1
|
Cross-neutralization of Omicron subvariants after heterologous NVX-CoV2373 boosters: Comparison between prior SARS-CoV-2-infected and infection-naive individuals. J Infect 2023; 86:e46-e48. [PMID: 36162704 PMCID: PMC9500049 DOI: 10.1016/j.jinf.2022.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 02/02/2023]
|
2
|
Choi MJ, Heo JY, Seo YB, Yoon YK, Sohn JW, Noh JY, Cheong HJ, Kim WJ, Choi JY, Lee YJ, Lee HW, Kim SS, Kim B, Song JY. Predictive Value of Reactogenicity for Anti-SARS-CoV-2 Antibody Response in mRNA-1273 Recipients: A Multicenter Prospective Cohort Study. Vaccines (Basel) 2023; 11:120. [PMID: 36679965 PMCID: PMC9862064 DOI: 10.3390/vaccines11010120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Messenger RNA (mRNA) vaccination was developed to mitigate the coronavirus disease 2019 pandemic. However, data on antibody kinetics and factors influencing these vaccines' immunogenicity are limited. We conducted a prospective study on healthy young adults who received two doses of the mRNA-1273 vaccine at 28-day intervals. After each dose, adverse events were prospectively evaluated, and blood samples were collected. The correlation between humoral immune response and reactogenicity after vaccination was determined. In 177 participants (19-55 years), the geometric mean titers of anti-S IgG antibody were 178.07 and 4409.61 U/mL, while those of 50% neutralizing titers were 479.95 and 2851.67 U/mL four weeks after the first and second vaccine doses, respectively. Anti-S IgG antibody titers were not associated with local reactogenicity but were higher in participants who experienced systemic adverse events (headache and muscle pain). Antipyretic use was an independent predictive factor of a robust anti-SARS-CoV-2 antibody response after receiving both vaccine doses. Systemic reactogenicity after the first dose influenced antibody response after the second dose. In conclusion, mRNA-1273 induced a robust antibody response in healthy young adults. Antipyretic use did not decrease the anti-SARS-CoV-2 antibody response after mRNA-1273 vaccination.
Collapse
Affiliation(s)
- Min Joo Choi
- Department of Internal Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea
| | - Jung Yeon Heo
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yu Bin Seo
- Division of Infectious Diseases, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Young Kyung Yoon
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jang Wook Sohn
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ji Yun Noh
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 08308, Republic of Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 08308, Republic of Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 08308, Republic of Korea
| | - Ju-yeon Choi
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 28159, Republic of Korea
| | - Young Jae Lee
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 28159, Republic of Korea
| | - Hye Won Lee
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 28159, Republic of Korea
| | - Sung Soon Kim
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 28159, Republic of Korea
| | - Byoungguk Kim
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 28159, Republic of Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 08308, Republic of Korea
| |
Collapse
|
3
|
García-Fernández A, Morán-Álvarez P, Bachiller-Corral J, Vázquez-Díaz M. Low Positivity Rate of Anti-SARS-CoV-2 IgG in Unvaccinated Patients With Rheumatic Diseases Treated With Rituximab. J Clin Rheumatol 2022; 28:424-428. [PMID: 35696998 PMCID: PMC9722326 DOI: 10.1097/rhu.0000000000001876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Neuhauser H, Rosario AS, Butschalowsky H, Haller S, Hoebel J, Michel J, Nitsche A, Poethko-Müller C, Prütz F, Schlaud M, Steinhauer HW, Wilking H, Wieler LH, Schaade L, Liebig S, Gößwald A, Grabka MM, Zinn S, Ziese T. Nationally representative results on SARS-CoV-2 seroprevalence and testing in Germany at the end of 2020. Sci Rep 2022; 12:19492. [PMID: 36376417 PMCID: PMC9662125 DOI: 10.1038/s41598-022-23821-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pre-vaccine SARS-CoV-2 seroprevalence data from Germany are scarce outside hotspots, and socioeconomic disparities remained largely unexplored. The nationwide representative RKI-SOEP study (15,122 participants, 18-99 years, 54% women) investigated seroprevalence and testing in a supplementary wave of the Socio-Economic-Panel conducted predominantly in October-November 2020. Self-collected oral-nasal swabs were PCR-positive in 0.4% and Euroimmun anti-SARS-CoV-2-S1-IgG ELISA from dry-capillary-blood antibody-positive in 1.3% (95% CI 0.9-1.7%, population-weighted, corrected for sensitivity = 0.811, specificity = 0.997). Seroprevalence was 1.7% (95% CI 1.2-2.3%) when additionally correcting for antibody decay. Overall infection prevalence including self-reports was 2.1%. We estimate 45% (95% CI 21-60%) undetected cases and lower detection in socioeconomically deprived districts. Prior SARS-CoV-2 testing was reported by 18% from the lower educational group vs. 25% and 26% from the medium and high educational group (p < 0.001, global test over three categories). Symptom-triggered test frequency was similar across educational groups. Routine testing was more common in low-educated adults, whereas travel-related testing and testing after contact with infected persons was more common in highly educated groups. This countrywide very low pre-vaccine seroprevalence in Germany at the end of 2020 can serve to evaluate the containment strategy. Our findings on social disparities indicate improvement potential in pandemic planning for people in socially disadvantaged circumstances.
Collapse
Affiliation(s)
- Hannelore Neuhauser
- Robert Koch Institute, Berlin, Germany.
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, General-Pape-Str. 62-66, 12101, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | - Hans W Steinhauer
- Socio-Economic Panel, German Institute for Economic Research, Berlin, Germany
| | | | | | | | - Stefan Liebig
- Socio-Economic Panel, German Institute for Economic Research, Berlin, Germany
- SOEP & Department of Political and Social Sciences, Free University, Berlin, Germany
| | | | - Markus M Grabka
- Socio-Economic Panel, German Institute for Economic Research, Berlin, Germany
| | - Sabine Zinn
- Socio-Economic Panel, German Institute for Economic Research, Berlin, Germany
- SOEP & Department of Social Sciences, Humboldt University, Berlin, Germany
| | | |
Collapse
|
5
|
Olmstead AD, Nikiforuk AM, Schwartz S, Márquez AC, Valadbeigy T, Flores E, Saran M, Goldfarb DM, Hayden A, Masud S, Russell SL, Prystajecky N, Jassem AN, Morshed M, Sekirov I. Characterizing Longitudinal Antibody Responses in Recovered Individuals Following COVID-19 Infection and Single-Dose Vaccination: A Prospective Cohort Study. Viruses 2022; 14:2416. [PMID: 36366515 PMCID: PMC9694471 DOI: 10.3390/v14112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Investigating antibody titers in individuals who have been both naturally infected with SARS-CoV-2 and vaccinated can provide insight into antibody dynamics and correlates of protection over time. METHODS Human coronavirus (HCoV) IgG antibodies were measured longitudinally in a prospective cohort of qPCR-confirmed, COVID-19 recovered individuals (k = 57) in British Columbia pre- and post-vaccination. SARS-CoV-2 and endemic HCoV antibodies were measured in serum collected between Nov. 2020 and Sept. 2021 (n = 341). Primary analysis used a linear mixed-effects model to understand the effect of single dose vaccination on antibody concentrations adjusting for biological sex, age, time from infection and vaccination. Secondary analysis investigated the cumulative incidence of high SARS-CoV-2 anti-spike IgG seroreactivity equal to or greater than 5.5 log10 AU/mL up to 105 days post-vaccination. No re-infections were detected in vaccinated participants, post-vaccination by qPCR performed on self-collected nasopharyngeal specimens. RESULTS Bivariate analysis (complete data for 42 participants, 270 samples over 472 days) found SARS-CoV-2 spike and RBD antibodies increased 14-56 days post-vaccination (p < 0.001) and vaccination prevented waning (regression coefficient, B = 1.66 [95%CI: 1.45-3.46]); while decline of nucleocapsid antibodies over time was observed (regression coefficient, B = -0.24 [95%CI: -1.2-(-0.12)]). A positive association was found between COVID-19 vaccination and endemic human β-coronavirus IgG titer 14-56 days post vaccination (OC43, p = 0.02 & HKU1, p = 0.02). On average, SARS-CoV-2 anti-spike IgG concentration increased in participants who received one vaccine dose by 2.06 log10 AU/mL (95%CI: 1.45-3.46) adjusting for age, biological sex, and time since infection. Cumulative incidence of high SARS-CoV-2 spike antibodies (>5.5 log10 AU/mL) was 83% greater in vaccinated compared to unvaccinated individuals. CONCLUSIONS Our study confirms that vaccination post-SARS-CoV-2 infection provides multiple benefits, such as increasing anti-spike IgG titers and preventing decay up to 85 days post-vaccination.
Collapse
Affiliation(s)
- Andrea D. Olmstead
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Aidan M. Nikiforuk
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
- School of Population and Public Health, University of British Columbia, 2206 E Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sydney Schwartz
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Ana Citlali Márquez
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Tahereh Valadbeigy
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Eri Flores
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Monika Saran
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
| | - David M. Goldfarb
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- Department of Pathology and Laboratory Medicine, British Columbia Children’s and Women’s Hospital, 4500 Oak Street, Vancouver, BC V6H 3N1, Canada
| | - Althea Hayden
- Office of the Chief Medical Health Officer, Vancouver Coastal Health, Vancouver, BC V5Z 4C2, Canada
| | - Shazia Masud
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- Department of Pathology and Laboratory Medicine, Surrey Memorial Hospital, Surrey, BC V3V 1Z2, Canada
| | - Shannon L. Russell
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Natalie Prystajecky
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Agatha N. Jassem
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Muhammad Morshed
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| | - Inna Sekirov
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Provincial Health Services Authority, 655 West 12th Ave, Vancouver, BC V5Z 4R4, Canada
| |
Collapse
|
6
|
Song JY, Choi WS, Heo JY, Lee JS, Jung DS, Kim SW, Park KH, Eom JS, Jeong SJ, Lee J, Kwon KT, Choi HJ, Sohn JW, Kim YK, Noh JY, Kim WJ, Roman F, Ceregido MA, Solmi F, Philippot A, Walls AC, Carter L, Veesler D, King NP, Kim H, Ryu JH, Lee SJ, Park YW, Park HK, Cheong HJ. Safety and immunogenicity of a SARS-CoV-2 recombinant protein nanoparticle vaccine (GBP510) adjuvanted with AS03: A randomised, placebo-controlled, observer-blinded phase 1/2 trial. EClinicalMedicine 2022; 51:101569. [PMID: 35879941 PMCID: PMC9304916 DOI: 10.1016/j.eclinm.2022.101569] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vaccination has helped to mitigate the COVID-19 pandemic. Ten traditional and novel vaccines have been listed by the World Health Organization for emergency use. Additional alternative approaches may better address ongoing vaccination globally, where there remains an inequity in vaccine distribution. GBP510 is a recombinant protein vaccine, which consists of self-assembling, two-component nanoparticles, displaying the receptor-binding domain (RBD) in a highly immunogenic array. METHODS This randomised, placebo-controlled, observer-blinded phase 1/2 study was conducted to evaluate the safety and immunogenicity of GBP510 (2-doses at a 28-day interval) adjuvanted with or without AS03 in adults aged 19-85 years at 14 hospital sites in Korea. This study was consisted of two stages (stage I, healthy adults aged 19-55 years; stage II, 240 healthy adults aged 19-85 years). Healthy participants who did not previously receive any vaccine within 4 weeks (2 weeks for flu vaccine) prior to the study, no history of COVID-19 vaccination/medication, and were naïve to SARS-CoV-2 infection at screening were eligible for the study enrollment. Participants were block-randomized in a 2:2:1 ratio to receive 2 doses of 10 µg GBP510 adjuvanted with AS03 (group 1), 10 µg unadjuvanted GBP510 (group 2) or placebo intramuscularly in stage I, while they were block-randomized in a 2:2:1:1 ratio to receive 10 µg GBP510 adjuvanted with AS03 (group 1), 25 µg GBP510 adjuvanted with AS03 (group 3), 25 µg unadjuvanted GBP510 (group 4) or placebo in stage II. The primary safety outcomes were solicited and unsolicited adverse events, while primary immunogenicity outcomes included anti-SARS-CoV-2 RBD IgG antibodies; neutralizing antibody responses; and T-cell immune responses. Safety assessment included all participants who received at least 1 dose of study intervention (safety set). Immunogenicity assessment included all participants who completed the vaccination schedule and had valid immunogenicity assessment results without any major protocol deviations (per-protocol set). This study was registered with ClinicalTrials.gov (NCT04750343). FINDINGS Of 328 participants who were enrolled between February 1 and May 28, 2021, 327 participants received at least 1 dose of vaccine. Each received either 10 µg GBP510 adjuvanted with AS03 (Group 1, n = 101), 10 µg unadjuvanted GBP510 (Group 2, n = 10), 25 µg GBP510 adjuvanted with AS03 (Group 3, n = 104), 25 µg unadjuvanted GBP510 (Group 4, n = 51), or placebo (n = 61). Higher reactogenicity was observed in the GBP510 adjuvanted with AS03 groups compared to the non-adjuvanted and placebo groups. The most frequently reported solicited local adverse event (AE) was injection site pain after any vaccination: (88·1% in group 1; 50·0% in group 2; 92·3% in group 3; 66·7% in group 4). Fatigue and myalgia were two most frequently reported systemic AEs and more frequently reported in GBP510 adjuvanted with AS03 recipients (79·2% and 78·2% in group 1; 75·0% and 79·8% in group 3, respectively) than in the unadjuvanted vaccine recipients (40·0% and of 40·0% in group 2; 60·8% and 47·1% in group 4) after any vaccination. Reactogenicity was higher post-dose 2 compared to post-dose 1, particularly for systemic AEs. The geometric mean concentrations of anti-SARS-CoV-2-RBD IgG antibody reached 2163·6/2599·2 BAU/mL in GBP510 adjuvanted with AS03 recipients (10 µg/25 µg) by 14 days after the second dose. Two-dose vaccination of 10 µg or 25 µg GBP510 adjuvanted with AS03 induced high titres of neutralizing antibody via pseudovirus (1369·0/1431·5 IU/mL) and wild-type virus (949·8/861·0 IU/mL) assay. INTERPRETATION GBP510 adjuvanted with AS03 was well tolerated and highly immunogenic. These results support further development of the vaccine candidate, which is currently being evaluated in Phase 3. FUNDING This work was supported, in whole or in part, by funding from CEPI and the Bill & Melinda Gates Foundation Investment ID OPP1148601. The Bill & Melinda Gates Foundation supported this project for the generation of IND-enabling data and CEPI supported this clinical study.
Collapse
Affiliation(s)
- Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Jung Yeon Heo
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jin Soo Lee
- Division of Infectious Diseases, Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Dong Sik Jung
- Division of Infectious Diseases, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Shin-Woo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Hwa Park
- Division of Infectious Diseases, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Joong Sik Eom
- Division of Infectious Diseases, Department of Internal Medicine, Gil Medical Centre, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jacob Lee
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ki Tae Kwon
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hee Jung Choi
- Division of Infectious Diseases, Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Jang Wook Sohn
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young Keun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, WA, USA
- Howard Hughes Medical Institute, University of Washington, WA, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, WA, USA
- Institute for Protein Design, University of Washington, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, WA, USA
- Howard Hughes Medical Institute, University of Washington, WA, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, WA, USA
- Institute for Protein Design, University of Washington, WA, USA
| | - Hun Kim
- Department of R&D, SK Bioscience, Seongnam, Republic of Korea
| | - Ji Hwa Ryu
- Department of R&D, SK Bioscience, Seongnam, Republic of Korea
| | - Su Jeen Lee
- Department of R&D, SK Bioscience, Seongnam, Republic of Korea
| | - Yong Wook Park
- Department of R&D, SK Bioscience, Seongnam, Republic of Korea
| | - Ho Keun Park
- Department of R&D, SK Bioscience, Seongnam, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Corresponding author at: Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Gurodong-ro 148, Guro-gu, Seoul 08308, Republic of Korea.
| |
Collapse
|
7
|
de Lima Silva N, Nobre D, Alves de Oliveira J, Santos Rezende M, da Conceição dos Santos JT, de Souza Araújo AA, Quintans-Júnior LJ, Marques Cavalcante RC, de Souza Ferreira LC, Martins-Filho PR, Schimieguel DM. Kinetics of humoral immune response in patients with asymptomatic or mild COVID-19: a longitudinal study based in an in-house indirect ELISA method. EXCLI JOURNAL 2022; 21:1167-1170. [PMID: 36381645 PMCID: PMC9650694 DOI: 10.17179/excli2022-5337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Affiliation(s)
- Nathanielly de Lima Silva
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil,Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Danilo Nobre
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Joyceane Alves de Oliveira
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil,Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Márcia Santos Rezende
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil,Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Joyce Thayane da Conceição dos Santos
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil,Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Adriano Antunes de Souza Araújo
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil,Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil,Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Lucindo José Quintans-Júnior
- Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil,Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil,Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | | | - Dulce Marta Schimieguel
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil,Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil,*To whom correspondence should be addressed: Dulce Marta Schimieguel, Departamento de Farmácia, Laboratório de Hematologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil, CEP: 49100-000, E-mail:
| |
Collapse
|
8
|
Li J, Jiang N, Zeng QL, Zhang Y, He X, Chu Y, Jin W, Liu Y, Shi W, Yang M, He W, Han Q, Ma L, Xu Y, Guo Y, Zhang L, Ji F. The Epidemiological, Clinical Features and Outcomes of Imported Chinese COVID-19 Patients Following Inactivated Vaccines Injection. Infect Drug Resist 2022; 15:2115-2125. [PMID: 35498630 PMCID: PMC9042076 DOI: 10.2147/idr.s356460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination had been demonstrated as an effective way to reduce the risk of coronavirus disease 2019 (COVID-19), and only a few vaccines suffered from SARS-CoV-2 infection. However, limited data concerning the clinical features of these vaccines infected with SARS-CoV-2 can be identified. Methods We retrospectively collected and analyzed epidemiological and clinical characteristics data of the imported COVID-19 cases who received Chinese inactivated vaccines abroad. Data were extracted from electronic medical records from a designated hospital in the Shaanxi Province of China between March 22 and May 17, 2021. Results Totally, 46 confirmed SARS-CoV-2 infection patients were enrolled. The mean age was 40.5 years (range 20–61), 41 (89.1%) are male. Eighteen (39.1%) patients were from Pakistan. Fourteen (30.4%) patients had at least one comorbidity. Forty (87.0%) and 6 cases were fully vaccinated and partly vaccinated. The time interval between vaccination and infection was 88 days (IQR, 33–123), 31 (67.4%) and 15 (32.6%) were asymptomatic and symptomatic cases, respectively. Fever (3/46, 6.5%) was the most common symptom; however, none had a body temperature higher than 38.0°C, and no severe case was observed. Notably, the rate of SARS-CoV-2 shedding discontinuation at 7 days after hospitalization in asymptomatic cases was higher than symptomatic one (93.5% vs 40%, P < 0.0001). Conclusion Individuals who received Chinese inactivated vaccines abroad remain to have the probability of being infected with SARS-CoV-2, but all the vaccines infected with SARS-CoV-2 were asymptomatic or had mild symptoms with favorable clinical outcomes.
Collapse
Affiliation(s)
- Jianwu Li
- Isolation Ward for Covid-19, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi’an, Shaanxi, People’s Republic of China
| | - Na Jiang
- Isolation Ward for Covid-19, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi’an, Shaanxi, People’s Republic of China
| | - Qing-Lei Zeng
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yue Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xinyuan He
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yao Chu
- Isolation Ward for Covid-19, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi’an, Shaanxi, People’s Republic of China
| | - Wenni Jin
- Isolation Ward for Covid-19, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi’an, Shaanxi, People’s Republic of China
| | - Yi Liu
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Wan Shi
- Isolation Ward for Covid-19, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi’an, Shaanxi, People’s Republic of China
| | - Miao Yang
- Isolation Ward for Covid-19, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi’an, Shaanxi, People’s Republic of China
| | - Weihan He
- Isolation Ward for Covid-19, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi’an, Shaanxi, People’s Republic of China
| | - Qing Han
- Department of Integrated Traditional Chinese and Western Medicine, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Le Ma
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - You Xu
- Isolation Ward for Covid-19, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi’an, Shaanxi, People’s Republic of China
| | - Yaling Guo
- Isolation Ward for Covid-19, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi’an, Shaanxi, People’s Republic of China
- Yaling Guo, Isolation ward for COVID-19, the Eighth Hospital of Xi’an City, Xi’an Jiaotong University, Xi’an, Shaanxi Province, 710061, People’s Republic of China, Tel/Fax +8629 85230200, Email
| | - Lei Zhang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, People’s Republic of China
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
- Central Clinical School, Faculty of Medicine, Monash University, Melbourne, Australia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Fanpu Ji
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi’an, Shaanxi, People’s Republic of China
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, Shaanxi, People’s Republic of China
- Correspondence: Fanpu Ji, Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China, Tel/Fax +862987678223, Email
| |
Collapse
|
9
|
Vo HTM, Maestri A, Auerswald H, Sorn S, Lay S, Seng H, Sann S, Ya N, Pean P, Dussart P, Schwartz O, Ly S, Bruel T, Ly S, Duong V, Karlsson EA, Cantaert T. Robust and Functional Immune Memory Up to 9 Months After SARS-CoV-2 Infection: A Southeast Asian Longitudinal Cohort. Front Immunol 2022; 13:817905. [PMID: 35185909 PMCID: PMC8853741 DOI: 10.3389/fimmu.2022.817905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
The duration of humoral and cellular immune memory following SARS-CoV-2 infection in populations in least developed countries remains understudied but is key to overcome the current SARS-CoV-2 pandemic. Sixty-four Cambodian individuals with laboratory-confirmed infection with asymptomatic or mild/moderate clinical presentation were evaluated for Spike (S)-binding and neutralizing antibodies and antibody effector functions during acute phase of infection and at 6-9 months follow-up. Antigen-specific B cells, CD4+ and CD8+ T cells were characterized, and T cells were interrogated for functionality at late convalescence. Anti-S antibody titers decreased over time, but effector functions mediated by S-specific antibodies remained stable. S- and nucleocapsid (N)-specific B cells could be detected in late convalescence in the activated memory B cell compartment and are mostly IgG+. CD4+ and CD8+ T cell immune memory was maintained to S and membrane (M) protein. Asymptomatic infection resulted in decreased antibody-dependent cellular cytotoxicity (ADCC) and frequency of SARS-CoV-2-specific CD4+ T cells at late convalescence. Whereas anti-S antibodies correlated with S-specific B cells, there was no correlation between T cell response and humoral immune memory. Hence, all aspects of a protective immune response are maintained up to nine months after SARS-CoV-2 infection and in the absence of re-infection.
Collapse
Affiliation(s)
- Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Alvino Maestri
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Heng Seng
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Nisa Ya
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Polidy Pean
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sovann Ly
- Department of Communicable Disease Control, Ministry of Health (CDC-MoH), Phnom Penh, Cambodia
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
10
|
Noh JY, Yang JS, Hwang SY, Hyun H, Seong H, Yoon JG, Yoon SY, Cheong HJ, Kim WJ, Park WJ, Kim JW, Lee JY, Song JY. Duration of humoral immunity and cross-neutralizing activity against the Alpha, Beta, and Delta variants after wild-type SARS-CoV-2 infection: A prospective cohort study. J Infect Dis 2022; 226:975-978. [PMID: 35172333 PMCID: PMC8903377 DOI: 10.1093/infdis/jiac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
A prospective cohort study was conducted for adults with a diagnosis of with coronavirus disease 2019 (COVID-19). Convalescent blood samples were obtained 4, 6, and 11 months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The seropositivity of anti-spike antibody was maintained in all patients (100%) until 11 months after COVID-19 diagnosis. Neutralizing antibody levels against wild-type SARS-CoV-2 gradually decreased but remained positive in >50% of patients 11 months after diagnosis: in 98.5% (67 of 68) at 4 months, 86.8% (46 of 53) at 6 months, and 58.8% (40 of 68) at 11 months. However, cross-neutralizing activity against the Beta and Delta variants was attenuated 2.53-fold and 2.93-fold, respectively, compared with the wild-type strain.
Collapse
Affiliation(s)
- Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Sun Yang
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Soon Young Hwang
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hakjun Hyun
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Seong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo-Young Yoon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Jung Park
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jun-Won Kim
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joo-Yeon Lee
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Louapre C, Ibrahim M, Maillart E, Abdi B, Papeix C, Stankoff B, Dubessy AL, Bensa-Koscher C, Créange A, Chamekh Z, Lubetzki C, Marcelin AG, Corvol JC, Pourcher V. Anti-CD20 therapies decrease humoral immune response to SARS-CoV-2 in patients with multiple sclerosis or neuromyelitis optica spectrum disorders. J Neurol Neurosurg Psychiatry 2022; 93:24-31. [PMID: 34341142 PMCID: PMC8331322 DOI: 10.1136/jnnp-2021-326904] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND SARS-CoV-2 seroconversion rate after COVID-19 may be influenced by disease-modifying therapies (DMTs) in patients with multiple sclerosis (MS) or neuromyelitis optica spectrum disorders (NMO-SD). OBJECTIVE To investigate the seroprevalence and the quantity of SARS-CoV-2 antibodies in a cohort of patients with MS or NMO-SD. METHODS Blood samples were collected in patients diagnosed with COVID-19 between 19 February 2020 and 26 February 2021. SARS-CoV-2 antibody positivity rates and Ig levels (anti-S IgG titre, anti-S IgA index, anti-N IgG index) were compared between DMTs groups. Multivariate logistic and linear regression models were used to estimate the influence of DMTs and other confounding variables on SARS-CoV-2 serological outcomes. RESULTS 119 patients (115 MS, 4 NMO, mean age: 43.0 years) were analysed. Overall, seroconversion rate was 80.6% within 5.0 (SD 3.4) months after infection. 20/21 (95.2%) patients without DMT and 66/77 (85.7%) patients on DMTs other than anti-CD20 had at least one SARS-CoV-2 Ig positivity, while this rate decreased to only 10/21 (47.6%) for patients on anti-CD20 (p<0.001). Being on anti-CD20 was associated with a decreased odd of positive serology (OR, 0.07 (95% CI 0.01 to 0.69), p=0.02) independently from time to COVID-19, total IgG level, age, sex and COVID-19 severity. Time between last anti-CD20 infusion and COVID-19 was longer (mean (SD), 3.7 (2.0) months) in seropositive patients compared with seronegative patients (mean (SD), 1.9 (1.5) months, p=0.04). CONCLUSIONS SARS-CoV-2 antibody response was decreased in patients with MS or NMO-SD treated with anti-CD20 therapies. Monitoring long-term risk of reinfection and specific vaccination strategies in this population may be warranted. TRIAL REGISTRATION NUMBER NCT04568707.
Collapse
Affiliation(s)
- Céline Louapre
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, CIC neurosciences, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Michella Ibrahim
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, CIC neurosciences, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elisabeth Maillart
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, CIC neurosciences, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Basma Abdi
- Sorbonne University, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique Hôpitaux de Paris, Laboratoire de virologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Caroline Papeix
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, CIC neurosciences, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Bruno Stankoff
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Department of Neurology, Saint Antoine Hospital, Paris, France
| | - Anne-Laure Dubessy
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Department of Neurology, Saint Antoine Hospital, Paris, France
| | - Caroline Bensa-Koscher
- Department of Neurology, The Fondation Adolphe de Rothschild Hospital, Paris, Île-de-France, France
| | - Alain Créange
- UPEC University, Groupe Hospitalier Henri Mondor, Service de Neurologie and CRC SEP, Assistance Publique-Hopitaux de Paris, Créteil, Île-de-France, France
| | - Zina Chamekh
- Hôpital de la Pitié-Salpêtrière, Biochemistry Department, Assistance Publique Hôpitaux de Paris, Paris, Île-de-France, France
| | - Catherine Lubetzki
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, CIC neurosciences, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne University, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique Hôpitaux de Paris, Laboratoire de virologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne University, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, CIC neurosciences, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Valérie Pourcher
- Sorbonne University, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique Hôpitaux de Paris, Service de Maladies Infectieuses, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
12
|
Boyton RJ, Altmann DM. The immunology of asymptomatic SARS-CoV-2 infection: what are the key questions? Nat Rev Immunol 2021; 21:762-768. [PMID: 34667307 PMCID: PMC8525456 DOI: 10.1038/s41577-021-00631-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
An important challenge during the COVID-19 pandemic has been to understand asymptomatic disease and the extent to which this may be a source of transmission. As asymptomatic disease is by definition hard to screen for, there is a lack of clarity about this aspect of the COVID-19 spectrum. Studies have considered whether the prevalence of asymptomatic disease is determined by differences in age, demographics, viral load, duration of shedding, and magnitude or durability of immunity. It is clear that adaptive immunity is strongly activated during asymptomatic infection, but some features of the T cell and antibody response may differ from those in symptomatic disease. Areas that need greater clarity include the extent to which asymptomatic disease leads to persistent symptoms (long COVID), and the quality, quantity and durability of immune priming required to confer subsequent protection.
Collapse
Affiliation(s)
- Rosemary J Boyton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- Lung Division, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
13
|
Benjamanukul S, Traiyan S, Yorsaeng R, Vichaiwattana P, Sudhinaraset N, Wanlapakorn N, Poovorawan Y. Safety and immunogenicity of inactivated COVID-19 vaccine in health care workers. J Med Virol 2021; 94:1442-1449. [PMID: 34783049 PMCID: PMC8661929 DOI: 10.1002/jmv.27458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023]
Abstract
Effective vaccines are essential for controlling the coronavirus disease 2019 (COVID‐19) pandemic. CoronaVac, which is an inactivated virus vaccine, was the first imported COVID‐19 vaccine in Thailand. To investigate the safety and immunogenicity of CoronaVac within the Thai population, we conducted a prospective cohort study among health care workers aged 18–59 years, who received a 2‐dose regimen of CoronaVac 21 days apart between March and April 2021 at the hospital in Samut Sakhon, Thailand. We recruited 185 participants with a mean age of 32 years. Total antibodies against receptor‐binding domain (RBD) and immunoglobulin G (IgG) against nucleocapsid (N) protein of SARS‐CoV‐2 were tested. Total antibodies against RBD were negative before immunization. One volunteer was positive for N, although negative for the RBD antibodies. The seroconversion rate of total antibodies against RBD after the first CoronaVac dose was 67% with a Geometric mean concentration (GMC) of 1.98 U/ml. Following CoronaVac dose 2, the seroconversion rate increased to 100% with a GMC of 92.9 U/ml. The seroconversion rates of IgG against N protein were 1% after dose 1 and 62.8% after dose 2. The overall incidence of adverse reactions was 59.5%. Injection‐site pain was the most common local adverse event (52.4%), while myalgia was the most common systemic adverse event (31.9%). No serious adverse events were observed. A 0–21 days, 2‐dose CoronaVac regimen appears safe, inducing a satisfactory response compared with convalescent serum obtained 4–6 weeks postnatural infection. Antibody responses after 2‐dose CoronaVac were comparable to the convalescent plasma but waned rapidly after 3 months. Therefore, we recommend 2‐dose CoronaVac administration with possible booster doses.
Collapse
Affiliation(s)
| | - Sasiwimon Traiyan
- Department of Pediatric, Allergy and Asthma Unit, Banphaeo General Hospital, Samut Sakhon, Thailand
| | - Ritthideach Yorsaeng
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaporn Vichaiwattana
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthinee Sudhinaraset
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,FRS(T), The Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok, Thailand
| |
Collapse
|
14
|
A bioluminescent and homogeneous SARS-CoV-2 spike RBD and hACE2 interaction assay for antiviral screening and monitoring patient neutralizing antibody levels. Sci Rep 2021; 11:18428. [PMID: 34531417 PMCID: PMC8445915 DOI: 10.1038/s41598-021-97330-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023] Open
Abstract
Here we describe a homogeneous bioluminescent immunoassay based on the interaction between Fc-tagged SARS-CoV-2 Spike RBD and human ACE2, and its detection by secondary antibodies labeled with NanoLuc luciferase fragments LgBit and SmBit. The assay utility for the discovery of novel inhibitors was demonstrated with a panel of anti-RBD antibodies, ACE2-derived miniproteins and soluble ACE2. Studying the effect of RBD mutations on ACE2 binding showed that the N501Y mutation increased RBD apparent affinity toward ACE2 tenfold that resulted in escaping inhibition by some anti-RBD antibodies. In contrast, while E484K mutation did not highly change the binding affinity, it still escaped antibody inhibition likely due to changes in the epitope recognized by the antibody. Also, neutralizing antibodies (NAbs) from COVID-19 positive samples from two distinct regions (USA and Brazil) were successfully detected and the results further suggest the persistence of NAbs for at least 6 months post symptom onset. Finally, sera from vaccinated individuals were tested for NAbs and showed varying neutralizing activity after first and second doses, suggesting the assay can be used to assess immunity of vaccinated populations. Our results demonstrate the broad utility and ease of use of this methodology both for drug discovery and clinical research applications.
Collapse
|
15
|
Geers D, Shamier MC, Bogers S, den Hartog G, Gommers L, Nieuwkoop NN, Schmitz KS, Rijsbergen LC, van Osch JAT, Dijkhuizen E, Smits G, Comvalius A, van Mourik D, Caniels TG, van Gils MJ, Sanders RW, Oude Munnink BB, Molenkamp R, de Jager HJ, Haagmans BL, de Swart RL, Koopmans MPG, van Binnendijk RS, de Vries RD, GeurtsvanKessel CH. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci Immunol 2021; 6:eabj1750. [PMID: 34035118 PMCID: PMC9268159 DOI: 10.1126/sciimmunol.abj1750] [Citation(s) in RCA: 383] [Impact Index Per Article: 127.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
The emergence of SARS-CoV-2 variants harboring mutations in the spike (S) protein has raised concern about potential immune escape. Here, we studied humoral and cellular immune responses to wild type SARS-CoV-2 and the B.1.1.7 and B.1.351 variants of concern in a cohort of 121 BNT162b2 mRNA-vaccinated health care workers (HCW). Twenty-three HCW recovered from mild COVID-19 disease and exhibited a recall response with high levels of SARS-CoV-2-specific functional antibodies and virus-specific T cells after a single vaccination. Specific immune responses were also detected in seronegative HCW after one vaccination, but a second dose was required to reach high levels of functional antibodies and cellular immune responses in all individuals. Vaccination-induced antibodies cross-neutralized the variants B.1.1.7 and B.1.351, but the neutralizing capacity and Fc-mediated functionality against B.1.351 was consistently 2- to 4-fold lower than to the homologous virus. In addition, peripheral blood mononuclear cells were stimulated with peptide pools spanning the mutated S regions of B.1.1.7 and B.1.351 to detect cross-reactivity of SARS-CoV-2-specific T cells with variants. Importantly, we observed no differences in CD4+ T-cell activation in response to variant antigens, indicating that the B.1.1.7 and B.1.351 S proteins do not escape T-cell-mediated immunity elicited by the wild type S protein. In conclusion, this study shows that some variants can partially escape humoral immunity induced by SARS-CoV-2 infection or BNT162b2 vaccination, but S-specific CD4+ T-cell activation is not affected by the mutations in the B.1.1.7 and B.1.351 variants.
Collapse
Affiliation(s)
- Daryl Geers
- Department of Viroscience, Erasmus MC; Rotterdam, the Netherlands
| | - Marc C Shamier
- Department of Viroscience, Erasmus MC; Rotterdam, the Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus MC; Rotterdam, the Netherlands
| | - Gerco den Hartog
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment; Bilthoven, the Netherlands
| | - Lennert Gommers
- Department of Viroscience, Erasmus MC; Rotterdam, the Netherlands
| | | | | | | | | | - Emma Dijkhuizen
- Department of Viroscience, Erasmus MC; Rotterdam, the Netherlands
| | - Gaby Smits
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment; Bilthoven, the Netherlands
| | | | | | - Tom G Caniels
- Department of Medical Microbiology, Amsterdam UMC; Amsterdam, the Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC; Amsterdam, the Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC; Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University; New York, NY 10021, USA
| | | | | | - Herbert J de Jager
- Department of Occupational Health Services, Erasmus MC; Rotterdam, the Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC; Rotterdam, the Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC; Rotterdam, the Netherlands
| | | | - Robert S van Binnendijk
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment; Bilthoven, the Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC; Rotterdam, the Netherlands.
| | | |
Collapse
|