1
|
Hensel RC, Di Vizio B, Materòn EM, Shimizu FM, Angelim MKSC, de Souza GF, Módena JLP, Moraes-Vieira PMM, de Azevedo RB, Litti L, Agnoli S, Casalini S, Oliveira ON. Enhanced performance of impedimetric immunosensors to detect SARS-CoV-2 with bare gold nanoparticles and graphene acetic acid. Talanta 2025; 281:126903. [PMID: 39326119 DOI: 10.1016/j.talanta.2024.126903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Immunosensors based on electrical impedance spectroscopy allow for label-free, real-time detection of biologically relevant molecules and pathogens, without requiring electro-active materials. Here, we investigate the influence of bare gold nanoparticles (AuNPs), synthesized via laser ablation in solution, on the performance of an impedimetric immunosensor for detecting severe acute respiratory syndrome coronavirus (SARS-CoV-2). Graphene acetic acid (GAA) was used in the active layer for immobilizing anti-SARS-CoV-2 antibodies, owing to its high density of carboxylic groups. Immunosensors incorporating AuNPs exhibited superior performance compared to those relying solely on GAA, achieving a limit of detection (LoD) of 3 x 10-20 g/mL to detect the Spike Receptor Binding Domain (RBD) protein of SARS-CoV-2 and of 2 PFU/mL for inactivated virus. Moreover, these immunosensors presented high selectivity against the H1N1 influenza virus. We anticipate that this platform will be versatile and applicable in the early diagnosis of various diseases and viral infections, thereby facilitating Point-of-Care testing.
Collapse
Affiliation(s)
- Rafael C Hensel
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil.
| | - Biagio Di Vizio
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Elsa M Materòn
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil; Sao Carlos Institute of Chemistry, University of Sao Paulo, São Carlos, Brazil
| | - Flávio M Shimizu
- Institute of Physics Gleb Wataghin, University of Campinas, Campinas, Brazil
| | - Monara Kaelle S C Angelim
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriela F de Souza
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology - University of Campinas, Campinas, Brazil
| | - José L P Módena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology - University of Campinas, Campinas, Brazil
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Lucio Litti
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Stefano Casalini
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil.
| |
Collapse
|
2
|
Hirschhorn JW, Babady NE, Bateman A, Blankenship HM, Bard JD, Florek K, Larkin PMK, Rowlinson MC, Wroblewski K, Wolk DM. Considerations for Severe Acute Respiratory Syndrome Coronavirus 2 Genomic Surveillance: A Joint Consensus Recommendation of the Association for Molecular Pathology and Association of Public Health Laboratories. J Mol Diagn 2024:S1525-1578(24)00249-6. [PMID: 39442753 DOI: 10.1016/j.jmoldx.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Next-generation sequencing (NGS) has applications in research, epidemiology, oncology, and infectious disease diagnostics. Wide variability exists in NGS wet laboratory techniques and dry laboratory analytical considerations. Thus, many questions remain unanswered when NGS methods are implemented in laboratories for infectious disease testing. Although this review is not intended to answer all questions, the most pressing questions from a public health and clinical hospital-based laboratory perspective will be addressed. The authors of this review are laboratory professionals who perform and interpret severe acute respiratory syndrome coronavirus 2 NGS results. Considerations for pre-analytical, analytical, and postanalytical NGS will be explored. This review highlights challenges for molecular laboratory professionals considering adopting or expanding NGS methods.
Collapse
Affiliation(s)
- Julie W Hirschhorn
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina; Diagnostic Medicine Institute, Geisinger, Danville, Pennsylvania and Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania.
| | - N Esther Babady
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allen Bateman
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Wisconsin State Laboratory of Hygiene, Madison, Wisconsin
| | - Heather M Blankenship
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Genomics Section, Division of Infectious Disease, Michigan Department of Health and Human Services, Lansing, Michigan
| | - Jennifer Dien Bard
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kelsey Florek
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Wisconsin State Laboratory of Hygiene, Madison, Wisconsin
| | - Paige M K Larkin
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, NorthShore University HealthSystem, Evanston, Illinois
| | - Marie-Claire Rowlinson
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Wadsworth Center Bacterial Diseases Laboratory, New York State Department of Health, Albany, New York; Bureau of Public Health Laboratories, Florida Department of Health, Jacksonville, Florida
| | - Kelly Wroblewski
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Association of Public Health Laboratories, Silver Spring, Maryland
| | - Donna M Wolk
- The SARS-CoV-2 Whole Genome Sequencing Working Group of the Association for Molecular Pathology, Rockville, Maryland; Diagnostic Medicine Institute, Geisinger, Danville, Pennsylvania and Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania
| |
Collapse
|
3
|
Hibbs M, Pal D, Barudzija G, Ariya PA. Physicochemical properties and their impact on ice nucleation efficiency of respiratory viral RNA and proteins. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39351962 DOI: 10.1039/d4em00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Ice nucleation processes in the earth's atmosphere are critical for cloud formation, radiation, precipitation, and climate change. We investigated the physicochemical properties and ice nucleation potential of selected viral aerosols, including their RNA and proteins, using advanced techniques such as scanning-transmission electron microscopy (S/TEM), small angle X-ray scattering (SAXS), particle analyzers, and a peltier chamber. The experiments revealed that RNA particles obtained from MS2 bacteriophage had a mean freezing point of -13.9 ± 0.3 °C, comparable to the average ice nucleation temperature of global dust particles, which is approximatively -15 °C. RNA from MS2, Influenza, SARS-CoV-1 and SARS-CoV-2 demonstrated average ice nucleation temperatures of -13.9 ± 0.3 °C, -13.7 ± 0.3 °C, -13.7 ± 0.3 °C, and -15.9 ± 0.4 °C, respectively. SAXS analysis indicated a high local crystallinity value of 0.5 of MS2 RNA particles, hinting that high crystalline nature may contribute to their effectiveness as ice nuclei. Dilution experiments show that viral RNA consistently catalyzes ice nucleation. The addition of dust-containing particles, such as Fe2O3, CuO, and TiO2, to MS2 bacteriophage droplets enhanced ice nucleation, as did UV radiation. We herein discuss the implications of this work on ice nucleation and freezing processes.
Collapse
Affiliation(s)
- Mattie Hibbs
- Department of Atmospheric and Oceanic Sciences, Canada.
| | - Devendra Pal
- Department of Atmospheric and Oceanic Sciences, Canada.
| | - Gorjana Barudzija
- Department of Chemistry McGill University, 801 Sherbrooke St. W., Montreal, QC, H2A 0B8, Canada
| | - Parisa A Ariya
- Department of Atmospheric and Oceanic Sciences, Canada.
- Department of Chemistry McGill University, 801 Sherbrooke St. W., Montreal, QC, H2A 0B8, Canada
| |
Collapse
|
4
|
Fischer K, Lulla A, So TY, Pereyra-Gerber P, Raybould MIJ, Kohler TN, Yam-Puc JC, Kaminski TS, Hughes R, Pyeatt GL, Leiss-Maier F, Brear P, Matheson NJ, Deane CM, Hyvönen M, Thaventhiran JED, Hollfelder F. Rapid discovery of monoclonal antibodies by microfluidics-enabled FACS of single pathogen-specific antibody-secreting cells. Nat Biotechnol 2024:10.1038/s41587-024-02346-5. [PMID: 39143416 DOI: 10.1038/s41587-024-02346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Monoclonal antibodies are increasingly used to prevent and treat viral infections and are pivotal in pandemic response efforts. Antibody-secreting cells (ASCs; plasma cells and plasmablasts) are an excellent source of high-affinity antibodies with therapeutic potential. Current methods to study antigen-specific ASCs either have low throughput, require expensive and labor-intensive screening or are technically demanding and therefore not widely accessible. Here we present a straightforward technology for the rapid discovery of monoclonal antibodies from ASCs. Our approach combines microfluidic encapsulation of single cells into an antibody capture hydrogel with antigen bait sorting by conventional flow cytometry. With our technology, we screened millions of mouse and human ASCs and obtained monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 with high affinity (<1 pM) and neutralizing capacity (<100 ng ml-1) in 2 weeks with a high hit rate (>85% of characterized antibodies bound the target). By facilitating access to the underexplored ASC compartment, the approach enables efficient antibody discovery and immunological studies into the generation of protective antibodies.
Collapse
Affiliation(s)
- Katrin Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tsz Y So
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Hughes
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | | | | | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
5
|
Okabe Y, Ohgitani E, Mazda O, Watanabe T. Anti-SARS-CoV-2 activity of microwave solvolysis lignin from woody biomass. Int J Biol Macromol 2024; 275:133556. [PMID: 38955295 DOI: 10.1016/j.ijbiomac.2024.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The global pandemic caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had profoundly detrimental effects on our society. To combat this highly pathogenic virus, we turned our attention to an abundant renewable natural aromatic polymer found in wood. Through a chemical modification of Eucalyptus and Japanese cedar wood via acidic microwave solvolysis in equivolume mixture of 2 % (w/w) aqueous H2SO4, ethylene glycol, and toluene at 190 °C. Subsequently, we separated the resulting solvolysis products through extractions with toluene, ethyl acetate, and ethanol. Among these products, the ethyl acetate extract from Eucalyptus wood (eEAE) demonstrated the highest inhibition effects against the novel SARS-CoV-2. We further divided eEAE into four fractions, and a hexane extract from the ethanol-soluble portion, termed eEAE3, exhibited the most substantial inhibitory rate at 93.0 % when tested at a concentration of 0.5 mg/mL. Analyzing eEAE3 using pyrolysis gas chromatography-mass spectrometry revealed that its primary components are derived from lignin. Additionally, 1H-13C edited-heteronuclear single quantum coherence nuclear magnetic resonance analysis showed that the solvolysis process cleaved major lignin interunit linkages. Considering the abundance and renewability of lignin, the lignin-derived anti-SARS-CoV-2 agent presents a promising potential for application in suppressing infections within our everyday environment.
Collapse
Affiliation(s)
- Yumi Okabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
6
|
Kanth SM, Huapaya JA, Gairhe S, Wang H, Tian X, Demirkale CY, Hou C, Ma J, Kuhns DB, Fink DL, Malayeri A, Turkbey E, Harmon SA, Chen MY, Regenold D, Lynch NF, Ramelli S, Li W, Krack J, Kuruppu J, Lionakis MS, Strich JR, Davey R, Childs R, Chertow DS, Kovacs JA, Parizi PT, Suffredini AF. Longitudinal analysis of the lung proteome reveals persistent repair months after mild to moderate COVID-19. Cell Rep Med 2024; 5:101642. [PMID: 38981485 PMCID: PMC11293333 DOI: 10.1016/j.xcrm.2024.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
In order to assess homeostatic mechanisms in the lung after COVID-19, changes in the protein signature of bronchoalveolar lavage from 45 patients with mild to moderate disease at three phases (acute, recovery, and convalescent) are evaluated over a year. During the acute phase, inflamed and uninflamed phenotypes are characterized by the expression of tissue repair and host defense response molecules. With recovery, inflammatory and fibrogenic mediators decline and clinical symptoms abate. However, at 9 months, quantified radiographic abnormalities resolve in the majority of patients, and yet compared to healthy persons, all showed ongoing activation of cellular repair processes and depression of the renin-kallikrein-kinin, coagulation, and complement systems. This dissociation of prolonged reparative processes from symptom and radiographic resolution suggests that occult ongoing disruption of the lung proteome is underrecognized and may be relevant to recovery from other serious viral pneumonias.
Collapse
Affiliation(s)
- Shreya M Kanth
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Julio A Huapaya
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Honghui Wang
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cumhur Y Demirkale
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chunyan Hou
- Mass Spectrometry and Analytical Pharmacology Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Junfeng Ma
- Mass Spectrometry and Analytical Pharmacology Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Lab, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Danielle L Fink
- Neutrophil Monitoring Lab, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Ashkan Malayeri
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD 20892, USA
| | - Evrim Turkbey
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie A Harmon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcus Y Chen
- Cardiovascular Branch, National Institute of Heart, Lung, and Blood, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Regenold
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas F Lynch
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Ramelli
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Willy Li
- Pharmacy Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janell Krack
- Pharmacy Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janaki Kuruppu
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Davey
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph A Kovacs
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parizad Torabi- Parizi
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
van der Schans M, Yu J, de Vries A, Martin G. Estimation of the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm irradiation using CFD-based room disinfection simulations. Sci Rep 2024; 14:15963. [PMID: 38987323 PMCID: PMC11237116 DOI: 10.1038/s41598-024-63472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
The recent COVID-19 pandemic has raised interest in efficient air disinfection solutions. The application of germicidal ultraviolet (GUV) irradiation is an excellent contender to prevent airborne transmission of COVID-19, as well as other existing and future infectious airborne diseases. While GUV has already been proven effective in inactivating SARS-CoV-2, quantitative data on UV susceptibility and dose requirements, needed to predict and optimize the performance of GUV solutions, is still limited. In this study, the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm ultraviolet (UV) irradiation is investigated. This is done by employing 3D computational fluid dynamics based simulations of SARS-CoV-2 inactivation in a test chamber equipped with an upper-room UV-C luminaire and comparing the results to previously published measurements performed in the same test chamber. The UV susceptibility found in this study is (0.6 ± 0.2) m2/J, which is equivalent to a D90 dose between 3 and 6 J/m2. These values are in the same range as previous estimations based on other corona viruses and inactivation data reported in literature.
Collapse
Affiliation(s)
| | - Joan Yu
- Signify, High Tech Campus 7, 5656AE, Eindhoven, The Netherlands
| | - Adrie de Vries
- Signify, High Tech Campus 7, 5656AE, Eindhoven, The Netherlands
| | | |
Collapse
|
8
|
Penrice-Randal R, Bentley EG, Sharma P, Kirby A, Donovan-Banfield I, Kipar A, Mega DF, Bramwell C, Sharp J, Owen A, Hiscox JA, Stewart JP. The effect of molnupiravir and nirmatrelvir on SARS-CoV-2 genome diversity in severe models of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582110. [PMID: 38464327 PMCID: PMC10925244 DOI: 10.1101/2024.02.27.582110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Objectives Immunocompromised individuals are susceptible to severe COVID-19 and potentially contribute to the emergence of variants with altered pathogenicity due to persistent infection. This study investigated the impact of immunosuppression on SARS-CoV-2 infection in k18-hACE2 mice and the effectiveness of antiviral treatments in this context during the first 7 days of infection. Methods Mice were immunosuppressed using cyclophosphamide and infected with a B lineage of SARS-CoV-2. Molnupiravir and nirmatrelvir, alone and in combination, were administered and viral load and viral sequence diversity was assessed. Results Treatment of infected but immune compromised mice with both compounds either singly or in combination resulted in decreased viral loads and pathological changes compared to untreated animals. Treatment also abrogated infection of neuronal tissue. However, no consistent changes in the viral consensus sequence were observed, except for the emergence of the S:H655Y mutation. Molnupiravir, but not nirmatrelvir or immunosuppression alone, increased the transition/transversion (Ts/Tv) ratio, representative of A>G and C>U mutations and this increase was not altered by the co-administration of nirmatrelvir with molnupiravir.Notably, immunosuppression itself did not appear to promote the emergence of mutational characteristic of variants of concern (VOCs). Conclusions Further investigations are warranted to fully understand the role of immunocompromised individuals in VOC development, especially by taking persistence into consideration, and to inform optimised public health strategies. It is more likely that immunodeficiency promotes viral persistence but does not necessarily lead to substantial consensus-level changes in the absence of antiviral selection pressure. Consistent with mechanisms of action, molnupiravir showed a stronger mutagenic effect than nirmatrelvir in this model.
Collapse
Affiliation(s)
| | - Eleanor G. Bentley
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Adam Kirby
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - I’ah Donovan-Banfield
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Anja Kipar
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Daniele F. Mega
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Chloe Bramwell
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, UK
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, UK
| |
Collapse
|
9
|
Clark JJ, Penrice-Randal R, Sharma P, Dong X, Pennington SH, Marriott AE, Colombo S, Davidson A, Kavanagh Williamson M, Matthews DA, Turtle L, Prince T, Hughes GL, Patterson EI, Shawli G, Mega DF, Subramaniam K, Sharp J, Turner JD, Biagini GA, Owen A, Kipar A, Hiscox JA, Stewart JP. Sequential Infection with Influenza A Virus Followed by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Leads to More Severe Disease and Encephalitis in a Mouse Model of COVID-19. Viruses 2024; 16:863. [PMID: 38932155 PMCID: PMC11209060 DOI: 10.3390/v16060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2. The coalescence of SARS-CoV-2 with seasonal respiratory viruses, particularly influenza viruses, is a global health concern. To understand this, transgenic mice expressing the human ACE2 receptor (K18-hACE2) were infected with influenza A virus (IAV) followed by SARS-CoV-2 and the host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 alone. The sequentially infected mice showed reduced SARS-CoV-2 RNA synthesis, yet exhibited more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to the singly infected or control mice. Sequential infection also exacerbated the extrapulmonary encephalitic manifestations associated with SARS-CoV-2 infection. Conversely, prior infection with a commercially available, multivalent live-attenuated influenza vaccine (Fluenz Tetra) elicited the same reduction in SARS-CoV-2 RNA synthesis, albeit without the associated increase in disease severity. This suggests that the innate immune response stimulated by IAV inhibits SARS-CoV-2. Interestingly, infection with an attenuated, apathogenic influenza vaccine does not result in an aberrant immune response and enhanced disease severity. Taken together, the data suggest coinfection ('twinfection') is deleterious and mitigation steps should be instituted as part of the comprehensive public health and management strategy of COVID-19.
Collapse
Affiliation(s)
- Jordan J. Clark
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Rebekah Penrice-Randal
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Xiaofeng Dong
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Shaun H. Pennington
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Amy E. Marriott
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Stefano Colombo
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - Maia Kavanagh Williamson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - Lance Turtle
- Department of Clinical Infection Microbiology and Immunology and NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Tropical & Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK
| | - Tessa Prince
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.)
| | - Edward I. Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.)
| | - Ghada Shawli
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Daniele F. Mega
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Krishanthi Subramaniam
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Jo Sharp
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK; (J.S.); (A.O.)
| | - Joseph D. Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Giancarlo A. Biagini
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK; (J.S.); (A.O.)
| | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland
| | - Julian A. Hiscox
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Infectious Diseases Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Department of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Mak GC, Lau SS, Wong KK, Than EK, Ng AY, Hung DL. Optimizing heat inactivation for SARS-CoV-2 at 95 °C and its implications: A standardized approach. Heliyon 2024; 10:e28371. [PMID: 38655330 PMCID: PMC11035938 DOI: 10.1016/j.heliyon.2024.e28371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/20/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Background Standardized and validated heat inactivation procedure for Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not available. For heat inactivation, various protocols were reported to prepare External Quality Assessment Programme (EQAP) samples without direct comparison between different durations. Objective To assess the heat inactivation procedures against SARS-CoV-2. The efficacy of the optimized condition was reflected by the results from laboratories testing the EQAP samples. Study design The SARS-CoV-2 strain was exposed to 95 °C in a water bath for three different time intervals, 5 min, 10 min and 15 min, respectively. The efficacy of inactivation was confirmed by the absence of cytopathic effects and decreasing viral load in 3 successive cell line passages. The viral stock inactivated by the optimal time interval was dispatched to EQAP participants and the result returned were analyzed. Results All of the three conditions were capable of inactivating the SARS-CoV-2 of viral load at around cycle threshold value of 10. When the 95 °C 10 min condition was chosen to prepare SARS-CoV-2 EQAP samples, they showed sufficient homogeneity and stability. High degree of consensus was observed among EQAP participants in all samples dispatched. Conclusions The conditions evaluated in the present study could be helpful for laboratories in preparing SARS-CoV-2 EQAP samples.
Collapse
Affiliation(s)
- Gannon C.K. Mak
- All from Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - Stephen S.Y. Lau
- All from Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - Kitty K.Y. Wong
- All from Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - Eunice K.Y. Than
- All from Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - Anita Y.Y. Ng
- All from Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - Derek L.L. Hung
- All from Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| |
Collapse
|
11
|
Karim M, Pohane AA, Lo CW, Einav S, Garhyan J. Chemical inactivation strategies for SARS-CoV-2-infected cells and organoids. STAR Protoc 2024; 5:102906. [PMID: 38401122 PMCID: PMC10904193 DOI: 10.1016/j.xpro.2024.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/07/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, conducted in high-containment laboratories, requires transferring samples to lower containment labs for downstream applications, mandating sample inactivation. Here, we present a stepwise protocol for chemical inactivation of SARS-CoV-2 virus in culture supernatants or within infected cells and organoids, using eight chemical reagents validated via plaque assays. Additionally, we describe steps for troubleshooting virus inactivation, titer calculation, and log reduction. This protocol offers valuable resources for the COVID-19 research community, providing essential tools to advance research on this virus.
Collapse
Affiliation(s)
- Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.
| | - Amol Arunrao Pohane
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University, Stanford, CA, USA
| | - Chieh-Wen Lo
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jaishree Garhyan
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Chaki SP, Kahl-McDonagh MM, Neuman BW, Zuelke KA. Validating the inactivation of viral pathogens with a focus on SARS-CoV-2 to safely transfer samples from high-containment laboratories. Front Cell Infect Microbiol 2024; 14:1292467. [PMID: 38510962 PMCID: PMC10951993 DOI: 10.3389/fcimb.2024.1292467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Pathogen leak from a high-containment laboratory seriously threatens human safety, animal welfare, and environmental security. Transportation of pathogens from a higher (BSL4 or BSL3) to a lower (BSL2) containment laboratory for downstream experimentation requires complete pathogen inactivation. Validation of pathogen inactivation is necessary to ensure safety during transportation. This study established a validation strategy for virus inactivation. Methods SARS-CoV-2 wild type, delta, and omicron variants underwent heat treatment at 95°C for 10 minutes using either a hot water bath or a thermocycler. To validate the inactivation process, heat-treated viruses, and untreated control samples were incubated with A549-hACE2 and Vero E6-TMPRSS2-T2A-ACE2 cells. The cells were monitored for up to 72 hours for any cytopathic effects, visually and under a microscope, and for virus genome replication via RT-qPCR. The quality of post-treated samples was assessed for suitability in downstream molecular testing applications. Results Heat treatment at 95°C for 10 minutes effectively inactivated SARS-CoV-2 variants. The absence of cytopathic effects, coupled with the inability of virus genome replication, validated the efficacy of the inactivation process. Furthermore, the heat-treated samples proved to be qualified for COVID-19 antigen testing, RT-qPCR, and whole-genome sequencing. Discussion By ensuring the safety of sample transportation for downstream experimentation, this validation approach enhances biosecurity measures. Considerations for potential limitations, comparisons with existing inactivation methods, and broader implications of the findings are discussed.
Collapse
Affiliation(s)
- Sankar Prasad Chaki
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States
| | - Melissa M. Kahl-McDonagh
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States
| | - Benjamin W. Neuman
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States
- Department of Biological Sciences, Texas A&M University, College Station, TX, United States
- Department of Molecular Pathogenesis and Immunology, Texas A&M University, College Station, TX, United States
| | - Kurt A. Zuelke
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Erdmann M, Hodgson L, Webb I, Davidson AD, Verkade P. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) culture and sample preparation for correlative light electron microscopy. Methods Cell Biol 2024; 187:99-116. [PMID: 38705632 DOI: 10.1016/bs.mcb.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Correlative Light Electron Microscopy (CLEM) is a powerful technique to investigate the ultrastructure of specific cells and organelles at sub-cellular resolution. Transmission Electron Microscopy (TEM) is particularly useful to the field of virology, given the small size of the virion, which is below the limit of detection by light microscopy. Furthermore, viral infection results in the rearrangement of host organelles to form spatially defined compartments that facilitate the replication of viruses. With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there has been great interest to study the viral replication complex using CLEM. In this chapter we provide an exemplary workflow describing the safe preparation and processing of cells grown on coverslips and infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Maximilian Erdmann
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lorna Hodgson
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Isobel Webb
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
14
|
Voltan G, Antonelli G, Mondin A, Tizianel I, Sabbadin C, Barbot M, Basso D, Scaroni C, Ceccato F. Heat inactivation of SARS-CoV 2 enabled the measurement of salivary cortisol during COVID-19 pandemic. Endocrine 2024; 83:775-782. [PMID: 37991703 PMCID: PMC10901918 DOI: 10.1007/s12020-023-03597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND AND AIM Salivary cortisol has become an essential tool in the management of cortisol-related disease. In 2020 the sudden outbreak of COVID-19 pandemic caused several concerns about the use of saliva, due to the risk of contamination, and a European consensus further discourage using salivary cortisol. To decrease infectious risk, we handled specimens by applying a heat treatment to inactivate viral particles, further evaluating the impact of the COVID-19 pandemic on the use of salivary cortisol in clinical practice. MATERIAL AND METHODS Saliva samples were exposed for 10 min at 70 °C, then cortisol was measured using LC-MS/MS. The number of salivary cortisol examinations from 2013 to 2022 was extracted from the local electronic database: those performed in 2019, 2020, and 2021 were analyzed and compared with the historical data. RESULTS During 2020 we observed a decrease of 408 (-20%) examinations (p = 0.05) compared to 2019; especially in salivary cortisol daily rhythm and salivary cortisol/cortisone ratio (respectively reduction of 47% and 88%, p = 0.003 and p = 0.001). Analyzing year 2021 compared with 2020 we reported an increase of 420 examinations (+20%, p = 0.01), with a complete recovery of salivary cortisol measurement (considering 2019: p = 0.71). Major differences were observed between morning salivary cortisol (-20%, p = 0.017), LNSC (-21%, p = 0.012) and salivary cortisol rhythm (-22%, p = 0.056). No Sars-Cov2 infections related to working exposure were reported among laboratory's employers. CONCLUSIONS We speculate that the adoption of an appropriate technique to inactivate viral particles in saliva specimens allowed the safety maintenance of salivary collections, also during the Sars-CoV-2 outbreak.
Collapse
Affiliation(s)
- Giacomo Voltan
- Department of Medicine DIMED, University of Padova, Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy
| | - Giorgia Antonelli
- Department of Medicine DIMED, University of Padova, Padova, Italy
- Laboratory Medicine Unit, University-Hospital of Padova, Padova, Italy
| | - Alessandro Mondin
- Department of Medicine DIMED, University of Padova, Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy
| | - Irene Tizianel
- Department of Medicine DIMED, University of Padova, Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy
| | - Chiara Sabbadin
- Department of Medicine DIMED, University of Padova, Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy
| | - Mattia Barbot
- Department of Medicine DIMED, University of Padova, Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy
| | - Daniela Basso
- Department of Medicine DIMED, University of Padova, Padova, Italy
- Laboratory Medicine Unit, University-Hospital of Padova, Padova, Italy
| | - Carla Scaroni
- Department of Medicine DIMED, University of Padova, Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy
| | - Filippo Ceccato
- Department of Medicine DIMED, University of Padova, Padova, Italy.
- Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy.
| |
Collapse
|
15
|
Shahi F, Rasti M, Moradi M. Overview of the different methods for RNA preparation in COVID-19 diagnosis process during the pandemic. Anal Biochem 2024; 686:115410. [PMID: 38006951 DOI: 10.1016/j.ab.2023.115410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The COVID-19 pandemic brought to light the impact of a widespread disease on various aspects of human relationships, communities, and economies. One notable consequence was the increased demand for diagnostic kits, laboratory reagents, and personal health equipment. This surge in testing capacity worldwide led to shortages in the supply of essential items, including RNA extraction kits, which are crucial for detecting COVID-19 infections. To address this scarcity, researchers have proposed alternative and cost-effective strategies for RNA extraction, utilizing both chemical and physical solutions and extraction-free methods. These approaches aim to alleviate the challenges associated with the overwhelming number of tests being conducted in laboratories. The purpose of this review is intends to provide a comprehensive summary of the various kit-free RNA extraction methods available for COVID-19 diagnosis during the pandemic.
Collapse
Affiliation(s)
- Fatemeh Shahi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
16
|
Box HJ, Sharp J, Pennington SH, Kijak E, Tatham L, Caygill CH, Lopeman RC, Jeffreys LN, Herriott J, Neary M, Valentijn A, Pertinez H, Curley P, Arshad U, Rajoli RKR, Jochmans D, Vangeel L, Neyts J, Chatelain E, Escudié F, Scandale I, Rannard S, Stewart JP, Biagini GA, Owen A. Lack of antiviral activity of probenecid in vitro and in Syrian golden hamsters. J Antimicrob Chemother 2024; 79:172-178. [PMID: 37995258 PMCID: PMC10761260 DOI: 10.1093/jac/dkad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES Antiviral interventions are required to complement vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data to support candidate plausibility are required. This work sought to further investigate the putative antiviral activity of probenecid against SARS-CoV-2. METHODS Vero E6 cells were preincubated with probenecid, or control media for 2 h before infection (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020). Probenecid or control media was reapplied, plates reincubated and cytopathic activity quantified by spectrophotometry after 48 h. In vitro human airway epithelial cell (HAEC) assays were performed for probenecid against SARS-CoV-2-VoC-B.1.1.7 (hCoV-19/Belgium/rega-12211513/2020; EPI_ISL_791333, 2020-12-21) using an optimized cell model for antiviral testing. Syrian golden hamsters were intranasally inoculated (SARS-CoV-2 Delta B.1.617.2) 24 h prior to treatment with probenecid or vehicle for four twice-daily doses. RESULTS No observable antiviral activity for probenecid was evident in Vero E6 or HAEC assays. No reduction in total or subgenomic RNA was observed in terminal lung samples (P > 0.05) from hamsters. Body weight of uninfected hamsters remained stable whereas both probenecid- and vehicle-treated infected hamsters lost body weight (P > 0.5). CONCLUSIONS These data do not support probenecid as a SARS-CoV-2 antiviral drug.
Collapse
Affiliation(s)
- Helen J Box
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Shaun H Pennington
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Edyta Kijak
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Lee Tatham
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Claire H Caygill
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Rose C Lopeman
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Joanne Herriott
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Megan Neary
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Anthony Valentijn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Henry Pertinez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Paul Curley
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Usman Arshad
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Rajith K R Rajoli
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium and the Global Virus Network (GVN), Baltimore, MD, USA
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium and the Global Virus Network (GVN), Baltimore, MD, USA
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium and the Global Virus Network (GVN), Baltimore, MD, USA
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), Research and Development, 1202, Geneva, Switzerland
| | - Fanny Escudié
- Drugs for Neglected Diseases initiative (DNDi), Research and Development, 1202, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases initiative (DNDi), Research and Development, 1202, Geneva, Switzerland
| | - Steve Rannard
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
- Department of Chemistry, University of Liverpool,Liverpool L7 3NY, UK
| | - James P Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| |
Collapse
|
17
|
Marzano V, Mortera SL, Marangelo C, Piazzesi A, Rapisarda F, Pane S, Del Chierico F, Vernocchi P, Romani L, Campana A, Palma P, Putignani L. The metaproteome of the gut microbiota in pediatric patients affected by COVID-19. Front Cell Infect Microbiol 2023; 13:1327889. [PMID: 38188629 PMCID: PMC10766818 DOI: 10.3389/fcimb.2023.1327889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The gut microbiota (GM) play a significant role in the infectivity and severity of COVID-19 infection. However, the available literature primarily focuses on adult patients and it is known that the microbiota undergoes changes throughout the lifespan, with significant alterations occurring during infancy and subsequently stabilizing during adulthood. Moreover, children have exhibited milder symptoms of COVID-19 disease, which has been associated with the abundance of certain protective bacteria. Here, we examine the metaproteome of pediatric patients to uncover the biological mechanisms that underlie this protective effect of the GM. Methods We performed nanoliquid chromatography coupled with tandem mass spectrometry on a high resolution analytical platform, resulting in label free quantification of bacterial protein groups (PGs), along with functional annotations via COG and KEGG databases by MetaLab-MAG. Additionally, taxonomic assignment was possible through the use of the lowest common ancestor algorithm provided by Unipept software. Results A COVID-19 GM functional dissimilarity respect to healthy subjects was identified by univariate analysis. The alteration in COVID-19 GM function is primarily based on bacterial pathways that predominantly involve metabolic processes, such as those related to tryptophan, butanoate, fatty acid, and bile acid biosynthesis, as well as antibiotic resistance and virulence. Discussion These findings highlight the mechanisms by which the pediatric GM could contribute to protection against the more severe manifestations of the disease in children. Uncovering these mechanisms can, therefore, have important implications in the discovery of novel adjuvant therapies for severe COVID-19.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonia Piazzesi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Rapisarda
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Romani
- Unit of Infectious Disease, Bambino Gesu’ Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
18
|
Hiep NT, Nguyen MK, Nhut HT, Hung NTQ, Manh NC, Lin C, Chang SW, Um MJ, Nguyen DD. A review on sterilization methods of environmental decontamination to prevent the coronavirus SARS-CoV-2 (COVID-19 virus): A new challenge towards eco-friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166021. [PMID: 37543323 DOI: 10.1016/j.scitotenv.2023.166021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/13/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
In recent years, the COVID-19 pandemic is currently wreaking havoc on the planet. SARS-CoV-2, the Severe Acute Respiratory Syndrome Coronavirus, is the current term for this outbreak. Reports about this novel coronavirus have been presented since the pandemic's breakout, and they have demonstrated that it transmits rapidly from person to person, primarily by droplets in the air. Findings have illustrated that SARS-CoV-2 can survive on surfaces from hours to days. Therefore, it is essential to find practical solutions to reduce the virus's impact on human health and the environment. This work evaluated common sterilization methods that can decontaminate the environment and items. The goal is that healthcare facilities, disease prevention organizations, and local communities can overcome the new challenge of finding eco-friendly solutions. Further, a foundation of information encompassing various sterilization procedures and highlighting their limits to choose the most appropriate method to stop disease-causing viruses in the new context has been presented. The findings of this crucial investigation contribute to gaining insight into the comprehensive sterilization approaches against the coronavirus for human health protection and sustainable environmental development.
Collapse
Affiliation(s)
- Nguyen Trung Hiep
- Research Institute for Sustainable Development, Ho Chi Minh University of Natural Resources and Environment, 236B Le Van Sy, Ward 1, Tan Binh District, Ho Chi Minh City 700000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Huynh Tan Nhut
- Faculty of Environment and Natural Resources, Nong Lam University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam.
| | - Nguyen Cong Manh
- Department of Aquatic and Atmospheric Environment Research, Research Institute of Biotechnology and Environment, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Myoung Jin Um
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
19
|
Zhdanov DD, Ivin YY, Shishparenok AN, Kraevskiy SV, Kanashenko SL, Agafonova LE, Shumyantseva VV, Gnedenko OV, Pinyaeva AN, Kovpak AA, Ishmukhametov AA, Archakov AI. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. BIOMEDITSINSKAIA KHIMIIA 2023; 69:253-280. [PMID: 37937429 DOI: 10.18097/pbmc20236905253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Pinyaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A A Kovpak
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
20
|
Das A, Ahmed Z, Xu L, Jia W. Assessment and verification of chemical inactivation of peste des petits ruminants virus by virus isolation following virus capture using Nanotrap magnetic virus particles. Microbiol Spectr 2023; 11:e0068923. [PMID: 37655907 PMCID: PMC10580900 DOI: 10.1128/spectrum.00689-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Research including diagnosis on highly contagious viruses at the molecular level such as PCR and next-generation sequencing requires complete inactivation of the virus to ensure biosafety and biosecurity so that any accidental release of the virus does not compromise the safety of the susceptible population and the environment. In this work, peste des petits ruminants virus (PPRV) was inactivated with chemical agents, and the virus inactivation was confirmed by virus isolation (VI) using Vero cells. Since the chemical agents are cytotoxic, inactivated virus (PPRV) was diluted 1:100 to neutralize cytotoxicity, and the residual viruses (if any) were captured using Nanotrap magnetic virus particles (NMVPs). The NMVPs and the captured viruses were subjected to VI. No CPE was observed, indicating complete inactivation, and the results were further supported by real-time RT-PCR. This new protocol to verify virus inactivation can be applicable to other viruses.
Collapse
Affiliation(s)
- Amaresh Das
- US Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Laboratory, Reagents and Vaccine Services Section, Plum Island Animal Disease Center, Orient Point, New York, USA
| | - Zaheer Ahmed
- US Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Laboratory, Reagents and Vaccine Services Section, Plum Island Animal Disease Center, Orient Point, New York, USA
| | - Lizhe Xu
- US Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Laboratory, Reagents and Vaccine Services Section, Plum Island Animal Disease Center, Orient Point, New York, USA
| | - Wei Jia
- US Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Laboratory, Reagents and Vaccine Services Section, Plum Island Animal Disease Center, Orient Point, New York, USA
| |
Collapse
|
21
|
Allicock OM, Yolda-Carr D, Earnest R, Breban MI, Vega N, Ott IM, Kalinich C, Alpert T, Petrone ME, Wyllie AL. Method versatility in RNA extraction-free PCR detection of SARS-CoV-2 in saliva samples. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 182:103-108. [PMID: 37369293 PMCID: PMC10290768 DOI: 10.1016/j.pbiomolbio.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Early in the pandemic, a simple, open-source, RNA extraction-free RT-qPCR protocol for SARS-CoV-2 detection in saliva was developed and made widely available. This simplified approach (SalivaDirect) requires only sample treatment with proteinase K prior to PCR testing. However, feedback from clinical laboratories highlighted a need for a flexible workflow that can be seamlessly integrated into their current health and safety requirements for the receiving and handling of potentially infectious samples. To address these varying needs, we explored additional pre-PCR workflows. We built upon the original SalivaDirect workflow to include an initial incubation step (95 °C for 30 min, 95 °C for 5 min or 65 °C for 15 min) with or without addition of proteinase K. The limit of detection for the workflows tested did not significantly differ from that of the original SalivaDirect workflow. When tested on de-identified saliva samples from confirmed COVID-19 individuals, these workflows also produced comparable virus detection and assay sensitivities, as determined by RT-qPCR analysis. Exclusion of proteinase K did not negatively affect the sensitivity of the assay. The addition of multiple heat pretreatment options to the SalivaDirect protocol increases the accessibility of this cost-effective SARS-CoV-2 test as it gives diagnostic laboratories the flexibility to implement the workflow which best suits their safety protocols.
Collapse
Affiliation(s)
- Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Noel Vega
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Isabel M Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Chaney Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Tara Alpert
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Mary E Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| |
Collapse
|
22
|
Collings K, Boisdon C, Sham TT, Skinley K, Oh HK, Prince T, Ahmed A, Pennington SH, Brownridge PJ, Edwards T, Biagini GA, Eyers CE, Lamb A, Myers P, Maher S. Attaching protein-adsorbing silica particles to the surface of cotton substrates for bioaerosol capture including SARS-CoV-2. Nat Commun 2023; 14:5033. [PMID: 37596260 PMCID: PMC10439164 DOI: 10.1038/s41467-023-40696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
The novel coronavirus pandemic (COVID-19) has necessitated a global increase in the use of face masks to limit the airborne spread of the virus. The global demand for personal protective equipment has at times led to shortages of face masks for the public, therefore makeshift masks have become commonplace. The severe acute respiratory syndrome caused by coronavirus-2 (SARS-CoV-2) has a spherical particle size of ~97 nm. However, the airborne transmission of this virus requires the expulsion of droplets, typically ~0.6-500 µm in diameter (by coughing, sneezing, breathing, and talking). In this paper, we propose a face covering that has been designed to effectively capture SARS-CoV-2 whilst providing uncompromised comfort and breathability for the wearer. Herein, we describe a material approach that uses amorphous silica microspheres attached to cotton fibres to capture bioaerosols, including SARS CoV-2. This has been demonstrated for the capture of aerosolised proteins (cytochrome c, myoglobin, ubiquitin, bovine serum albumin) and aerosolised inactivated SARS CoV-2, showing average filtration efficiencies of ~93% with minimal impact on breathability.
Collapse
Affiliation(s)
- Kieran Collings
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tung-Ting Sham
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Kevin Skinley
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Hyun-Kyung Oh
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adham Ahmed
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Shaun H Pennington
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Philip J Brownridge
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amanda Lamb
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Applied Health Insights Ltd, Cheshire, UK
| | - Peter Myers
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
23
|
Bido AT, Ember KJI, Trudel D, Durand M, Leblond F, Brolo AG. Detection of SARS-CoV-2 in saliva by a low-cost LSPR-based sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3955-3966. [PMID: 37530390 DOI: 10.1039/d3ay00853c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The SARS-CoV-2 pandemic started more than 3 years ago, but the containment of the spread is still a challenge. Screening is imperative for informed decision making by government authorities to contain the spread of the virus locally. The access to screening tests is disproportional, due to the lack of access to reagents, equipment, finances or because of supply chain disruptions. Low and middle-income countries have especially suffered with the lack of these resources. Here, we propose a low cost and easily constructed biosensor device based on localized surface plasmon resonance, or LSPR, for the screening of SARS-CoV-2. The biosensor device, dubbed "sensor" for simplicity, was constructed in two modalities: (1) viral detection in saliva and (2) antibody against COVID in saliva. Saliva collected from 18 patients were tested in triplicates. Both sensors successfully classified all COVID positive patients (among hospitalized and non-hospitalized). From the COVID negative patients 7/8 patients were correctly classified. For both sensors, sensitivity was determined as 100% (95% CI 79.5-100) and specificity as 87.5% (95% CI 80.5-100). The reagents and equipment used for the construction and deployment of this sensor are ubiquitous and low-cost. This sensor technology can then add to the potential solution for challenges related to screening tests in underserved communities.
Collapse
Affiliation(s)
- Ariadne Tuckmantel Bido
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada.
| | - Katherine J I Ember
- Department of Engineering Physics, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada
- Division of Neurology, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Dominique Trudel
- Department of Engineering Physics, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada
- Division of Neurology, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Madeleine Durand
- CHUM Research Center, Internal Medicine Service of the Centre Hospitalier de l'Univsersité de Montréal (CHUM), Canada
| | - Frederic Leblond
- Department of Engineering Physics, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada
- Division of Neurology, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada.
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
24
|
Millward GG, Popelka SM, Gutierrez AG, Kowallis WJ, von Tersch RL, Yerramilli SV. A novel strategy to avoid sensitivity loss in pooled testing for SARS-CoV-2 surveillance: validation using nasopharyngeal swab and saliva samples. Front Public Health 2023; 11:1190308. [PMID: 37637813 PMCID: PMC10450028 DOI: 10.3389/fpubh.2023.1190308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
At the peak of the COVID-19 pandemic, pooled surveillance strategies were employed to alleviate the overwhelming demand for clinical testing facilities. A major drawback of most pooled-testing methods is the dilution of positive samples, which leads to a loss of detection sensitivity and the potential for false negatives. We developed a novel pooling strategy that compensates for the initial dilution with an appropriate concentration during nucleic acid extraction and real-time PCR. We demonstrated the proof of principle using laboratory-created 10-sample pools with one positive and corresponding individual positive samples by spiking a known amount of heat-inactivated SARS-CoV-2 into viral transport medium (VTM) or pooled negative saliva. No Ct difference was observed between a 10-sample pool with one positive vs. the corresponding individually analyzed positive sample by this method, suggesting that there is no detectable loss of sensitivity. We further validated this approach by using nasopharyngeal swab (NPS) specimens and showed that there is no loss of sensitivity. Serial dilutions of the virus were spiked into VTM and pooled with negative saliva in simulated 10-sample pools containing one positive to determine the LOD and process efficiency of this pooling methodology. The LOD of this approach was 10 copies/PCR, and the process efficiencies are ~95%-103% for N1 and ~87%-98% for N2 with samples in different matrices and with two different master mixes tested. Relative to TaqPath 1-step master mix, the TaqMan Fast Virus 1-Step master mix showed better sensitivity for the N2 assay, while the N1 assay showed no Ct difference. Our pooled testing strategy can facilitate large-scale, cost-effective SARS-CoV-2 surveillance screening and maintain the same level of sensitivity when analyzed individually or in a pool. This approach is highly relevant for public health surveillance efforts aimed at mitigating SARS-CoV-2 spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Subrahmanyam V. Yerramilli
- Emerging Biological Threats Branch, Molecular Biology Division, Laboratory Sciences, Defense Centers for Public Health - Aberdeen “Formerly the Army Public Health Center”, Aberdeen Proving Ground, Edgewood, MD, United States
| |
Collapse
|
25
|
Merling MR, Williams A, Mahfooz NS, Ruane-Foster M, Smith J, Jahnes J, Ayers LW, Bazan JA, Norris A, Norris Turner A, Oglesbee M, Faith SA, Quam MB, Robinson RT. The emergence of SARS-CoV-2 lineages and associated saliva antibody responses among asymptomatic individuals in a large university community. PLoS Pathog 2023; 19:e1011596. [PMID: 37603565 PMCID: PMC10470930 DOI: 10.1371/journal.ppat.1011596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/31/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
SARS-CoV-2 (CoV2) infected, asymptomatic individuals are an important contributor to COVID transmission. CoV2-specific immunoglobulin (Ig)-as generated by the immune system following infection or vaccination-has helped limit CoV2 transmission from asymptomatic individuals to susceptible populations (e.g. elderly). Here, we describe the relationships between COVID incidence and CoV2 lineage, viral load, saliva Ig levels (CoV2-specific IgM, IgA and IgG), and ACE2 binding inhibition capacity in asymptomatic individuals between January 2021 and May 2022. These data were generated as part of a large university COVID monitoring program in Ohio, United States of America, and demonstrate that COVID incidence among asymptomatic individuals occurred in waves which mirrored those in surrounding regions, with saliva CoV2 viral loads becoming progressively higher in our community until vaccine mandates were established. Among the unvaccinated, infection with each CoV2 lineage (pre-Omicron) resulted in saliva Spike-specific IgM, IgA, and IgG responses, the latter increasing significantly post-infection and being more pronounced than N-specific IgG responses. Vaccination resulted in significantly higher Spike-specific IgG levels compared to unvaccinated infected individuals, and uninfected vaccinees' saliva was more capable of inhibiting Spike function. Vaccinees with breakthrough Delta infections had Spike-specific IgG levels comparable to those of uninfected vaccinees; however, their ability to inhibit Spike binding was diminished. These data are consistent with COVID vaccines having achieved hoped-for effects in our community, including the generation of mucosal antibodies that inhibit Spike and lower community viral loads, and suggest breakthrough Delta infections were not due to an absence of vaccine-elicited Ig, but instead limited Spike binding activity in the face of high community viral loads.
Collapse
Affiliation(s)
- Marlena R. Merling
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Amanda Williams
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Najmus S. Mahfooz
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Marisa Ruane-Foster
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Jacob Smith
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Jeff Jahnes
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jose A. Bazan
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Alison Norris
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Epidemiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Abigail Norris Turner
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael Oglesbee
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Seth A. Faith
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Mikkel B. Quam
- Department of Epidemiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard T. Robinson
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
26
|
De Neck S, Penrice-Randal R, Clark JJ, Sharma P, Bentley EG, Kirby A, Mega DF, Han X, Owen A, Hiscox JA, Stewart JP, Kipar A. The Stereotypic Response of the Pulmonary Vasculature to Respiratory Viral Infections: Findings in Mouse Models of SARS-CoV-2, Influenza A and Gammaherpesvirus Infections. Viruses 2023; 15:1637. [PMID: 37631979 PMCID: PMC10458810 DOI: 10.3390/v15081637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The respiratory system is the main target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 19 (COVID-19) where acute respiratory distress syndrome is considered the leading cause of death. Changes in pulmonary blood vessels, among which an endothelialitis/endotheliitis has been particularly emphasized, have been suggested to play a central role in the development of acute lung injury. Similar vascular changes are also observed in animal models of COVID-19. The present study aimed to determine whether the latter are specific for SARS-CoV-2 infection, investigating the vascular response in the lungs of mice infected with SARS-CoV-2 and other respiratory viruses (influenza A and murine gammaherpesvirus) by in situ approaches (histology, immunohistology, morphometry) combined with RNA sequencing and bioinformatic analysis. Non-selective recruitment of monocytes and T and B cells from larger muscular veins and arteries was observed with all viruses, matched by a comparable transcriptional response. There was no evidence of endothelial cell infection in any of the models. Both the morphological investigation and the transcriptomics approach support the interpretation that the lung vasculature in mice mounts a stereotypic response to alveolar and respiratory epithelial damage. This may have implications for the treatment and management of respiratory disease in humans.
Collapse
Affiliation(s)
- Simon De Neck
- Laboratory for Animal Model Pathology, Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, 8057 Zurich, Switzerland;
| | - Rebekah Penrice-Randal
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 3RF, UK; (R.P.-R.); (J.J.C.); (P.S.); (E.G.B.); (A.K.); (D.F.M.); (X.H.); (J.A.H.); (J.P.S.)
| | - Jordan J. Clark
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 3RF, UK; (R.P.-R.); (J.J.C.); (P.S.); (E.G.B.); (A.K.); (D.F.M.); (X.H.); (J.A.H.); (J.P.S.)
| | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 3RF, UK; (R.P.-R.); (J.J.C.); (P.S.); (E.G.B.); (A.K.); (D.F.M.); (X.H.); (J.A.H.); (J.P.S.)
| | - Eleanor G. Bentley
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 3RF, UK; (R.P.-R.); (J.J.C.); (P.S.); (E.G.B.); (A.K.); (D.F.M.); (X.H.); (J.A.H.); (J.P.S.)
| | - Adam Kirby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 3RF, UK; (R.P.-R.); (J.J.C.); (P.S.); (E.G.B.); (A.K.); (D.F.M.); (X.H.); (J.A.H.); (J.P.S.)
| | - Daniele F. Mega
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 3RF, UK; (R.P.-R.); (J.J.C.); (P.S.); (E.G.B.); (A.K.); (D.F.M.); (X.H.); (J.A.H.); (J.P.S.)
| | - Ximeng Han
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 3RF, UK; (R.P.-R.); (J.J.C.); (P.S.); (E.G.B.); (A.K.); (D.F.M.); (X.H.); (J.A.H.); (J.P.S.)
| | - Andrew Owen
- Centre of Excellence in Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L3 3RF, UK;
| | - Julian A. Hiscox
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 3RF, UK; (R.P.-R.); (J.J.C.); (P.S.); (E.G.B.); (A.K.); (D.F.M.); (X.H.); (J.A.H.); (J.P.S.)
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 3RF, UK; (R.P.-R.); (J.J.C.); (P.S.); (E.G.B.); (A.K.); (D.F.M.); (X.H.); (J.A.H.); (J.P.S.)
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, 8057 Zurich, Switzerland;
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 3RF, UK; (R.P.-R.); (J.J.C.); (P.S.); (E.G.B.); (A.K.); (D.F.M.); (X.H.); (J.A.H.); (J.P.S.)
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
27
|
Li LX, Nissly RH, Swaminathan A, Bird IM, Boyle NR, Nair MS, Greenawalt DI, Gontu A, Cavener VS, Sornberger T, Freihaut JD, Kuchipudi SV, Bahnfleth WP. Inactivation of HCoV-NL63 and SARS-CoV-2 in aqueous solution by 254 nm UV-C. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112755. [PMID: 37423001 DOI: 10.1016/j.jphotobiol.2023.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Ultraviolet germicidal irradiation (UVGI) is a highly effective means of inactivating many bacteria, viruses, and fungi. UVGI is an attractive viral mitigation strategy against coronaviruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-2019 (COVID-19) pandemic. This investigation measures the susceptibility of two human coronaviruses to inactivation by 254 nm UV-C radiation. Human coronavirus NL63 and SARS-CoV-2 were irradiated in a collimated, dual-beam, aqueous UV reactor. By measuring fluence and integrating it in real-time, this reactor accounts for the lamp output transients during UVGI exposures. The inactivation rate constants of a one-stage exponential decay model were determined to be 2.050 cm2/mJ and 2.098 cm2/mJ for the NL63 and SARS-CoV-2 viruses, respectively. The inactivation rate constant for SARS-CoV-2 is within 2% of that of NL63, indicating that in identical inactivation environments, very similar UV 254 nm deactivation susceptibilities for these two coronaviruses would be achieved. Given the inactivation rate constant obtained in this study, doses of 1.1 mJ/cm2, 2.2 mJ/cm2, and 3.3 mJ/cm2 would result in a 90%, 99%, and 99.9% inactivation of the SARS-CoV-2 virus, respectively. The inactivation rate constant obtained in this study is significantly higher than values reported from many 254 nm studies, which suggests greater UV susceptibility to the UV-C than what was believed. Overall, results from this study indicate that 254 nm UV-C is effective for inactivation of human coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Lily X Li
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America
| | - Ruth H Nissly
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Anand Swaminathan
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America
| | - Ian M Bird
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Nina R Boyle
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Meera Surendran Nair
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Denver I Greenawalt
- Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America
| | - Abhinay Gontu
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Victoria S Cavener
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - Ty Sornberger
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America
| | - James D Freihaut
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America.
| | - Suresh V Kuchipudi
- Pennsylvania State University, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, University Park, PA 16802, United States of America; Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA 16802, United States of America.
| | - William P Bahnfleth
- Pennsylvania State University, Department of Architectural Engineering, 104 Engineering Unit A, University Park, PA, 16802, United States of America.
| |
Collapse
|
28
|
Yaniro V, Capristano S, Bailon H, Lévano J, Galarza M, García D, Cáceres O, Padilla C, Montejo H, García P, Celis M, Seraylan S, Garayar Y, Palomino M. Neutralization of SARS-CoV-2 (lineage B.1.1) by hyperimmune llama (Lama glama) serum in vero cell culture. Rev Peru Med Exp Salud Publica 2023; 40:287-296. [PMID: 37991032 PMCID: PMC10953648 DOI: 10.17843/rpmesp.2023.403.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/01/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE. To evaluate the serological antibody response of a llama (Lama glama) to SARS-CoV-2 (B.1.1 lineage) immunization and the neutralizing capacity of hyperimmune llama serum against SARS-CoV-2 virus (B.1.1 lineage) in Vero cells. MATERIALS AND METHODS. A llama was immunized with inactivated SARS-CoV-2 (B.1.1 lineage). Serum samples were analyzed to evaluate the level of antibodies by ELISA, as well as reactivity to SARS-CoV-2 antigens by Western Blot. In addition, viral neutralization in cell cultures was assessed by the Plate Reduction Neutralization Test (PRNT). RESULTS . Seroreactivity increased in the immunized llama from week 4 onwards. Antibody titers were the highest after the seventh immunization booster. Western blot results confirmed the positive ELISA findings, and immune serum antibodies recognized several viral proteins. The neutralization assay (PRNT) showed visible viral neutralization, which was in accordance with the ELISA and Western Blot results. CONCLUSIONS. The findings suggest that hyperimmune llama serum could constitute a source of therapeutic antibodies against SARS-CoV-2 infections (lineage B.1.1), and should be studied in further research.
Collapse
Affiliation(s)
- Verónica Yaniro
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Silvia Capristano
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Henri Bailon
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Juan Lévano
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Marco Galarza
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - David García
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Omar Cáceres
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Carlos Padilla
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Harrison Montejo
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Paquita García
- National Referral Laboratory for Viral Metaxenical Infections, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Viral Metaxenical InfectionsCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Mary Celis
- Laboratorio de Referencia Nacional de Virus Respiratorios, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú.Laboratorio de Referencia Nacional de Virus RespiratoriosCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Silvia Seraylan
- Centro Nacional de Producción de Biológicos, Instituto Nacional de Salud, Lima, Peru.Centro Nacional de Producción de BiológicosInstituto Nacional de SaludLimaPeru
| | - Yessica Garayar
- Centro Nacional de Producción de Biológicos, Instituto Nacional de Salud, Lima, Peru.Centro Nacional de Producción de BiológicosInstituto Nacional de SaludLimaPeru
| | - Miryam Palomino
- National Referral Laboratory for Viral Metaxenical Infections, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Viral Metaxenical InfectionsCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| |
Collapse
|
29
|
Gomes MPDB, Linhares JHR, Dos Santos TP, Pereira RC, Santos RT, da Silva SA, Souza MCDO, da Silva JFA, Trindade GF, Gomes VS, Barreto-Vieira DF, Carvalho MMVF, Ano Bom APD, Gardinali NR, Müller R, Alves NDS, Moura LDC, Neves PCDC, Esteves GS, Schwarcz WD, Missailidis S, Mendes YDS, de Lima SMB. Inactivated and Immunogenic SARS-CoV-2 for Safe Use in Immunoassays and as an Immunization Control for Non-Clinical Trials. Viruses 2023; 15:1486. [PMID: 37515173 PMCID: PMC10386713 DOI: 10.3390/v15071486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.
Collapse
Affiliation(s)
| | | | | | - Renata Carvalho Pereira
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Renata Tourinho Santos
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | | | | | - Gisela Freitas Trindade
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Viviane Silva Gomes
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | | | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Noemi Rovaris Gardinali
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Müller
- Pre-Clinical Trials Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Luma da Cruz Moura
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Gabriela Santos Esteves
- Recombinant Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Waleska Dias Schwarcz
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Sotiris Missailidis
- Institute of Technology in Immunobiologicals, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Ygara da Silva Mendes
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | |
Collapse
|
30
|
Yam-Puc JC, Hosseini Z, Horner EC, Gerber PP, Beristain-Covarrubias N, Hughes R, Lulla A, Rust M, Boston R, Ali M, Fischer K, Simmons-Rosello E, O'Reilly M, Robson H, Booth LH, Kahanawita L, Correa-Noguera A, Favara D, Ceron-Gutierrez L, Keller B, Craxton A, Anderson GSF, Sun XM, Elmer A, Saunders C, Bermperi A, Jose S, Kingston N, Mulroney TE, Piñon LPG, Chapman MA, Grigoriadou S, MacFarlane M, Willis AE, Patil KR, Spencer S, Staples E, Warnatz K, Buckland MS, Hollfelder F, Hyvönen M, Döffinger R, Parkinson C, Lear S, Matheson NJ, Thaventhiran JED. Age-associated B cells predict impaired humoral immunity after COVID-19 vaccination in patients receiving immune checkpoint blockade. Nat Commun 2023; 14:3292. [PMID: 37369658 PMCID: PMC10299999 DOI: 10.1038/s41467-023-38810-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcγRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination.
Collapse
Affiliation(s)
- Juan Carlos Yam-Puc
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
| | - Zhaleh Hosseini
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Emily C Horner
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Robert Hughes
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Maria Rust
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Rebecca Boston
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Magda Ali
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Katrin Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Edward Simmons-Rosello
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Martin O'Reilly
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Harry Robson
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Lucy H Booth
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Lakmini Kahanawita
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Andrea Correa-Noguera
- Department of Oncology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - David Favara
- Department of Oncology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrew Craxton
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Georgina S F Anderson
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Anne Elmer
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | | | - Areti Bermperi
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Sherly Jose
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Thomas E Mulroney
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Lucia P G Piñon
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Michael A Chapman
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | | | - Marion MacFarlane
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Kiran R Patil
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Sarah Spencer
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
| | - Emily Staples
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Matthew S Buckland
- Department of Clinical Immunology, Barts Health, London, UK
- UCL GOSH Institute of Child Health Division of Infection and Immunity, Section of Cellular and Molecular Immunology, London, UK
| | | | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Rainer Döffinger
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Christine Parkinson
- Department of Oncology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Sara Lear
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - James E D Thaventhiran
- Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK.
| |
Collapse
|
31
|
Blacksell SD, Dhawan S, Kusumoto M, Le KK, Summermatter K, O'Keefe J, Kozlovac J, Almuhairi SS, Sendow I, Scheel CM, Ahumibe A, Masuku ZM, Kojima K, Harper DR, Hamilton K. The Biosafety Research Road Map: The Search for Evidence to Support Practices in the Laboratory-SARS-CoV-2. APPLIED BIOSAFETY 2023; 28:87-95. [PMID: 37342515 PMCID: PMC10278019 DOI: 10.1089/apb.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Introduction The SARS-CoV-2 virus emerged as a novel virus and is the causative agent of the COVID-19 pandemic. It spreads readily human-to-human through droplets and aerosols. The Biosafety Research Roadmap aims to support the application of laboratory biological risk management by providing an evidence base for biosafety measures. This involves assessing the current biorisk management evidence base, identifying research and capability gaps, and providing recommendations on how an evidence-based approach can support biosafety and biosecurity, including in low-resource settings. Methods A literature search was conducted to identify potential gaps in biosafety and focused on five main sections, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results There are many knowledge gaps related to biosafety and biosecurity due to the SARS-CoV-2 virus's novelty, including infectious dose between variants, personal protective equipment for personnel handling samples while performing rapid diagnostic tests, and laboratory-acquired infections. Detecting vulnerabilities in the biorisk assessment for each agent is essential to contribute to the improvement and development of laboratory biosafety in local and national systems.
Collapse
Affiliation(s)
- Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sandhya Dhawan
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marina Kusumoto
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kim Khanh Le
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Joseph O'Keefe
- Ministry for Primary Industries, Wellington, New Zealand
| | - Joseph Kozlovac
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | | | - Indrawati Sendow
- Research Center for Veterinary Science, National Research and Innovation Agency, Indonesia
| | - Christina M. Scheel
- WHO Collaborating Center for Biosafety and Biosecurity, Office of the Associate Director for Laboratory Science, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anthony Ahumibe
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Zibusiso M. Masuku
- National Institute for Communicable Diseases of the National Health Laboratory Services, Sandringham, South Africa
| | - Kazunobu Kojima
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - David R. Harper
- The Royal Institute of International Affairs, London, United Kingdom
| | - Keith Hamilton
- World Organisation for Animal Health (OIE), Paris, France
| |
Collapse
|
32
|
Blacksell SD, Dhawan S, Kusumoto M, Le KK, Summermatter K, O'Keefe J, Kozlovac J, Almuhairi SS, Sendow I, Scheel CM, Ahumibe A, Masuku ZM, Bennett AM, Kojima K, Harper DR, Hamilton K. The Biosafety Research Road Map: The Search for Evidence to Support Practices in Human and Veterinary Laboratories. APPLIED BIOSAFETY 2023; 28:64-71. [PMID: 37342514 PMCID: PMC10277988 DOI: 10.1089/apb.2022.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Introduction Lack of evidence-based information regarding potential biological risks can result in inappropriate or excessive biosafety and biosecurity risk-reduction strategies. This can cause unnecessary damage and loss to the physical facilities, physical and psychological well-being of laboratory staff, and community trust. A technical working group from the World Organization for Animal Health (WOAH, formerly OIE), World Health Organization (WHO), and Chatham House collaborated on the Biosafety Research Roadmap (BRM) project. The goal of the BRM is the sustainable implementation of evidence-based biorisk management of laboratory activities, particularly in low-resource settings, and the identification of gaps in the current biosafety and biosecurity knowledge base. Methods A literature search was conducted for the basis of laboratory design and practices for four selected high-priority subgroups of pathogenic agents. Potential gaps in biosafety were focused on five main sections, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Categories representing miscellaneous, respiratory, bioterrorism/zoonotic, and viral hemorrhagic fever pathogens were created within each group were selected for review. Results Information sheets on the pathogens were developed. Critical gaps in the evidence base for safe sustainable biorisk management were identified. Conclusion The gap analysis identified areas of applied biosafety research required to support the safety, and the sustainability, of global research programs. Improving the data available for biorisk management decisions for research with high-priority pathogens will contribute significantly to the improvement and development of appropriate and necessary biosafety, biocontainment and biosecurity strategies for each agent.
Collapse
Affiliation(s)
- Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sandhya Dhawan
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marina Kusumoto
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kim Khanh Le
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Joseph O'Keefe
- Ministry for Primary Industries, Wellington, New Zealand
| | - Joseph Kozlovac
- United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | | | - Indrawati Sendow
- Research Center for Veterinary Science, National Research and Innovation Agency, Indonesia
| | - Christina M. Scheel
- WHO Collaborating Center for Biosafety and Biosecurity, Office of the Associate Director for Laboratory Science, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anthony Ahumibe
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Zibusiso M. Masuku
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Allan M. Bennett
- UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Kazunobu Kojima
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization (WHO), Geneva, Switzerland
| | - David R. Harper
- The Royal Institute of International Affairs, London, United Kingdom
| | - Keith Hamilton
- World Organisation for Animal Health (OIE), Paris, France
| |
Collapse
|
33
|
Frehtman V, Wohlfarth D, Müller M, Krebs O, Leuchs B. Stability and safety key factors of the oncolytic protoparvovirus H-1 from manufacturing to human application. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12521-4. [PMID: 37209160 DOI: 10.1007/s00253-023-12521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/22/2023]
Abstract
The oncolytic rodent protoparvovirus H-1PV has been successfully used in phase I/II clinical trials to treat recurrent glioblastoma multiforme and pancreatic cancer. The present work focuses on the stability and environmental safety of the H-1PV drug product from production up to its use in patients. We identified hold-steps in manufacturing for up to 3 months and showed 7-years stability for the optimal product formulation. Stress testing via UV, temperature, and pH also determined that the drug product is stable. De- and rehydration for lyophilization simulation are possible without infectious virus loss. Furthermore, we prove in-use stability for 4 days at room temperature and show no virus adsorption to injection devices, guaranteeing the correct administration dose. Iodixanol in the formulation, resulting in high viscosity, protects H-1PV against UV and some disinfectants. Nonetheless, H-1PV is depleted with rapid heat deactivation, autoclavation, and nanofiltration. Assessment of chemical disinfectants that are currently recommended by the Robert Koch-Institute demonstrated that ethanol-based hand disinfectants are not effective; however, aldehyde-based disinfectants for surfaces and instruments demonstrate sufficient H-1PV deactivation in aqueous formulations by 4 to 6 log10. With these results, we could establish a specific hygiene plan for all involved facilities from manufacturing to patient application. Overall, using 48% Iodixanol in Visipaque/Ringer as a drug formulation stabilizes H-1PV infectivity over years and protects against virus loss from short-term UV, low pH, and temperature exposure. KEY POINTS: • Optimal formulation of drug product protects the H-1PV protoparvovirus against UV, temperatures up to 50 °C, and low pH (> 1.25), stabilizing the virus during manufacturing, storage, transport, and application. • H-1PV is stable during in-use and does not adsorb to injection devices during patient administration. • Hygiene plan for H-1PV with physicochemical methods has been established.
Collapse
Affiliation(s)
- Veronika Frehtman
- German Cancer Research Center, Tumor Virology, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Daniel Wohlfarth
- German Cancer Research Center, Tumor Virology, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Marcus Müller
- German Cancer Research Center, Tumor Virology, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ottheinz Krebs
- German Cancer Research Center, Tumor Virology, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Barbara Leuchs
- German Cancer Research Center, Tumor Virology, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Qi S, Kiratzis I, Adoni P, Tuekprakhon A, Hill HJ, Stamataki Z, Nabi A, Waugh D, Rodriguez JR, Clarke SM, Fryer PJ, Zhang ZJ. Porous Cellulose Thin Films as Sustainable and Effective Antimicrobial Surface Coatings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20638-20648. [PMID: 36988094 PMCID: PMC10165601 DOI: 10.1021/acsami.2c23251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/20/2023] [Indexed: 05/05/2023]
Abstract
In the present work, we developed an effective antimicrobial surface film based on sustainable microfibrillated cellulose. The resulting porous cellulose thin film is barely noticeable to human eyes due to its submicrometer thickness, of which the surface coverage, porosity, and microstructure can be modulated by the formulations and the coating process. Using goniometers and a quartz crystal microbalance, we observed a threefold reduction in water contact angles and accelerated water evaporation kinetics on the cellulose film (more than 50% faster than that on a flat glass surface). The porous cellulose film exhibits a rapid inactivation effect against SARS-CoV-2 in 5 min, following deposition of virus-loaded droplets, and an exceptional ability to reduce contact transfer of liquid, e.g., respiratory droplets, to surfaces such as an artificial skin by 90% less than that from a planar glass substrate. It also shows excellent antimicrobial performance in inhibiting the growth of both Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis) due to the intrinsic porosity and hydrophilicity. Additionally, the cellulose film shows nearly 100% resistance to scraping in dry conditions due to its strong affinity to the supporting substrate but with good removability once wetted with water, suggesting its practical suitability for daily use. Importantly, the coating can be formed on solid substrates readily by spraying, which requires solely a simple formulation of a plant-based cellulose material with no chemical additives, rendering it a scalable, affordable, and green solution as antimicrobial surface coating. Implementing such cellulose films could thus play a significant role in controlling future pan- and epidemics, particularly during the initial phase when suitable medical intervention needs to be developed and deployed.
Collapse
Affiliation(s)
- Shaojun Qi
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Ioannis Kiratzis
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Pavan Adoni
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Aekkachai Tuekprakhon
- Institute
of Immunology and Immunotherapy, University
of Birmingham, Birmingham B15 2TT, U.K.
| | - Harriet James Hill
- Institute
of Immunology and Immunotherapy, University
of Birmingham, Birmingham B15 2TT, U.K.
| | - Zania Stamataki
- Institute
of Immunology and Immunotherapy, University
of Birmingham, Birmingham B15 2TT, U.K.
| | - Aneesa Nabi
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - David Waugh
- School
of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry CV1 2JH, U.K.
| | | | | | - Peter J. Fryer
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Zhenyu J. Zhang
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
35
|
Gu X, Cao T, Mou J, Liu J. Water bath is more efficient than hot air oven at thermal inactivation of coronavirus. Virol J 2023; 20:84. [PMID: 37131169 PMCID: PMC10153051 DOI: 10.1186/s12985-023-02038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Thermal inactivation is a conventional and effective method of eliminating the infectivity of pathogens from specimens in clinical and biological laboratories, and reducing the risk of occupational exposure and environmental contamination. During the COVID-19 pandemic, specimens from patients and potentially infected individuals were heat treated and processed under BSL-2 conditions in a safe, cost-effective, and timely manner. The temperature and duration of heat treatment are optimized and standardized in the protocol according to the susceptibility of the pathogen and the impact on the integrity of the specimens, but the heating device is often undefined. Devices and medium transferring the thermal energy vary in heating rate, specific heat capacity, and conductivity, resulting in variations in efficiency and inactivation outcome that may compromise biosafety and downstream biological assays. METHODS We evaluated the water bath and hot air oven in terms of pathogen inactivation efficiency, which are the most commonly used inactivation devices in hospitals and biological laboratories. By evaluating the temperature equilibrium and viral titer elimination under various conditions, we studied the devices and their inactivation outcomes under identical treatment protocol, and to analyzed the factors, such as energy conductivity, specific heat capacity, and heating rate, underlying the inactivation efficiencies. RESULTS We compared thermal inactivation of coronavirus using different devices, and have found that the water bath was more efficient at reducing infectivity, with higher heat transfer and thermal equilibration than a forced hot air oven. In addition to the efficiency, the water bath showed relative consistency in temperature equilibration of samples of different volumes, reduced the need for prolonged heating, and eliminated the risk of pathogen spread by forced airflow. CONCLUSIONS Our data support the proposal to define the heating device in the thermal inactivation protocol and in the specimen management policy.
Collapse
Affiliation(s)
- Xinxia Gu
- Laboratory of Infectious Diseases and Vaccine, West China School of Medicine, West China Hospital, Sichuan University, 88 Keyuan S. Rd, Chengdu, 610041, China
| | - Ting Cao
- Laboratory of Infectious Diseases and Vaccine, West China School of Medicine, West China Hospital, Sichuan University, 88 Keyuan S. Rd, Chengdu, 610041, China
| | - Jun Mou
- Laboratory of Infectious Diseases and Vaccine, West China School of Medicine, West China Hospital, Sichuan University, 88 Keyuan S. Rd, Chengdu, 610041, China
| | - Jie Liu
- Laboratory of Infectious Diseases and Vaccine, West China School of Medicine, West China Hospital, Sichuan University, 88 Keyuan S. Rd, Chengdu, 610041, China.
| |
Collapse
|
36
|
van der Klaauw AA, Horner EC, Pereyra-Gerber P, Agrawal U, Foster WS, Spencer S, Vergese B, Smith M, Henning E, Ramsay ID, Smith JA, Guillaume SM, Sharpe HJ, Hay IM, Thompson S, Innocentin S, Booth LH, Robertson C, McCowan C, Kerr S, Mulroney TE, O'Reilly MJ, Gurugama TP, Gurugama LP, Rust MA, Ferreira A, Ebrahimi S, Ceron-Gutierrez L, Scotucci J, Kronsteiner B, Dunachie SJ, Klenerman P, Park AJ, Rubino F, Lamikanra AA, Stark H, Kingston N, Estcourt L, Harvala H, Roberts DJ, Doffinger R, Linterman MA, Matheson NJ, Sheikh A, Farooqi IS, Thaventhiran JED. Accelerated waning of the humoral response to COVID-19 vaccines in obesity. Nat Med 2023; 29:1146-1154. [PMID: 37169862 PMCID: PMC10202802 DOI: 10.1038/s41591-023-02343-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/07/2023] [Indexed: 05/13/2023]
Abstract
Obesity is associated with an increased risk of severe Coronavirus Disease 2019 (COVID-19) infection and mortality. COVID-19 vaccines reduce the risk of serious COVID-19 outcomes; however, their effectiveness in people with obesity is incompletely understood. We studied the relationship among body mass index (BMI), hospitalization and mortality due to COVID-19 among 3.6 million people in Scotland using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. We found that vaccinated individuals with severe obesity (BMI > 40 kg/m2) were 76% more likely to experience hospitalization or death from COVID-19 (adjusted rate ratio of 1.76 (95% confidence interval (CI), 1.60-1.94). We also conducted a prospective longitudinal study of a cohort of 28 individuals with severe obesity compared to 41 control individuals with normal BMI (BMI 18.5-24.9 kg/m2). We found that 55% of individuals with severe obesity had unquantifiable titers of neutralizing antibody against authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus compared to 12% of individuals with normal BMI (P = 0.0003) 6 months after their second vaccine dose. Furthermore, we observed that, for individuals with severe obesity, at any given anti-spike and anti-receptor-binding domain (RBD) antibody level, neutralizing capacity was lower than that of individuals with a normal BMI. Neutralizing capacity was restored by a third dose of vaccine but again declined more rapidly in people with severe obesity. We demonstrate that waning of COVID-19 vaccine-induced humoral immunity is accelerated in individuals with severe obesity. As obesity is associated with increased hospitalization and mortality from breakthrough infections, our findings have implications for vaccine prioritization policies.
Collapse
Affiliation(s)
- Agatha A van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Emily C Horner
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Utkarsh Agrawal
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - Sarah Spencer
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Bensi Vergese
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Miriam Smith
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Isobel D Ramsay
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jack A Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Iain M Hay
- Babraham Institute, Babraham Research Campus, Cambridge, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sam Thompson
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | | - Lucy H Booth
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Chris Robertson
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - Colin McCowan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Steven Kerr
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | - Maria A Rust
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Alex Ferreira
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Soraya Ebrahimi
- Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Biochemistry, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Biochemistry, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jacopo Scotucci
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Adrian J Park
- Clinical Biochemistry, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Francesco Rubino
- Department of Diabetes, King's College London and King's College Hospital NHS Foundation Trust, London, UK
| | - Abigail A Lamikanra
- NHS Blood and Transplant, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah Stark
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lise Estcourt
- NHS Blood and Transplant, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - David J Roberts
- NHS Blood and Transplant, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rainer Doffinger
- Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Biochemistry, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Aziz Sheikh
- Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
37
|
Chang J, Kim J, Hong S, Jeong K, Kim S, Lee W. Protocol for in vitro fluorescence assay of papain-like protease and cell-based immunofluorescence assay of coronavirus infection. STAR Protoc 2023; 4:102295. [PMID: 37167057 PMCID: PMC10123355 DOI: 10.1016/j.xpro.2023.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Here, we describe detailed steps to constitute an in vitro assay for monitoring papain-like protease of coronavirus and a cell-based immunofluorescence infection assay. These assays can be adapted for high-throughput screening to determine the efficacy of novel protease inhibitors of coronaviruses and other viruses. In addition, cell-based immunofluorescence infection assay can be used to visually analyze antiviral efficacy of any novel compounds. For complete details on the use and execution of this protocol, please refer to Jeong et al. (2022).1.
Collapse
Affiliation(s)
- JuOae Chang
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea
| | - Jinhee Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea
| | - Subin Hong
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea
| | - Kwiwan Jeong
- Gyeonggido Business and Science Accelerator, Suwon-si, Gyeonggi-do 16229, South Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea.
| | - Wonsik Lee
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea.
| |
Collapse
|
38
|
Sahun M, Privat-Maldonado A, Lin A, De Roeck N, Van der Heyden L, Hillen M, Michiels J, Steenackers G, Smits E, Ariën KK, Jorens PG, Delputte P, Bogaerts A. Inactivation of SARS-CoV-2 and Other Enveloped and Non-Enveloped Viruses with Non-Thermal Plasma for Hospital Disinfection. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:5206-5215. [PMID: 37034498 PMCID: PMC10068876 DOI: 10.1021/acssuschemeng.2c07622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
As recently highlighted by the SARS-CoV-2 pandemic, viruses have become an increasing burden for health, global economy, and environment. The control of transmission by contact with contaminated materials represents a major challenge, particularly in hospital environments. However, the current disinfection methods in hospital settings suffer from numerous drawbacks. As a result, several medical supplies that cannot be properly disinfected are not reused, leading to severe shortages and increasing amounts of waste, thus prompting the search for alternative solutions. In this work, we report that non-thermal plasma (NTP) can effectively inactivate SARS-CoV-2 from non-porous and porous materials commonly found in healthcare facilities. We demonstrated that 5 min treatment with a dielectric barrier discharge NTP can inactivate 100% of SARS-CoV-2 (Wuhan and Omicron strains) from plastic material. Using porcine respiratory coronavirus (surrogate for SARS-CoV-2) and coxsackievirus B3 (highly resistant non-enveloped virus), we tested the NTP virucidal activity on hospital materials and obtained complete inactivation after 5 and 10 min, respectively. We hypothesize that the produced reactive species and local acidification contribute to the overall virucidal effect of NTP. Our results demonstrate the potential of dielectric barrier discharge NTPs for the rapid, efficient, and low-cost disinfection of healthcare materials.
Collapse
Affiliation(s)
- Maxime Sahun
- Plasma
Lab for Applications in Sustainability and Medicine—Antwerp
(PLASMANT), Department of Chemistry, University
of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Angela Privat-Maldonado
- Plasma
Lab for Applications in Sustainability and Medicine—Antwerp
(PLASMANT), Department of Chemistry, University
of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Center
for Oncological Research (CORE), Integrated Personalized & Precision
Oncology Network (IPPON), University of
Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Abraham Lin
- Plasma
Lab for Applications in Sustainability and Medicine—Antwerp
(PLASMANT), Department of Chemistry, University
of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Center
for Oncological Research (CORE), Integrated Personalized & Precision
Oncology Network (IPPON), University of
Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Naomi De Roeck
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University
of Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Lisa Van der Heyden
- Plasma
Lab for Applications in Sustainability and Medicine—Antwerp
(PLASMANT), Department of Chemistry, University
of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Center
for Oncological Research (CORE), Integrated Personalized & Precision
Oncology Network (IPPON), University of
Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Michaël Hillen
- Industrial
Vision Lab (InViLab), Department of Electromechanical Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Johan Michiels
- Virology
Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Gunther Steenackers
- Industrial
Vision Lab (InViLab), Department of Electromechanical Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Evelien Smits
- Center
for Oncological Research (CORE), Integrated Personalized & Precision
Oncology Network (IPPON), University of
Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Kevin K. Ariën
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University
of Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
- Virology
Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Philippe G. Jorens
- Department
of Intensive Care Medicine, Antwerp University
Hospital, Wilrijkstraat
10, 2650 Antwerp, Belgium
- Laboratory
of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Peter Delputte
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University
of Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Annemie Bogaerts
- Plasma
Lab for Applications in Sustainability and Medicine—Antwerp
(PLASMANT), Department of Chemistry, University
of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
39
|
Huang J, Yu T, Long Z, Wang M, Liu M, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Ou X, Mao S, Tian B, Gao Q, Sun D, Jia R, Cheng A. Duck IL-7 as a novel adjuvant improves the humoral immune response to an inactivated duck tembusu virus vaccine. Vet Microbiol 2023; 279:109665. [PMID: 36716633 DOI: 10.1016/j.vetmic.2023.109665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Duck tembusu virus (DTMUV), belonging to the Flavivirus genus, Flaviviridae family, has caused huge economic losses in the duck industry. However, the inactivated DTMUV vaccine requires multiple immunizations and has incomplete effectiveness. The humoral immune response is a key factor in the control of DTMUV infection. IL-7 derived from mammals has the ability to enhance antibody production. Whether duck IL-7 (duIL-7) possesses the ability to improve the humoral immunity of inactivated DTMUV vaccine has not yet been declared. Here, a beta-propiolactone (BPL)-inactivated DTMUV vaccine was employed to characterize the adjuvant property of duIL-7 in humoral immune responses. Intramuscular injection of DTMUV inactivated vaccine with or without duIL-7 was administered twice to the ducks. The results showed that duIL-7 was able to promote rapid antibody responses and enhance DTMUV-specific IgG and neutralizing antibody production to the vaccine. T follicular helper (Tfh) cells play a key role in assisting long humoral immunity. It was found that duIL-7 upregulated duIl-6 and duIl-21 gene expression at 3 w post first vaccination, which encode Tfh cell differentiation-related cytokines duIL-6 and duIL-21, respectively. This may be the reason that duIL-7 could prolong the humoral immune response to the inactivated DTMUV vaccine. Next, the ability of duIL-7 to simplify the immunization procedure of the inactivated DTMUV vaccine was tested. When ducks were immunized once, the titers of neutralizing antibodies in ducks from the inactivated DTMUV vaccine supplemented with duIL-7 group were significantly higher than those of ducks from the inactivated DTMUV vaccine group (P < 0.05). In addition, duIL-7 could assist the inactivated DTMUV vaccine in maintaining neutralizing antibodies at high levels during the whole experimental period. The viral titers in the ducks immunized with the inactivated DTMUV vaccine and duIL-7 were lower than those in the ducks immunized with the inactivated DTMUV vaccine alone at 3 days post infection (3 dpi, P < 0.05). Overall, duIL-7 possessed the ability to promote and prolong humoral immune responses to the inactivated DTMUV vaccine, even at one dose. This study provides a new efficient adjuvant for inactivated DTMUV vaccine development.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Tingting Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhiyao Long
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
40
|
Poolsup S, Zaripov E, Hüttmann N, Minic Z, Artyushenko PV, Shchugoreva IA, Tomilin FN, Kichkailo AS, Berezovski MV. Discovery of DNA aptamers targeting SARS-CoV-2 nucleocapsid protein and protein-binding epitopes for label-free COVID-19 diagnostics. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:731-743. [PMID: 36816615 PMCID: PMC9927813 DOI: 10.1016/j.omtn.2023.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The spread of COVID-19 has affected billions of people across the globe, and the diagnosis of viral infection still needs improvement. Because of high immunogenicity and abundant expression during viral infection, SARS-CoV-2 nucleocapsid (N) protein could be an important diagnostic marker. This study aimed to develop a label-free optical aptasensor fabricated with a novel single-stranded DNA aptamer to detect the N protein. The N-binding aptamers selected using asymmetric-emulsion PCR-SELEX and their binding affinity and cross-reactivity were characterized by biolayer interferometry. The tNSP3 aptamer (44 nt) was identified to bind the N protein of wild type and Delta and Omicron variants with high affinity (KD in the range of 0.6-3.5 nM). Utilizing tNSP3 to detect the N protein spiked in human saliva evinced the potential of this aptamer with a limit of detection of 4.5 nM. Mass spectrometry analysis was performed along with molecular dynamics simulation to obtain an insight into how tNSP3 binds to the N protein. The identified epitope peptides are localized within the RNA-binding domain and C terminus of the N protein. Hence, we confirmed the performance of this aptamer as an analytical tool for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Suttinee Poolsup
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Polina V Artyushenko
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia.,Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.,Department of Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Irina A Shchugoreva
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia.,Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.,Department of Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Felix N Tomilin
- Department of Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia.,Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, Krasnoyarsk 660036, Russia
| | - Anna S Kichkailo
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia.,Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
41
|
Sobiak J, Resztak M, Banasiak J, Zachwieja J, Ostalska-Nowicka D. High-performance liquid chromatography with fluorescence detection for mycophenolic acid determination in saliva samples. Pharmacol Rep 2023; 75:726-736. [PMID: 36905501 PMCID: PMC10007665 DOI: 10.1007/s43440-023-00474-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND For therapeutic drug monitoring (TDM) of mycophenolic acid (MPA), which is frequently proposed, saliva might be a suitable and easy-to-obtain biological matrix. The study aimed to validate an HPLC method with fluorescence detection for determining mycophenolic acid in saliva (sMPA) in children with nephrotic syndrome. METHODS The mobile phase was composed of methanol and tetrabutylammonium bromide with disodium hydrogen phosphate (pH 8.5) at a 48:52 ratio. To prepare the saliva samples, 100 µL of saliva, 50 µL of calibration standards, and 50 µL of levofloxacin (used as an internal standard) were mixed and evaporated to dryness at 45 °C for 2 h. The resulting dry extract was reconstituted in the mobile phase and injected into the HPLC system after centrifugation. Saliva samples from study participants were collected using Salivette® devices. RESULTS The method was linear within the range of 5-2000 ng/mL, was selective with no carry-over effect and met the acceptance criteria for within-run and between-run accuracy and precision. Saliva samples can be stored for up to 2 h at room temperature, for up to 4 h at 4 °C, and for up to 6 months at - 80 °C. MPA was stable in saliva after three freeze-thaw cycles, in dry extract for 20 h at 4 °C, and for 4 h in the autosampler at room temperature. MPA recovery from Salivette® cotton swabs was within the range of 94-105%. The sMPA concentrations in the two children with nephrotic syndrome who were treated with mycophenolate mofetil were within 5-112 ng/mL. CONCLUSIONS The sMPA determination method is specific, selective, and meets the validation requirements for analytic methods. It may be used in children with nephrotic syndrome; however further studies are required to investigate focusing on sMPA and the correlation between sMPA and total MPA and its possible contribution to MPA TDM is required.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Joanna Banasiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Jacek Zachwieja
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Danuta Ostalska-Nowicka
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
42
|
Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, Wang L, Griffiths C, Brown ML, Scott WE, Pereyra-Gerber P, Gelson WTH, Brown S, Dillon S, Muraro D, Sharp J, Neary M, Box H, Tatham L, Stewart J, Curley P, Pertinez H, Forrest S, Mlcochova P, Varankar SS, Darvish-Damavandi M, Mulcahy VL, Kuc RE, Williams TL, Heslop JA, Rossetti D, Tysoe OC, Galanakis V, Vila-Gonzalez M, Crozier TWM, Bargehr J, Sinha S, Upponi SS, Fear C, Swift L, Saeb-Parsy K, Davies SE, Wester A, Hagström H, Melum E, Clements D, Humphreys P, Herriott J, Kijak E, Cox H, Bramwell C, Valentijn A, Illingworth CJR, Dahman B, Bastaich DR, Ferreira RD, Marjot T, Barnes E, Moon AM, Barritt AS, Gupta RK, Baker S, Davenport AP, Corbett G, Gorgoulis VG, Buczacki SJA, Lee JH, Matheson NJ, Trauner M, Fisher AJ, Gibbs P, Butler AJ, Watson CJE, Mells GF, Dougan G, Owen A, Lohse AW, Vallier L, Sampaziotis F. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2023; 615:134-142. [PMID: 36470304 PMCID: PMC9977684 DOI: 10.1038/s41586-022-05594-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Teresa Brevini
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| | - Mailis Maes
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gwilym J Webb
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Binu V John
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | - Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gustav Buescher
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lu Wang
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Chelsea Griffiths
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marnie L Brown
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - William E Scott
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - William T H Gelson
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Scott Dillon
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Jo Sharp
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Megan Neary
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Box
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lee Tatham
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - James Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Paul Curley
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Henry Pertinez
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sally Forrest
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | | | - Mahnaz Darvish-Damavandi
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Victoria L Mulcahy
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - James A Heslop
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Olivia C Tysoe
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | | | | | - Thomas W M Crozier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Johannes Bargehr
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sara S Upponi
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Corrina Fear
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Lisa Swift
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Axel Wester
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Hybrid Technology Hub Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Jo Herriott
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edyta Kijak
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Cox
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Chloe Bramwell
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anthony Valentijn
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher J R Illingworth
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Bassam Dahman
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dustin R Bastaich
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Raphaella D Ferreira
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | - Thomas Marjot
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Andrew M Moon
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Alfred S Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Gareth Corbett
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Simon J A Buczacki
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
- NHS Blood and Transplant, Cambridge, UK
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew J Fisher
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Gibbs
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrew J Butler
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christopher J E Watson
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre, and the NIHR Blood and Transplant Research Unit (BTRU) at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT), Cambridge, UK
| | - George F Mells
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Berlin Institute of Health (BIH), BIH Centre for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Porter LM, Guo W, Crozier TWM, Greenwood EJD, Ortmann B, Kottmann D, Nathan JA, Mahadeva R, Lehner PJ, McCaughan F. Cigarette smoke preferentially induces full length ACE2 expression in differentiated primary human airway cultures but does not alter the efficiency of cellular SARS-CoV-2 infection. Heliyon 2023; 9:e14383. [PMID: 36938474 PMCID: PMC10005841 DOI: 10.1016/j.heliyon.2023.e14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Cigarette smoking has many serious negative health consequences. The relationship between smoking and SARS-CoV-2 infection is controversial, specifically whether smokers are at increased risk of infection. We investigated the impact of cigarette smoke on ACE2 isoform expression and SARS-CoV-2 infection in differentiated primary human bronchial epithelial cells at the air-liquid-interface (ALI). We assessed the expression of ACE2 in response to CSE and therapeutics reported to modulate ACE2. We exposed ALI cultures to cigarette smoke extract (CSE) and then infected them with SARS-CoV-2. We measured cellular infection using flow cytometry and whole-transwell immunofluorescence. We found that CSE increased expression of full-length ACE2 (flACE2) but did not alter the expression of a Type I-interferon sensitive truncated isoform (dACE2) that lacks the capacity to bind SARS-CoV-2. CSE did not have a significant impact on key mediators of the innate immune response. Importantly, we show that, despite the increase in flACE2, CSE did not alter airway cell infection after CSE exposure. We found that nicotine does not significantly alter flACE2 expression but that NRF2 agonists do lead to an increase in flACE2 expression. This increase was not associated with an increase in SARS-CoV-2 infection. Our results are consistent with the epidemiological data suggesting that current smokers do not have an excess of SARS-CoV-2 infection. but that those with chronic respiratory or cardiovascular disease are more vulnerable to severe COVID-19. They suggest that, in differentiated conducting airway cells, flACE2 expression levels may not limit airway SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Linsey M. Porter
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - Wenrui Guo
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - Thomas WM. Crozier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Edward JD. Greenwood
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Brian Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Daniel Kottmann
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ravindra Mahadeva
- Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Frank McCaughan
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 OQQ, UK
| |
Collapse
|
44
|
Osborn RM, Leach J, Zanche M, Ashton JM, Chu C, Thakar J, Dewhurst S, Rosenberger S, Pavelka M, Pryhuber GS, Mariani TJ, Anderson CS. Preparation of noninfectious scRNAseq samples from SARS-CoV-2-infected epithelial cells. PLoS One 2023; 18:e0281898. [PMID: 36827401 PMCID: PMC9956660 DOI: 10.1371/journal.pone.0281898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS coronavirus 2 (SARS-CoV-2) virus. Direct assessment, detection, and quantitative analysis using high throughput methods like single-cell RNA sequencing (scRNAseq) is imperative to understanding the host response to SARS-CoV-2. One barrier to studying SARS-CoV-2 in the laboratory setting is the requirement to process virus-infected cell cultures, and potentially infectious materials derived therefrom, under Biosafety Level 3 (BSL-3) containment. However, there are only 190 BSL3 laboratory facilities registered with the U.S. Federal Select Agent Program, as of 2020, and only a subset of these are outfitted with the equipment needed to perform high-throughput molecular assays. Here, we describe a method for preparing non-hazardous RNA samples from SARS-CoV-2 infected cells, that enables scRNAseq analyses to be conducted safely in a BSL2 facility-thereby making molecular assays of SARS-CoV-2 cells accessible to a much larger community of researchers. Briefly, we infected African green monkey kidney epithelial cells (Vero-E6) with SARS-CoV-2 for 96 hours, trypsin-dissociated the cells, and inactivated them with methanol-acetone in a single-cell suspension. Fixed cells were tested for the presence of infectious SARS-CoV-2 virions using the Tissue Culture Infectious Dose Assay (TCID50), and also tested for viability using flow cytometry. We then tested the dissociation and methanol-acetone inactivation method on primary human lung epithelial cells that had been differentiated on an air-liquid interface. Finally, we performed scRNAseq quality control analysis on the resulting cell populations to evaluate the effects of our virus inactivation and sample preparation protocol on the quality of the cDNA produced. We found that methanol-acetone inactivated SARS-CoV-2, fixed the lung epithelial cells, and could be used to obtain noninfectious, high-quality cDNA libraries. This methodology makes investigating SARS-CoV-2, and related high-containment RNA viruses at a single-cell level more accessible to an expanded community of researchers.
Collapse
Affiliation(s)
- Raven M. Osborn
- Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Justin Leach
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Michelle Zanche
- Genomics Research Center, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - John M. Ashton
- Genomics Research Center, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - ChinYi Chu
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Juilee Thakar
- Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Stephen Dewhurst
- Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Sonia Rosenberger
- Department of Environmental Health and Safety, University of Rochester, Rochester, New York, United States of America
- Biosafety Level 3 Facility, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Martin Pavelka
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Biosafety Level 3 Facility, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Gloria S. Pryhuber
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas J. Mariani
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Christopher S. Anderson
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Division of Neonatology, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
45
|
Olejnik J, Leon J, Michelson D, Chowdhary K, Galvan-Pena S, Benoist C, Mühlberger E, Hume AJ. Establishment of an Inactivation Method for Ebola Virus and SARS-CoV-2 Suitable for Downstream Sequencing of Low Cell Numbers. Pathogens 2023; 12:342. [PMID: 36839614 PMCID: PMC9958562 DOI: 10.3390/pathogens12020342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Technologies that facilitate the bulk sequencing of small numbers of cells as well as single-cell RNA sequencing (scRNA-seq) have aided greatly in the study of viruses as these analyses can be used to differentiate responses from infected versus bystander cells in complex systems, including in organoid or animal studies. While protocols for these analyses are typically developed with biosafety level 2 (BSL-2) considerations in mind, such analyses are equally useful for the study of viruses that require higher biosafety containment levels. Many of these workstreams, however, are not directly compatible with the more stringent biosafety regulations of BSL-3 and BSL-4 laboratories ensuring virus inactivation and must therefore be modified. Here we show that TCL buffer (Qiagen), which was developed for bulk sequencing of small numbers of cells and also facilitates scRNA-seq, inactivates both Ebola virus (EBOV) and SARS-CoV-2, BSL-4 and BSL-3 viruses, respectively. We show that additional heat treatment, necessary for the more stringent biosafety concerns for BSL-4-derived samples, was additionally sufficient to inactivate EBOV-containing samples. Critically, this heat treatment had minimal effects on extracted RNA quality and downstream sequencing results.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Juliette Leon
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- INSERM UMR 1163, Institut Imagine, University of Paris, 75015 Paris, France
| | - Daniel Michelson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kaitavjeet Chowdhary
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Galvan-Pena
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Adam J. Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, MA 02118, USA
| |
Collapse
|
46
|
Kohantorabi M, Wagstaffe M, Creutzburg M, Ugolotti A, Kulkarni S, Jeromin A, Krekeler T, Feuerherd M, Herrmann A, Ebert G, Protzer U, Guédez G, Löw C, Thuenauer R, Schlueter C, Gloskovskii A, Keller TF, Di Valentin C, Stierle A, Noei H. Adsorption and Inactivation of SARS-CoV-2 on the Surface of Anatase TiO 2(101). ACS APPLIED MATERIALS & INTERFACES 2023; 15:8770-8782. [PMID: 36723177 DOI: 10.1021/acsami.2c22078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We investigated the adsorption of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the virus responsible for the current pandemic, on the surface of the model catalyst TiO2(101) using atomic force microscopy, transmission electron microscopy, fluorescence microscopy, and X-ray photoelectron spectroscopy, accompanied by density functional theory calculations. Three different methods were employed to inactivate the virus after it was loaded on the surface of TiO2(101): (i) ethanol, (ii) thermal, and (iii) UV treatments. Microscopic studies demonstrate that the denatured spike proteins and other proteins in the virus structure readsorb on the surface of TiO2 under thermal and UV treatments. The interaction of the virus with the surface of TiO2 was different for the thermally and UV treated samples compared to the sample inactivated via ethanol treatment. AFM and TEM results on the UV-treated sample suggested that the adsorbed viral particles undergo damage and photocatalytic oxidation at the surface of TiO2(101) which can affect the structural proteins of SARS-CoV-2 and denature the spike proteins in 30 min. The role of Pd nanoparticles (NPs) was investigated in the interaction between SARS-CoV-2 and TiO2(101). The presence of Pd NPs enhanced the adsorption of the virus due to the possible interaction of the spike protein with the NPs. This study is the first investigation of the interaction of SARS-CoV-2 with the surface of single crystalline TiO2(101) as a potential candidate for virus deactivation applications. Clarification of the interaction of the virus with the surface of semiconductor oxides will aid in obtaining a deeper understanding of the chemical processes involved in photoinactivation of microorganisms, which is important for the design of effective photocatalysts for air purification and self-cleaning materials.
Collapse
Affiliation(s)
- Mona Kohantorabi
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Michael Wagstaffe
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Marcus Creutzburg
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Aldo Ugolotti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, Milano 20125, Italy
| | - Satishkumar Kulkarni
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Arno Jeromin
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Tobias Krekeler
- Electron Microscopy Unit, Hamburg University of Technology, Eissendorfer Strasse 42, Hamburg 21073, Germany
| | - Martin Feuerherd
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich 81675, Germany
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Alexander Herrmann
- Institute of Virology, Helmholtz Munich, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich 81675, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich 81675, Germany
| | - Gabriela Guédez
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron (DESY), EMBL Hamburg, Notkestr. 85, Hamburg 22607, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron (DESY), EMBL Hamburg, Notkestr. 85, Hamburg 22607, Germany
| | - Roland Thuenauer
- Technology Platform Light Microscopy and Image Analysis (TP MIA), Leibniz Institute for Experimental Virology (HPI), Hamburg 20251, Germany
- Centre for Structural Systems Biology (CSSB), Notkestr. 85, Hamburg 22607, Germany
| | - Christoph Schlueter
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Andrei Gloskovskii
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Thomas F Keller
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
- Department of Physics, University of Hamburg, Notkestraße 9-11, Hamburg 22607, Germany
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, Milano 20125, Italy
| | - Andreas Stierle
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
- Department of Physics, University of Hamburg, Notkestraße 9-11, Hamburg 22607, Germany
| | - Heshmat Noei
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| |
Collapse
|
47
|
Kordyukova LV, Moiseenko AV, Serebryakova MV, Shuklina MA, Sergeeva MV, Lioznov DA, Shanko AV. Structural and Immunoreactivity Properties of the SARS-CoV-2 Spike Protein upon the Development of an Inactivated Vaccine. Viruses 2023; 15:v15020480. [PMID: 36851694 PMCID: PMC9961907 DOI: 10.3390/v15020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by β-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state). While the flails were present in all preparations studied, the needles were highly abundant in the β-propiolactone-inactivated samples only. Structural proteins S, N, and M of SARS-CoV-2 were detected via mass spectrometry. Formaldehyde and UV-inactivated samples demonstrated the highest affinity/immunoreactivity against the convalescent sera, while β-propiolactone (1:2000, 36 h) and UV-inactivated ones were more active against the sera of people vaccinated with Sputnik V. A higher concentration of β-propiolactone (1:1000, 2 h) led to a loss of antigenic affinity for both serum panels. Thus, although we did not analyze native SARS-CoV-2 for biosafety reasons, our comparative approach helped to exclude some destructive inactivation conditions and select suitable variants for future animal research. We believe that TEM is a valuable tool for inactivated COVID-19 vaccine quality control during the downstream manufacturing process.
Collapse
Affiliation(s)
- Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (L.V.K.); (A.V.S.)
| | - Andrey V. Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina A. Shuklina
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Maria V. Sergeeva
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Dmitry A. Lioznov
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Andrei V. Shanko
- R&D Department, FORT LLC, 119435 Moscow, Russia
- Correspondence: (L.V.K.); (A.V.S.)
| |
Collapse
|
48
|
Shilts J, Crozier TWM, Teixeira-Silva A, Gabaev I, Gerber PP, Greenwood EJD, Watson SJ, Ortmann BM, Gawden-Bone CM, Pauzaite T, Hoffmann M, Nathan JA, Pöhlmann S, Matheson NJ, Lehner PJ, Wright GJ. LRRC15 mediates an accessory interaction with the SARS-CoV-2 spike protein. PLoS Biol 2023; 21:e3001959. [PMID: 36735681 PMCID: PMC9897555 DOI: 10.1371/journal.pbio.3001959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2022] [Indexed: 02/04/2023] Open
Abstract
The interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to Coronavirus Disease 2019 (COVID-19). The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary angiotensin-converting enzyme 2 (ACE2) receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells. We discovered that in addition to ACE2, expression of LRRC15 also causes spike protein binding. This interaction is distinct from other known spike attachment mechanisms such as heparan sulfates or lectin receptors. Measurements of orthologous coronavirus spike proteins implied the interaction was functionally restricted to SARS-CoV-2 by accessibility. We localized the interaction to the C-terminus of the S1 domain and showed that LRRC15 shares recognition of the ACE2 receptor binding domain. From analyzing proteomics and single-cell transcriptomics, we identify LRRC15 expression as being common in human lung vasculature cells and fibroblasts. Levels of LRRC15 were greatly elevated by inflammatory signals in the lungs of COVID-19 patients. Although infection assays demonstrated that LRRC15 alone is not sufficient to permit viral entry, we present evidence that it can modulate infection of human cells. This unexpected interaction merits further investigation to determine how SARS-CoV-2 exploits host LRRC15 and whether it could account for any of the distinctive features of COVID-19.
Collapse
Affiliation(s)
- Jarrod Shilts
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Thomas W. M. Crozier
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Ana Teixeira-Silva
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Ildar Gabaev
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Pehuén Pereyra Gerber
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Edward J. D. Greenwood
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Samuel James Watson
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Brian M. Ortmann
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Christian M. Gawden-Bone
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Tekle Pauzaite
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen, Germany
| | - James A. Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen, Germany
| | - Nicholas J. Matheson
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Paul J. Lehner
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
49
|
Walker NF, Byrne RL, Howard A, Nikolaou E, Farrar M, Glynn S, Cheliotis KS, Cubas Atienzar AI, Davies K, Reiné J, Rashid-Gardner Z, German EL, Solórzano C, Blandamer T, Hitchins L, Myerscough C, Gessner BD, Begier E, Collins AM, Beadsworth M, Todd S, Hill H, Houlihan CF, Nastouli E, Adams ER, Mitsi E, Ferreira DM. Detection of SARS-CoV-2 infection by saliva and nasopharyngeal sampling in frontline healthcare workers: An observational cohort study. PLoS One 2023; 18:e0280908. [PMID: 36706119 PMCID: PMC9882898 DOI: 10.1371/journal.pone.0280908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic has caused an unprecedented strain on healthcare systems worldwide, including the United Kingdom National Health Service (NHS). We conducted an observational cohort study of SARS-CoV-2 infection in frontline healthcare workers (HCW) working in an acute NHS Trust during the first wave of the pandemic, to answer emerging questions surrounding SARS-CoV-2 infection, diagnosis, transmission and control. METHODS Using self-collected weekly saliva and twice weekly combined oropharyngeal/nasopharyngeal (OP/NP) samples, in addition to self-assessed symptom profiles and isolation behaviours, we retrospectively compared SARS-CoV-2 detection by RT-qPCR of saliva and OP/NP samples. We report the association with contemporaneous symptoms and isolation behaviour. RESULTS Over a 12-week period from 30th March 2020, 40·0% (n = 34/85, 95% confidence interval 31·3-51·8%) HCW had evidence of SARS-CoV-2 infection by surveillance OP/NP swab and/or saliva sample. Symptoms were reported by 47·1% (n = 40) and self-isolation by 25·9% (n = 22) participants. Only 44.1% (n = 15/34) participants with SARS-CoV-2 infection reported any symptoms within 14 days of a positive result and only 29·4% (n = 10/34) reported self-isolation periods. Overall agreement between paired saliva and OP/NP swabs was 93·4% (n = 211/226 pairs) but rates of positive concordance were low. In paired samples with at least one positive result, 35·0% (n = 7/20) were positive exclusively by OP/NP swab, 40·0% (n = 8/20) exclusively by saliva and in only 25·0% (n = 5/20) were the OP/NP and saliva result both positive. CONCLUSIONS HCW are a potential source of SARS-CoV-2 transmission in hospitals and symptom screening will identify the minority of infections. Without routine asymptomatic SARS-CoV-2 screening, it is likely that HCW with SARS-CoV-2 infection would continue to attend work. Saliva, in addition to OP/NP swab testing, facilitated ascertainment of symptomatic and asymptomatic SARS-CoV-2 infections. Combined saliva and OP/NP swab sampling would improve detection of SARS-CoV-2 for surveillance and is recommended for a high sensitivity strategy.
Collapse
Affiliation(s)
- Naomi F. Walker
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Rachel L. Byrne
- Centre for Drugs and Diagnostics, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ashleigh Howard
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elissavet Nikolaou
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Infection and Immunity, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Madlen Farrar
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sharon Glynn
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Ana I. Cubas Atienzar
- Centre for Drugs and Diagnostics, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kelly Davies
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Zalina Rashid-Gardner
- NIHR Liverpool and Broadgreen Clinical Research Facility, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Esther L. German
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carla Solórzano
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Tess Blandamer
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lisa Hitchins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | - Elizabeth Begier
- Pfizer Vaccines, Collegeville, Pennsylvania, United States of America
| | - Andrea M. Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- National Institute for Health Research North West Coast, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Mike Beadsworth
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Stacy Todd
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Liverpool Health Partners, Liverpool, United Kingdom
| | - Helen Hill
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Catherine F. Houlihan
- Department of Clinical Virology, University College London Hospitals, London, United Kingdom
- Department of Infection, Immunity and inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Eleni Nastouli
- Department of Clinical Virology, University College London Hospitals, London, United Kingdom
| | - Emily R. Adams
- Centre for Drugs and Diagnostics, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elena Mitsi
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Daniela M. Ferreira
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
50
|
Chinabut P, Sawangkla N, Wattano S, Thavorasak T, Bootsongkorn W, Tungtrongchitr A, Ruenchit P. Formalin Inactivation of Virus for Safe Downstream Processing of Routine Stool Parasite Examination during the COVID-19 Pandemic. Diagnostics (Basel) 2023; 13:diagnostics13030466. [PMID: 36766571 PMCID: PMC9914773 DOI: 10.3390/diagnostics13030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
During the COVID-19 pandemic, the parasitology laboratories dealing with fecal samples for the diagnosis of gastrointestinal parasitic infections are confronting the unsaved virus-containing samples. To allow for safe downstream processing of the fecal samples, a protocol for preparing a fecal smear is urgently needed. Formalin was tested with or without isotonic forms for virus inactivation using porcine epidemic diarrhea virus (PEDV) as a representative, as it belongs to the Coronaviridae family. The results revealed complete inactivation activity of 10% formalin and 10% isotonic formalin on coronavirus after 5 min of treatment at room temperature. Both also inhibited Naegleria fowleri growth after 5 min of treatment at 37 °C without disruption of the structure. In addition to these key findings, it was also found that isotonic formalin could stabilize both red and white blood cells when used as a solution to prepare fecal smears comparable to the standard method, highlighting its value for use instead of 0.9% normal saline solution for the quantification of blood cells without active virus. The 10% isotonic formalin is useful to safely prepare a fecal smear for the diagnosis of parasites and other infections of the gastrointestinal tract during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Pisith Chinabut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuntiya Sawangkla
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suphaluck Wattano
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Techit Thavorasak
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Weluga Bootsongkorn
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-24196484
| |
Collapse
|