1
|
Ling L, Kim M, Soper A, Kovarova M, Spagnuolo RA, Begum N, Kirchherr J, Archin N, Battaglia D, Cleveland D, Wahl A, Margolis DM, Browne EP, Garcia JV. Analysis of the effect of HDAC inhibitors on the formation of the HIV reservoir. mBio 2024; 15:e0163224. [PMID: 39136440 PMCID: PMC11389399 DOI: 10.1128/mbio.01632-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The HIV reservoir is more dynamic than previously thought with around 70% of the latent reservoir originating from viruses circulating within 1 year of the initiation of antiretroviral therapy (ART). In an ex vivo model system of HIV latency, it was reported that early exposure to class I histone deacetylase (HDAC) inhibitors might prevent these more recently infected cells from entering a state of stable viral latency. This finding raises the possibility that co-administration of HDAC inhibitors at the time of ART initiation may prevent the establishment of much of the HIV reservoir. Here, we tested the effects of the HDAC inhibitors suberoylanilide hydroxamic acid (SAHA) and panobinostat co-administered at the time of ART initiation on the formation of the viral reservoir in HIV-infected humanized mice. As previously shown, SAHA and panobinostat were well tolerated in humanized mice. Unexpectedly, co-administration of SAHA resulted in an increase in the frequency of CD4+ cells carrying HIV DNA but did not alter the frequency of cell-associated HIV RNA in HIV-infected, ART-treated humanized mice. Co-administration of panobinostat did not alter levels of cell-associated HIV DNA or RNA. Our in vivo findings indicate that co-administration of HDAC inhibitors initiated at the same time of ART treatment does not prevent recently infected cells from entering latency.IMPORTANCECurrent antiretroviral therapy (ART) does not eradicate cells harboring replication-competent HIV reservoir. Withdrawal of ART inevitably results in a rapid viremia rebound. The HIV reservoir is more dynamic than previously thought. Early exposure to class I histone deacetylase (HDAC) inhibitors inhibit these more recently infected cells from entering a state of stable viral latency in an ex vivo model of latency, raising the possibility that co-administration of HDAC inhibitors at the time of ART initiation may reduce much of the HIV reservoir. Here, we tested the effects of the HDAC inhibitors suberoylanilide hydroxamic acid or panobinostat during ART initiation on the formation of the viral reservoir in HIV-infected humanized mice. Our in vivo study indicates that in contrast to in vitro observations, the co-administration of HDAC inhibitors at the same time of ART initiation does not prevent recently infected cells from entering latency.
Collapse
Affiliation(s)
- Lijun Ling
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manse Kim
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew Soper
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Martina Kovarova
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rae Ann Spagnuolo
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nurjahan Begum
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Diana Battaglia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dave Cleveland
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David M. Margolis
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Semenova L, Wang Y, Falcinelli S, Archin N, Cooper-Volkheimer AD, Margolis DM, Goonetilleke N, Murdoch DM, Rudin CD, Browne EP. Machine learning approaches identify immunologic signatures of total and intact HIV DNA during long-term antiretroviral therapy. eLife 2024; 13:RP94899. [PMID: 39250423 PMCID: PMC11383529 DOI: 10.7554/elife.94899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Understanding the interplay between the HIV reservoir and the host immune system may yield insights into HIV persistence during antiretroviral therapy (ART) and inform strategies for a cure. Here, we applied machine learning (ML) approaches to cross-sectional high-parameter HIV reservoir and immunology data in order to characterize host-reservoir associations and generate new hypotheses about HIV reservoir biology. High-dimensional immunophenotyping, quantification of HIV-specific T cell responses, and measurement of genetically intact and total HIV proviral DNA frequencies were performed on peripheral blood samples from 115 people with HIV (PWH) on long-term ART. Analysis demonstrated that both intact and total proviral DNA frequencies were positively correlated with T cell activation and exhaustion. Years of ART and select bifunctional HIV-specific CD4 T cell responses were negatively correlated with the percentage of intact proviruses. A leave-one-covariate-out inference approach identified specific HIV reservoir and clinical-demographic parameters, such as age and biological sex, that were particularly important in predicting immunophenotypes. Overall, immune parameters were more strongly associated with total HIV proviral frequencies than intact proviral frequencies. Uniquely, however, expression of the IL-7 receptor alpha chain (CD127) on CD4 T cells was more strongly correlated with the intact reservoir. Unsupervised dimension reduction analysis identified two main clusters of PWH with distinct immune and reservoir characteristics. Using reservoir correlates identified in these initial analyses, decision tree methods were employed to visualize relationships among multiple immune and clinical-demographic parameters and the HIV reservoir. Finally, using random splits of our data as training-test sets, ML algorithms predicted with approximately 70% accuracy whether a given participant had qualitatively high or low levels of total or intact HIV DNA . The techniques described here may be useful for assessing global patterns within the increasingly high-dimensional data used in HIV reservoir and other studies of complex biology.
Collapse
Affiliation(s)
| | - Yingfan Wang
- Department of Computer Science, Duke UniversityDurhamUnited States
| | - Shane Falcinelli
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
| | - Nancie Archin
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Medicine, UNC Chapel HillChapel HillUnited States
| | | | - David M Margolis
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
- Department of Medicine, UNC Chapel HillChapel HillUnited States
| | - Nilu Goonetilleke
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
| | | | - Cynthia D Rudin
- Department of Computer Science, Duke UniversityDurhamUnited States
| | - Edward P Browne
- UNC HIV Cure Center UNC Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, UNC Chapel HillChapel HillUnited States
- Department of Medicine, UNC Chapel HillChapel HillUnited States
| |
Collapse
|
3
|
Margolis DM. Advancing Toward a Human Immunodeficiency Virus Cure: Initial Progress on a Difficult Path. Infect Dis Clin North Am 2024; 38:487-497. [PMID: 38969530 PMCID: PMC11410351 DOI: 10.1016/j.idc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Therapies to eradicate human immunodeficiency virus (HIV) infection, sparing lifelong antiviral therapy, are a still-distant goal. But significant advances have been made to reverse HIV latency while antiretroviral therapy (ART) is maintained to allow targeting of the persistent viral reservoir, to test interventions that could clear cells emerging from latent infection, and to improve HIV cure research assays and infrastructure. Steady progress gives hope that future therapies to clear HIV infection may relieve individuals and society of the burden of HIV.
Collapse
Affiliation(s)
- David M Margolis
- Medicine, Microbiology & Immunology, Epidemiology; UNC HIV Cure Center; University of North Carolina at Chapel Hill, 2016 Genetic Medicine Building, 120 Mason Farm Road, CB 7042, Chapel Hill, NC 27599-7042, USA.
| |
Collapse
|
4
|
Raines SLM, Falcinelli SD, Peterson JJ, Van Gulck E, Allard B, Kirchherr J, Vega J, Najera I, Boden D, Archin NM, Margolis DM. Nanoparticle delivery of Tat synergizes with classical latency reversal agents to express HIV antigen targets. Antimicrob Agents Chemother 2024; 68:e0020124. [PMID: 38829049 PMCID: PMC11232404 DOI: 10.1128/aac.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.
Collapse
Affiliation(s)
- Samuel L. M. Raines
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Brigitte Allard
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | - Isabel Najera
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nancie M. Archin
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Semenova L, Wang Y, Falcinelli S, Archin N, Cooper-Volkheimer AD, Margolis DM, Goonetilleke N, Murdoch DM, Rudin CD, Browne EP. Machine learning approaches identify immunologic signatures of total and intact HIV DNA during long-term antiretroviral therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567386. [PMID: 38014340 PMCID: PMC10680759 DOI: 10.1101/2023.11.16.567386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Understanding the interplay between the HIV reservoir and the host immune system may yield insights into HIV persistence during antiretroviral therapy (ART) and inform strategies for a cure. Here, we applied machine learning approaches to cross-sectional high-parameter HIV reservoir and immunology data in order to characterize host-reservoir associations and generate new hypotheses about HIV reservoir biology. High-dimensional immunophenotyping, quantification of HIV-specific T cell responses, and measurement of genetically intact and total HIV proviral DNA frequencies were performed on peripheral blood samples from 115 people with HIV (PWH) on long-term ART. Analysis demonstrated that both intact and total proviral DNA frequencies were positively correlated with T cell activation and exhaustion. Years of ART and select bifunctional HIV-specific CD4 T cell responses were negatively correlated with the percentage of intact proviruses. A Leave-One-Covariate-Out (LOCO) inference approach identified specific HIV reservoir and clinical-demographic parameters, such as age and biological sex, that were particularly important in predicting immunophenotypes. Overall, immune parameters were more strongly associated with total HIV proviral frequencies than intact proviral frequencies. Uniquely, however, expression of the IL-7 receptor alpha chain (CD127) on CD4 T cells was more strongly correlated with the intact reservoir. Unsupervised dimension reduction analysis identified two main clusters of PWH with distinct immune and reservoir characteristics. Using reservoir correlates identified in these initial analyses, decision tree methods were employed to visualize relationships among multiple immune and clinical-demographic parameters and the HIV reservoir. Finally, using random splits of our data as training-test sets, machine learning algorithms predicted with approximately 70% accuracy whether a given participant had qualitatively high or low levels of total or intact HIV DNA. The techniques described here may be useful for assessing global patterns within the increasingly high-dimensional data used in HIV reservoir and other studies of complex biology.
Collapse
|
6
|
Thavarajah JJ, Hønge BL, Wejse CM. The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention. Viruses 2024; 16:911. [PMID: 38932203 PMCID: PMC11209272 DOI: 10.3390/v16060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although antiretroviral therapy (ART) effectively halts disease progression in HIV infection, the complete eradication of the virus remains elusive. Additionally, challenges such as long-term ART toxicity, drug resistance, and the demanding regimen of daily and lifelong adherence required by ART highlight the imperative need for alternative therapeutic and preventative approaches. In recent years, broadly neutralizing antibodies (bNAbs) have emerged as promising candidates, offering potential for therapeutic, preventative, and possibly curative interventions against HIV infection. OBJECTIVE This review aims to provide a comprehensive overview of the current state of knowledge regarding the passive immunization of bNAbs in HIV-1-infected individuals. MAIN FINDINGS Recent findings from clinical trials have highlighted the potential of bNAbs in the treatment, prevention, and quest for an HIV-1 cure. While monotherapy with a single bNAb is insufficient in maintaining viral suppression and preventing viral escape, ultimately leading to viral rebound, combination therapy with potent, non-overlapping epitope-targeting bNAbs have demonstrated prolonged viral suppression and delayed time to rebound by effectively restricting the emergence of escape mutations, albeit largely in individuals with bNAb-sensitive strains. Additionally, passive immunization with bNAb has provided a "proof of concept" for antibody-mediated prevention against HIV-1 acquisition, although complete prevention has not been obtained. Therefore, further research on the use of bNAbs in HIV-1 treatment and prevention remains imperative.
Collapse
Affiliation(s)
- Jannifer Jasmin Thavarajah
- Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Bo Langhoff Hønge
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Christian Morberg Wejse
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
- GloHAU, Center of Global Health, Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Armani-Tourret M, Bone B, Tan TS, Sun W, Bellefroid M, Struyve T, Louella M, Yu XG, Lichterfeld M. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat Rev Microbiol 2024; 22:328-344. [PMID: 38337034 PMCID: PMC11131351 DOI: 10.1038/s41579-024-01010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.
Collapse
Affiliation(s)
- Marie Armani-Tourret
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Bone
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Toong Seng Tan
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Weiwei Sun
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maxime Bellefroid
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tine Struyve
- HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Michael Louella
- Community Advisory Board, Delaney AIDS Research Enterprise (DARE), San Francisco, CA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
8
|
Nguyen K, Karn J. The sounds of silencing: dynamic epigenetic control of HIV latency. Curr Opin HIV AIDS 2024; 19:102-109. [PMID: 38547337 PMCID: PMC10990033 DOI: 10.1097/coh.0000000000000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW This review highlights advances in understanding the epigenetic control mechanisms that regulate HIV-1 latency mechanisms in T-cells and microglial cells and describes the potential of current therapeutic approaches targeting the epigenetic machinery to eliminate or block the HIV-1 latent reservoir. RECENT FINDINGS Large-scale unbiased CRISPR-Cas9 library-based screenings, coupled with biochemical studies, have comprehensively identified the epigenetic factors pivotal in regulating HIV-1 latency, paving the way for potential novel targets in therapeutic development. These studies also highlight how the bivalency observed at the HIV-1 5'LTR primes latent proviruses for rapid reactivation. SUMMARY The HIV-1 latent is established very early during infection, and its persistence is the major obstacle to achieving an HIV-1 cure. Here, we present a succinct summary of the latest research findings, shedding light on the pivotal roles played by host epigenetic machinery in the control of HIV-1 latency. Newly uncovered mechanisms permitting rapid reversal of epigenetic restrictions upon viral reactivation highlight the formidable challenges of achieving enduring and irreversible epigenetic silencing of HIV-1.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Molecular Biology & Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
9
|
Gay CL, Hanley PJ, Falcinelli SD, Kuruc JD, Pedersen SM, Kirchherr J, Raines SLM, Motta CM, Lazarski C, Chansky P, Tanna J, Shibli A, Datar A, McCann CD, Sili U, Ke R, Eron JJ, Archin N, Goonetilleke N, Bollard CM, Margolis DM. The Effects of Human Immunodeficiency Virus Type 1 (HIV-1) Antigen-Expanded Specific T-Cell Therapy and Vorinostat on Persistent HIV-1 Infection in People With HIV on Antiretroviral Therapy. J Infect Dis 2024; 229:743-752. [PMID: 38349333 PMCID: PMC10938201 DOI: 10.1093/infdis/jiad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/29/2023] [Indexed: 03/16/2024] Open
Abstract
BACKGROUND The histone deacetylase inhibitor vorinostat (VOR) can reverse human immunodeficiency virus type 1 (HIV-1) latency in vivo and allow T cells to clear infected cells in vitro. HIV-specific T cells (HXTCs) can be expanded ex vivo and have been safely administered to people with HIV (PWH) on antiretroviral therapy. METHODS Six PWH received infusions of 2 × 107 HXTCs/m² with VOR 400 mg, and 3 PWH received infusions of 10 × 107 HXTCs/m² with VOR. The frequency of persistent HIV by multiple assays including quantitative viral outgrowth assay (QVOA) of resting CD4+ T cells was measured before and after study therapy. RESULTS VOR and HXTCs were safe, and biomarkers of serial VOR effect were detected, but enhanced antiviral activity in circulating cells was not evident. After 2 × 107 HXTCs/m² with VOR, 1 of 6 PWH exhibited a decrease in QVOA, and all 3 PWH exhibited such declines after 10 × 107 HXTCs/m² and VOR. However, most declines did not exceed the 6-fold threshold needed to definitively attribute decline to the study intervention. CONCLUSIONS These modest effects provide support for the strategy of HIV latency reversal and reservoir clearance, but more effective interventions are needed to yield the profound depletion of persistent HIV likely to yield clinical benefit. Clinical Trials Registration. NCT03212989.
Collapse
Affiliation(s)
- Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Shane D Falcinelli
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - JoAnn D Kuruc
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Susan M Pedersen
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | | | - Cecilia M Motta
- Center for Cancer and Immunology Research, Children's National Health System
| | - Chris Lazarski
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Pamela Chansky
- Center for Cancer and Immunology Research, Children's National Health System
| | - Jay Tanna
- Center for Cancer and Immunology Research, Children's National Health System
| | - Abeer Shibli
- Center for Cancer and Immunology Research, Children's National Health System
| | - Anushree Datar
- Center for Cancer and Immunology Research, Children's National Health System
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Uluhan Sili
- Center for Cancer and Immunology Research, Children's National Health System
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, New Mexico
| | - Joseph J Eron
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Epidemiology, University of North Carolina at Chapel Hill
| | - Nancie Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
- Department of Epidemiology, University of North Carolina at Chapel Hill
| |
Collapse
|
10
|
Vieira Teixeira S, Prates G, Marcondes Fonseca LA, Casseb J. Can Persistent Infections with Hepatitis B Virus, Hepatitis C Virus, Human Immunodeficiency Virus, and Human T Lymphotropic Virus Type 1 Be Eradicated? AIDS Res Hum Retroviruses 2024; 40:127-133. [PMID: 37409405 DOI: 10.1089/aid.2022.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Persistent viruses are hard to be eradicated, even using effective medications, and can persist for a long time in humans, sometimes regardless of treatment. Hepatitis B virus, hepatitis C virus, human immunodeficiency virus, and human T cell lymphotropic virus infections, the most common in our era, are still a challenge despite the increased knowledge about their biology. Most of them are highly pathogenic, some causing acute disease or, more often, leading to chronic persistent infections, and some of the occult, carrying a high risk of morbidity and mortality. However, if such infections were discovered early, they might be eradicated in the near future with effective medications and/or vaccines. This perspective review points out some specific characteristics of the most important chronic persistent viruses. It seems that in the next few years, these persistent viruses may have control by vaccination, epidemiological strategies, and/or treatment.
Collapse
Affiliation(s)
- Sandy Vieira Teixeira
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gabriela Prates
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Luiz Augusto Marcondes Fonseca
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jorge Casseb
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Armani-Tourret M, Gao C, Hartana CA, Sun W, Carrere L, Vela L, Hochroth A, Bellefroid M, Sbrolla A, Shea K, Flynn T, Roseto I, Rassadkina Y, Lee C, Giguel F, Malhotra R, Bushman FD, Gandhi RT, Yu XG, Kuritzkes DR, Lichterfeld M. Selection of epigenetically privileged HIV-1 proviruses during treatment with panobinostat and interferon-α2a. Cell 2024; 187:1238-1254.e14. [PMID: 38367616 PMCID: PMC10903630 DOI: 10.1016/j.cell.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.
Collapse
Affiliation(s)
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ciputra Adijaya Hartana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - WeiWei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Vela
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Amy Sbrolla
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrina Shea
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Theresa Flynn
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Carole Lee
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francoise Giguel
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rajeev Malhotra
- Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Peterson JJ, Lewis CA, Burgos SD, Manickam A, Xu Y, Rowley AA, Clutton G, Richardson B, Zou F, Simon JM, Margolis DM, Goonetilleke N, Browne EP. A histone deacetylase network regulates epigenetic reprogramming and viral silencing in HIV-infected cells. Cell Chem Biol 2023; 30:1617-1633.e9. [PMID: 38134881 PMCID: PMC10754471 DOI: 10.1016/j.chembiol.2023.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
A long-lived latent reservoir of HIV-1-infected CD4 T cells persists with antiretroviral therapy and prevents cure. We report that the emergence of latently infected primary CD4 T cells requires the activity of histone deacetylase enzymes HDAC1/2 and HDAC3. Data from targeted HDAC molecules, an HDAC3-directed PROTAC, and CRISPR-Cas9 knockout experiments converge on a model where either HDAC1/2 or HDAC3 targeting can prevent latency, whereas all three enzymes must be targeted to achieve latency reversal. Furthermore, HDACi treatment targets features of memory T cells that are linked to proviral latency and persistence. Latency prevention is associated with increased H3K9ac at the proviral LTR promoter region and decreased H3K9me3, suggesting that this epigenetic switch is a key proviral silencing mechanism that depends on HDAC activity. These findings support further mechanistic work on latency initiation and eventual clinical studies of HDAC inhibitors to interfere with latency initiation.
Collapse
Affiliation(s)
- Jackson J Peterson
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Samuel D Burgos
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Ashokkumar Manickam
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Allison A Rowley
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Brian Richardson
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Fei Zou
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Jeremy M Simon
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC 27514, USA; UNC Neuroscience Center, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA; Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Edward P Browne
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA.
| |
Collapse
|
13
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Sanz M, Weideman AMK, Ward AR, Clohosey ML, Garcia-Recio S, Selitsky SR, Mann BT, Iannone MA, Whitworth CP, Chitrakar A, Garrido C, Kirchherr J, Coffey AR, Tsai YH, Samir S, Xu Y, Copertino D, Bosque A, Jones BR, Parker JS, Hudgens MG, Goonetilleke N, Soriano-Sarabia N. Aminobisphosphonates reactivate the latent reservoir in people living with HIV-1. Front Immunol 2023; 14:1219250. [PMID: 37744358 PMCID: PMC10516574 DOI: 10.3389/fimmu.2023.1219250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.
Collapse
Affiliation(s)
- Marta Sanz
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
| | - Ann Marie K. Weideman
- Biostatistics Core, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adam R. Ward
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
- Department of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Matthew L. Clohosey
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sara R. Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brendan T. Mann
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
| | - Marie Anne Iannone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chloe P. Whitworth
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alisha Chitrakar
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
| | - Carolina Garrido
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alisha R. Coffey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yi- Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shahryar Samir
- Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yinyan Xu
- Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dennis Copertino
- Department of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Alberto Bosque
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
| | - Brad R. Jones
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
- Department of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael G. Hudgens
- Biostatistics Core, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Natalia Soriano-Sarabia
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington, DC, United States
| |
Collapse
|
15
|
Debrabander Q, Hensley KS, Psomas CK, Bramer W, Mahmoudi T, van Welzen BJ, Verbon A, Rokx C. The efficacy and tolerability of latency-reversing agents in reactivating the HIV-1 reservoir in clinical studies: a systematic review. J Virus Erad 2023; 9:100342. [PMID: 37663575 PMCID: PMC10474473 DOI: 10.1016/j.jve.2023.100342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Understanding the clinical potency of latency-reversing agents (LRAs) on the HIV-1 reservoir is useful to deploy future strategies. This systematic review evaluated the effects of LRAs in human intervention studies. Methods A literature search was performed using medical databases focusing on studies with adults living with HIV-1 receiving LRAs. Eligibility criteria required participants from prospective clinical studies, a studied compound hypothesised as LRA, and reactivation or tolerability assessments. Relevant demographical data, LRA reactivation capacity, reservoir size, and adverse events were extracted. A study quality assessment with analysis of bias was performed by RoB 2 and ROBINS-I tools. The primary endpoints were HIV-1 reservoir reactivation after LRA treatment quantified by cell-associated unspliced HIV-1 RNA, and LRA tolerability defined by adverse events. Secondary outcomes were reservoir size and the effect of LRAs on analytical treatment interruption (ATI) duration. Results After excluding duplicates, 5182 publications were screened. In total 45 publications fulfilled eligibility criteria including 26 intervention studies and 16 randomised trials. The risk of bias was evaluated as high. Chromatin modulators were the main investigated LRA class in 24 studies. Participants were mostly males (90.1%). Where reported, HIV-1 subtype B was most frequently observed. Reactivation after LRA treatment occurred in 78% of studies and was observed with nearly all chromatin modulators. When measured, reactivation mostly occurred within 24 h after treatment initiation. Combination LRA strategies have been infrequently studied and were without synergistic reactivation. Adverse events, where reported, were mostly low grade, yet occurred frequently. Seven studies had individuals who discontinued LRAs for related adverse events. The reservoir size was assessed by HIV-1 DNA in 80% of studies. A small decrease in reservoir was observed in three studies on immune checkpoint inhibitors and the histone deacetylase inhibitors romidepsin and chidamide. No clear effect of LRAs on ATI duration was observed. Conclusion This systematic review provides a summary of the reactivation of LRAs used in current clinical trials whilst highlighting the importance of pharmacovigilance. Highly heterogeneous study designs and underrepresentation of relevant patient groups are to be considered when interpreting these results. The observed reactivation did not lead to cure or a significant reduction in the size of the reservoir. Finding more effective LRAs by including well-designed studies are needed to define the required reactivation level to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Quinten Debrabander
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Mailbox 85500, 3508GA, Utrecht, the Netherlands
| | - Kathryn S. Hensley
- Department of Internal Medicine, Section Infectious Diseases, And Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Erasmus University Medical Centre, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Christina K. Psomas
- Department of Infectious Diseases and Internal Medicine, European Hospital, Marseille, France
| | - Wichor Bramer
- Medical Library, Erasmus MC, Erasmus University Medical Centre, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus MC, Erasmus University Medical Center, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
- Department of Pathology, Erasmus MC, Erasmus University Medical Center, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
- Department of Urology, Erasmus MC, Erasmus University Medical Center, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Berend J. van Welzen
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Mailbox 85500, 3508GA, Utrecht, the Netherlands
| | - Annelies Verbon
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Mailbox 85500, 3508GA, Utrecht, the Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, And Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Erasmus University Medical Centre, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Schou MD, Søgaard OS, Rasmussen TA. Clinical trials aimed at HIV cure or remission: new pathways and lessons learned. Expert Rev Anti Infect Ther 2023; 21:1227-1243. [PMID: 37856845 DOI: 10.1080/14787210.2023.2273919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION The main barrier to finding a cure against HIV is the latent HIV reservoir, which persists in people living with HIV (PLWH) despite antiretroviral treatment (ART). Here, we discuss recent findings from interventional studies using mono- and combination therapies aimed at enhancing immune-mediated killing of the virus with or without activating HIV from latency. AREAS COVERED We discuss latency reversal agents (LRAs), broadly neutralizing antibodies, immunomodulatory therapies, and studies aimed at inducing apoptosis. EXPERT OPINION The landscape of clinical trials for HIV cure and remission has evolved considerably over the past 10 years. Several novel interventions such as immune checkpoint inhibitors, therapeutic vaccines, and broadly neutralizing antibodies have been tested either alone or in combination with LRAs but studies have so far not shown a meaningful impact on the frequency of latently infected cells. Immunomodulatory therapies could work differently in the setting of antigen expression, that is, during active viremia, and timing of interventions could therefore, be key to future therapeutic success. Lessons learned from clinical trials aimed at HIV cure indicate that while we are still far from reaching a complete eradication cure of HIV, clinical interventions capable of inducing enhanced control of HIV replication in the absence of ART might be a more feasible goal.
Collapse
Affiliation(s)
- Maya Dyveke Schou
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas Aagaard Rasmussen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Frattari GS, Caskey M, Søgaard OS. Broadly neutralizing antibodies for HIV treatment and cure approaches. Curr Opin HIV AIDS 2023; 18:157-163. [PMID: 37144579 DOI: 10.1097/coh.0000000000000802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW In recent years, clinical trials have explored broadly neutralizing antibodies (bNAbs) as treatment and cure of HIV. Here, we summarize the current knowledge, review the latest clinical studies, and reflect on the potential role of bNAbs in future applications in HIV treatment and cure strategies. RECENT FINDINGS In most individuals who switch from standard antiretroviral therapy to bNAb treatment, combinations of at least two bNAbs effectively suppress viremia. However, sensitivity of archived proviruses to bNAb neutralization and maintaining adequate bNAb plasma levels are key determinants of the therapeutic effect. Combinations of bNAbs with injectable small-molecule antiretrovirals are being developed as long-acting treatment regimens that may require as little as two annual administrations to maintain virological suppression. Further, interventions that combine bNAbs with immune modulators or therapeutic vaccines are under investigation as HIV curative strategies. Interestingly, administration of bNAbs during the early or viremic stage of infection appears to enhance host immune responses against HIV. SUMMARY While accurately predicting archived resistant mutations has been a significant challenge for bNAb-based treatments, combinations of potent bNAbs against nonoverlapping epitopes may help overcome this issue. As a result, multiple long-acting HIV treatment and cure strategies involving bNAbs are now being investigated.
Collapse
Affiliation(s)
- Giacomo Schmidt Frattari
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Sanders-Beer BE, Archin NM, Brumme ZL, Busch MP, Deleage C, O'Doherty U, Hughes SH, Jerome KR, Jones RB, Karn J, Kearney MF, Keele BF, Kulpa DA, Laird GM, Li JZ, Lichterfeld MD, Nussenzweig MC, Persaud D, Yukl SA, Siliciano RF, Mellors JW. Current HIV/SIV Reservoir Assays for Preclinical and Clinical Applications: Recommendations from the Experts 2022 NIAID Workshop Summary. AIDS Res Hum Retroviruses 2023; 40:7-21. [PMID: 37126090 DOI: 10.1089/aid.2022.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Since the first HIV-cured person was reported in 2009, a strong interest in developing highly sensitive HIV and SIV reservoir assays has emerged. In particular, the question arose about the comparative value of state-of-the-art assays to measure and characterize the HIV reservoir, and how these assays can be applied to accurately detect changes in the reservoir during efforts to develop a cure for HIV infection. Second, it is important to consider the impact on the outcome of clinical trials if these relatively new HIV reservoir assays are incorporated into clinical trial endpoints and/or used for clinical decision-making. To understand the advantages and limitations and the regulatory implications of HIV reservoir assays, the National Institute of Allergy and Infectious Diseases (NIAID) sponsored and convened a meeting on September 16, 2022, to discuss the state of knowledge concerning these questions and best practices for selecting HIV reservoir assays for a particular research question or clinical trial protocol.
Collapse
Affiliation(s)
- Brigitte E Sanders-Beer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancie M Archin
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael P Busch
- Vitalant Research Institute, University of California, San Francisco, California, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, Maryland, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mary F Kearney
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mathias D Lichterfeld
- Brigham and Women's Hospital and Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Deborah Persaud
- Department of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven A Yukl
- Department of Medicine, University of California San Francisco (UCSF) and San Francisco VA Medical Center, San Francisco, California, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Prins HAB, Crespo R, Lungu C, Rao S, Li L, Overmars RJ, Papageorgiou G, Mueller YM, Stoszko M, Hossain T, Kan TW, Rijnders BJA, Bax HI, van Gorp ECM, Nouwen JL, de Vries-Sluijs TEMS, Schurink CAM, de Mendonça Melo M, van Nood E, Colbers A, Burger D, Palstra RJ, van Kampen JJA, van de Vijver DAMC, Mesplède T, Katsikis PD, Gruters RA, Koch BCP, Verbon A, Mahmoudi T, Rokx C. The BAF complex inhibitor pyrimethamine reverses HIV-1 latency in people with HIV-1 on antiretroviral therapy. SCIENCE ADVANCES 2023; 9:eade6675. [PMID: 36921041 PMCID: PMC10017042 DOI: 10.1126/sciadv.ade6675] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Reactivation of the latent HIV-1 reservoir is a first step toward triggering reservoir decay. Here, we investigated the impact of the BAF complex inhibitor pyrimethamine on the reservoir of people living with HIV-1 (PLWH). Twenty-eight PLWH on suppressive antiretroviral therapy were randomized (1:1:1:1 ratio) to receive pyrimethamine, valproic acid, both, or no intervention for 14 days. The primary end point was change in cell-associated unspliced (CA US) HIV-1 RNA at days 0 and 14. We observed a rapid, modest, and significant increase in (CA US) HIV-1 RNA in response to pyrimethamine exposure, which persisted throughout treatment and follow-up. Valproic acid treatment alone did not increase (CA US) HIV-1 RNA or augment the effect of pyrimethamine. Pyrimethamine treatment did not result in a reduction in the size of the inducible reservoir. These data demonstrate that the licensed drug pyrimethamine can be repurposed as a BAF complex inhibitor to reverse HIV-1 latency in vivo in PLWH, substantiating its potential advancement in clinical studies.
Collapse
Affiliation(s)
- Henrieke A. B. Prins
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cynthia Lungu
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Letao Li
- Department of Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ronald J. Overmars
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Yvonne M. Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tanvir Hossain
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bart J. A. Rijnders
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hannelore I. Bax
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan L. Nouwen
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Theodora E. M. S. de Vries-Sluijs
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carolina A. M. Schurink
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mariana de Mendonça Melo
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Els van Nood
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Angela Colbers
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - David Burger
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | - Thibault Mesplède
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rob A. Gruters
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Birgit C. P. Koch
- Department of Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, University Medical Center, Utrecht, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Sanz M, Weideman AMK, Ward AR, Clohosey ML, Garcia-Recio S, Selitsky SR, Mann BT, Iannone MA, Whitworth CP, Chitrakar A, Garrido C, Kirchherr J, Coffey AR, Tsai YH, Samir S, Xu Y, Copertino D, Bosque A, Jones BR, Parker JS, Hudgens MG, Goonetilleke N, Soriano-Sarabia N. Aminobisphosphonates reactivate the latent reservoir in people living with HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527421. [PMID: 36798291 PMCID: PMC9934553 DOI: 10.1101/2023.02.07.527421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.
Collapse
Affiliation(s)
- Marta Sanz
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Ann Marie K. Weideman
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Adam R. Ward
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
- Department of Infectious Diseases, Weill Cornell Medicine, New York, USA
| | - Matthew L. Clohosey
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Sara R. Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Brendan T. Mann
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Marie Anne Iannone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Chloe P. Whitworth
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Alisha Chitrakar
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Carolina Garrido
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- UNC HIV-1 Cure Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Alisha R. Coffey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Shahryar Samir
- Microbiology & Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Yinyan Xu
- Microbiology & Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Dennis Copertino
- Department of Infectious Diseases, Weill Cornell Medicine, New York, USA
| | - Alberto Bosque
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| | - Brad R. Jones
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
- Department of Infectious Diseases, Weill Cornell Medicine, New York, USA
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Michael G. Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Microbiology & Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Natalia Soriano-Sarabia
- Department of Microbiology Immunology and Tropical Medicine, the George Washington University, Washington DC, USA
| |
Collapse
|
21
|
Gunst JD, Pahus MH, Rosás-Umbert M, Lu IN, Benfield T, Nielsen H, Johansen IS, Mohey R, Østergaard L, Klastrup V, Khan M, Schleimann MH, Olesen R, Støvring H, Denton PW, Kinloch NN, Copertino DC, Ward AR, Alberto WDC, Nielsen SD, Puertas MC, Ramos V, Reeves JD, Petropoulos CJ, Martinez-Picado J, Brumme ZL, Jones RB, Fox J, Tolstrup M, Nussenzweig MC, Caskey M, Fidler S, Søgaard OS. Early intervention with 3BNC117 and romidepsin at antiretroviral treatment initiation in people with HIV-1: a phase 1b/2a, randomized trial. Nat Med 2022; 28:2424-2435. [PMID: 36253609 PMCID: PMC10189540 DOI: 10.1038/s41591-022-02023-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Attempts to reduce the human immunodeficiency virus type 1 (HIV-1) reservoir and induce antiretroviral therapy (ART)-free virologic control have largely been unsuccessful. In this phase 1b/2a, open-label, randomized controlled trial using a four-group factorial design, we investigated whether early intervention in newly diagnosed people with HIV-1 with a monoclonal anti-HIV-1 antibody with a CD4-binding site, 3BNC117, followed by a histone deacetylase inhibitor, romidepsin, shortly after ART initiation altered the course of HIV-1 infection ( NCT03041012 ). The trial was undertaken in five hospitals in Denmark and two hospitals in the United Kingdom. The coprimary endpoints were analysis of initial virus decay kinetics and changes in the frequency of CD4+ T cells containing intact HIV-1 provirus from baseline to day 365. Secondary endpoints included changes in the frequency of infected CD4+ T cells and virus-specific CD8+ T cell immunity from baseline to day 365, pre-ART plasma HIV-1 3BNC117 sensitivity, safety and tolerability, and time to loss of virologic control during a 12-week analytical ART interruption that started at day 400. In 55 newly diagnosed people (5 females and 50 males) with HIV-1 who received random allocation treatment, we found that early 3BNC117 treatment with or without romidepsin enhanced plasma HIV-1 RNA decay rates compared to ART only. Furthermore, 3BNC117 treatment accelerated clearance of infected cells compared to ART only. All groups had significant reductions in the frequency of CD4+ T cells containing intact HIV-1 provirus. At day 365, early 3BNC117 + romidepsin was associated with enhanced HIV-1 Gag-specific CD8+ T cell immunity compared to ART only. The observed virological and immunological effects of 3BNC117 were most pronounced in individuals whose pre-ART plasma HIV-1 envelope sequences were antibody sensitive. The results were not disaggregated by sex. Adverse events were mild to moderate and similar between the groups. During a 12-week analytical ART interruption among 20 participants, 3BNC117-treated individuals harboring sensitive viruses were significantly more likely to maintain ART-free virologic control than other participants. We conclude that 3BNC117 at ART initiation enhanced elimination of plasma viruses and infected cells, enhanced HIV-1-specific CD8+ immunity and was associated with sustained ART-free virologic control among persons with 3BNC117-sensitive virus. These findings strongly support interventions administered at the time of ART initiation as a strategy to limit long-term HIV-1 persistence.
Collapse
Affiliation(s)
- Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Miriam Rosás-Umbert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - I-Na Lu
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Rajesh Mohey
- Department of Internal Medicine, Regional Hospital Herning, Herning, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Vibeke Klastrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maryam Khan
- Department of Infectious Diseases, Imperial College Hospital, London, UK
- The National Institute for Health Research, Imperial Biomedical Research Centre, London, UK
| | - Mariane H Schleimann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Støvring
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Adam R Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Winiffer D Conce Alberto
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Silke D Nielsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maria C Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBERINFEC, Madrid, Spain
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- University of Vic-Central University of Catalonia, Vic, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' National Health Service Trust, London, UK
- Department of Genitourinary Medicine and Infectious Disease, The National Institute for Health Research Biomedical Research Centre, King's College London, London, UK
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Sarah Fidler
- Department of Infectious Diseases, Imperial College Hospital, London, UK
- The National Institute for Health Research, Imperial Biomedical Research Centre, London, UK
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
22
|
Campbell GR, Spector SA. Current strategies to induce selective killing of HIV-1-infected cells. J Leukoc Biol 2022; 112:1273-1284. [PMID: 35707952 PMCID: PMC9613504 DOI: 10.1002/jlb.4mr0422-636r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Indexed: 01/02/2023] Open
Abstract
Although combination antiretroviral therapy (ART) has led to significant HIV-1 suppression and improvement in immune function, persistent viral reservoirs remain that are refractory to intensified ART. ART poses many challenges such as adherence to drug regimens, the emergence of resistant virus, and cumulative toxicity resulting from long-term therapy. Moreover, latent HIV-1 reservoir cells can be stochastically activated to produce viral particles despite effective ART and contribute to the rapid viral rebound that typically occurs within 2 weeks of ART interruption; thus, lifelong ART is required for continued viral suppression. Several strategies have been proposed to address the HIV-1 reservoir such as reactivation of HIV-1 transcription using latency reactivating agents with a combination of ART, host immune clearance and HIV-1-cytotoxicity to purge the infected cells-a "shock and kill" strategy. However, these approaches do not take into account the multiple transcriptional and translational blocks that contribute to HIV-1 latency or the complex heterogeneity of the HIV-1 reservoir, and clinical trials have thus far failed to produce the desired results. Here, we describe alternative strategies being pursued that are designed to kill selectively HIV-1-infected cells while sparing uninfected cells in the absence of enhanced humoral or adaptive immune responses.
Collapse
Affiliation(s)
- Grant R. Campbell
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Stephen A. Spector
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA,Division of Infectious DiseasesRady Children's HospitalSan DiegoCaliforniaUSA
| |
Collapse
|
23
|
Nordstrom JL, Ferrari G, Margolis DM. Bispecific antibody-derived molecules to target persistent HIV infection. J Virus Erad 2022; 8:100083. [PMID: 36111287 PMCID: PMC9468498 DOI: 10.1016/j.jve.2022.100083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
HIV infection persists despite durable and potent antiviral therapy. To target persistent HIV infection, one major strategy aims to induce HIV provirus expression using latency reversing agents and then eliminate these reservoir cells via immune responses enhanced by treatment with antibody-derived bispecific molecules. The specificities of anti-HIV-1 envelope monoclonal antibodies have been incorporated into bispecific molecules that can recognize infected cells and recruit cytotoxic immune cells to eliminate them. This concept seeks to engineer a unique and potent effector response based on the opportunity to target conserved viral epitopes on infected cells, and recruit broad populations of immune effector cells that are not limited by major histocompatibility complex restrictions or other programmed specificity constraints. This article provides a review of bispecific DART® molecules and other dual-specificity antibody-based molecules that function by co-engaging CD3-expressing T cells or CD16A-expressing NK cells with HIV-1-infected cells.
Collapse
Affiliation(s)
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - David M. Margolis
- UNC HIV Cure Center and Departments of Medicine, Microbiology and Immunology, and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|