1
|
Sintoris S, Binkowska JM, Gillan JL, Zuurbier RP, Twynam-Perkins J, Kristensen M, Melrose L, Parga PL, Rodriguez AR, Chu ML, van Boeckel SR, Wildenbeest JG, Bowdish DME, Currie AJ, Thwaites RS, Schwarze J, van Houten MA, Boardman JP, Cunningham S, Bogaert D, Davidson DJ. Nasal cathelicidin is expressed in early life and is increased during mild, but not severe respiratory syncytial virus infection. Sci Rep 2024; 14:13928. [PMID: 38886476 PMCID: PMC11182768 DOI: 10.1038/s41598-024-64446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Respiratory syncytial virus is the major cause of acute lower respiratory tract infections in young children, causing extensive mortality and morbidity globally, with limited therapeutic or preventative options. Cathelicidins are innate immune antimicrobial host defence peptides and have antiviral activity against RSV. However, upper respiratory tract cathelicidin expression and the relationship with host and environment factors in early life, are unknown. Infant cohorts were analysed to characterise early life nasal cathelicidin levels, revealing low expression levels in the first week of life, with increased levels at 9 months which are comparable to 2-year-olds and healthy adults. No impact of prematurity on nasal cathelicidin expression was observed, nor were there effects of sex or birth mode, however, nasal cathelicidin expression was lower in the first week-of-life in winter births. Nasal cathelicidin levels were positively associated with specific inflammatory markers and demonstrated to be associated with microbial community composition. Importantly, levels of nasal cathelicidin expression were elevated in infants with mild RSV infection, but, in contrast, were not upregulated in infants hospitalised with severe RSV infection. These data suggest important relationships between nasal cathelicidin, upper airway microbiota, inflammation, and immunity against RSV infection, with interventional potential.
Collapse
Affiliation(s)
- Sofia Sintoris
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Justyna M Binkowska
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Jonathan L Gillan
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Roy P Zuurbier
- Spaarne Gasthuis Academy, Spaarne Gasthuis, 2134 TM, Hoofddorp, The Netherlands
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
- Department of Paediatrics, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jonathan Twynam-Perkins
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Maartje Kristensen
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Lauren Melrose
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Paula Lusaretta Parga
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Alicia Ruiz Rodriguez
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Mei Ling Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Sara R van Boeckel
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Joanne G Wildenbeest
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Dawn M E Bowdish
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, T2128, Hamilton, ON, L8N 4A6, Canada
| | - Andrew J Currie
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | | | - James P Boardman
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Steve Cunningham
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
| | - Debby Bogaert
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Donald J Davidson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4 - 5 Little France Drive, Edinburgh, EH16 4UU, Scotland, UK.
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia.
| |
Collapse
|
2
|
Chen D, Ru X, Chen S, Shao Q, Ye Q. Analysis of the prevalence and clinical features of respiratory syncytial virus infection in a pediatric hospital in Zhejiang Province from 2019 to 2023. J Med Virol 2024; 96:e29758. [PMID: 38895781 DOI: 10.1002/jmv.29758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The aim of this study was to investigate the epidemiological characteristics of respiratory syncytial virus (RSV) infections in children in Zhejiang from 2019 to 2023. Data from pediatric patients who visited the Children's Hospital of Zhejiang University School of Medicine for RSV infection between 2019 and 2023 were analyzed. Nasopharyngeal swabs were collected for RSV antigen detection, and relevant patient information was collected. Factors such as age were analyzed. A total of 673 094 specimens were included from 2019 to 2023, with a rate of positive specimens of 4.74% (31 929/673 094). The highest rate of positive specimens of 10.82%, was recorded in 2021, while the remaining years had a rate of approximately 3%-5%. In terms of seasonal prevalence characteristics, the rate of positive specimens in 2019, 2020, and 2022 peaked in the winter months at approximately 8% and decreased in the summer months, where the rate of positive specimens remained at approximately 0.5%. In contrast, summer is the peak period for RSV incidence in 2021 and 2023, with the rate of positive specimens being as high as 9%-12%. Based on the prevalence characteristics of gender and age, this study found that the detection rate of positive specimens was higher in boys than in girls in 2019-2023. In 2019-2022, among the different age groups, the highest rate of positive specimens was found in children aged 0 to <6 months, and it decreased with age. In 2023, the rate of positive specimens was above 8% in the 0 to <6 months, 6 to <12 months, and 1-2 years age groups, with the highest rate of positive specimens in the 1-2 years age group, and a gradual decrease in the rate of positive specimens with age for children over 3 years of age. Between 2019 and 2023, the epidemiological pattern of RSV changed. A summer peak was observed in 2021 and 2023.
Collapse
Affiliation(s)
- Danlei Chen
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Medical Technology and Information Engineering, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xuanwen Ru
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Simiao Chen
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingyi Shao
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Medical Technology and Information Engineering, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Qing Ye
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Lin GL, Drysdale SB, Snape MD, O'Connor D, Brown A, MacIntyre-Cockett G, Mellado-Gomez E, de Cesare M, Ansari MA, Bonsall D, Bray JE, Jolley KA, Bowden R, Aerssens J, Bont L, Openshaw PJM, Martinon-Torres F, Nair H, Golubchik T, Pollard AJ. Targeted metagenomics reveals association between severity and pathogen co-detection in infants with respiratory syncytial virus. Nat Commun 2024; 15:2379. [PMID: 38493135 PMCID: PMC10944482 DOI: 10.1038/s41467-024-46648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of hospitalisation for respiratory infection in young children. RSV disease severity is known to be age-dependent and highest in young infants, but other correlates of severity, particularly the presence of additional respiratory pathogens, are less well understood. In this study, nasopharyngeal swabs were collected from two cohorts of RSV-positive infants <12 months in Spain, the UK, and the Netherlands during 2017-20. We show, using targeted metagenomic sequencing of >100 pathogens, including all common respiratory viruses and bacteria, from samples collected from 433 infants, that burden of additional viruses is common (111/433, 26%) but only modestly correlates with RSV disease severity. In contrast, there is strong evidence in both cohorts and across age groups that presence of Haemophilus bacteria (194/433, 45%) is associated with higher severity, including much higher rates of hospitalisation (odds ratio 4.25, 95% CI 2.03-9.31). There is no evidence for association between higher severity and other detected bacteria, and no difference in severity between RSV genotypes. Our findings reveal the genomic diversity of additional pathogens during RSV infection in infants, and provide an evidence base for future causal investigations of the impact of co-infection on RSV disease severity.
Collapse
Affiliation(s)
- Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Centre for Neonatal and Paediatric Infection, Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | | - Esther Mellado-Gomez
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Human Technopole, Milan, Italy
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Bonsall
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James E Bray
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jeroen Aerssens
- Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis Bont
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- ReSViNET Foundation, Zeist, Netherlands
| | | | - Federico Martinon-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, University of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Harish Nair
- Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Golubchik
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Sydney Infectious Diseases Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
4
|
Díaz FE, McGill JL. Modeling Human Respiratory Syncytial Virus (RSV) Infection: Recent Contributions and Future Directions Using the Calf Model of Bovine RSV Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1180-1186. [PMID: 37782855 PMCID: PMC10558079 DOI: 10.4049/jimmunol.2300260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 10/04/2023]
Abstract
The human orthopneumovirus (human respiratory syncytial virus [RSV]) is a leading cause of respiratory disease in children worldwide and a significant cause of infant mortality in low- and middle-income countries. The natural immune response to the virus has a preponderant role in disease progression, with a rapid neutrophil infiltration and dysbalanced T cell response in the lungs associated with severe disease in infants. The development of preventive interventions against human RSV has been difficult partly due to the need to use animal models that only partially recapitulate the immune response as well as the disease progression seen in human infants. In this brief review, we discuss the contributions of the calf model of RSV infection to understanding immunity to RSV and in developing vaccine and drug candidates, focusing on recent research areas. We propose that the bovine model of RSV infection is a valuable alternative for assessing the translational potential of interventions aimed at the human population.
Collapse
Affiliation(s)
- Fabián E. Díaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Malinczak CA, Fonseca W, Mire MM, Parolia A, Chinnaiyan A, Rasky AJ, Morris S, Yagi K, Bermick JR, Lukacs NW. Sex-associated early-life viral innate immune response is transcriptionally associated with chromatin remodeling of type-I IFN-inducible genes. Mucosal Immunol 2023; 16:578-592. [PMID: 37302711 PMCID: PMC10646734 DOI: 10.1016/j.mucimm.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
This study investigates sex-associated systemic innate immune differences by examining bone marrow-derived dendritic cells (BMDCs). BMDC grown from 7-day-old mice show enhanced type-I interferon (IFN) signaling in female compared to male BMDC. Upon respiratory syncytial virus (RSV) infection of 7-day-old mice, a significantly altered phenotype of BMDC at 4 weeks post-infection is observed in a sex-dependent manner. The alterations include heightened Ifnb/ interleukin (Il12a) and enhanced IFNAR1+ expression in BMDC from early-life RSV-infected female mice that leads to increased IFN-γ production by T cells. Phenotypic differences were verified upon pulmonary sensitization whereby EL-RSV male-derived BMDC promoted enhanced T helper 2/17 responses and exacerbated disease upon RSV infection while EL-RSV/F BMDC sensitization was relatively protective. Assay for transposase-accessible chromatin using sequencing analysis (ATAC-seq) demonstrated that EL-RSV/F BMDC had enhanced chromatin accessibility near type-I immune genes with JUN, STAT1/2, and IRF1/8 transcription factors predicted to have binding sites in accessible regions. Importantly, ATAC-seq of human cord blood-derived monocytes displayed a similar sex-associated chromatin landscape with female-derived monocytes having more accessibility in type-I immune genes. These studies enhance our understanding of sex-associated differences in innate immunity by epigenetically controlled transcriptional programs amplified by early-life infection in females via type-I immunity.
Collapse
Affiliation(s)
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Mohamed M Mire
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, USA
| | - Arul Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, USA
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | | | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, USA; Mary H Weiser Food Allergy Center, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
6
|
Milicevic O, Loncar A, Abazovic D, Vukcevic M, Despot D, Djukic T, Djukic V, Milovanovic A, Panic N, Plecic N, Banko A. Transcriptome from Paired Samples Improves the Power of Comprehensive COVID-19 Host-Viral Characterization. Int J Mol Sci 2023; 24:13125. [PMID: 37685932 PMCID: PMC10487753 DOI: 10.3390/ijms241713125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Previous transcriptome profiling studies showed significantly upregulated genes and altered biological pathways in acute COVID-19. However, changes in the transcriptional signatures during a defined time frame are not yet examined and described. The aims of this study included viral metagenomics and evaluation of the total expression in time-matched and tissue-matched paired COVID-19 samples with the analysis of the host splicing profile to reveal potential therapeutic targets. Prospective analysis of paired nasopharyngeal swabs (NPS) and blood (BL) samples from 18 COVID-19 patients with acute and resolved infection performed using Kallisto, Suppa2, Centrifuge, EdgeR, PantherDB, and L1000CDS2 tools. In NPS, we discovered 6 genes with changed splicing and 40 differentially expressed genes (DEG) that yielded 88 altered pathways. Blood samples yielded 15 alternatively spliced genes. Although the unpaired DEG analysis failed, pairing identified 78 genes and 242 altered pathways with meaningful clinical interpretation and new candidate drug combinations with up to 65% overlap. Metagenomics analyses showed SARS-CoV-2 dominance during and after the acute infection, with a significant reduction in NPS (0.008 vs. 0.002, p = 0.019). Even though both NPS and BL give meaningful insights into expression changes, this is the first demonstration of how the power of blood analysis is vastly maximized by pairing. The obtained results essentially showed that pairing is a determinant between a failed and a comprehensive study. Finally, the bioinformatics results prove to be a comprehensive tool for full-action insights, drug development, and infectious disease research when designed properly.
Collapse
Affiliation(s)
- Ognjen Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ana Loncar
- Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia; (A.L.); (M.V.); (D.D.)
| | | | - Marija Vukcevic
- Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia; (A.L.); (M.V.); (D.D.)
| | - Dragana Despot
- Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia; (A.L.); (M.V.); (D.D.)
| | - Tatjana Djukic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Djukic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.D.); (A.M.); (N.P.)
- University Clinic “Dr Dragisa Misovic”, 11000 Belgrade, Serbia;
| | - Andjela Milovanovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.D.); (A.M.); (N.P.)
- Clinic for Medical Rehabilitation, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Nikola Panic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (V.D.); (A.M.); (N.P.)
- University Clinic “Dr Dragisa Misovic”, 11000 Belgrade, Serbia;
| | - Nemanja Plecic
- University Clinic “Dr Dragisa Misovic”, 11000 Belgrade, Serbia;
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Flerlage T, Crawford JC, Allen EK, Severns D, Tan S, Surman S, Ridout G, Novak T, Randolph A, West AN, Thomas PG. Single cell transcriptomics identifies distinct profiles in pediatric acute respiratory distress syndrome. Nat Commun 2023; 14:3870. [PMID: 37391405 PMCID: PMC10313703 DOI: 10.1038/s41467-023-39593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS), termed pediatric ARDS (pARDS) in children, is a severe form of acute respiratory failure (ARF). Pathologic immune responses are implicated in pARDS pathogenesis. Here, we present a description of microbial sequencing and single cell gene expression in tracheal aspirates (TAs) obtained longitudinally from infants with ARF. We show reduced interferon stimulated gene (ISG) expression, altered mononuclear phagocyte (MNP) transcriptional programs, and progressive airway neutrophilia associated with unique transcriptional profiles in patients with moderate to severe pARDS compared to those with no or mild pARDS. We additionally show that an innate immune cell product, Folate Receptor 3 (FOLR3), is enriched in moderate or severe pARDS. Our findings demonstrate distinct inflammatory responses in pARDS that are dependent upon etiology and severity and specifically implicate reduced ISG expression, altered macrophage repair-associated transcriptional programs, and accumulation of aged neutrophils in the pathogenesis of moderate to severe pARDS caused by RSV.
Collapse
Affiliation(s)
- Tim Flerlage
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Danielle Severns
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shaoyuan Tan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherri Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Granger Ridout
- Hartwell Center for Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanya Novak
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Adrienne Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alina N West
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Koch CM, Prigge AD, Setar L, Anekalla KR, Do-Umehara HC, Abdala-Valencia H, Politanska Y, Shukla A, Chavez J, Hahn GR, Coates BM. Cilia-related gene signature in the nasal mucosa correlates with disease severity and outcomes in critical respiratory syncytial virus bronchiolitis. Front Immunol 2022; 13:924792. [PMID: 36211387 PMCID: PMC9540395 DOI: 10.3389/fimmu.2022.924792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) can cause life-threatening respiratory failure in infants. We sought to characterize the local host response to RSV infection in the nasal mucosa of infants with critical bronchiolitis and to identify early admission gene signatures associated with clinical outcomes. Methods Nasal scrape biopsies were obtained from 33 infants admitted to the pediatric intensive care unit (PICU) with critical RSV bronchiolitis requiring non-invasive respiratory support (NIS) or invasive mechanical ventilation (IMV), and RNA sequencing (RNA-seq) was performed. Gene expression in participants who required shortened NIS (</= 3 days), prolonged NIS (> 3 days), and IMV was compared. Findings Increased expression of ciliated cell genes and estimated ciliated cell abundance, but not immune cell abundance, positively correlated with duration of hospitalization in infants with critical bronchiolitis. A ciliated cell signature characterized infants who required NIS for > 3 days while a basal cell signature was present in infants who required NIS for </= 3 days, despite both groups requiring an equal degree of respiratory support at the time of sampling. Infants who required invasive mechanical ventilation had increased expression of genes involved in neutrophil activation and cell death. Interpretation Increased expression of cilia-related genes in clinically indistinguishable infants with critical RSV may differentiate between infants who will require prolonged hospitalization and infants who will recover quickly. Validation of these findings in a larger cohort is needed to determine whether a cilia-related gene signature can predict duration of illness in infants with critical bronchiolitis. The ability to identify which infants with critical RSV bronchiolitis may require prolonged hospitalization using non-invasive nasal samples would provide invaluable prognostic information to parents and medical providers.
Collapse
Affiliation(s)
- Clarissa M. Koch
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew D. Prigge
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Leah Setar
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | | | | | | | - Yuliya Politanska
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Avani Shukla
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Jairo Chavez
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Grant R. Hahn
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Bria M. Coates
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- *Correspondence: Bria M. Coates,
| |
Collapse
|
9
|
Barnes MVC, Openshaw PJM, Thwaites RS. Mucosal Immune Responses to Respiratory Syncytial Virus. Cells 2022; 11:cells11071153. [PMID: 35406717 PMCID: PMC8997753 DOI: 10.3390/cells11071153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Despite over half a century of research, respiratory syncytial virus (RSV)-induced bronchiolitis remains a major cause of hospitalisation in infancy, while vaccines and specific therapies still await development. Our understanding of mucosal immune responses to RSV continues to evolve, but recent studies again highlight the role of Type-2 immune responses in RSV disease and hint at the possibility that it dampens Type-1 antiviral immunity. Other immunoregulatory pathways implicated in RSV disease highlight the importance of focussing on localised mucosal responses in the respiratory mucosa, as befits a virus that is essentially confined to the ciliated respiratory epithelium. In this review, we discuss studies of mucosal immune cell infiltration and production of inflammatory mediators in RSV bronchiolitis and relate these studies to observations from peripheral blood. We also discuss the advantages and limitations of studying the nasal mucosa in a disease that is most severe in the lower airway. A fresh focus on studies of RSV pathogenesis in the airway mucosa is set to revolutionise our understanding of this common and important infection.
Collapse
|
10
|
Dotan A, Mahroum N, Bogdanos DP, Shoenfeld Y. COVID-19 as an infectome paradigm of autoimmunity. J Allergy Clin Immunol 2022; 149:63-64. [PMID: 34826507 PMCID: PMC8610602 DOI: 10.1016/j.jaci.2021.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Arad Dotan
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naim Mahroum
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Medicine "B", Sheba Medical Center, Ramat Gan, Israel
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ariel University, Ari'el, Israel; Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
11
|
McCall MN, Chu CY, Wang L, Benoodt L, Thakar J, Corbett A, Holden-Wiltse J, Slaunwhite C, Grier A, Gill SR, Falsey AR, Topham DJ, Caserta MT, Walsh EE, Qiu X, Mariani TJ. A systems genomics approach uncovers molecular associates of RSV severity. PLoS Comput Biol 2021; 17:e1009617. [PMID: 34962914 PMCID: PMC8746750 DOI: 10.1371/journal.pcbi.1009617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 01/10/2022] [Accepted: 11/05/2021] [Indexed: 01/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection results in millions of hospitalizations and thousands of deaths each year. Variations in the adaptive and innate immune response appear to be associated with RSV severity. To investigate the host response to RSV infection in infants, we performed a systems-level study of RSV pathophysiology, incorporating high-throughput measurements of the peripheral innate and adaptive immune systems and the airway epithelium and microbiota. We implemented a novel multi-omic data integration method based on multilayered principal component analysis, penalized regression, and feature weight back-propagation, which enabled us to identify cellular pathways associated with RSV severity. In both airway and immune cells, we found an association between RSV severity and activation of pathways controlling Th17 and acute phase response signaling, as well as inhibition of B cell receptor signaling. Dysregulation of both the humoral and mucosal response to RSV may play a critical role in determining illness severity. This paper presents a novel approach to understanding the localized molecular responses to respiratory syncytial virus (RSV) and the system-level correlates of clinical outcomes. To do this, we developed a novel statistical method able to integrate high dimensional molecular data characterizing the host airway microbota and immune and nasal gene expression. We show that this integrative approach facilitates superior performance in estimating clinical outcome as opposed to any single data type. Using this approach, we identified both cell type-specific and shared biomarkers and regulatory pathways associated with RSV severity. Specifically, we identified an association between RSV severity, activation of pathways controlling Th17, and inhibition of B cell receptor signaling, which were present in both the site of infection airway and in peripheral immune cells. These results can guide future efforts to identify biomarkers for identifying or predicting illness severity following infant RSV infection. They may also be useful as biomarkers to inform the efficacy of future interventions (e.g., therapies) or preventative measures to suppress the rate of severe disease (e.g., vaccines).
Collapse
Affiliation(s)
- Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester New York, United States of America.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester New York, United States of America
| | - Chin-Yi Chu
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester New York, United States of America.,Department of Pediatrics, University of Rochester Medical Center, Rochester New York, United States of America
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester New York, United States of America
| | - Lauren Benoodt
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester New York, United States of America
| | - Juilee Thakar
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester New York, United States of America.,Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester New York, United States of America
| | - Anthony Corbett
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester New York, United States of America.,Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester New York, United States of America
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester New York, United States of America.,Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester New York, United States of America
| | - Christopher Slaunwhite
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester New York, United States of America.,Department of Pediatrics, University of Rochester Medical Center, Rochester New York, United States of America
| | - Alex Grier
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester New York, United States of America
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester New York, United States of America
| | - Ann R Falsey
- Department of Medicine, University of Rochester Medical Center, Rochester New York, United States of America.,Department of Medicine, Rochester General Hospital, Rochester New York, United States of America
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester New York, United States of America.,David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester New York, United States of America
| | - Mary T Caserta
- Department of Pediatrics, University of Rochester Medical Center, Rochester New York, United States of America
| | - Edward E Walsh
- Department of Medicine, University of Rochester Medical Center, Rochester New York, United States of America.,Department of Medicine, Rochester General Hospital, Rochester New York, United States of America
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester New York, United States of America
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester New York, United States of America.,Department of Pediatrics, University of Rochester Medical Center, Rochester New York, United States of America
| |
Collapse
|
12
|
Affiliation(s)
- John E McGinniss
- Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania
| | - Ronald G Collman
- Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Rajagopala SV, Bakhoum NG, Pakala SB, Shilts MH, Rosas-Salazar C, Mai A, Boone HH, McHenry R, Yooseph S, Halasa N, Das SR. Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples. CELL REPORTS METHODS 2021; 1:100091. [PMID: 34790908 PMCID: PMC8594859 DOI: 10.1016/j.crmeth.2021.100091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022]
Abstract
We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low biomass samples. Using nasal swab samples, we capture RNA virome with sufficient sequencing depth required to assemble complete genomes. We find a surprisingly high frequency of respiratory syncytial virus (RSV) and coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-detections in children with symptomatic RSV. In addition, we have identified commensal and pathogenic bacteria and fungi at the species level. Functional analysis revealed that H. influenzae was highly active in symptomatic RSV subjects. The host nasal transcriptome reveled upregulation of the innate immune system, anti-viral response and inflammasome pathway, and downregulation of fatty acid pathways in children with symptomatic RSV. Overall, we demonstrate that our method is broadly applicable to infer the transcriptome landscape of an infected system, surveil respiratory infections, and to sequence RNA viruses directly from clinical samples.
Collapse
Affiliation(s)
- Seesandra V. Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole G. Bakhoum
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman B. Pakala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meghan H. Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christian Rosas-Salazar
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Annie Mai
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Helen H. Boone
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rendie McHenry
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Natasha Halasa
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Otolaryngology and Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Merenstein C, Liang G, Whiteside SA, Cobián-Güemes AG, Merlino MS, Taylor LJ, Glascock A, Bittinger K, Tanes C, Graham-Wooten J, Khatib LA, Fitzgerald AS, Reddy S, Baxter AE, Giles JR, Oldridge DA, Meyer NJ, Wherry EJ, McGinniss JE, Bushman FD, Collman RG. Signatures of COVID-19 Severity and Immune Response in the Respiratory Tract Microbiome. mBio 2021; 12:e0177721. [PMID: 34399607 PMCID: PMC8406335 DOI: 10.1128/mbio.01777-21] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 01/12/2023] Open
Abstract
Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Here, we investigated the respiratory tract microbiome in coronavirus disease 2019 (COVID-19) and its relationship to disease severity, systemic immunologic features, and outcomes. We examined 507 oropharyngeal, nasopharyngeal, and endotracheal samples from 83 hospitalized COVID-19 patients as well as non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, and the commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR. We found that COVID-19 patients had upper respiratory microbiome dysbiosis and greater change over time than critically ill patients without COVID-19. Oropharyngeal microbiome diversity at the first time point correlated inversely with disease severity during hospitalization. Microbiome composition was also associated with systemic immune parameters in blood, as measured by lymphocyte/neutrophil ratios and immune profiling of peripheral blood mononuclear cells. Intubated patients showed patient-specific lung microbiome communities that were frequently highly dynamic, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Thus, the respiratory tract microbiome and commensal viruses are disturbed in COVID-19 and correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, its possible use as biomarkers, and the role of bacterial and viral taxa identified here in COVID-19 pathogenesis. IMPORTANCE COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Early airway samples tracked with the level of COVID-19 illness reached during hospitalization, and the airway microbiome also correlated with immune parameters in blood. These findings raise questions about the mechanisms linking SARS-CoV-2 infection and other microbial inhabitants of the airway, including whether the microbiome might regulate severity of COVID-19 disease and/or whether early microbiome features might serve as biomarkers to discriminate disease severity.
Collapse
Affiliation(s)
- Carter Merenstein
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Guanxiang Liang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Samantha A. Whiteside
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ana G. Cobián-Güemes
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madeline S. Merlino
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Louis J. Taylor
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Abigail Glascock
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jevon Graham-Wooten
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Layla A. Khatib
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ayannah S. Fitzgerald
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shantan Reddy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Amy E. Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Josephine R. Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Derek A. Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nuala J. Meyer
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John E. McGinniss
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Grier A, Gill AL, Kessler HA, Corbett A, Bandyopadhyay S, Java J, Holden-Wiltse J, Falsey AR, Topham DJ, Mariani TJ, Caserta MT, Walsh EE, Gill SR. Temporal Dysbiosis of Infant Nasal Microbiota Relative to Respiratory Syncytial Virus Infection. J Infect Dis 2021; 223:1650-1658. [PMID: 32926147 PMCID: PMC8136976 DOI: 10.1093/infdis/jiaa577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of infant respiratory disease. Infant airway microbiota has been associated with respiratory disease risk and severity. The extent to which interactions between RSV and microbiota occur in the airway, and their impact on respiratory disease susceptibility and severity, are unknown. METHODS We carried out 16S rRNA microbiota profiling of infants in the first year of life from (1) a cross-sectional cohort of 89 RSV-infected infants sampled during illness and 102 matched healthy controls, and (2) a matched longitudinal cohort of 12 infants who developed RSV infection and 12 who did not, sampled before, during, and after infection. RESULTS We identified 12 taxa significantly associated with RSV infection. All 12 taxa were differentially abundant during infection, with 8 associated with disease severity. Nasal microbiota composition was more discriminative of healthy vs infected than of disease severity. CONCLUSIONS Our findings elucidate the chronology of nasal microbiota dysbiosis and suggest an altered developmental trajectory associated with RSV infection. Microbial temporal dynamics reveal indicators of disease risk, correlates of illness and severity, and impact of RSV infection on microbiota composition.
Collapse
Affiliation(s)
- Alex Grier
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Haeja A Kessler
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Anthony Corbett
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sanjukta Bandyopadhyay
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - James Java
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ann R Falsey
- Department of Medicine, Rochester General Hospital, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Mary T Caserta
- Division of Pediatric Infectious Diseases, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Edward E Walsh
- Department of Medicine, Rochester General Hospital, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
16
|
Merenstein C, Liang G, Whiteside SA, Cobián-Güemes AG, Merlino MS, Taylor LJ, Glascock A, Bittinger K, Tanes C, Graham-Wooten J, Khatib LA, Fitzgerald AS, Reddy S, Baxter AE, Giles JR, Oldridge DA, Meyer NJ, Wherry EJ, McGinniss JE, Bushman FD, Collman RG. Signatures of COVID-19 severity and immune response in the respiratory tract microbiome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.04.02.21254514. [PMID: 33851179 PMCID: PMC8043476 DOI: 10.1101/2021.04.02.21254514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rationale Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Objective To define the respiratory tract microbiome in COVID-19 and relationship disease severity, systemic immunologic features, and outcomes. Methods and Measurements We examined 507 oropharyngeal, nasopharyngeal and endotracheal samples from 83 hospitalized COVID-19 patients, along with non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR, and immune features were characterized by lymphocyte/neutrophil (L/N) ratios and deep immune profiling of peripheral blood mononuclear cells (PBMC). Main Results COVID-19 patients had upper respiratory microbiome dysbiosis, and greater change over time than critically ill patients without COVID-19. Diversity at the first time point correlated inversely with disease severity during hospitalization, and microbiome composition was associated with L/N ratios and PBMC profiles in blood. Intubated patients showed patient-specific and dynamic lung microbiome communities, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Conclusions The respiratory tract microbiome and commensal virome are disturbed in COVID-19, correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, possible use as biomarkers, and role of bacterial and viral taxa identified here in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Carter Merenstein
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Guanxiang Liang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Samantha A Whiteside
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104
| | - Ana G Cobián-Güemes
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Madeline S Merlino
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Louis J Taylor
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Abigail Glascock
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Jevon Graham-Wooten
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104
| | - Layla A Khatib
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104
| | - Ayannah S Fitzgerald
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104
| | - Shantan Reddy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Derek A Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Nuala J Meyer
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - John E McGinniss
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104
| |
Collapse
|
17
|
Hurst JH, McCumber AW, Aquino JN, Rodriguez J, Heston SM, Lugo DJ, Rotta AT, Turner NA, Pfeiffer TS, Gurley TC, Moody MA, Denny TN, Rawls JF, Woods CW, Kelly MS. Age-related changes in the upper respiratory microbiome are associated with SARS-CoV-2 susceptibility and illness severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.20.21252680. [PMID: 33791716 PMCID: PMC8010748 DOI: 10.1101/2021.03.20.21252680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Children are less susceptible to SARS-CoV-2 and typically have milder illness courses than adults. We studied the nasopharyngeal microbiomes of 274 children, adolescents, and young adults with SARS-CoV-2 exposure using 16S rRNA gene sequencing. We find that higher abundances of Corynebacterium species are associated with SARS-CoV-2 infection and SARS-CoV-2-associated respiratory symptoms, while higher abundances of Dolosigranulum pigrum are present in SARS-CoV-2-infected individuals without respiratory symptoms. We also demonstrate that the abundances of these bacteria are strongly, and independently, associated with age, suggesting that the nasopharyngeal microbiome may be a potentially modifiable mechanism by which age influences SARS-CoV-2 susceptibility and severity. SUMMARY Evaluation of nasopharyngeal microbiome profiles in children, adolescents, and young adults with a SARS-CoV-2-infected close contact identified specific bacterial species that vary in abundance with age and are associated with SARS-CoV-2 susceptibility and the presence of SARS-CoV-2-associated respiratory symptoms.
Collapse
|
18
|
Wang L, Chu CY, McCall MN, Slaunwhite C, Holden-Wiltse J, Corbett A, Falsey AR, Topham DJ, Caserta MT, Mariani TJ, Walsh EE, Qiu X. Airway gene-expression classifiers for respiratory syncytial virus (RSV) disease severity in infants. BMC Med Genomics 2021; 14:57. [PMID: 33632195 PMCID: PMC7908785 DOI: 10.1186/s12920-021-00913-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A substantial number of infants infected with RSV develop severe symptoms requiring hospitalization. We currently lack accurate biomarkers that are associated with severe illness. METHOD We defined airway gene expression profiles based on RNA sequencing from nasal brush samples from 106 full-tem previously healthy RSV infected subjects during acute infection (day 1-10 of illness) and convalescence stage (day 28 of illness). All subjects were assigned a clinical illness severity score (GRSS). Using AIC-based model selection, we built a sparse linear correlate of GRSS based on 41 genes (NGSS1). We also built an alternate model based upon 13 genes associated with severe infection acutely but displaying stable expression over time (NGSS2). RESULTS NGSS1 is strongly correlated with the disease severity, demonstrating a naïve correlation (ρ) of ρ = 0.935 and cross-validated correlation of 0.813. As a binary classifier (mild versus severe), NGSS1 correctly classifies disease severity in 89.6% of the subjects following cross-validation. NGSS2 has slightly less, but comparable, accuracy with a cross-validated correlation of 0.741 and classification accuracy of 84.0%. CONCLUSION Airway gene expression patterns, obtained following a minimally-invasive procedure, have potential utility for development of clinically useful biomarkers that correlate with disease severity in primary RSV infection.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - Chin-Yi Chu
- Department of Pediatrics, University of Rochester School Medicine, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | | | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - Anthony Corbett
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - Ann R Falsey
- Department of Medicine, University of Rochester School Medicine, Rochester, NY, USA
- Department of Medicine, Rochester General Hospital, Rochester, NY, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester School Medicine, Rochester, NY, USA
| | - Mary T Caserta
- Department of Pediatrics, University of Rochester School Medicine, Rochester, NY, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester School Medicine, Rochester, NY, USA.
| | - Edward E Walsh
- Department of Medicine, University of Rochester School Medicine, Rochester, NY, USA.
- Department of Medicine, Rochester General Hospital, Rochester, NY, USA.
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA.
| |
Collapse
|