1
|
Yajima H, Nomai T, Okumura K, Maenaka K, Ito J, Hashiguchi T, Sato K. Molecular and structural insights into SARS-CoV-2 evolution: from BA.2 to XBB subvariants. mBio 2024; 15:e0322023. [PMID: 39283095 PMCID: PMC11481514 DOI: 10.1128/mbio.03220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Due to the incessant emergence of various SARS-CoV-2 variants with enhanced fitness in the human population, controlling the COVID-19 pandemic has been challenging. Understanding how the virus enhances its fitness during a pandemic could offer valuable insights for more effective control of viral epidemics. In this manuscript, we review the evolution of SARS-CoV-2 from early 2022 to the end of 2023-from Omicron BA.2 to XBB descendants. Focusing on viral evolution during this period, we provide concrete examples that SARS-CoV-2 has increased its fitness by enhancing several functions of the spike (S) protein, including its binding affinity to the ACE2 receptor and its ability to evade humoral immunity. Furthermore, we explore how specific mutations modify these functions of the S protein through structural alterations. This review provides evolutionary, molecular, and structural insights into how SARS-CoV-2 has increased its fitness and repeatedly caused epidemic surges during the pandemic.
Collapse
Affiliation(s)
- Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomo Nomai
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kaho Okumura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Liberal Arts, Sophia University, Tokyo, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) ConsortiumMatsunoKeita1NaoNaganori1SawaHirofumi1MizumaKeita1LiJingshu1KidaIzumi1MimuraYume1OhariYuma1TanakaShinya1TsudaMasumi1WangLei1OdaYoshikata1FerdousZannatul1ShishidoKenji1MohriHiromi1IidaMiki1FukuharaTakasuke1TamuraTomokazu1SuzukiRigel1SuzukiSaori1TsujinoShuhei1ItoHayato1KakuYu2MisawaNaoko2PlianchaisukArnon2GuoZiyi2HinayAlfredo A.Jr.2UsuiKaoru2SaikruangWilaiporn2LytrasSpyridon2UriuKeiya2YoshimuraRyo2KawakuboShusuke2NishumuraLuca2KosugiYusuke2FujitaShigeru2M.TolentinoJarel Elgin2ChenLuo2PanLin2LiWenye2YoMaximilian Stanley2HorinakaKio2SuganamiMai2ChibaMika2YasudaKyoko2IidaKeiko2StrangeAdam Patrick2OhsumiNaomi2TanakaShiho2OgawaEiko2FukudaTsuki2OsujoRina2YoshimuraKazuhisa3SadamasKenji3NagashimaMami3AsakuraHiroyuki3YoshidaIsao3NakagawaSo4TakayamaKazuo5HashimotoRina5DeguchiSayaka5WatanabeYukio5NakataYoshitaka5FutatsusakoHiroki5SakamotoAyaka5YasuharaNaoko5SuzukiTateki5KimuraKanako5SasakiJiei5NakajimaYukari5IrieTakashi6KawabataRyoko6Sasaki-TabataKaori7IkedaTerumasa8NasserHesham8ShimizuRyo8BegumMst Monira8JonathanMichael8MugitaYuka8LeongSharee8TakahashiOtowa8UenoTakamasa8MotozonoChihiro8ToyodaMako8SaitoAkatsuki9KosakaAnon9KawanoMiki9MatsubaraNatsumi9NishiuchiTomoko9ZahradnikJiri10AndrikopoulosProkopios10Padilla-BlancoMiguel10KonarAditi10Hokkaido University, Sapporo, JapanDivision of Systems Virology, Department of Microbiology and Immunolog, The Institute of Medical Science, The University of Tokyo, Tokyo, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanTokai University, Kanagawa, JapanKyoto University, Kyoto, JapanHiroshima University, Hiroshima, JapanKyushu University, Fukuoka, JapanKumamoto University, Kumamoto, JapanUniversity of Miyazaki, Miyazaki, JapanCharles University, Vestec-Prague, Czechia
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Liberal Arts, Sophia University, Tokyo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
2
|
Dwivedi P, Sharma M, Ansari A, Ghosh A, Bishwal SC, Ray SK, Katiyar M, Kombiah S, Kumar A, Sahare L, Ukey M, Barde PV, Das A, Singh P. Molecular Characterization and Genomic Surveillance of SARS-CoV-2 Lineages in Central India. Viruses 2024; 16:1608. [PMID: 39459941 PMCID: PMC11512289 DOI: 10.3390/v16101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 10/28/2024] Open
Abstract
Since the first reported case of COVID-19 in December 2019, several SARS-CoV-2 variants have evolved, and some of them have shown higher transmissibility, becoming the prevalent strains. Genomic epidemiological investigations into strains from different time points, including the early stages of the pandemic, are very crucial for understanding the evolution and transmission patterns. Using whole-genome sequences, our study describes the early landscape of SARS-CoV-2 variants in central India retrospectively (including the first known occurrence of SARS-CoV-2 in Madhya Pradesh). We performed amplicon-based whole-genome sequencing of randomly selected SARS-CoV-2 isolates (n = 38) collected between 2020 and 2022 at state level VRDL, ICMR-NIRTH, Jabalpur, from 11899 RT-qPCR-positive samples. We observed the presence of five lineages, namely B.1, B.1.1, B.1.36.8, B.1.195, and B.6, in 19 genomes from the first wave cases and variants of concern (VOCs) lineages, i.e., B.1.617.2 (Delta) and BA.2.10 (Omicron) in the second wave cases. There was a shift in mutational pattern in the spike protein coding region of SRAS-CoV-2 strains from the second wave in contrast to the first wave. In the first wave of infections, we observed variations in the ORF1Ab region, and with the emergence of Delta lineages, the D614G mutation associated with an increase in infectivity became a prominent change. We have identified five immune escape variants in the S gene, P681R, P681H, L452R, Q57H, and N501Y, in the isolates collected during the second wave. Furthermore, these genomes were compared with 2160 complete genome sequences reported from central India that encompass 109 different SARS-CoV-2 lineages. Among them, VOC lineages Delta (28.93%) and Omicron (56.11%) were circulating predominantly in this region. This study provides useful insights into the genetic diversity of SARS-CoV-2 strains over the initial course of the COVID-19 pandemic in central India.
Collapse
Affiliation(s)
- Purna Dwivedi
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Mukul Sharma
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Afzal Ansari
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Arup Ghosh
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Subasa C. Bishwal
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Suman Kumar Ray
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Manish Katiyar
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Subbiah Kombiah
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Ashok Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Lalit Sahare
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Mahendra Ukey
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Pradip V. Barde
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Aparup Das
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
| | - Pushpendra Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India; (P.D.); (M.S.); (A.A.); (A.G.); (S.C.B.); (S.K.R.); (M.K.); (S.K.); (A.K.); (L.S.); (M.U.); (A.D.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Pham LV, Underwood AP, Binderup A, Fahnøe U, Fernandez-Antunez C, Lopez-Mendez B, Ryberg LA, Galli A, Sølund C, Weis N, Ramirez S, Bukh J. Neutralisation Resistance of SARS-CoV-2 Spike-Variants is Primarily Mediated by Synergistic Receptor Binding Domain Substitutions. Emerg Microbes Infect 2024:2412643. [PMID: 39392057 DOI: 10.1080/22221751.2024.2412643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
AbstractThe evolution of SARS-CoV-2 has led to the emergence of numerous variants of concern (VOCs), marked by changes in the viral spike glycoprotein, the primary target for neutralising antibody (nAb) responses. Emerging VOCs, particularly omicron sub-lineages, show resistance to nAbs induced by prior infection or vaccination. The precise spike protein changes contributing to this resistance remain unclear in infectious cell culture systems. In the present study, a large panel of infectious SARS-CoV-2 mutant viruses, each with spike protein changes found in VOCs, including omicron JN.1 and its derivatives KP.2 and KP.3, was generated using a reverse genetic system. The susceptibility of these viruses to antibody neutralisation was measured using plasma from convalescent and vaccinated individuals. Synergistic roles of combined substitutions in the spike receptor binding domain (RBD) were observed in neutralisation resistance. However, recombinant viruses with the entire spike protein from a specific VOC showed enhanced resistance, indicating that changes outside the RBD are also significant. In silico analyses of spike antibody epitopes suggested changes in neutralisation could be due to altered antibody binding affinities. Assessing ACE2 usage for entry through anti-ACE2 antibody blocking and ACE2 siRNA revealed that omicron BA.2.86 and JN.1 mutant viruses were less dependent on ACE2 for entry. However, surface plasmon resonance analysis showed increased affinity for ACE2 for both BA.2.86 and JN.1 compared to the ancestral spike. This detailed analysis of specific changes in the SARS-CoV-2 spike enhances understanding of coronavirus evolution, particularly regarding neutralising antibody evasion and ACE2 entry receptor dependence.
Collapse
Affiliation(s)
- Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander P Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Lopez-Mendez
- Protein Production and Characterization Platform, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line Abildgaard Ryberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Yajima H, Anraku Y, Kaku Y, Kimura KT, Plianchaisuk A, Okumura K, Nakada-Nakura Y, Atarashi Y, Hemmi T, Kuroda D, Takahashi Y, Kita S, Sasaki J, Sumita H, Ito J, Maenaka K, Sato K, Hashiguchi T. Structural basis for receptor-binding domain mobility of the spike in SARS-CoV-2 BA.2.86 and JN.1. Nat Commun 2024; 15:8574. [PMID: 39375326 PMCID: PMC11458767 DOI: 10.1038/s41467-024-52808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Since 2019, SARS-CoV-2 has undergone mutations, resulting in pandemic and epidemic waves. The SARS-CoV-2 spike protein, crucial for cellular entry, binds to the ACE2 receptor exclusively when its receptor-binding domain (RBD) adopts the up-conformation. However, whether ACE2 also interacts with the RBD in the down-conformation to facilitate the conformational shift to RBD-up remains unclear. Herein, we present the structures of the BA.2.86 and the JN.1 spike proteins bound to ACE2. Notably, we successfully observed the ACE2-bound down-RBD, indicating an intermediate structure before the RBD-up conformation. The wider and mobile angle of RBDs in the up-state provides space for ACE2 to interact with the down-RBD, facilitating the transition to the RBD-up state. The K356T, but not N354-linked glycan, contributes to both of infectivity and neutralizing-antibody evasion in BA.2.86. These structural insights the spike-protein dynamics would help understand the mechanisms underlying SARS-CoV-2 infection and its neutralization.
Collapse
Affiliation(s)
- Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Kaku
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kanako Terakado Kimura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaho Okumura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Liberal Arts, Sophia University, Tokyo, Japan
| | - Yoshiko Nakada-Nakura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Atarashi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takuya Hemmi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Sumita
- Research Administration Office, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Kyushu University, Fukuoka, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Tsujino S, Deguchi S, Nomai T, Padilla-Blanco M, Plianchaisuk A, Wang L, Begum MM, Uriu K, Mizuma K, Nao N, Kojima I, Tsubo T, Li J, Matsumura Y, Nagao M, Oda Y, Tsuda M, Anraku Y, Kita S, Yajima H, Sasaki-Tabata K, Guo Z, Hinay AA, Yoshimatsu K, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Nasser H, Jonathan M, Putri O, Kim Y, Chen L, Suzuki R, Tamura T, Maenaka K, Irie T, Matsuno K, Tanaka S, Ito J, Ikeda T, Takayama K, Zahradnik J, Hashiguchi T, Fukuhara T, Sato K. Virological characteristics of the SARS-CoV-2 Omicron EG.5.1 variant. Microbiol Immunol 2024; 68:305-330. [PMID: 38961765 DOI: 10.1111/1348-0421.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.
Collapse
Affiliation(s)
- Shuhei Tsujino
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tomo Nomai
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Miguel Padilla-Blanco
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU (UCH-CEU), CEU Universities, Valencia, Spain
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Mst Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keita Mizuma
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Isshu Kojima
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tomoya Tsubo
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Jingshu Li
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kaori Sasaki-Tabata
- Department of Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ziyi Guo
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Alfredo A Hinay
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael Jonathan
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Olivia Putri
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences (i3L), Jakarta, Indonesia
| | - Yoonjin Kim
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Life Sciences, Faculty of Natural Science, Imperial College London, London, UK
| | - Luo Chen
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Irie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Jiri Zahradnik
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Chang JJY, Grimley SL, Tran BM, Deliyannis G, Tumpach C, Nguyen AN, Steinig E, Zhang J, Schröder J, Caly L, McAuley J, Wong SL, Waters SA, Stinear TP, Pitt ME, Purcell D, Vincan E, Coin LJ. Uncovering strain- and age-dependent innate immune responses to SARS-CoV-2 infection in air-liquid-interface cultured nasal epithelia. iScience 2024; 27:110009. [PMID: 38868206 PMCID: PMC11166695 DOI: 10.1016/j.isci.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Continuous assessment of the impact of SARS-CoV-2 on the host at the cell-type level is crucial for understanding key mechanisms involved in host defense responses to viral infection. We investigated host response to ancestral-strain and Alpha-variant SARS-CoV-2 infections within air-liquid-interface human nasal epithelial cells from younger adults (26-32 Y) and older children (12-14 Y) using single-cell RNA-sequencing. Ciliated and secretory-ciliated cells formed the majority of highly infected cell-types, with the latter derived from ciliated lineages. Strong innate immune responses were observed across lowly infected and uninfected bystander cells and heightened in Alpha-infection. Alpha highly infected cells showed increased expression of protein-refolding genes compared with ancestral-strain-infected cells in children. Furthermore, oxidative phosphorylation-related genes were down-regulated in bystander cells versus infected and mock-control cells, underscoring the importance of these biological functions for viral replication. Overall, this study highlights the complexity of cell-type-, age- and viral strain-dependent host epithelial responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Jessie J.-Y. Chang
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Samantha L. Grimley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Bang M. Tran
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Georgia Deliyannis
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - An N.T. Nguyen
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Eike Steinig
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - JianShu Zhang
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jan Schröder
- Computational Sciences Initiative (CSI), The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Julie McAuley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sharon L. Wong
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shafagh A. Waters
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW 2031, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Miranda E. Pitt
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Damian Purcell
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Elizabeth Vincan
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lachlan J.M. Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
7
|
Featherstone AB, Mathijssen AJTM, Brown A, Chitlapilly Dass S. SARS-CoV-2 Delta variant remains viable in environmental biofilms found in meat packaging plants. PLoS One 2024; 19:e0304504. [PMID: 38870232 PMCID: PMC11175435 DOI: 10.1371/journal.pone.0304504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
To determine why SARS-CoV-2 appears to thrive specifically well in meat packaging plants, we used SARS-CoV-2 Delta variant and meat packaging plant drain samples to develop mixed-species biofilms on materials commonly found within meat packaging plants (stainless steel (SS), PVC, and ceramic tile). Our data provides evidence that SARS-CoV-2 Delta variant remained viable on all the surfaces tested with and without an environmental biofilm after the virus was inoculated with the biofilm for 5 days at 7°C. We observed that SARS-CoV-2 Delta variant was able to remain infectious with each of the environmental biofilms by conducting plaque assay and qPCR experiments, however, we detected a significant reduction in viability post-exposure to Plant B biofilm on SS, PVC, and on ceramic tile chips, and to Plant C biofilm on SS and PVC chips. The numbers of viable SARS-CoV-2 Delta viral particles was 1.81-4.57-fold high than the viral inoculum incubated with the Plant B and Plant C environmental biofilm on SS, and PVC chips. We did not detect a significant difference in viability when SARS-CoV-2 Delta variant was incubated with the biofilm obtained from Plant A on any of the materials tested and SARS-CoV-2 Delta variant had higher plaque numbers when inoculated with Plant C biofilm on tile chips, with a 2.75-fold difference compared to SARS-CoV-2 Delta variant on tile chips by itself. In addition, we detected an increase in the biofilm biovolume in response to SARS-CoV-2 Delta variant which is also a concern for food safety due to the potential for foodborne pathogens to respond likewise when they come into contact with the virus. These results indicate a complex virus-environmental biofilm interaction which correlates to the different bacteria found in each biofilm. Our results also indicate that there is the potential for biofilms to protect SARS-CoV-2 from disinfecting agents and remaining prevalent in meat packaging plants.
Collapse
Affiliation(s)
- Austin B. Featherstone
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Arnold J. T. M. Mathijssen
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Amanda Brown
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Sapna Chitlapilly Dass
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
8
|
Smith TP, Mishra S, Dorigatti I, Dixit MK, Tristem M, Pearse WD. Differential responses of SARS-CoV-2 variants to environmental drivers during their selective sweeps. Sci Rep 2024; 14:13326. [PMID: 38858479 PMCID: PMC11164892 DOI: 10.1038/s41598-024-64044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Previous work has shown that environmental variables affect SARS-CoV-2 transmission, but it is unclear whether different strains show similar environmental responses. Here we leverage genetic data on the transmission of three (Alpha, Delta and Omicron BA.1) variants of SARS-CoV-2 throughout England, to unpick the roles that climate and public-health interventions play in the circulation of this virus. We find evidence for enhanced transmission of the virus in colder conditions in the first variant selective sweep (of Alpha, in winter), but limited evidence of an impact of climate in either the second (of Delta, in the summer, when vaccines were prevalent) or third sweep (of Omicron, in the winter, during a successful booster-vaccination campaign). We argue that the results for Alpha are to be expected if the impact of climate is non-linear: we find evidence of an asymptotic impact of temperature on the alpha variant transmission rate. That is, at lower temperatures, the influence of temperature on transmission is much higher than at warmer temperatures. As with the initial spread of SARS-CoV-2, however, the overwhelming majority of variation in disease transmission is explained by the intrinsic biology of the virus and public-health mitigation measures. Specifically, when vaccination rates are high, a major driver of the spread of a new variant is it's ability to evade immunity, and any climate effects are secondary (as evidenced for Delta and Omicron). Climate alone cannot describe the transmission dynamics of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Thomas P Smith
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK.
| | - Swapnil Mishra
- Saw Swee Hock School of Public Health and Institute of Data Science, National University of Singapore and National University Health System, 12 Science Dr 2, Singapore, 117549, Singapore
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, 90 Wood Lane, London, W12 OBZ, UK
| | - Mahika K Dixit
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK
| | - Michael Tristem
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK
| | - William D Pearse
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
9
|
Fujita S, Plianchaisuk A, Deguchi S, Ito H, Nao N, Wang L, Nasser H, Tamura T, Kimura I, Kashima Y, Suzuki R, Suzuki S, Kida I, Tsuda M, Oda Y, Hashimoto R, Watanabe Y, Uriu K, Yamasoba D, Guo Z, Hinay AA, Kosugi Y, Chen L, Pan L, Kaku Y, Chu H, Donati F, Temmam S, Eloit M, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Suzuki Y, Ito J, Ikeda T, Tanaka S, Matsuno K, Fukuhara T, Takayama K, Sato K. Virological characteristics of a SARS-CoV-2-related bat coronavirus, BANAL-20-236. EBioMedicine 2024; 104:105181. [PMID: 38838469 PMCID: PMC11215962 DOI: 10.1016/j.ebiom.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Although several SARS-CoV-2-related coronaviruses (SC2r-CoVs) were discovered in bats and pangolins, the differences in virological characteristics between SARS-CoV-2 and SC2r-CoVs remain poorly understood. Recently, BANAL-20-236 (B236) was isolated from a rectal swab of Malayan horseshoe bat and was found to lack a furin cleavage site (FCS) in the spike (S) protein. The comparison of its virological characteristics with FCS-deleted SARS-CoV-2 (SC2ΔFCS) has not been conducted yet. METHODS We prepared human induced pluripotent stem cell (iPSC)-derived airway and lung epithelial cells and colon organoids as human organ-relevant models. B236, SARS-CoV-2, and artificially generated SC2ΔFCS were used for viral experiments. To investigate the pathogenicity of B236 in vivo, we conducted intranasal infection experiments in hamsters. FINDINGS In human iPSC-derived airway epithelial cells, the growth of B236 was significantly lower than that of the SC2ΔFCS. A fusion assay showed that the B236 and SC2ΔFCS S proteins were less fusogenic than the SARS-CoV-2 S protein. The infection experiment in hamsters showed that B236 was less pathogenic than SARS-CoV-2 and even SC2ΔFCS. Interestingly, in human colon organoids, the growth of B236 was significantly greater than that of SARS-CoV-2. INTERPRETATION Compared to SARS-CoV-2, we demonstrated that B236 exhibited a tropism toward intestinal cells rather than respiratory cells. Our results are consistent with a previous report showing that B236 is enterotropic in macaques. Altogether, our report strengthens the assumption that SC2r-CoVs in horseshoe bats replicate primarily in the intestinal tissues rather than respiratory tissues. FUNDING This study was supported in part by AMED ASPIRE (JP23jf0126002, to Keita Matsuno, Kazuo Takayama, and Kei Sato); AMED SCARDA Japan Initiative for World-leading Vaccine Research and Development Centers "UTOPIA" (JP223fa627001, to Kei Sato), AMED SCARDA Program on R&D of new generation vaccine including new modality application (JP223fa727002, to Kei Sato); AMED SCARDA Hokkaido University Institute for Vaccine Research and Development (HU-IVReD) (JP223fa627005h0001, to Takasuke Fukuhara, and Keita Matsuno); AMED Research Program on Emerging and Re-emerging Infectious Diseases (JP21fk0108574, to Hesham Nasser; JP21fk0108493, to Takasuke Fukuhara; JP22fk0108617 to Takasuke Fukuhara; JP22fk0108146, to Kei Sato; JP21fk0108494 to G2P-Japan Consortium, Keita Matsuno, Shinya Tanaka, Terumasa Ikeda, Takasuke Fukuhara, and Kei Sato; JP21fk0108425, to Kazuo Takayama and Kei Sato; JP21fk0108432, to Kazuo Takayama, Takasuke Fukuhara and Kei Sato; JP22fk0108534, Terumasa Ikeda, and Kei Sato; JP22fk0108511, to Yuki Yamamoto, Terumasa Ikeda, Keita Matsuno, Shinya Tanaka, Kazuo Takayama, Takasuke Fukuhara, and Kei Sato; JP22fk0108506, to Kazuo Takayama and Kei Sato); AMED Research Program on HIV/AIDS (JP22fk0410055, to Terumasa Ikeda; and JP22fk0410039, to Kei Sato); AMED Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125008 to Keita Matsuno); AMED CREST (JP21gm1610005, to Kazuo Takayama; JP22gm1610008, to Takasuke Fukuhara; JST PRESTO (JPMJPR22R1, to Jumpei Ito); JST CREST (JPMJCR20H4, to Kei Sato); JSPS KAKENHI Fund for the Promotion of Joint International Research (International Leading Research) (JP23K20041, to G2P-Japan Consortium, Keita Matsuno, Takasuke Fukuhara and Kei Sato); JST SPRING (JPMJSP2108 to Shigeru Fujita); JSPS KAKENHI Grant-in-Aid for Scientific Research C (22K07103, to Terumasa Ikeda); JSPS KAKENHI Grant-in-Aid for Scientific Research B (21H02736, to Takasuke Fukuhara); JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (22K16375, to Hesham Nasser; 20K15767, to Jumpei Ito); JSPS Core-to-Core Program (A. Advanced Research Networks) (JPJSCCA20190008, to Kei Sato); JSPS Research Fellow DC2 (22J11578, to Keiya Uriu); JSPS Research Fellow DC1 (23KJ0710, to Yusuke Kosugi); JSPS Leading Initiative for Excellent Young Researchers (LEADER) (to Terumasa Ikeda); World-leading Innovative and Smart Education (WISE) Program 1801 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (to Naganori Nao); Ministry of Health, Labour and Welfare (MHLW) under grant 23HA2010 (to Naganori Nao and Keita Matsuno); The Cooperative Research Program (Joint Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University (to Kei Sato); International Joint Research Project of the Institute of Medical Science, the University of Tokyo (to Terumasa Ikeda and Takasuke Fukuhara); The Tokyo Biochemical Research Foundation (to Kei Sato); Takeda Science Foundation (to Terumasa Ikeda and Takasuke Fukuhara); Mochida Memorial Foundation for Medical and Pharmaceutical Research (to Terumasa Ikeda); The Naito Foundation (to Terumasa Ikeda); Hokuto Foundation for Bioscience (to Tomokazu Tamura); Hirose Foundation (to Tomokazu Tamura); and Mitsubishi Foundation (to Kei Sato).
Collapse
Affiliation(s)
- Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- One Health Research Center, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukie Kashima
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Izumi Kida
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yukio Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daichi Yamasoba
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Faculty of Medicine, Kobe University, Kobe, Japan
| | - Ziyi Guo
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Alfredo A Hinay
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Luo Chen
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Lin Pan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yu Kaku
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Flora Donati
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, Paris, France; Institut Pasteur, Université Paris Cité, National Reference Center for Respiratory Viruses, Paris, France
| | - Sarah Temmam
- Institut Pasteur, Université Paris Cité, Pathogen Discovery Laboratory, Paris, France; Institut Pasteur, Université Paris Cité, The WOAH(OIE) Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | - Marc Eloit
- Institut Pasteur, Université Paris Cité, Pathogen Discovery Laboratory, Paris, France; Institut Pasteur, Université Paris Cité, The WOAH(OIE) Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | | | | | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; CREST, Japan Science and Technology Agency, Saitama, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
10
|
Özçelik C, Araz CZ, Yılmaz Ö, Gülyüz S, Özdamar P, Salmanlı E, Özkul A, Şeker UÖŞ. Screening Peptide Drug Candidates To Neutralize Whole Viral Agents: A Case Study with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). ACS Pharmacol Transl Sci 2024; 7:1032-1042. [PMID: 38633598 PMCID: PMC11020059 DOI: 10.1021/acsptsci.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
The COVID-19 pandemic revealed the need for therapeutic and pharmaceutical molecule development in a short time with different approaches. Although boosting immunological memory by vaccination was the quickest and robust strategy, still medication is required for the immediate treatment of a patient. A popular approach is the mining of new therapeutic molecules. Peptide-based drug candidates are also becoming a popular avenue. To target whole pathogenic viral agents, peptide libraries can be employed. With this motivation, we have used the 12mer M13 phage display library for selecting SARS-CoV-2 targeting peptides as potential neutralizing molecules to prevent viral infections. Panning was applied with four iterative cycles to select SARS-CoV-2 targeting phage particles displaying 12-amino acid-long peptides. Randomly selected peptide sequences were synthesized by a solid-state peptide synthesis method. Later, selected peptides were analyzed by the quartz crystal microbalance method to characterize their molecular interaction with SARS-CoV-2's S protein. Finally, the neutralization activity of the selected peptides was probed with an in-house enzyme-linked immunosorbent assay. The results showed that scpep3, scpep8, and scpep10 peptides have both binding and neutralizing capacity for S1 protein as a candidate for therapeutic molecule. The results of this study have a translational potential with future in vivo and human studies.
Collapse
Affiliation(s)
- Cemile
Elif Özçelik
- UNAM—Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Cemre Zekiye Araz
- Synbiotik
Biotechnology and Biomedical Technology Bilkent Kümeevler, Çankaya, Ankara 06800, Turkey
| | - Özgür Yılmaz
- Material
Technologies, Marmara Research Center, TUBITAK, Gebze, Kocaeli 41470, Turkey
| | - Sevgi Gülyüz
- Material
Technologies, Marmara Research Center, TUBITAK, Gebze, Kocaeli 41470, Turkey
| | - Pınar Özdamar
- Faculty of Veterinary Medicine, Department of Virology, Graduate School of Health
Sciences, Department of Virology, Ankara
University, Ankara 06110, Turkey
| | - Ezgi Salmanlı
- Faculty of Veterinary Medicine, Department of Virology, Graduate School of Health
Sciences, Department of Virology, Ankara
University, Ankara 06110, Turkey
| | - Aykut Özkul
- Faculty of Veterinary Medicine, Department of Virology, Graduate School of Health
Sciences, Department of Virology, Ankara
University, Ankara 06110, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM—Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- Interdisciplinary
Program in Neuroscience, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
11
|
Barabona G, Ngare I, Kamori D, Nkinda L, Kosugi Y, Mawazo A, Ekwabi R, Kinasa G, Chuwa H, Sato K, Sunguya B, Ueno T. Neutralizing immunity against coronaviruses in Tanzanian health care workers. Sci Rep 2024; 14:5508. [PMID: 38448564 PMCID: PMC10917759 DOI: 10.1038/s41598-024-55989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
The ongoing vaccination efforts and exposure to endemic and emerging coronaviruses can shape the population's immunity against this group of viruses. In this study, we investigated neutralizing immunity against endemic and emerging coronaviruses in 200 Tanzanian frontline healthcare workers (HCWs). Despite low vaccination rates (19.5%), we found a high SARS-CoV-2 seroprevalence (94.0%), indicating high exposure in these HCWs. Next, we determined the neutralization capacity of antisera against human coronavirus NL63, and 229E, SARS-CoV-1, MERS-CoV and SARS-CoV-2 (including Omicron subvariants: BA.1, BQ.1.1 and XBB.1.5) using pseudovirus neutralization assay. We observed a broad range of neutralizing activity in HCWs, but no neutralization activity detected against MERS-CoV. We also observed a strong correlation between neutralizing antibody titers for SARS-CoV-2 and SARS-CoV-1, but not between other coronaviruses. Cross-neutralization titers against the newer Omicron subvariants, BQ.1.1 and XBB.1.5, was significantly reduced compared to BA.1 and BA.2 subvariants. On the other hand, the exposed vaccinated HCWs showed relatively higher median cross-neutralization titers against both the newer Omicron subvariants and SARS-CoV-1, but did not reach statistical significance. In summary, our findings suggest a broad range of neutralizing potency against coronaviruses in Tanzanian HCWs with detectable neutralizing immunity against SARS-CoV-1 resulting from SARS-CoV-2 exposure.
Collapse
Affiliation(s)
- Godfrey Barabona
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Isaac Ngare
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Doreen Kamori
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Lilian Nkinda
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ambele Mawazo
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Rayi Ekwabi
- Amana Regional Referral Hospital, Dar es Salaam, Tanzania
| | | | | | - Kei Sato
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Bruno Sunguya
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Community Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| |
Collapse
|
12
|
Álvarez-Herrera M, Sevilla J, Ruiz-Rodriguez P, Vergara A, Vila J, Cano-Jiménez P, González-Candelas F, Comas I, Coscollá M. VIPERA: Viral Intra-Patient Evolution Reporting and Analysis. Virus Evol 2024; 10:veae018. [PMID: 38510921 PMCID: PMC10953798 DOI: 10.1093/ve/veae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Viral mutations within patients nurture the adaptive potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during chronic infections, which are a potential source of variants of concern. However, there is no integrated framework for the evolutionary analysis of intra-patient SARS-CoV-2 serial samples. Herein, we describe Viral Intra-Patient Evolution Reporting and Analysis (VIPERA), a new software that integrates the evaluation of the intra-patient ancestry of SARS-CoV-2 sequences with the analysis of evolutionary trajectories of serial sequences from the same viral infection. We have validated it using positive and negative control datasets and have successfully applied it to a new case, which revealed population dynamics and evidence of adaptive evolution. VIPERA is available under a free software license at https://github.com/PathoGenOmics-Lab/VIPERA.
Collapse
Affiliation(s)
- Miguel Álvarez-Herrera
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Jordi Sevilla
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Paula Ruiz-Rodriguez
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Andrea Vergara
- Department of Clinical Microbiology, CDB, Hospital Clínic of Barcelona; University of Barcelona; ISGlobal, C. de Villarroel, 170, Barcelona 08007, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Jordi Vila
- Department of Clinical Microbiology, CDB, Hospital Clínic of Barcelona; University of Barcelona; ISGlobal, C. de Villarroel, 170, Barcelona 08007, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Pablo Cano-Jiménez
- Institute of Biomedicine of Valencia (IBV-CSIC), C/ Jaime Roig, 11, Valencia 46010, Spain
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), C/ Jaime Roig, 11, Valencia 46010, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Mireia Coscollá
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| |
Collapse
|
13
|
Gerashchenko GV, Hryshchenko NV, Melnichuk NS, Marchyshak TV, Chernushyn SY, Demchyshina IV, Chernenko LM, Kuzin IV, Tkachuk ZY, Kashuba VI, Tukalo MA. Genetic characteristics of SARS-CoV-2 virus variants observed upon three waves of the COVID-19 pandemic in Ukraine between February 2021-January 2022. Heliyon 2024; 10:e25618. [PMID: 38380034 PMCID: PMC10877268 DOI: 10.1016/j.heliyon.2024.e25618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of our study was to identify and characterize the SARS-CoV-2 variants in COVID-19 patients' samples collected from different regions of Ukraine to determine the relationship between SARS-CoV-2 phylogenetics and COVID-19 epidemiology. Patients and methods Samples were collected from COVID-19 patients during 2021 and the beginning of 2022 (401 patients). The SARS-CoV-2 genotyping was performed by parallel whole genome sequencing. Results The obtained SARS-CoV-2 genotypes showed that three waves of the COVID-19 pandemic in Ukraine were represented by three main variants of concern (VOC), named Alpha, Delta and Omicron; each VOC successfully replaced the earlier variant. The VOC Alpha strain was presented by one B.1.1.7 lineage, while VOC Delta showed a spectrum of 25 lineages that had different prevalence in 19 investigated regions of Ukraine. The VOC Omicron in the first half of the pandemic was represented by 13 lines that belonged to two different clades representing B.1 and B.2 Omicron strains. Each of the three epidemic waves (VOC Alpha, Delta, and Omicron) demonstrated their own course of disease, associated with genetic changes in the SARS-CoV-2 genome. The observed epidemiological features are associated with the genetic characteristics of the different VOCs, such as point mutations, deletions and insertions in the viral genome. A phylogenetic and transmission analysis showed the different mutation rates; there were multiple virus sources with a limited distribution between regions. Conclusions The evolution of SARS-CoV-2 virus and high levels of morbidity due to COVID-19 are still registered in the world. Observed multiple virus sourses with the limited distribution between regions indicates the high efficiency of the anti-epidemic policy pursued by the Ministry of Health of Ukraine to prevent the spread of the epidemic, despite the low level of vaccination of the Ukrainian population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zenovii Yu Tkachuk
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| | - Vladimir I. Kashuba
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| | - Mykhailo A. Tukalo
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
14
|
Tamura T, Mizuma K, Nasser H, Deguchi S, Padilla-Blanco M, Oda Y, Uriu K, Tolentino JEM, Tsujino S, Suzuki R, Kojima I, Nao N, Shimizu R, Wang L, Tsuda M, Jonathan M, Kosugi Y, Guo Z, Hinay AA, Putri O, Kim Y, Tanaka YL, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Saito A, Ito J, Irie T, Tanaka S, Zahradnik J, Ikeda T, Takayama K, Matsuno K, Fukuhara T, Sato K. Virological characteristics of the SARS-CoV-2 BA.2.86 variant. Cell Host Microbe 2024; 32:170-180.e12. [PMID: 38280382 DOI: 10.1016/j.chom.2024.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024]
Abstract
In late 2023, several SARS-CoV-2 XBB descendants, notably EG.5.1, were predominant worldwide. However, a distinct SARS-CoV-2 lineage, the BA.2.86 variant, also emerged. BA.2.86 is phylogenetically distinct from other Omicron sublineages, accumulating over 30 amino acid mutations in its spike protein. Here, we examined the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Additionally, four clinically available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 are significantly lower than those of BA.2 both in vitro and in vivo, the attenuated pathogenicity of BA.2.86 is likely due to its decreased replication capacity. These findings uncover the features of BA.2.86, providing insights for control and treatment.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Graduate School of Medicine, Hokkaido University, Sapporo, Japan; School of Medicine, Hokkaido University, Sapporo, Japan; Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| | - Keita Mizuma
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Miguel Padilla-Blanco
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia; Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jarel E M Tolentino
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Shuhei Tsujino
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Isshu Kojima
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Michael Jonathan
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ziyi Guo
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Alfredo A Hinay
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Olivia Putri
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Indonesia International Institute for Life Sciences (i3L), Jakarta, Indonesia
| | - Yoonjin Kim
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Faculty of Natural Science, Imperial College London, London, UK
| | - Yuri L Tanaka
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Irie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Jiri Zahradnik
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia.
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| | - Keita Matsuno
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Graduate School of Medicine, Hokkaido University, Sapporo, Japan; School of Medicine, Hokkaido University, Sapporo, Japan; Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
15
|
Tamura T, Irie T, Deguchi S, Yajima H, Tsuda M, Nasser H, Mizuma K, Plianchaisuk A, Suzuki S, Uriu K, Begum MM, Shimizu R, Jonathan M, Suzuki R, Kondo T, Ito H, Kamiyama A, Yoshimatsu K, Shofa M, Hashimoto R, Anraku Y, Kimura KT, Kita S, Sasaki J, Sasaki-Tabata K, Maenaka K, Nao N, Wang L, Oda Y, Ikeda T, Saito A, Matsuno K, Ito J, Tanaka S, Sato K, Hashiguchi T, Takayama K, Fukuhara T. Virological characteristics of the SARS-CoV-2 Omicron XBB.1.5 variant. Nat Commun 2024; 15:1176. [PMID: 38332154 PMCID: PMC10853506 DOI: 10.1038/s41467-024-45274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the S486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determine the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. We provide the intrinsic pathogenicity of XBB.1 and XBB.1.5 in hamsters. Importantly, we find that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC suppression. In vivo experiments using recombinant viruses reveal that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, our study identifies the two viral functions defined the difference between XBB.1 and XBB.1.5.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- School of Medicine, Hokkaido University, Sapporo, Japan
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Takashi Irie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Keita Mizuma
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- School of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mst Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Michael Jonathan
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- School of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Takashi Kondo
- School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hayato Ito
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akifumi Kamiyama
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kanako Terakado Kimura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kaori Sasaki-Tabata
- Department of Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Maenaka
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Keita Matsuno
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- School of Medicine, Hokkaido University, Sapporo, Japan.
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan.
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| |
Collapse
|
16
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Marano JM, Weger-Lucarelli J. Preexisting inter-serotype immunity drives antigenic evolution of dengue virus serotype 2. Virology 2024; 590:109951. [PMID: 38096749 PMCID: PMC10855010 DOI: 10.1016/j.virol.2023.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Dengue virus (DENV) infects roughly 400 million people annually, causing febrile and hemorrhagic disease. While preexisting inter-serotype immunity (PISI) provides transient protection, it may drive severe disease over time. PISI's impact on virus evolution, however, is less understood. Retrospective epidemiological analyses suggest that PISI may drive DENV evolution. Using in vitro directed evolution, we explored how DENV2 evolves in the presence of DENV3/4 convalescent serum. Two post-passaging mutations (E-I6M and E-N203D) were then studied for fitness effects in mammalian and insect hosts and immune escape. E-I6M resisted neutralization, altered fitness in mammalian cell culture models, and had no effect in Aedes albopictus mosquitoes. E-N203D showed no change in neutralization sensitivity, reduced fitness in a DENV-naïve epithelial model, and no effects in the other models. These results align with surveillance data, where E-I6M emerged and disappeared, while E-203D and E-203 N cocirculate, thus suggesting that PISI can drive DENV evolution.
Collapse
Affiliation(s)
- Jeffrey M Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
18
|
y Castro TR, Piccoli BC, Vieira AA, Casarin BC, Tessele LF, Salvato RS, Gregianini TS, Martins LG, Resende PC, Pereira EC, Moreira FRR, de Jesus JG, Seerig AP, Lobato MAO, de Campos MMA, Goularte JS, da Silva MS, Demoliner M, Filippi M, Pereira VMAG, Schwarzbold AV, Spilki FR, Trindade PA. Introduction, Dispersal, and Predominance of SARS-CoV-2 Delta Variant in Rio Grande do Sul, Brazil: A Retrospective Analysis. Microorganisms 2023; 11:2938. [PMID: 38138081 PMCID: PMC10745878 DOI: 10.3390/microorganisms11122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Mutations in the SARS-CoV-2 genome can alter the virus' fitness, leading to the emergence of variants of concern (VOC). In Brazil, the Gamma variant dominated the pandemic in the first half of 2021, and from June onwards, the first cases of Delta infection were documented. Here, we investigate the introduction and dispersal of the Delta variant in the RS state by sequencing 1077 SARS-CoV-2-positive samples from June to October 2021. Of these samples, 34.7% were identified as Gamma and 65.3% as Delta. Notably, 99.2% of Delta sequences were clustered within the 21J lineage, forming a significant Brazilian clade. The estimated clock rate was 5.97 × 10-4 substitutions per site per year. The Delta variant was first reported on 17 June in the Vinhedos Basalto microregion and rapidly spread, accounting for over 70% of cases within nine weeks. Despite this, the number of cases and deaths remained stable, possibly due to vaccination, prior infections, and the continued mandatory mask use. In conclusion, our study provides insights into the Delta variant circulating in the RS state, highlighting the importance of genomic surveillance for monitoring viral evolution, even when the impact of new variants may be less severe in a given region.
Collapse
Affiliation(s)
- Thaís Regina y Castro
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Bruna C. Piccoli
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Andressa A. Vieira
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Bruna C. Casarin
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Luíza F. Tessele
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Richard S. Salvato
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CEVS/SES-RS), Porto Alegre 90610-000, Brazil
| | - Tatiana S. Gregianini
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CEVS/SES-RS), Porto Alegre 90610-000, Brazil
| | - Leticia G. Martins
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CEVS/SES-RS), Porto Alegre 90610-000, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-360, Brazil
| | - Elisa C. Pereira
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-360, Brazil
| | - Filipe R. R. Moreira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Jaqueline G. de Jesus
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05508-220, Brazil
| | - Ana Paula Seerig
- Vigilância em Saúde, Secretaria Municipal da Saúde de Santa Maria, Santa Maria 97060-001, Brazil
| | - Marcos Antonio O. Lobato
- Departamento de Saúde Coletiva, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Marli M. A. de Campos
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Juliana S. Goularte
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93510-235, Brazil
| | - Mariana S. da Silva
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93510-235, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93510-235, Brazil
| | - Micheli Filippi
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93510-235, Brazil
| | | | - Alexandre V. Schwarzbold
- Departamento de Clínica Médica, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Fernando R. Spilki
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93510-235, Brazil
| | - Priscila A. Trindade
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| |
Collapse
|
19
|
de Souza AS, de Souza RF, Guzzo CR. Cooperative and structural relationships of the trimeric Spike with infectivity and antibody escape of the strains Delta (B.1.617.2) and Omicron (BA.2, BA.5, and BQ.1). J Comput Aided Mol Des 2023; 37:585-606. [PMID: 37792106 DOI: 10.1007/s10822-023-00534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Herein, we conducted simulations of trimeric Spike from several SARS-CoV-2 variants of concern (Delta and Omicron sub-variants BA.2, BA.5, and BQ.1) and investigated the mechanisms by which specific mutations confer resistance to neutralizing antibodies. We observed that the mutations primarily affect the cooperation between protein domains within and between protomers. The substitutions K417N and L452R expand hydrogen bonding interactions, reducing their interaction with neutralizing antibodies. By interacting with nearby residues, the K444T and N460K mutations in the SpikeBQ.1 variant potentially reduces solvent exposure, thereby promoting resistance to antibodies. We also examined the impact of D614G, P681R, and P681H substitutions on Spike protein structure that may be related to infectivity. The D614G substitution influences communication between a glycine residue and neighboring domains, affecting the transition between up- and -down RBD states. The P681R mutation, found in the Delta variant, enhances correlations between protein subunits, while the P681H mutation in Omicron sub-variants weakens long-range interactions that may be associated with reduced fusogenicity. Using a multiple linear regression model, we established a connection between inter-protomer communication and loss of sensitivity to neutralizing antibodies. Our findings underscore the importance of structural communication between protein domains and provide insights into potential mechanisms of immune evasion by SARS-CoV-2. Overall, this study deepens our understanding of how specific mutations impact SARS-CoV-2 infectivity and shed light on how the virus evades the immune system.
Collapse
Affiliation(s)
- Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| |
Collapse
|
20
|
Fujita S, Kosugi Y, Kimura I, Tokunaga K, Ito J, Sato K. Determination of the factors responsible for the tropism of SARS-CoV-2-related bat coronaviruses to Rhinolophus bat ACE2. J Virol 2023; 97:e0099023. [PMID: 37724881 PMCID: PMC10779674 DOI: 10.1128/jvi.00990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE The efficiency of infection receptor use is the first step in determining the species tropism of viruses. After the coronavirus disease 2019 pandemic, a number of SARS-CoV-2-related coronaviruses (SC2r-CoVs) were identified in Rhinolophus bats, and some of them can use human angiotensin converting enzyme 2 (ACE2) for the infection receptor without acquiring additional mutations. This means that the potential of certain SC2r-CoVs to cause spillover from bats to humans is "off-the-shelf." However, both SC2r-CoVs and Rhinolophus bat species are highly diversified, and the host tropism of SC2r-CoVs remains unclear. Here, we focus on two Laotian SC2r-CoVs, BANAL-20-236 and BANAL-20-52, and determine how the tropism of SC2r-CoVs to Rhinolophus bat ACE2 is determined at the amino acid resolution level.
Collapse
Affiliation(s)
- Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) Consortium
MatsunoKeita1NaoNaganori1SawaHirofumi1TanakaShinya1TsudaMasumi1WangLei1OdaYoshikata1FerdousZannatul1ShishidoKenji1FukuharaTakasuke1TamuraTomokazu1SuzukiRigel1SuzukiSaori1ItoHayato1KakuYuMisawaNaokoPlianchaisukArnonGuoZiyiHinayAlfredo A.UriuKeiyaTolentinoJarel Elgin M.ChenLuoPanLinSuganamiMaiChibaMikaYoshimuraRyoYasudaKyokoIidaKeikoOhsumiNaomiStrangeAdam P.TanakaShihoYoshimuraKazuhisa2SadamasuKenji2NagashimaMami2AsakuraHiroyuki2YoshidaIsao2NakagawaSo3Takaori-KondoAkifumi4NagataKayoko4NomuraRyosuke4HorisawaYoshihito4TashiroYusuke4KawaiYugo4TakayamaKazuo4HashimotoRina4DeguchiSayaka4WatanabeYukio4SakamotoAyaka4YasuharaNaokoHashiguchiTakao4SuzukiTateki4KimuraKanako4SasakiJiei4NakajimaYukari4YajimaHisano4IrieTakashi5KawabataRyoko5TabataKaori6IkedaTerumasa7NasserHesham7ShimizuRyo7Monira BegumM. S. T.7JonathanMichael7MugitaYuka7TakahashiOtowa7IchiharaKimiko7MotozonoChihiro7UenoTakamasa7ToyodaMako7SaitoAkatsuki8ShofaMaya8ShibataniYuki8NishiuchiTomoko8ShirakawaKotaro4Hokkaido University, Sapporo, JapanTokyo Metropolitan Institute of Public Health, Shinjuku City, JapanTokai University, Shibuya City, JapanKyoto University, Kyoto, JapanHiroshima University, Hiroshima, JapanKyushu University, Fukuoka, JapanKumamoto University, Kumamoto, JapanUniversity of Miyazaki, Miyazaki, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
21
|
Kimura I, Yamasoba D, Nasser H, Ito H, Zahradnik J, Wu J, Fujita S, Uriu K, Sasaki J, Tamura T, Suzuki R, Deguchi S, Plianchaisuk A, Yoshimatsu K, Kazuma Y, Mitoma S, Schreiber G, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Takaori-Kondo A, Ito J, Shirakawa K, Takayama K, Irie T, Hashiguchi T, Nakagawa S, Fukuhara T, Saito A, Ikeda T, Sato K. Multiple mutations of SARS-CoV-2 Omicron BA.2 variant orchestrate its virological characteristics. J Virol 2023; 97:e0101123. [PMID: 37796123 PMCID: PMC10781145 DOI: 10.1128/jvi.01011-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.
Collapse
Affiliation(s)
- Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Yamasoba
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Medicine, Kobe University, Kobe, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jiri Zahradnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
| | - Jiaqi Wu
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Yasuhiro Kazuma
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuya Mitoma
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) Consortium
MisawaNaoko1KosugiYusuke1PanLin1SuganamiMai1ChibaMika1YoshimuraRyo1YasudaKyoko1IidaKeiko1OhsumiNaomi1StrangeAdam P.1KakuYu1PlianchaisukArnon1GuoZiyi1HinayAlfredo Jr. Amolong1Mendoza TolentinoJarel Elgin1ChenLuo1ShimizuRyo2Monira BegumM. S. T.2TakahashiOtowa2IchiharaKimiko2JonathanMichael2MugitaYuka2SuzukiSaori3SuzukiTateki4KimuraKanako4NakajimaYukari4YajimaHisano4HashimotoRina4WatanabeYukio4SakamotoAyaka4YasuharaNaoko4NagataKayoko4NomuraRyosuke4HorisawaYoshihito4TashiroYusuke4KawaiYugo4ShibataniYuki5NishiuchiTomoko5YoshidaIsao6KawabataRyoko7MatsunoKeita8NaoNaganori9SawaHirofumi9TanakaShinya10TsudaMasumi10WangLei10OdaYoshikata10FerdousZannatul10ShishidoKenji10MotozonoChihiro11ToyodaMako11UenoTakamasa11TabataKaori12Institute of Medical Science, University of Tokyo, Tokyo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, JapanHokkaido University, Sapporo, JapanKyoto University, Kyoto, JapanUniversity of Miyazaki, Miyazaki, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanHiroshima University, Hiroshima, JapanOne Health Research Center, Hokkaido University, Sapporo, JapanInternational Institute for Zoonosis Control, Hokkaido University, Sapporo, JapanHokkaido University, Sapporo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto, JapanKyushu University, Fukuoka, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Medicine, Kobe University, Kobe, Japan
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Takashi Irie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
22
|
Abdullahi A, Frimpong J, Cheng MTK, Aliyu SH, Smith C, Abimiku A, Phillips RO, Owusu M, Gupta RK. Performance of SARS COV-2 IgG Anti-N as an Independent Marker of Exposure to SARS COV-2 in an Unvaccinated West African Population. Am J Trop Med Hyg 2023; 109:890-894. [PMID: 37580023 PMCID: PMC10551093 DOI: 10.4269/ajtmh.23-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 08/16/2023] Open
Abstract
Determination of previous SARS-COV-2 infection is hampered by the absence of a standardized test. The marker used to assess previous exposure is IgG antibody to the nucleocapsid (IgG anti-N), although it is known to wane quickly from peripheral blood. The accuracies of seven antibody tests (virus neutralization test, IgG anti-N, IgG anti-spike [anti-S], IgG anti-receptor binding domain [anti-RBD], IgG anti-N + anti-RBD, IgG anti-N + anti-S, and IgG anti-S + anti-RBD), either singly or in combination, were evaluated on 502 cryopreserved serum samples collected before the COVID-19 vaccination rollout in Kumasi, Ghana. The accuracy of each index test was measured using a composite reference standard based on a combination of neutralization test and IgG anti-N antibody tests. According to the composite reference, 262 participants were previously exposed; the most sensitive test was the virus neutralization test, with 95.4% sensitivity (95% CI: 93.6-97.3), followed by 79.0% for IgG anti-N + anti-S (95% CI: 76.3-83.3). The most specific tests were virus neutralization and IgG anti-N, both with 100% specificity. Viral neutralization and IgG anti-N + anti-S were the overall most accurate tests, with specificity/sensitivity of 100/95.2% and 79.0/92.1%, respectively. Our findings indicate that IgG anti-N alone is an inadequate marker of prior exposure to SARS COV-2 in this population. Virus neutralization assay appears to be the most accurate assay in discerning prior infection. A combination of IgG anti-N and IgG anti-S is also accurate and suited for assessment of SARS COV-2 exposure in low-resource settings.
Collapse
Affiliation(s)
- Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Institute of Human Virology, Abuja, Nigeria
| | - James Frimpong
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Mark T. K. Cheng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sani H. Aliyu
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | | | - Richard Odame Phillips
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Michael Owusu
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
23
|
Liu Y, Ye Q. The Key Site Variation and Immune Challenges in SARS-CoV-2 Evolution. Vaccines (Basel) 2023; 11:1472. [PMID: 37766148 PMCID: PMC10537874 DOI: 10.3390/vaccines11091472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide public health and economic threat, and virus variation amplifies the difficulty in epidemic prevention and control. The structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been studied extensively and is now well defined. The S protein is the most distinguishing feature in terms of infection and immunity, mediating virus entrance and inducing neutralizing antibodies. The S protein and its essential components are also the most promising target to develop vaccines and antibody-based drugs. Therefore, the key site mutation in the S gene is of high interest. Among them, RBD, NTD, and furin cleavage sites are the most mutable regions with the most mutation sites and the most serious consequences for SARS-CoV-2 biological characteristics, including infectivity, pathogenicity, natural immunity, vaccine efficacy, and antibody therapeutics. We are also aware that this outbreak may not be the last. Therefore, in this narrative review, we summarized viral variation and prevalence condition, discussed specific amino acid replacement and associated immune challenges and attempted to sum up some prevention and control strategies by reviewing the literature on previously published research about SARS-CoV-2 variation to assist in clarifying the mutation pathway and consequences of SARS-CoV-2 for developing countermeasures against such viruses as soon as possible.
Collapse
Affiliation(s)
| | - Qing Ye
- Department of ‘A’, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China;
| |
Collapse
|
24
|
Ferreira IATM, Lee CYC, Foster WS, Abdullahi A, Dratva LM, Tuong ZK, Stewart BJ, Ferdinand JR, Guillaume SM, Potts MOP, Perera M, Krishna BA, Peñalver A, Cabantous M, Kemp SA, Ceron-Gutierrez L, Ebrahimi S, Lyons P, Smith KGC, Bradley J, Collier DA, McCoy LE, van der Klaauw A, Thaventhiran JED, Farooqi IS, Teichmann SA, MacAry PA, Doffinger R, Wills MR, Linterman MA, Clatworthy MR, Gupta RK. Atypical B cells and impaired SARS-CoV-2 neutralization following heterologous vaccination in the elderly. Cell Rep 2023; 42:112991. [PMID: 37590132 DOI: 10.1016/j.celrep.2023.112991] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.
Collapse
Affiliation(s)
- Isabella A T M Ferreira
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - William S Foster
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lisa M Dratva
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Stephane M Guillaume
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Martin O P Potts
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marianne Perera
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Benjamin A Krishna
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Peñalver
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Mia Cabantous
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Steven A Kemp
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Soraya Ebrahimi
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Paul Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - John Bradley
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dami A Collier
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Agatha van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, Cambridge, UK
| | | | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, Cambridge, UK
| | | | - Paul A MacAry
- National University of Singapore, Singapore, Singapore
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michelle A Linterman
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK.
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK; Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK.
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Wu CY, Yang YH, Lin YS, Shu LH, Cheng YC, Liu HT, Lin YY, Lee IY, Shih WT, Yang PR, Tsai YY, Chang GH, Hsu CM, Yeh RA, Wu YH, Wu YH, Shen RC, Tsai MS. The anti-SARS-CoV-2 effect and mechanism of Chiehyuan herbal oral protection solution. Heliyon 2023; 9:e17701. [PMID: 37483781 PMCID: PMC10359827 DOI: 10.1016/j.heliyon.2023.e17701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The Chiehyuan herbal oral protection solution (GB-2) is a herbal mixture commonly utilized in Taiwan for combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as per traditional Chinese medicine practices. This study assessed the clinical impact of GB-2 through prospective clinical trials. With twice-daily use for a week, GB-2 was shown to diminish the expression of angiotensin-converting enzyme 2 (ACE2) in oral mucosal cells. Moreover, after two weeks of use, it could reduce transmembrane protease, serine 2 (TMRPSS2) expression in these cells. Additionally, in vitro experiments demonstrated that GB-2 lessened the entry efficiency of the Omicron, L452R-D614G, T478K-D614G, and L452R-T478K-D614G variants of the SARS-CoV-2 pseudotyped lentivirus. It also impeded the interaction between ACE2 and the receptor-binding domain (RBD) presenting N501Y-K417N-E484A-G339D-Q493R-G496S-Q498R and L452R-T478K mutations. Glycyrrhizic acid, a major compound in GB-2, also hindered the entry of the Omicron variant (BA.1) of the SARS-CoV-2 pseudotyped lentivirus by obstructing the binding between ACE2 and the RBD presenting the N501Y-K417N-E484A-G339D-Q493R-G496S-Q498R mutation. To sum up, these findings suggest that GB-2 can decrease ACE2 and TMPRSS2 expression in oral mucosal cells. Both glycyrrhizic acid and GB-2 were found to reduce the entry efficiency of the Omicron variant (BA.1) of the SARS-CoV-2 pseudotyped lentivirus and block the binding between ACE2 and the RBD with the N501Y-K417N-E484A-G339D-Q493R-G496S-Q498R mutation. This evidence implies that GB-2 might be a potential candidate for further study as a preventative measure against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yin-Yin Lin
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Ying Tsai
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Reming-Albert Yeh
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Wu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Heng Wu
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Rou-Chen Shen
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Shao Tsai
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
26
|
Tamura T, Ito J, Uriu K, Zahradnik J, Kida I, Anraku Y, Nasser H, Shofa M, Oda Y, Lytras S, Nao N, Itakura Y, Deguchi S, Suzuki R, Wang L, Begum MM, Kita S, Yajima H, Sasaki J, Sasaki-Tabata K, Shimizu R, Tsuda M, Kosugi Y, Fujita S, Pan L, Sauter D, Yoshimatsu K, Suzuki S, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Yamamoto Y, Nagamoto T, Schreiber G, Maenaka K, Hashiguchi T, Ikeda T, Fukuhara T, Saito A, Tanaka S, Matsuno K, Takayama K, Sato K. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat Commun 2023; 14:2800. [PMID: 37193706 PMCID: PMC10187524 DOI: 10.1038/s41467-023-38435-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jiri Zahradnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
| | - Izumi Kida
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Spyros Lytras
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Mst Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kaori Sasaki-Tabata
- Department of Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lin Pan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Daniel Sauter
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | | | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | | | | | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Katsumi Maenaka
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Keita Matsuno
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan.
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
27
|
Ito J, Suzuki R, Uriu K, Itakura Y, Zahradnik J, Kimura KT, Deguchi S, Wang L, Lytras S, Tamura T, Kida I, Nasser H, Shofa M, Begum MM, Tsuda M, Oda Y, Suzuki T, Sasaki J, Sasaki-Tabata K, Fujita S, Yoshimatsu K, Ito H, Nao N, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Yamamoto Y, Nagamoto T, Kuramochi J, Schreiber G, Saito A, Matsuno K, Takayama K, Hashiguchi T, Tanaka S, Fukuhara T, Ikeda T, Sato K. Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant. Nat Commun 2023; 14:2671. [PMID: 37169744 PMCID: PMC10175283 DOI: 10.1038/s41467-023-38188-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.
Collapse
Affiliation(s)
- Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Jiri Zahradnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
| | - Kanako Terakado Kimura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Spyros Lytras
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Izumi Kida
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mst Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kaori Sasaki-Tabata
- Department of Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: HU-IVReD, Hokkaido University, Sapporo, Japan
| | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | | | | | - Jin Kuramochi
- Interpark Kuramochi Clinic, Utsunomiya, Japan
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: HU-IVReD, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
28
|
Enhanced fitness of SARS-CoV-2 B.1.617.2 Delta variant in ferrets. Virology 2023; 582:57-61. [PMID: 37028126 PMCID: PMC10073010 DOI: 10.1016/j.virol.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Competition assays were conducted in vitro and in vivo to examine how the Delta (B.1.617.2) variant displaced the prototype Washington/1/2020 (WA/1) strain. While WA/1 virus exhibited a moderately increased proportion compared to that in the inoculum following co-infection in human respiratory cells, Delta variant possessed a substantial in vivo fitness advantage as this virus becoming predominant in both inoculated and contact animals. This work identifies critical traits of the Delta variant that likely played a role in it becoming a dominant variant and highlights the necessities of employing multiple model systems to assess the fitness of newly emerged SARS-CoV-2 variants.
Collapse
|
29
|
Cheng Y, Zheng D, Zhang D, Guo D, Wang Y, Liu W, Liang L, Hu J, Luo T. Molecular recognition of SARS-CoV-2 spike protein with three essential partners: exploring possible immune escape mechanisms of viral mutants. J Mol Model 2023; 29:109. [PMID: 36964244 PMCID: PMC10038388 DOI: 10.1007/s00894-023-05509-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE The COVID-19 epidemic is raging around the world, with the emergence of viral mutant strains such as Delta and Omicron, posing severe challenges to people's health and quality of life. A full understanding life cycle of the virus in host cells helps to reveal inactivation mechanism of antibody and provide inspiration for the development of a new-generation vaccines. METHODS In this work, molecular recognitions and conformational changes of SARS-CoV-2 spike protein mutants (i.e., Delta, Mu, and Omicron) and three essential partners (i.e., membrane receptor hACE2, protease TMPRSS2, and antibody C121) both were compared and analyzed using molecular simulations. RESULTS Water basin and binding free energy calculations both show that the three mutants possess higher affinity for hACE2 than WT, exhibiting stronger virus transmission. The descending order of cleavage ability by TMPRSS2 is Mu, Delta, Omicron, and WT, which is related to the new S1/S2 cutting site induced by transposition effect. The inefficient utilization of TMPRSS2 by Omicron is consistent with its primary entry into cells via the endosomal pathway. In addition, RBD-directed antibody C121 showed obvious resistance to Omicron, which may have originated from high fluctuation of approaching angles, high flexibility of I472-F490 loop, and reduced binding ability. CONCLUSIONS According to the overall characteristics of the three mutants, high infectivity, high immune escape, and low virulence may be the future evolutionary selection of SARS-CoV-2. In a word, this work not only proposes the possible resistance mechanism of SARS-CoV-2 mutants, but also provides theoretical guidance for the subsequent drug design against COVID-19 based on S protein structure.
Collapse
Affiliation(s)
- Yan Cheng
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China
| | - Dan Zheng
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China
| | - Derong Zhang
- School of Marxism, Chengdu Vocational & Technical College of Industry, Chengdu, China
| | - Du Guo
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ting Luo
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China.
| |
Collapse
|
30
|
Ks S, Nair AS. Insights on the interaction of SARS-CoV-2 variant B.1.617.2 with antibody CR3022 and analysis of antibody resistance. J Genet Eng Biotechnol 2023; 21:35. [PMID: 36940010 PMCID: PMC10026237 DOI: 10.1186/s43141-023-00492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/12/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND The existence of mutated Delta (B.1.617.2) variants of SARS-CoV-2 causes rapid transmissibility, increase in virulence, and decrease in the effectiveness of public health. Majority of mutations are seen in the surface spike, and they are considered as antigenicity and immunogenicity of the virus. Hence, finding suitable cross antibody or natural antibody and understanding its biomolecular recognition for neutralizing surface spike are crucial for developing many clinically approved COVID-19 vaccines. Here, we aim to design SARS-CoV-2 variant and hence, to understand its mechanism, binding affinity and neutralization potential with several antibodies. RESULTS In this study, we modelled six feasible spike protein (S1) configurations for Delta SARS-CoV-2 (B.1.617.2) and identified the best structure to interact with human antibodies. Initially, the impact of mutations at the receptor-binding domain (RBD) of B.1.617.2 was tested, and it is found that all mutations increase the stability of proteins (ΔΔG) and decrease the entropies. An exceptional case is noted for the mutation of G614D variant for which the vibration entropy change is found to be within the range of 0.133-0.004 kcal/mol/K. Temperature-dependent free energy change values (ΔG) for wild type is found to be - 0.1 kcal/mol, whereas all other cases exhibit values within the range of - 5.1 to - 5.5 kcal/mol. Mutation on spike increases the interaction with the glycoprotein antibody CR3022 and the binding affinity (CLUSpro energy = - 99.7 kcal/mol). The docked Delta variant with the following antibodies, etesevimab, bebtelovimab, BD-368-2, imdevimab, bamlanivimab, and casirivimab, exhibit a substantially decreased docking score (- 61.7 to - 112.0 kcal/mol) and the disappearance of several hydrogen bond interactions. CONCLUSION Characterization of antibody resistance for Delta variant with respect to the wild type gives understanding regarding why Delta variant endures the resistance boosted through several trademark vaccines. Several interactions with CR3022 have appeared compared to Wild for Delta variant, and hence, it is suggested that modification on the CR3022 antibody could further improve for the prevention of viral spread. Antibody resistance decreased significantly due to numerous hydrogen bond interactions which clearly indicate that these marketed/launched vaccines (etesevimab) will be effective for Delta variants.
Collapse
Affiliation(s)
- Sandhya Ks
- Department of Computational Biology and Bioinformatics, University of Kerala, Kerala, Thiruvananthapuram, India.
- Malankara Catholic College, Mariagiri, Kaliakkavilai, Kanyakumari, 629153, Tamil Nadu, India.
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kerala, Thiruvananthapuram, India
| |
Collapse
|
31
|
Marano JM, Weger-Lucarelli J. Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness. Front Cell Infect Microbiol 2023; 13:1130749. [PMID: 36968111 PMCID: PMC10034770 DOI: 10.3389/fcimb.2023.1130749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Flaviviruses like dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne viruses that cause febrile, hemorrhagic, and neurological diseases in humans, resulting in 400 million infections annually. Due to their co-circulation in many parts of the world, flaviviruses must replicate in the presence of pre-existing adaptive immune responses targeted at serologically closely related pathogens, which can provide protection or enhance disease. However, the impact of pre-existing cross-reactive immunity as a driver of flavivirus evolution, and subsequently the implications on the emergence of immune escape variants, is poorly understood. Therefore, we investigated how replication in the presence of convalescent dengue serum drives ZIKV evolution. Methods We used an in vitro directed evolution system, passaging ZIKV in the presence of serum from humans previously infected with DENV (anti-DENV) or serum from DENV-naïve patients (control serum). Following five passages in the presence of serum, we performed next-generation sequencing to identify mutations that arose during passaging. We studied two non-synonymous mutations found in the anti-DENV passaged population (E-V355I and NS1-T139A) by generating individual ZIKV mutants and assessing fitness in mammalian cells and live mosquitoes, as well as their sensitivity to antibody neutralization. Results and discussion Both viruses had increased fitness in Vero cells with and without the addition of anti-DENV serum and in human lung epithelial and monocyte cells. In Aedes aegypti mosquitoes-using blood meals with and without anti-DENV serum-the mutant viruses had significantly reduced fitness compared to wild-type ZIKV. These results align with the trade-off hypothesis of constrained mosquito-borne virus evolution. Notably, only the NS1-T139A mutation escaped neutralization, while E-V335I demonstrated enhanced neutralization sensitivity to neutralization by anti-DENV serum, indicating that neutralization escape is not necessary for viruses passaged under cross-reactive immune pressures. Future studies are needed to assess cross-reactive immune selection in humans and relevant animal models or with different flaviviruses.
Collapse
Affiliation(s)
- Jeffrey M. Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
32
|
Obeid D, Al-Qahtani A, Almaghrabi R, Alghamdi S, Alsanea M, Alahideb B, Almutairi S, Alsuwairi F, Al-Abdulkareem M, Asiri M, Alshukairi A, Alkahtany J, Altamimi S, Mutabagani M, Althawadi S, Alanzi F, Alhamlan F. Analysis of SARS-CoV-2 genomic surveillance data during the Delta and Omicron waves at a Saudi tertiary referral hospital. J Infect Public Health 2023; 16:171-181. [PMID: 36543031 PMCID: PMC9747229 DOI: 10.1016/j.jiph.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Studying the genomic evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may help determine outbreak clusters and virus transmission advantages to aid public health efforts during the pandemic. Thus, we tracked the evolution of SARS-CoV-2 by variant epidemiology, breakthrough infection, and patient characteristics as the virus spread during the Delta and Omicron waves. We also conducted phylogenetic analyses to assess modes of transmission. METHODS Nasopharyngeal samples were collected from a cohort of 900 patients with positive polymerase chain reaction (PCR) test results confirming COVID-19 disease. Samples underwent real-time PCR detection using TaqPath assays. Sequencing was performed with Ion GeneStudio using the Ion AmpliSeq™ SARS-CoV-2 panel. Variant calling was performed with Torrent Suite™ on the Torrent Server. For phylogenetic analyses, the MAFFT tool was used for alignment and the maximum likelihood method with the IQ-TREE tool to build the phylogenetic tree. Data were analyzed using SAS statistical software. Analysis of variance or t tests were used to assess continuous variables, and χ2 tests were used to assess categorical variables. Univariate and multivariate logistic regression analyses were preformed to estimate odds ratios (ORs). RESULTS The predominant variants in our cohort of 900 patients were non-variants of concern (11.1 %), followed by Alpha (4.1 %), Beta (5.6 %), Delta (21.2 %), and Omicron (58 %). The Delta wave had more male than female cases (112 vs. 78), whereas the Omicron wave had more female than male cases (311 vs. 208). The oldest patients (mean age, 43.4 years) were infected with non-variants of concern; the youngest (mean age, 33.7 years), with Omicron. Younger patients were mostly unvaccinated, whereas elderly patients were mostly vaccinated, a statistically significant difference. The highest risk for breakthrough infection by age was for patients aged 30-39 years (OR = 12.4, CI 95 %: 6.6-23.2), followed by patients aged 40-49 years (OR = 11.2, CI 95 %: 6.1-23.1) and then 20-29 years (OR = 8.2, CI 95 %: 4.4-15.4). Phylogenetic analyses suggested the interaction of multiple cases related to outbreaks for breakthrough infections, healthcare workers, and intensive care unit admission. CONCLUSION The findings of this study highlighted several major public health ramifications, including the distribution of variants over a wide range of demographic and clinical variables and by vaccination status.
Collapse
Affiliation(s)
- D Obeid
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Public Health Laboratories, Public Health Authority, Riyadh, Saudi Arabia
| | - A Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - R Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - S Alghamdi
- Infection Control & Hospital Epidemiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - M Alsanea
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - B Alahideb
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - S Almutairi
- Infection Control & Hospital Epidemiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - F Alsuwairi
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - M Al-Abdulkareem
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - M Asiri
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - A Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - J Alkahtany
- Infection Control & Hospital Epidemiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - S Altamimi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - M Mutabagani
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - S Althawadi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - F Alanzi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Paediatric Critical Care, Paediatric Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - F Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
33
|
Abstract
The COVID-19 pandemic has been accompanied by SARS-CoV-2 evolution and emergence of viral variants that have far exceeded initial expectations. Five major variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) have emerged, each having both unique and overlapping amino acid substitutions that have affected transmissibility, disease severity, and susceptibility to natural or vaccine-induced immune responses and monoclonal antibodies. Several of the more recent variants appear to have evolved properties of immune evasion, particularly in cases of prolonged infection. Tracking of existing variants and surveillance for new variants are critical for an effective pandemic response.
Collapse
Affiliation(s)
- Jana L Jacobs
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; , ,
| | - Ghady Haidar
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; , ,
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; , ,
| |
Collapse
|
34
|
Zhao Y, Ni W, Liang S, Dong L, Xiang M, Cai Z, Niu D, Zhang Q, Wang D, Zheng Y, Zhang Z, Zhou D, Guo W, Pan Y, Wu X, Yang Y, Jing Z, Jiang Y, Chen Y, Yan H, Zhou Y, Xu K, Lan K. Vaccination with S pan, an antigen guided by SARS-CoV-2 S protein evolution, protects against challenge with viral variants in mice. Sci Transl Med 2023; 15:eabo3332. [PMID: 36599007 DOI: 10.1126/scitranslmed.abo3332] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SARS-CoV-2 continues to accumulate mutations to evade immunity, leading to breakthrough infections after vaccination. How researchers can anticipate the evolutionary trajectory of the virus in advance in the design of next-generation vaccines requires investigation. Here, we performed a comprehensive study of 11,650,487 SARS-CoV-2 sequences, which revealed that the SARS-CoV-2 spike (S) protein evolved not randomly but into directional paths of either high infectivity plus low immune resistance or low infectivity plus high immune resistance. The viral infectivity and immune resistance of variants are generally incompatible, except for limited variants such as Beta and Kappa. The Omicron variant has the highest immune resistance but showed high infectivity in only one of the tested cell lines. To provide cross-clade immunity against variants that undergo diverse evolutionary pathways, we designed a new pan-vaccine antigen (Span). Span was designed by analyzing the homology of 2675 SARS-CoV-2 S protein sequences from the NCBI database before the Delta variant emerged. The refined Span protein harbors high-frequency residues at given positions that reflect cross-clade generality in sequence evolution. Compared with a prototype wild-type (Swt) vaccine, which, when administered to mice, induced serum with decreased neutralization activity against emerging variants, Span vaccination of mice elicited broad immunity to a wide range of variants, including those that emerged after our design. Moreover, vaccinating mice with a heterologous Span booster conferred complete protection against lethal infection with the Omicron variant. Our results highlight the importance and feasibility of a universal vaccine to fight against SARS-CoV-2 antigenic drift.
Collapse
Affiliation(s)
- Yongliang Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Wenjia Ni
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Simeng Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Lianghui Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Min Xiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Zeng Cai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China.,Institute for Vaccine Research, Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Qiuhan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Dehe Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Yucheng Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Zhen Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Dan Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Wenhua Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Yongbing Pan
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, Hubei, P.R. China
| | - Xiaoli Wu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, Hubei, P.R. China
| | - Yimin Yang
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, Hubei, P.R. China
| | - Zhaofei Jing
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, Hubei, P.R. China
| | - Yongzhong Jiang
- Hubei Provincial Center for Diseases Control and Prevention, Wuhan 430079, Hubei, P.R. China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China.,Institute for Vaccine Research, Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China.,Institute for Vaccine Research, Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China.,Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China.,Institute for Vaccine Research, Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan 430072, Hubei, P.R. China.,Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China.,Institute for Vaccine Research, Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan 430072, Hubei, P.R. China.,Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, P.R. China
| |
Collapse
|
35
|
Zambrana Montaño R, Culasso ACA, Fernández F, Marquez N, Debat H, Salmerón M, Zamora AM, Ruíz de Huidobro G, Costas D, Alabarse G, Charre MA, Fridman AD, Mamani C, Vaca F, Maza Diaz C, Raskovsky V, Lavaque E, Lesser V, Cajal P, Agüero F, Calvente C, Torres C, Viegas M. Evolution of SARS-CoV-2 during the first year of the COVID-19 pandemic in Northwestern Argentina. Virus Res 2023; 323:198936. [PMID: 36181975 PMCID: PMC9599208 DOI: 10.1016/j.virusres.2022.198936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 01/25/2023]
Abstract
Studies about the evolution of SARS-CoV-2 lineages in different backgrounds such as naive populations are still scarce, especially from South America. This work aimed to study the introduction and diversification pattern of SARS-CoV-2 during the first year of the COVID-19 pandemic in the Northwestern Argentina (NWA) region and to analyze the evolutionary dynamics of the main lineages found. In this study, we analyzed a total of 260 SARS-CoV-2 whole-genome sequences from Argentina, belonging to the Provinces of Jujuy, Salta, and Tucumán, from March 31st, 2020, to May 22nd, 2021, which covered the full first wave and the early second wave of the COVID-19 pandemic in Argentina. In the first wave, eight lineages were identified: B.1.499 (76.9%), followed by N.5 (10.2%), B.1.1.274 (3.7%), B.1.1.348 (3.7%), B.1 (2.8%), B.1.600 (0.9%), B.1.1.33 (0.9%) and N.3 (0.9%). During the early second wave, the first-wave lineages were displaced by the introduction of variants of concern (VOC) (Alpha, Gamma), or variants of interest (VOI) (Lambda, Zeta, Epsilon) and other lineages with more limited distribution. Phylodynamic analyses of the B.1.499 and N.5, the two most prevalent lineages in the NWA, revealed that the rate of evolution of lineage N.5 (7.9 × 10-4 substitutions per site per year, s/s/y) was a ∼40% faster than that of lineage B.1.499 (5.6 × 10-4 s/s/y), although both are in the same order of magnitude than other non-VOC lineages. No mutations associated with a biological characteristic of importance were observed as signatures markers of the phylogenetic groups established in Northwestern Argentina, however, single sequences in non-VOC lineages did present mutations of biological importance or associated with VOCs as sporadic events, showing that many of these mutations could emerge from circulation in the general population. This study contributed to the knowledge about the evolution of SARS-CoV-2 in a pre-vaccination and without post-exposure immunization period.
Collapse
Affiliation(s)
- Romina Zambrana Montaño
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Carlos Alberto Culasso
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Franco Fernández
- Centro de Investigaciones Agropecuarias, Instituto de Patología Vegetal, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - Nathalie Marquez
- Centro de Investigaciones Agropecuarias, Instituto de Patología Vegetal, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - Humberto Debat
- Centro de Investigaciones Agropecuarias, Instituto de Patología Vegetal, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - Mariana Salmerón
- Laboratorio de Salud Pública, San Miguel de Tucumán, Tucumán, Argentina
| | - Ana María Zamora
- Laboratorio de Salud Pública, San Miguel de Tucumán, Tucumán, Argentina
| | | | - Dardo Costas
- Laboratorio de Salud Pública, San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Alabarse
- Laboratorio de Salud Pública, San Miguel de Tucumán, Tucumán, Argentina
| | | | - Ariel David Fridman
- Laboratorio Central de Salud Pública, San Salvador de Jujuy, Jujuy, Argentina
| | - Claudia Mamani
- Laboratorio Central de Salud Pública, San Salvador de Jujuy, Jujuy, Argentina
| | - Fabiana Vaca
- Laboratorio Central de Salud Pública, San Salvador de Jujuy, Jujuy, Argentina
| | - Claudia Maza Diaz
- Laboratorio Central de Salud Pública, San Salvador de Jujuy, Jujuy, Argentina
| | - Viviana Raskovsky
- Laboratorio de Virus Respiratorios y Neurovirosis, Hospital Señor del Milagro, Salta capital, Salta, Argentina
| | - Esteban Lavaque
- Laboratorio de Virus Respiratorios y Neurovirosis, Hospital Señor del Milagro, Salta capital, Salta, Argentina
| | - Veronica Lesser
- Laboratorio de Virus Respiratorios y Neurovirosis, Hospital Señor del Milagro, Salta capital, Salta, Argentina
| | - Pamela Cajal
- Laboratorio de Virus Respiratorios y Neurovirosis, Hospital Señor del Milagro, Salta capital, Salta, Argentina
| | - Fernanda Agüero
- Laboratorio de Virus Respiratorios y Neurovirosis, Hospital Señor del Milagro, Salta capital, Salta, Argentina
| | - Cintia Calvente
- Laboratorio de Virus Respiratorios y Neurovirosis, Hospital Señor del Milagro, Salta capital, Salta, Argentina
| | - Carolina Torres
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Mariana Viegas
- Laboratorio de Virología, Hospital de Niños Dr. Ricardo Gutiérrez, CABA, Gallo 1330, 2do piso, C1425EFD, Argentina.
| |
Collapse
|
36
|
Furuse Y. Cartography of SARS-CoV-2 variants based on the susceptibility to therapeutic monoclonal antibodies. J Med Virol 2023; 95:e28275. [PMID: 36326059 PMCID: PMC9877944 DOI: 10.1002/jmv.28275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A comprehensive picture of a phenotypic relationship among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has been poorly studied. Here, this study presents cartography showing how the wild-type strain of SARS-CoV-2 and 14 variants are alike or different from the perspective of the susceptibility to 12 therapeutic monoclonal antibodies. The Alpha variant is close to the wild-type strain, whereas the Beta, Gamma, and Delta variants diverge from the wild-type. The map highlights the very unique property of the Omicron variant. Interestingly, sublineages of the Omicron variants, BA.1, BA.2, and BA.4/5, differ substantially in the cartography.
Collapse
Affiliation(s)
- Yuki Furuse
- Nagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Medical Education Development CenterNagasaki University HospitalNagasakiJapan
- Institute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
- Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
| |
Collapse
|
37
|
The SARS-CoV-2 spike S375F mutation characterizes the Omicron BA.1 variant. iScience 2022; 25:105720. [PMID: 36507224 PMCID: PMC9719929 DOI: 10.1016/j.isci.2022.105720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have revealed the unique virological characteristics of Omicron, particularly those of its spike protein, such as less cleavage efficacy in cells, reduced ACE2 binding affinity, and poor fusogenicity. However, it remains unclear which mutation(s) determine these three virological characteristics of Omicron spike. Here, we show that these characteristics of the Omicron spike protein are determined by its receptor-binding domain. Of interest, molecular phylogenetic analysis revealed that acquisition of the spike S375F mutation was closely associated with the explosive spread of Omicron in the human population. We further elucidated that the F375 residue forms an interprotomer pi-pi interaction with the H505 residue of another protomer in the spike trimer, conferring the attenuated cleavage efficiency and fusogenicity of Omicron spike. Our data shed light on the evolutionary events underlying the emergence of Omicron at the molecular level.
Collapse
|
38
|
Jallul M, Ibrahim K, Zaghdani A, Abdusalam MM, Al Dwigen SM, Atwair WS, Elbasir M, Alhudiri I, El Meshri SE, Elzagheid A. Variant-specific RT-qPCR for rapid screening of B.1.617 mutations in SARS-CoV-2. Libyan J Med 2022; 17:2121252. [PMID: 36062935 PMCID: PMC9467536 DOI: 10.1080/19932820.2022.2121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
The continuous emergence of new SARS-CoV-2 variants required rapid and reliable diagnostic methods for early detection and monitoring of the spread of the virus, especially in low-resource countries where whole genome sequencing is not available. We aimed to evaluate and compare the performance of two different RT-qPCR screening assays for the detection of B.1.617 lineage mutations. A total of 85 SARS-CoV-2 positive samples were collected between 9th August and 10 September 2021 and screened by two mutation-specific RT-qPCR assays for simultaneous detection of B.1.617.1 and B.1.617.2 lineage mutations. VIASURE Variant II PCR assay identified 2 Delta variant-specific mutations (L452R, and P681 R) in 80% of tested samples, while the PKamp™ Variant Detect™ assay was only able to detect one Delta variant specific mutation (L452R) in 75% of tested samples. This is the first report to show the Delta variant as the cause of the third wave in Libya. The use of multiplex RT-qPCR assays has allowed the identification of new variants for rapid screening. However, RT-qPCR results should be confirmed by whole genome sequencing of SARS-COV-2.
Collapse
Affiliation(s)
- Mwada Jallul
- Genetic Engineering Department, Libyan Biotechnology Research Center, Tripoli, Libya
| | - Khaled Ibrahim
- Genetic Engineering Department, Libyan Biotechnology Research Center, Tripoli, Libya
| | - Ahmed Zaghdani
- Department of Microbiology, Libyan Biotechnology Research Centre, Tripoli, Libya
| | | | - Samira M Al Dwigen
- Department of Cell Biology, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Wafya S Atwair
- Genetic Engineering Department, Libyan Biotechnology Research Center, Tripoli, Libya
| | - Mohamed Elbasir
- Genetic Engineering Department, Libyan Biotechnology Research Center, Tripoli, Libya
| | - Inas Alhudiri
- Genetic Engineering Department, Libyan Biotechnology Research Center, Tripoli, Libya
| | - Salah Edin El Meshri
- Department of Microbiology, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Adam Elzagheid
- Genetic Engineering Department, Libyan Biotechnology Research Center, Tripoli, Libya
| |
Collapse
|
39
|
Luo WR, Wu XM. Novel coronavirus mutations: Vaccine development and challenges. Microb Pathog 2022; 173:105828. [PMID: 36243381 PMCID: PMC9561474 DOI: 10.1016/j.micpath.2022.105828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The ongoing global pandemic of novel coronavirus pneumonia (COVID-19) caused by the SARS-CoV-2 has a significant impact on global health and economy system. In this context, there have been some landmark advances in vaccine development. Over 100 new coronavirus vaccine candidates have been approved for clinical trials, with ten WHO-approved vaccines including four inactivated virus vaccines, two mRNA vaccines, three recombinant viral vectored vaccines and one protein subunit vaccine on the "Emergency Use Listing". Although the SARS-CoV-2 has an internal proofreading mechanism, there have been a number of mutations emerged in the pandemic affecting its transmissibility, pathogenicity and immunogenicity. Of these, mutations in the spike (S) protein and the resultant mutant variants have posed new challenges for vaccine development and application. In this review article, we present an overview of vaccine development, the prevalence of new coronavirus variants and their impact on protective efficacy of existing vaccines and possible immunization strategies coping with the viral mutation and diversity.
Collapse
|
40
|
Salimović-Bešić I, Dedeić-Ljubović A, Zahirović E, Hasanović M, Šehić M, Vukovikj M, Boshevska G, Vegar-Zubović S, Mehmedika-Suljić E, Izetbegović S. The SARS-CoV-2 Delta (B.1.617.2) variant with spike N501Y mutation in the shadow of Omicron emergence. Heliyon 2022; 8:e12650. [PMID: 36590492 PMCID: PMC9789543 DOI: 10.1016/j.heliyon.2022.e12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Circulation of the Omicron variant with the reemergence of the N501Y mutation along with many others in the spike protein has once again stirred the academic community. Interestingly, tracing the genetic diversity of SARS-CoV-2 shed light on a less frequent N501Y + Delta variant which has been in the global circulation for some time before the Omicron appearance. This paper aims to present the molecular characteristics of the SARS-CoV-2 Spike_N501Y + Delta variant detected in Bosnia and Herzegovina. The study was conducted during November and December 2021. All patients were tested using real-time RT-PCR for detection of SARS-CoV-2. A representative number of SARS-CoV-2 positive samples was pre-screened using VirSNiP SARS-CoV-2 Spike N501Y kit. The characterization of the viruses was carried out with Illumina RNA Prep with enrichment and the Respiratory Virus Oligo Panel kit. Among the analyzed sequences, we found two isolates of the Delta variant that differ from their most related clade- GK AY.4.3 in additional mutations N501Y and L54F. In this study, we described the presence of a rare form of Delta variant with Spike_N501Y mutation in the shadow of the Omicron emergence. Despite the set of mutations in the Spike protein, this form of Delta variant does not indicate the large-scale consequences for the general population. Further functional studies of this form could provide more information about its antigenicity and infectivity.
Collapse
Affiliation(s)
- Irma Salimović-Bešić
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Amela Dedeić-Ljubović
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Edina Zahirović
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Medina Hasanović
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Merima Šehić
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Maja Vukovikj
- Institute of Public Health of Republic of North Macedonia, 50-ta Divizija 6, 1000, Skopje, Macedonia
| | - Golubinka Boshevska
- Faculty for Medical Sciences, University Goce Delchev, Krste Misirkov No.10-A P.O. Box 201, 2000, Shtip, Macedonia
| | - Sandra Vegar-Zubović
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Enra Mehmedika-Suljić
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Sebija Izetbegović
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
41
|
Fujita S, Kosugi Y, Kimura I, Yamasoba D, Sato K. Structural Insight into the Resistance of the SARS-CoV-2 Omicron BA.4 and BA.5 Variants to Cilgavimab. Viruses 2022; 14:v14122677. [PMID: 36560681 PMCID: PMC9785715 DOI: 10.3390/v14122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
We have recently revealed that the new SARS-CoV-2 Omicron sublineages BA.4 and BA.5 exhibit increased resistance to cilgavimab, a therapeutic monoclonal antibody, and the resistance to cilgavimab is attributed to the spike L452R substitution. However, it remains unclear how the spike L452R substitution renders resistance to cilgavimab. Here, we demonstrated that the increased resistance to cilgavimab of the spike L452R is possibly caused by the steric hindrance between cilgavimab and its binding interface on the spike. Our results suggest the importance of developing therapeutic antibodies that target SARS-CoV-2 variants harboring the spike L452R substitution.
Collapse
Affiliation(s)
- Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| | - Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Daichi Yamasoba
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Faculty of Medicine, Kobe University, Kobe 6500017, Japan
| | | | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 2778561, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi 3320012, Japan
- Correspondence: ; Tel.: +81-3-6409-2212
| |
Collapse
|
42
|
Yang R, Cheng J, Song X, Pan Y, Wang H, Li J, He X, Gou J, Zhang G. Characteristics of COVID-19 (Delta Variant)/HIV Co-infection: A Cross-sectional Study in Henan Province, China. INTENSIVE CARE RESEARCH 2022; 2:96-107. [PMID: 36407473 PMCID: PMC9666970 DOI: 10.1007/s44231-022-00018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
Abstract
Background Since the end of July 2021, SARS-CoV-2 (Delta variant) invaded Henan Province, China, causing a rapid COVID-19 spread in the province. Among them, the clinical features of COVID-19 (Delta Variant)/HIV co-infection have attracted our attention. Methods We included 12 COVID-19 patients living with HIV (human immunodeficiency virus) from July 30, 2021 to September 17, 2021 in Henan Province, China. Demographic, clinical, laboratory, and computed tomography (CT) imaging data were dynamically collected from first nucleic acid positive to hospital discharge. Laboratory findings included SARS-CoV-2 viral load, HIV viral load, IgM, IgG, cytokines, lymphocyte subpopulation, ferritin, etc. Statistical analyses were performed using IBM SPSS version 26·0 and GraphPad Prism version 9·0. Results It was founded that the low Ct value persisted for about 21 days, and the viral shedding time (turn negative time) of the patients was 32·36 ± 2·643 days. Furthermore, chest CT imaging revealed that lesions were obviously and rapidly absorbed. It was surprising that IgM levels were statistically higher in patients taking azvudine or convalescent plasma than in patients not taking these drugs (P < 0·001, P = 0·0002, respectively). IgG levels were significantly higher in patients treated with the combined medication of BRII/196 and BRII/198 than in those not treated with these drugs (P = 0·0029). IgM was significantly higher in those with low HIV viral load than those with high HIV viral load (P < 0·001). In addition, as treatment progressed and patients' condition improved, IL-17a showed a decreasing trend. Conclusions Based on this study, we found that HIV infection might not exacerbate COVID-19 severity. Supplementary Information The online version contains supplementary material available at 10.1007/s44231-022-00018-z.
Collapse
Affiliation(s)
- Rui Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Jiuling Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Xiangjin Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Yuanwei Pan
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan People’s Republic of China
| | - Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Jing Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Xudong He
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Jianjun Gou
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| |
Collapse
|
43
|
Saito A, Tamura T, Zahradnik J, Deguchi S, Tabata K, Anraku Y, Kimura I, Ito J, Yamasoba D, Nasser H, Toyoda M, Nagata K, Uriu K, Kosugi Y, Fujita S, Shofa M, Monira Begum M, Shimizu R, Oda Y, Suzuki R, Ito H, Nao N, Wang L, Tsuda M, Yoshimatsu K, Kuramochi J, Kita S, Sasaki-Tabata K, Fukuhara H, Maenaka K, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Ueno T, Schreiber G, Takaori-Kondo A, Shirakawa K, Sawa H, Irie T, Hashiguchi T, Takayama K, Matsuno K, Tanaka S, Ikeda T, Fukuhara T, Sato K. Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant. Cell Host Microbe 2022; 30:1540-1555.e15. [PMID: 36272413 PMCID: PMC9578327 DOI: 10.1016/j.chom.2022.10.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
Abstract
The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency, but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jiri Zahradnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; First Medical Faculty at Biocev, Charles University, Vestec, Prague, Czechia
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Yamasoba
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Faculty of Medicine, Kobe University, Kobe, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mako Toyoda
- Division of Infection and immunity, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Kayoko Nagata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mst Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | | | - Jin Kuramochi
- Interpark Kuramochi Clinic, Utsunomiya, Japan; Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kaori Sasaki-Tabata
- Department of Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideo Fukuhara
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan; Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan; Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Takamasa Ueno
- Division of Infection and immunity, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Takashi Irie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan.
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
44
|
Iyer P, Chino T, Ojcius DM. Infection of the oral cavity with SARS-CoV-2 variants: Scope of salivary diagnostics. FRONTIERS IN ORAL HEALTH 2022; 3:1001790. [PMID: 36389278 PMCID: PMC9659966 DOI: 10.3389/froh.2022.1001790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Coronaviruses, including SARS-CoV-2, have caused pandemics in the past two decades. The most prevalent SARS-CoV-2 variants of concern can re-infect individuals who have been previously infected with other variants or had protection from vaccines targeting the original SARS-CoV-2 variant. Given the high risk of transmission of coronavirus via aerosols produced during dental procedures, it is important to understand the future risk of coronavirus infection for oral health professionals and to diagnose quickly early stages of outbreaks. Testing of saliva for coronavirus may be the least invasive and most convenient method for following the outbreak at the individual and community level. This review will describe strategies for diagnosis of coronavirus in saliva.
Collapse
Affiliation(s)
- Parvati Iyer
- Department of Diagnostic Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Takahiro Chino
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| | - David M. Ojcius
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| |
Collapse
|
45
|
Abdullahi A, Oladele D, Owusu M, Kemp SA, Ayorinde J, Salako A, Fink D, Ige F, Ferreira IATM, Meng B, Sylverken AA, Onwuamah C, Boadu KO, Osuolale K, Frimpong JO, Abubakar R, Okuruawe A, Abdullahi HW, Liboro G, Agyemang LD, Ayisi-Boateng NK, Odubela O, Ohihoin G, Ezechi O, Kamasah JS, Ameyaw E, Arthur J, Kyei DB, Owusu DO, Usman O, Mogaji S, Dada A, Agyei G, Ebrahimi S, Gutierrez LC, Aliyu SH, Doffinger R, Audu R, Adegbola R, Mlcochova P, Phillips RO, Solako BL, Gupta RK. SARS-COV-2 antibody responses to AZD1222 vaccination in West Africa. Nat Commun 2022; 13:6131. [PMID: 36253377 PMCID: PMC9574797 DOI: 10.1038/s41467-022-33792-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Real-world data on vaccine-elicited neutralising antibody responses for two-dose AZD1222 in African populations are limited. We assessed baseline SARS-CoV-2 seroprevalence and levels of protective neutralizing antibodies prior to vaccination rollout using binding antibodies analysis coupled with pseudotyped virus neutralisation assays in two cohorts from West Africa: Nigerian healthcare workers (n = 140) and a Ghanaian community cohort (n = 527) pre and post vaccination. We found 44 and 28% of pre-vaccination participants showed IgG anti-N positivity, increasing to 59 and 39% respectively with anti-receptor binding domain (RBD) IgG-specific antibodies. Previous IgG anti-N positivity significantly increased post two-dose neutralizing antibody titres in both populations. Serological evidence of breakthrough infection was observed in 8/49 (16%). Neutralising antibodies were observed to wane in both populations, especially in anti-N negative participants with an observed waning rate of 20% highlighting the need for a combination of additional markers to characterise previous infection. We conclude that AZD1222 is immunogenic in two independent West African cohorts with high background seroprevalence and incidence of breakthrough infection in 2021. Waning titres post second dose indicates the need for booster dosing after AZD1222 in the African setting despite hybrid immunity from previous infection.
Collapse
Affiliation(s)
- Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Institute of Human Virology, Abuja, Nigeria
| | - David Oladele
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Michael Owusu
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Steven A Kemp
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - James Ayorinde
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Abideen Salako
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Douglas Fink
- Faculty of Infection and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Infection and Immunity, University College London, London, UK
| | - Fehintola Ige
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Isabella A T M Ferreira
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Augustina Angelina Sylverken
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Chika Onwuamah
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | | | - Kazeem Osuolale
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | | | - Rufai Abubakar
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Azuka Okuruawe
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | | | - Gideon Liboro
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | | | | | | | - Gregory Ohihoin
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Oliver Ezechi
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | | | - Emmanuel Ameyaw
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Derrick Boakye Kyei
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | | | - Olagoke Usman
- Federal Medical Centre, Ebutte Metta, Lagos, Nigeria
| | - Sunday Mogaji
- Federal Medical Centre, Ebutte Metta, Lagos, Nigeria
| | | | - George Agyei
- Kwadaso Seventh Day Adventist Hospital, Kumasi, Ghana
| | - Soraya Ebrahimi
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Lourdes Ceron Gutierrez
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Sani H Aliyu
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Rainer Doffinger
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Rosemary Audu
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Richard Adegbola
- Nigeria Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Richard Odame Phillips
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.
| | | | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Africa Health Research Institute, Durban, South Africa.
| |
Collapse
|
46
|
Kimura I, Yamasoba D, Tamura T, Nao N, Suzuki T, Oda Y, Mitoma S, Ito J, Nasser H, Zahradnik J, Uriu K, Fujita S, Kosugi Y, Wang L, Tsuda M, Kishimoto M, Ito H, Suzuki R, Shimizu R, Begum MM, Yoshimatsu K, Kimura KT, Sasaki J, Sasaki-Tabata K, Yamamoto Y, Nagamoto T, Kanamune J, Kobiyama K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Shirakawa K, Takaori-Kondo A, Kuramochi J, Schreiber G, Ishii KJ, Hashiguchi T, Ikeda T, Saito A, Fukuhara T, Tanaka S, Matsuno K, Sato K. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5. Cell 2022; 185:3992-4007.e16. [PMID: 36198317 PMCID: PMC9472642 DOI: 10.1016/j.cell.2022.09.018] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.
Collapse
Affiliation(s)
- Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Yamasoba
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Faculty of Medicine, Kobe University, Kobe, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shuya Mitoma
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Jiri Zahradnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hayato Ito
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Mst Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | | | - Kanako Terakado Kimura
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kaori Sasaki-Tabata
- Department of Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jin Kuramochi
- Interpark Kuramochi Clinic, Utsunomiya, Japan; Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan.
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
47
|
The Comparison of Mutational Progression in SARS-CoV-2: A Short Updated Overview. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3040018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The COVID-19 pandemic has impacted the world population adversely, posing a threat to human health. In the past few years, various strains of SARS-CoV-2, each with different mutations in its structure, have impacted human health in negative ways. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations influence the virulence, antibody evasion, and Angiotensin-converting enzyme 2 (ACE2) affinity of the virus. These mutations are essential to understanding how a new strain of SARS-CoV-2 has changed and its possible effects on the human body. This review provides an insight into the spike mutations of SARS-CoV-2 variants. As the current scientific data offer a scattered outlook on the various type of mutations, we aimed to categorize the mutations of Beta (B.1.351), Gamma (P.1), Delta (B.1.612.2), and Omicron (B.1.1.529) systematically according to their location in the subunit 1 (S1) and subunit 2 (S2) domains and summarized their consequences as a result. We also compared the miscellany of mutations that have emerged in all four variants to date. The comparison shows that mutations such as D614G and N501Y have emerged in all four variants of concern and that all four variants have multiple mutations within the N-terminal domain (NTD), as in the case of the Delta variant. Other mutations are scattered in the receptor binding domain (RBD) and subdomain 2 (SD2) of the S1 domain. Mutations in RBD or NTD are often associated with antibody evasion. Few mutations lie in the S2 domain in the Beta, Gamma, and Delta variants. However, in the Omicron variant many mutations occupy the S2 domain, hinting towards a much more evasive virus.
Collapse
|
48
|
Structural heterogeneity and precision of implications drawn from cryo-electron microscopy structures: SARS-CoV-2 spike-protein mutations as a test case. EUROPEAN BIOPHYSICS JOURNAL 2022; 51:555-568. [PMID: 36167828 PMCID: PMC9514682 DOI: 10.1007/s00249-022-01619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Protein structures may be used to draw functional implications at the residue level, but how sensitive are these implications to the exact structure used? Calculation of the effects of SARS-CoV-2 S-protein mutations based on experimental cryo-electron microscopy structures have been abundant during the pandemic. To understand the precision of such estimates, we studied three distinct methods to estimate stability changes for all possible mutations in 23 different S-protein structures (3.69 million ΔΔG values in total) and explored how random and systematic errors can be remedied by structure-averaged mutation group comparisons. We show that computational estimates have low precision, due to method and structure heterogeneity making results for single mutations uninformative. However, structure-averaged differences in mean effects for groups of substitutions can yield significant results. Illustrating this protocol, functionally important natural mutations, despite individual variations, average to a smaller stability impact compared to other possible mutations, independent of conformational state (open, closed). In summary, we document substantial issues with precision in structure-based protein modeling and recommend sensitivity tests to quantify these effects, but also suggest partial solutions to the problem in the form of structure-averaged “ensemble” estimates for groups of residues when multiple structures are available.
Collapse
|
49
|
SARS-CoV-2 Variants, Current Vaccines and Therapeutic Implications for COVID-19. Vaccines (Basel) 2022; 10:vaccines10091538. [PMID: 36146616 PMCID: PMC9504858 DOI: 10.3390/vaccines10091538] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Over the past two years, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused hundreds of millions of infections, resulting in an unprecedented pandemic of coronavirus disease 2019 (COVID-19). As the virus spreads through the population, ongoing mutations and adaptations are being discovered. There is now substantial clinical evidence that demonstrates the SARS-CoV-2 variants have stronger transmissibility and higher virulence compared to the wild-type strain of SARS-CoV-2. Hence, development of vaccines against SARS-CoV-2 variants to boost individual immunity has become essential. However, current treatment options are limited for COVID-19 caused by the SARS-CoV-2 variants. In this review, we describe current distribution, variation, biology, and clinical features of COVID-19 caused by SARS-CoV-2 variants (including Alpha (B.1.1.7 Lineage) variant, Beta (B.1.351 Lineage) variant, Gamma (P.1 Lineage) variant, Delta (B.1.617.2 Lineage) variant, and Omicron (B.1.1.529 Lineage) variant and others. In addition, we review currently employed vaccines in clinical or preclinical phases as well as potential targeted therapies in an attempt to provide better preventive and treatment strategies for COVID-19 caused by different SARS-CoV-2 variants.
Collapse
|
50
|
Li X, Pan Y, Yin Q, Wang Z, Shan S, Zhang L, Yu J, Qu Y, Sun L, Gui F, Lu J, Jing Z, Wu W, Huang T, Shi X, Li J, Li X, Li D, Wang S, Yang M, Zhang L, Duan K, Liang M, Yang X, Wang X. Structural basis of a two-antibody cocktail exhibiting highly potent and broadly neutralizing activities against SARS-CoV-2 variants including diverse Omicron sublineages. Cell Discov 2022; 8:87. [PMID: 36075908 PMCID: PMC9453709 DOI: 10.1038/s41421-022-00449-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), especially the latest Omicron, have exhibited severe antibody evasion. Broadly neutralizing antibodies with high potency against Omicron are urgently needed for understanding the working mechanisms and developing therapeutic agents. In this study, we characterized the previously reported F61, which was isolated from convalescent patients infected with prototype SARS-CoV-2, as a broadly neutralizing antibody against all VOCs including Omicron BA.1, BA.1.1, BA.2, BA.3 and BA.4 sublineages by utilizing antigen binding and cell infection assays. We also identified and characterized another broadly neutralizing antibody D2 with epitope distinct from that of F61. More importantly, we showed that a combination of F61 with D2 exhibited synergy in neutralization and protecting mice from SARS-CoV-2 Delta and Omicron BA.1 variants. Cryo-Electron Microscopy (Cryo-EM) structures of the spike-F61 and spike-D2 binary complexes revealed the distinct epitopes of F61 and D2 at atomic level and the structural basis for neutralization. Cryo-EM structure of the Omicron-spike-F61-D2 ternary complex provides further structural insights into the synergy between F61 and D2. These results collectively indicated F61 and F61-D2 cocktail as promising therapeutic antibodies for combating SARS-CoV-2 variants including diverse Omicron sublineages.
Collapse
Affiliation(s)
- Xiaoman Li
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongbing Pan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Qiangling Yin
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Sisi Shan
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Laixing Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanyuan Qu
- Institution of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Lina Sun
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Gui
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Zhaofei Jing
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Wei Wu
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Huang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuanling Shi
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiandong Li
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Dexin Li
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, Hubei, China
| | - Shiwen Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, Hubei, China
| | - Maojun Yang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Linqi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China
| | - Mifang Liang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- CDC-WIV Joint Research Center for Emerging Diseases and Biosafety, Wuhan, Hubei, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, Hubei, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|