells (ex vivo) provide insight into the mechanistic details underlying NLRP10-dependent IL-17 production. We further substantiated our in vivo findings by challenging human alveolar type II epithelial cells (A549) transfected with scrambled- or Nlrp10-siRNA with cigarette smoke extract (CSE). We observed an important role of NLRP10 in cytokine and chemokine production as well as expression of NF-κB and MAPKs in CSE-exposed A549 cells. Furthermore, replenishment of A549 cell culture with recombinant IL-17A (rIL-17A) during NLRP10 knockdown rescued CSE-induced inflammatory responses. To identify upstream mediators of NLRP10 regulation we investigated epigenetic markers within the Nlrp10 promoter following cigarette smoke exposure and observed significant changes in active as well as repressive gene markers on histone 3 and histone 4 using both in vivo and in vitro study models. Further, alterations in the respective histone acetyl- and methyltransferases (PCAF, SET1, ESET, SUV20H1) correlated well with the observed histone modifications. Overall, our findings suggest a novel role of epigenetically regulated NLRP10 in Th17/IL-17 signaling during CS exposure.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Rakeysha Pinkston
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-toxicology, Environmental Toxicology Department, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, United States; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
33
|
Dynamic regulation of six histone H3 lysine (K) methyltransferases in response to prolonged anoxia exposure in a freshwater turtle. Gene 2018; 649:50-57. [PMID: 29382574 DOI: 10.1016/j.gene.2018.01.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/03/2018] [Accepted: 01/26/2018] [Indexed: 12/26/2022]
Abstract
The importance of histone lysine methylation is well established in health, disease, early development, aging, and cancer. However, the potential role of histone H3 methylation in regulating gene expression in response to extended periods of oxygen deprivation (anoxia) in a natural, anoxia-tolerant model system is underexplored. Red-eared sliders (Trachemys scripta elegans) can tolerate and survive three months of absolute anoxia and recover without incurring detrimental cellular damage, mainly by reducing the overall metabolic rate by 90% when compared to normoxia. Stringent regulation of gene expression is a vital aspect of metabolic rate depression in red-eared sliders, and as such we examined the anoxia-responsive regulation of histone lysine methylation in the liver during 5 h and 20 h anoxia exposure. Interestingly, this is the first study to illustrate the existence of histone lysine methyltransferases (HKMTs) and corresponding histone H3 lysine methylation levels in the liver of anoxia-tolerant red-eared sliders. In brief, H3K4me1, a histone mark associated with active transcription, and two corresponding histone lysine methyltransferases that modify H3K4me1 site, significantly increased in response to anoxia. On the contrary, H3K27me1, another transcriptionally active histone mark, significantly decreased during 20 h anoxia, and a transcriptionally repressive histone mark, H3K9me3, and the corresponding KMTs, similarly increased during 20 h anoxia. Overall, the results suggest a dynamic regulation of histone H3 lysine methylation in the liver of red-eared sliders that could theoretically aid in the selective upregulation of genes that are necessary for anoxia survival, while globally suppressing others to conserve energy.
Collapse
|
34
|
Tao J, Shi L, Huang L, Shi H, Chen H, Wang Y, Wang T. EZH2 is involved in silencing of WNT5A during epithelial-mesenchymal transition of colon cancer cell line. J Cancer Res Clin Oncol 2017; 143:2211-2219. [PMID: 28748258 DOI: 10.1007/s00432-017-2479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Transforming growth factor-β (TGF-β) induction of epithelial-mesenchymal transition (EMT) in SW480 was established as a system for studies of colon cancer metastasis. However, the epigenetic mechanisms underlying this process remain unknown. In mammal, polycomb repressive complex-2 (PRC2) is a highly conserved histone methyltransferase involved in epigenetic regulations. Enhancer of zeste Homolog 2 (EZH2) is the catalytic subunit of PRC2, which catalyzes methylation of lysine 27 of histone H3 (H3K27). METHODS An inducible EMT system in colorectal cancer was utilized to study its mechanistic and phenotypic changes. Particularly, gene expression analysis was studied after immunoprecipitation. RESULTS In this study, we reported that EZH2 is significantly enriched in the promoter region of WNT5A after TGF-β induction in SW480 colon cancer cell line, which in turn silenced the expression of WNT5A. Furthermore, EZH2 inhibitor antagonized the TGF-β-induced morphological conversion associated with epithelial-mesenchymal transition (EMT). Conversely, inhibition of histone H3K27me3 reader CBX does not affect the WNT5A expression level during TGF-β-induced EMT. CONCLUSIONS Our results indicate that EZH2 was essential for the silencing of WNT5A during TGF-β-induced epithelial-mesenchymal transition of colon cancer cells.
Collapse
Affiliation(s)
- Jianxin Tao
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Liping Shi
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Longchang Huang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Haoze Shi
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Hang Chen
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Yixin Wang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Tong Wang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China.
| |
Collapse
|
35
|
Rapisarda V, Malashchuk I, Asamaowei IE, Poterlowicz K, Fessing MY, Sharov AA, Karakesisoglou I, Botchkarev VA, Mardaryev A. p63 Transcription Factor Regulates Nuclear Shape and Expression of Nuclear Envelope-Associated Genes in Epidermal Keratinocytes. J Invest Dermatol 2017; 137:2157-2167. [PMID: 28595999 PMCID: PMC5610935 DOI: 10.1016/j.jid.2017.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 01/07/2023]
Abstract
The maintenance of a proper nuclear architecture and three-dimensional organization of the genes, enhancer elements, and transcription machinery plays an essential role in tissue development and regeneration. Here we show that in the developing skin, epidermal progenitor cells of mice lacking p63 transcription factor display alterations in the nuclear shape accompanied by a marked decrease in expression of several nuclear envelope-associated components (Lamin B1, Lamin A/C, Sun1, Nesprin-3, Plectin) compared with controls. Furthermore, chromatin immunoprecipitation-quantitative PCR assay showed enrichment of p63 on Sun1, Syne3, and Plec promoters, suggesting them as p63 targets. Alterations in the nuclei shape and expression of nuclear envelope-associated proteins were accompanied by altered distribution patterns of the repressive histone marks trimethylation on lysine 27 of histone H3, trimethylation on lysine 9 of histone H3, and heterochromatin protein 1-alpha in p63-null keratinocytes. These changes were also accompanied by downregulation of the transcriptional activity and relocation of the keratinocyte-specific gene loci away from the sites of active transcription toward the heterochromatin-enriched repressive nuclear compartments in p63-null cells. These data demonstrate functional links between the nuclear envelope organization, chromatin architecture, and gene expression in keratinocytes and suggest nuclear envelope-associated genes as important targets mediating p63-regulated gene expression program in the epidermis.
Collapse
Key Words
- cc, chromocenter
- chip-qpcr, chromatin immunoprecipitation-quantitative pcr
- h3k9me3, trimethylation on lysine 9 of histone h3
- h3k27me3, trimethylation on lysine 27 of histone h3
- ktyi, keratin type i
- ktyii, keratin type ii
- pmk, primary mouse keratinocyte
- if, intermediate filament
- nm, nuclear membrane
- ne, nuclear envelope
- wt, wild-type
Collapse
Affiliation(s)
| | - Igor Malashchuk
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| | | | | | | | - Andrey A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Vladimir A Botchkarev
- Centre for Skin Sciences, University of Bradford, Bradford, UK; Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | |
Collapse
|
36
|
Gulchina Y, Xu SJ, Snyder MA, Elefant F, Gao WJ. Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia. J Neurochem 2017. [PMID: 28628228 DOI: 10.1111/jnc.14101] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SCZ) is characterized not only by psychosis, but also by working memory and executive functioning deficiencies, processes that rely on the prefrontal cortex (PFC). Because these cognitive impairments emerge prior to psychosis onset, we investigated synaptic function during development in the neurodevelopmental methylazoxymethanol (MAM) model for SCZ. Specifically, we hypothesize that N-methyl-D-aspartate receptor (NMDAR) hypofunction is attributable to reductions in the NR2B subunit through aberrant epigenetic regulation of gene expression, resulting in deficient synaptic physiology and PFC-dependent cognitive dysfunction, a hallmark of SCZ. Using western blot and whole-cell patch-clamp electrophysiology, we found that the levels of synaptic NR2B protein are significantly decreased in juvenile MAM animals, and the function of NMDARs is substantially compromised. Both NMDA-mEPSCs and synaptic NMDA-eEPSCs are significantly reduced in prelimbic PFC (plPFC). This protein loss during the juvenile period is correlated with an aberrant increase in enrichment of the epigenetic transcriptional repressor RE1-silencing transcription factor (REST) and the repressive histone marker H3K27me3 at the Grin2b promoter, as assayed by ChIP-quantitative polymerase chain reaction. Glutamate hypofunction has been a prominent hypothesis in the understanding of SCZ pathology; however, little attention has been given to the NMDAR system in the developing PFC in models for SCZ. Our work is the first to confirm that NMDAR hypofunction is a feature of early postnatal development, with epigenetic hyper-repression of the Grin2b promoter being a contributing factor. The selective loss of NR2B protein and subsequent synaptic dysfunction weakens plPFC function during development and may underlie early cognitive impairments in SCZ models and patients. Read the Editorial Highlight for this article on page 264.
Collapse
Affiliation(s)
- Yelena Gulchina
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Song-Jun Xu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa A Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Abstract
Early - intrauterine - environmental factors are linked to the development of cardiovascular disease in later life. Traditionally, these factors are considered to be maternal factors such as maternal under and overnutrition, exposure to toxins, lack of micronutrients, and stress during pregnancy. However, in the recent years, it became obvious that also paternal environmental factors before conception and during sperm development determine the health of the offspring in later life. We will first describe clinical observational studies providing evidence for paternal programming of adulthood diseases in progeny. Next, we describe key animal studies proving this relationship, followed by a detailed analysis of our current understanding of the underlying molecular mechanisms of paternal programming. Alterations of noncoding sperm micro-RNAs, histone acetylation, and targeted as well as global DNA methylation seem to be in particular involved in paternal programming of offspring's diseases in later life.
Collapse
|
38
|
Kresovich JK, Zhang Z, Fang F, Zheng Y, Sanchez-Guerra M, Joyce BT, Zhong J, Chervona Y, Wang S, Chang D, McCracken JP, Díaz A, Bonzini M, Carugno M, Koutrakis P, Kang CM, Bian S, Gao T, Byun HM, Schwartz J, Baccarelli AA, Hou L. Histone 3 modifications and blood pressure in the Beijing Truck Driver Air Pollution Study. Biomarkers 2017; 22:584-593. [PMID: 28678539 DOI: 10.1080/1354750x.2017.1347961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Histone modifications regulate gene expression; dysregulation has been linked with cardiovascular diseases. Associations between histone modification levels and blood pressure in humans are unclear. OBJECTIVE We examine the relationship between global histone concentrations and various markers of blood pressure. MATERIALS AND METHODS Using the Beijing Truck Driver Air Pollution Study, we investigated global peripheral white blood cell histone modifications (H3K9ac, H3K9me3, H3K27me3, and H3K36me3) associations with pre- and post-work measurements of systolic (SBP) and diastolic (DBP) blood pressure, mean arterial pressure (MAP), and pulse pressure (PP) using multivariable mixed-effect models. RESULTS H3K9ac was negatively associated with pre-work SBP and MAP; H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP; and H3K27me3 was negatively associated with pre-work SBP. Among office workers, H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP. Among truck drivers, H3K9ac and H3K27me were negatively associated with pre-work SBP, and H3K27me3 was positively associated with post-work PP. DISCUSSION AND CONCLUSION Epigenome-wide H3K9ac, H3K9me3, and H3K27me3 were negatively associated with multiple pre-work blood pressure measures. These associations substantially changed during the day, suggesting an influence of daily activities. Blood-based histone modification biomarkers are potential candidates for studies requiring estimations of morning/pre-work blood pressure.
Collapse
Affiliation(s)
- Jacob K Kresovich
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,b Division of Epidemiology and Biostatistics, School of Public Health , University of Illinois-Chicago , Chicago , IL , USA
| | - Zhou Zhang
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,c Driskill Graduate Program in Life Sciences, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| | - Fang Fang
- d Department of Epidemiology, College for Public Health and Social Justice , Saint Louis University , Saint Louis , MO , USA
| | - Yinan Zheng
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,e Institute for Public Health and Medicine, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| | - Marco Sanchez-Guerra
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA.,g Department of Developmental Neurobiology , National Institute of Perinatology , Mexico City , Mexico
| | - Brian T Joyce
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,b Division of Epidemiology and Biostatistics, School of Public Health , University of Illinois-Chicago , Chicago , IL , USA
| | - Jia Zhong
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Yana Chervona
- h Department of Environmental Medicine , New York University School of Medicine , New York , NY , USA
| | - Sheng Wang
- i Department of Occupational and Environmental Health , Peking University Health Science Center, Peking University , Beijing , China
| | - Dou Chang
- j Department of Safety Engineering , China Institute of Industrial Relations , Beijing , China
| | - John P McCracken
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Anaite Díaz
- k Center for Health Studies , Universidad del Valle de Guatemala , Guatemala City , Guatemala
| | - Matteo Bonzini
- l Department of Clinical Sciences and Community Medicine , University of Milan and IRCCS Fondazione Ca' Granda OspedaleMaggiore Policlinico , Milan , Italy
| | - Michele Carugno
- l Department of Clinical Sciences and Community Medicine , University of Milan and IRCCS Fondazione Ca' Granda OspedaleMaggiore Policlinico , Milan , Italy
| | - Petros Koutrakis
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Choong-Min Kang
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Shurui Bian
- c Driskill Graduate Program in Life Sciences, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| | - Tao Gao
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Hyang-Min Byun
- m Human Nutrition Research Centre, Institute of Cellular Medicine , Newcastle University , Newcastle upon Tyne , United Kingdom
| | - Joel Schwartz
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Andrea A Baccarelli
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Lifang Hou
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,n Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| |
Collapse
|
39
|
Abstract
Many computational tools have been proposed during the two last decades for predicting piRNAs, which are molecules with important role in post-transcriptional gene regulation. However, these tools are mostly based on only one feature that is generally related to the sequence. Discoveries in the domain of piRNAs are still in their beginning stages, and recent publications have shown many new properties. Here, we propose an integrative approach for piRNA prediction in which several types of genomic and epigenomic properties that can be used to characterize these molecules are examined. We reviewed and extracted a large number of piRNA features from the literature that have been observed experimentally in several species. These features are represented by different kernels, in a Multiple Kernel Learning based approach, implemented within an object-oriented framework. The obtained tool, called IpiRId, shows prediction results that attain more than 90% of accuracy on different tested species (human, mouse and fly), outperforming all existing tools. Besides, our method makes it possible to study the validity of each given feature in a given species. Finally, the developed tool is modular and easily extensible, and can be adapted for predicting other types of ncRNAs. The IpiRId software and the user-friendly web-based server of our tool are now freely available to academic users at: https://evryrna.ibisc.univ-evry.fr/evryrna/.
Collapse
|
40
|
Bronstein R, Kyle J, Abraham AB, Tsirka SE. Neurogenic to Gliogenic Fate Transition Perturbed by Loss of HMGB2. Front Mol Neurosci 2017; 10:153. [PMID: 28588451 PMCID: PMC5440561 DOI: 10.3389/fnmol.2017.00153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/05/2017] [Indexed: 01/21/2023] Open
Abstract
Mouse cortical development relies heavily on a delicate balance between neurogenesis and gliogenesis. The lateral ventricular zone produces different classes of excitatory pyramidal cells until just before birth, when the production of astroglia begins to prevail. Epigenetic control of this fate shift is of critical importance and chromatin regulatory elements driving neuronal or astroglial development play an vital role. Different classes of chromatin binding proteins orchestrate the transcriptional repression of neuronal-specific genes, while allowing for the activation of astrocyte-specific genes. Through proteomic analysis of embryonic neural progenitor cells (NPCs) our group had previously identified high mobility group B2 (HMGB2), a chromatin protein dynamically expressed throughout embryonic development. In the current study using cultures of perinatal NPCs from HMGB2+/+ and HMGB2-/- mice we discovered that vital elements of the polycomb group (PcG) epigenetic complexes polycomb repressive complexes 1 and 2 (PRC1/2) were downregulated during the differentiation process of HMGB2-null NPCs. These epigenetic changes led to downstream changes in specific histone modification levels, specifically the trimethylation of H3K27, and a subsequent shift in the perinatal neurogenesis to gliogenesis fate transition. Collectively these results demonstrate that chromatin binding proteins, such as HMGB2, can have significant effects on the epigenetic landscape of perinatal neural stem/progenitor cells.
Collapse
Affiliation(s)
- Robert Bronstein
- Program in Neuroscience, Stony Brook University, Stony BrookNY, United States
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, United States
| | - Jackson Kyle
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony BrookNY, United States
| | - Ariel B. Abraham
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony BrookNY, United States
| | - Stella E. Tsirka
- Program in Neuroscience, Stony Brook University, Stony BrookNY, United States
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony BrookNY, United States
| |
Collapse
|
41
|
Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin 2017; 10:18. [PMID: 28413449 PMCID: PMC5387343 DOI: 10.1186/s13072-017-0125-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. Results The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Conclusions Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0125-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611 USA
| | - John N Anderson
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907 USA
| |
Collapse
|
42
|
A model of dynamic stability of H3K9me3 heterochromatin to explain the resistance to reprogramming of differentiated cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:184-195. [DOI: 10.1016/j.bbagrm.2016.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/16/2022]
|
43
|
Navarro E, Funtikova AN, Fíto M, Schröder H. Prenatal nutrition and the risk of adult obesity: Long-term effects of nutrition on epigenetic mechanisms regulating gene expression. J Nutr Biochem 2017; 39:1-14. [DOI: 10.1016/j.jnutbio.2016.03.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|
44
|
|
45
|
Lin SH, Ho WT, Wang YT, Chuang CT, Chuang LY, Guh JY. Histone methyltransferase Suv39h1 attenuates high glucose-induced fibronectin and p21 WAF1 in mesangial cells. Int J Biochem Cell Biol 2016; 78:96-105. [DOI: 10.1016/j.biocel.2016.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/09/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
|
46
|
Quijano JC, Wisotzkey RG, Tran NL, Huang Y, Stinchfield MJ, Haerry TE, Shimmi O, Newfeld SJ. lolal Is an Evolutionarily New Epigenetic Regulator of dpp Transcription during Dorsal-Ventral Axis Formation. Mol Biol Evol 2016; 33:2621-32. [PMID: 27401231 PMCID: PMC5026256 DOI: 10.1093/molbev/msw132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Secreted ligands in the Dpp/BMP family drive dorsal–ventral (D/V) axis formation in all Bilaterian species. However, maternal factors regulating Dpp/BMP transcription in this process are largely unknown. We identified the BTB domain protein longitudinals lacking-like (lolal) as a modifier of decapentaplegic (dpp) mutations. We show that Lolal is evolutionarily related to the Trithorax group of chromatin regulators and that lolal interacts genetically with the epigenetic factor Trithorax-like during Dpp D/V signaling. Maternally driven LolalHA is found in oocytes and translocates to zygotic nuclei prior to the point at which dpp transcription begins. lolal maternal and zygotic mutant embryos display significant reductions in dpp, pMad, and zerknullt expression, but they are never absent. The data suggest that lolal is required to maintain dpp transcription during D/V patterning. Phylogenetic data revealed that lolal is an evolutionarily new gene present only in insects and crustaceans. We conclude that Lolal is the first maternal protein identified with a role in dpp D/V transcriptional maintenance, that Lolal and the epigenetic protein Trithorax-like are essential for Dpp D/V signaling and that the architecture of the Dpp D/V pathway evolved in the arthropod lineage after the separation from vertebrates via the incorporation of new genes such as lolal.
Collapse
Affiliation(s)
| | | | | | - Yunxian Huang
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Theodor E Haerry
- Center for Molecular Biology and Biotechnology, Florida Atlantic University
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
47
|
miR-125b-1 is repressed by histone modifications in breast cancer cell lines. SPRINGERPLUS 2016; 5:959. [PMID: 27386402 PMCID: PMC4930440 DOI: 10.1186/s40064-016-2475-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
Abstract
Purpose Downregulation of miR-125b-1 is associated with poor prognosis in breast cancer patients. In this work we investigated the effect of histone modifications on the regulation of this gene promoter. Methods and results We evaluated the enrichment of two histone modifications involved in gene repression, H3K9me3 and H3K27me3, on the miR-125b-1 promoter in two breast cancer cell lines, MCF7 (luminal A subtype) and MDA-MB-231 (triple-negative subtype), compared to the non-transformed breast cell line MCF10A. H3K27me3 and H3K9me3 were enriched in MCF7 and MDA-MB-231 cells, respectively. Next, we used an EZH2 inhibitor to examine the reactivation of miR-125b-1 in MCF7 cells and evaluated the transcriptional levels of pri-miR-125b-1 and mature miR-125b by qRT-PCR. pri-miRNA and mature miRNA transcripts were both increased after treatment of MCF7 cells with the EZH2 inhibitor, whereas no effect on miR-125b-1 expression levels was observed in MDA-MB-231 and MCF10A cells. We subsequently evaluated the effect of miR-125b-1 reactivation on the expression and protein levels of BAK1, a target of miR-125b. We observed 60 and 70 % decreases in the expression and protein levels of BAK1, respectively, compared to cells that were not treated with the EZH2 inhibitor. We over-expressed KDM4B/JMJD2B to reactivate this miRNA, resulting in a three-fold increase in miR-125b expression compared with the same cell line without KDM4B/JMJD2B over-expression. Conclusion The miR-125b-1 is repressed by different epigenetic mechanisms depending on the breast cancer subtype and that miR-125b-1 reactivation specifically eliminates the effect of repressive histone modifications on the expression of an pro-apoptotic target. Electronic supplementary material The online version of this article (doi:10.1186/s40064-016-2475-z) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Campos-Sánchez R, Cremona MA, Pini A, Chiaromonte F, Makova KD. Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis. PLoS Comput Biol 2016; 12:e1004956. [PMID: 27309962 PMCID: PMC4911145 DOI: 10.1371/journal.pcbi.1004956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome. We investigated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40 human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and histone modifications) in ±32 kb of these ERVs' integration sites and in control regions, and analyzed them using Functional Data Analysis (FDA) methodology. In one of the first applications of FDA in genomics, we identified genomic scales and locations at which these features display their influence, and how they work in concert, to provide signals essential for integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integration vs. fixation preferences. As a result of these analyses, we built a comprehensive model explaining the uneven distribution of ERVs along the genome. We found that ERVs integrate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and repressive histone marks. Regions favoring fixation are depleted of genes and evolutionarily conserved elements, and have low recombination rates, reflecting the effects of purifying selection and ectopic recombination removing ERVs from the genome. In addition to providing these biological insights, our study demonstrates the power of exploiting multiple scales and localization with FDA. These powerful techniques are expected to be applicable to many other genomic investigations.
Collapse
Affiliation(s)
- Rebeca Campos-Sánchez
- Genetics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Marzia A. Cremona
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
| | - Alessia Pini
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
49
|
Pournara A, Kippler M, Holmlund T, Ceder R, Grafström R, Vahter M, Broberg K, Wallberg AE. Arsenic alters global histone modifications in lymphocytes in vitro and in vivo. Cell Biol Toxicol 2016; 32:275-84. [PMID: 27165195 DOI: 10.1007/s10565-016-9334-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 02/21/2023]
Abstract
Arsenic, an established carcinogen and toxicant, occurs in drinking water and food and affects millions of people worldwide. Arsenic appears to interfere with gene expression through epigenetic processes, such as DNA methylation and post-translational histone modifications. We investigated the effects of arsenic on histone residues in vivo as well as in vitro. Analysis of H3K9Ac and H3K9me3 in CD4+ and CD8+ sorted blood cells from individuals exposed to arsenic through drinking water in the Argentinean Andes showed a significant decrease in global H3K9me3 in CD4+ cells, but not CD8+ cells, with increasing arsenic exposure. In vitro studies of inorganic arsenic-treated T lymphocytes (Jurkat and CCRF-CEM, 0.1, 1, and 100 μg/L) showed arsenic-related modifications of H3K9Ac and changes in the levels of the histone deacetylating enzyme HDAC2 at very low arsenic concentrations. Further, in vitro exposure of kidney HEK293 cells to arsenic (1 and 5 μM) altered the protein levels of PCNA and DNMT1, parts of a gene expression repressor complex, as well as MAML1. MAML1 co-localized and interacted with components of this complex in HEK293 cells, and in silico studies indicated that MAML1 expression correlate with HDAC2 and DNMT1 expression in kidney cells. In conclusion, our data suggest that arsenic exposure may lead to changes in the global levels of H3K9me3 and H3K9Ac in lymphocytes. Also, we show that arsenic exposure affects the expression of PCNA and DNMT1-proteins that are part of a gene expression silencing complex.
Collapse
Affiliation(s)
- Angeliki Pournara
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | - Teresa Holmlund
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | - Rebecca Ceder
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | - Roland Grafström
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | - Annika E Wallberg
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| |
Collapse
|
50
|
Smith OK, Kim R, Fu H, Martin MM, Lin CM, Utani K, Zhang Y, Marks AB, Lalande M, Chamberlain S, Libbrecht MW, Bouhassira EE, Ryan MC, Noble WS, Aladjem MI. Distinct epigenetic features of differentiation-regulated replication origins. Epigenetics Chromatin 2016; 9:18. [PMID: 27168766 PMCID: PMC4862150 DOI: 10.1186/s13072-016-0067-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Eukaryotic genome duplication starts at discrete sequences (replication origins) that coordinate cell cycle progression, ensure genomic stability and modulate gene expression. Origins share some sequence features, but their activity also responds to changes in transcription and cellular differentiation status. RESULTS To identify chromatin states and histone modifications that locally mark replication origins, we profiled origin distributions in eight human cell lines representing embryonic and differentiated cell types. Consistent with a role of chromatin structure in determining origin activity, we found that cancer and non-cancer cells of similar lineages exhibited highly similar replication origin distributions. Surprisingly, our study revealed that DNase hypersensitivity, which often correlates with early replication at large-scale chromatin domains, did not emerge as a strong local determinant of origin activity. Instead, we found that two distinct sets of chromatin modifications exhibited strong local associations with two discrete groups of replication origins. The first origin group consisted of about 40,000 regions that actively initiated replication in all cell types and preferentially colocalized with unmethylated CpGs and with the euchromatin markers, H3K4me3 and H3K9Ac. The second group included origins that were consistently active in cells of a single type or lineage and preferentially colocalized with the heterochromatin marker, H3K9me3. Shared origins replicated throughout the S-phase of the cell cycle, whereas cell-type-specific origins preferentially replicated during late S-phase. CONCLUSIONS These observations are in line with the hypothesis that differentiation-associated changes in chromatin and gene expression affect the activation of specific replication origins.
Collapse
Affiliation(s)
- Owen K. Smith
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - RyanGuk Kim
- />In Silico Solutions, Falls Church, VA 22033 USA
| | - Haiqing Fu
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Melvenia M. Martin
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Chii Mei Lin
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Koichi Utani
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ya Zhang
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anna B. Marks
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Marc Lalande
- />Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06032 USA
| | - Stormy Chamberlain
- />Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06032 USA
| | - Maxwell W. Libbrecht
- />Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195 USA
| | - Eric E. Bouhassira
- />Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | | | - William S. Noble
- />Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195 USA
- />Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| | - Mirit I. Aladjem
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|