1
|
Doritchamou J, Nielsen MA, Chêne A, Viebig NK, Lambert LE, Sander AF, Semblat JP, Hundt S, Orr-Gonzalez S, Janitzek CM, Spiegel AJ, Clemmensen SB, Thomas ML, Nason MC, Snow-Smith M, Barnafo EK, Shiloach J, Chen BB, Nadakal S, Highsmith K, Ouahes T, Conteh S, Sharma A, Torano H, Butler B, Reiter K, Rausch KM, Scaria PV, Anderson C, Narum DL, Salanti A, Fried M, Theander TG, Gamain B, Duffy PE. Aotus nancymaae model predicts human immune response to the placental malaria vaccine candidate VAR2CSA. Lab Anim (NY) 2023; 52:315-323. [PMID: 37932470 PMCID: PMC10689237 DOI: 10.1038/s41684-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Placental malaria vaccines (PMVs) are being developed to prevent severe sequelae of placental malaria (PM) in pregnant women and their offspring. The leading candidate vaccine antigen VAR2CSA mediates parasite binding to placental receptor chondroitin sulfate A (CSA). Despite promising results in small animal studies, recent human trials of the first two PMV candidates (PAMVAC and PRIMVAC) generated limited cross-reactivity and cross-inhibitory activity to heterologous parasites. Here we immunized Aotus nancymaae monkeys with three PMV candidates (PAMVAC, PRIMVAC and ID1-ID2a_M1010) adjuvanted with Alhydrogel, and exploited the model to investigate boosting of functional vaccine responses during PM episodes as well as with nanoparticle antigens. PMV candidates induced high levels of antigen-specific IgG with significant cross-reactivity across PMV antigens by enzyme-linked immunosorbent assay. Conversely, PMV antibodies recognized native VAR2CSA and blocked CSA adhesion of only homologous parasites and not of heterologous parasites. PM episodes did not significantly boost VAR2CSA antibody levels or serum functional activity; nanoparticle and monomer antigens alike boosted serum reactivity but not functional activities. Overall, PMV candidates induced functional antibodies with limited heterologous activity in Aotus monkeys, similar to responses reported in humans. The Aotus model appears suitable for preclinical downselection of PMV candidates and assessment of antibody boosting by PM episodes.
Collapse
Affiliation(s)
- Justin Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Arnaud Chêne
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Sophia Hundt
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Mikkel Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alicia J Spiegel
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maryonne Snow-Smith
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma K Barnafo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Shiloach
- Biotechnology Unit, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Beth B Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven Nadakal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kendrick Highsmith
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tarik Ouahes
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ankur Sharma
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly Torano
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandi Butler
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Puthupparampil V Scaria
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Benoit Gamain
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Ros-Lucas A, Bigey P, Chippaux JP, Gascón J, Alonso-Padilla J. Computer-Aided Analysis of West Sub-Saharan Africa Snakes Venom towards the Design of Epitope-Based Poly-Specific Antivenoms. Toxins (Basel) 2022; 14:418. [PMID: 35737079 PMCID: PMC9229730 DOI: 10.3390/toxins14060418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Snakebite envenomation is a neglected tropical disease that causes over 100,000 deaths each year. The only effective treatment consists of antivenoms derived from animal sera, but these have been deemed with highly variable potency and are usually inaccessible and too costly for victims. The production of antivenoms by venom-independent techniques, such as the immunization with multi-epitope constructs, could circumvent those drawbacks. Herein, we present a knowledge-based pipeline to prioritize potential epitopes of therapeutic relevance from toxins of medically important snakes in West Sub-Saharan Africa. It is mainly based on sequence conservation and protein structural features. The ultimately selected 41 epitopes originate from 11 out of 16 snake species considered of highest medical importance in the region and 3 out of 10 of those considered as secondary medical importance. Echis ocellatus, responsible for the highest casualties in the area, would be covered by 12 different epitopes. Remarkably, this pipeline is versatile and customizable for the analysis of snake venom sequences from any other region of the world.
Collapse
Affiliation(s)
- Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain;
| | - Pascal Bigey
- Université Paris Cité, CNRS, INSERM, UTCBS, F-75006 Paris, France;
- Chimie ParisTech, PSL University, F-75005 Paris, France
| | - Jean-Philippe Chippaux
- MERIT, Institut de Recherche pour le Développement, Université de Paris, F-75006 Paris, France;
| | - Joaquim Gascón
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain;
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain;
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Doritchamou JY, Renn JP, Jenkins B, Fried M, Duffy PE. A single full-length VAR2CSA ectodomain variant purifies broadly neutralizing antibodies against placental malaria isolates. eLife 2022; 11:76264. [PMID: 35103596 PMCID: PMC8959597 DOI: 10.7554/elife.76264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Placental malaria (PM) is a deadly syndrome most frequent and severe in first pregnancies. PM results from accumulation of Plasmodium falciparum-infected erythrocytes (IE) that express the surface antigen VAR2CSA and bind to chondroitin sulfate A (CSA) in the placenta. Women become PM-resistant over successive pregnancies as they develop anti-adhesion and anti-VAR2CSA antibodies, supporting VAR2CSA as the leading PM-vaccine candidate. However, the first VAR2CSA subunit vaccines failed to induce broadly neutralizing antibody and it is known that naturally acquired antibodies target both variant-specific and conserved epitopes. It is crucial to determine whether effective vaccines will require incorporation of many or only a single VAR2CSA variants. Here, IgG from multigravidae was sequentially purified on five full-length VAR2CSA ectodomain variants, thereby depleting IgG reactivity to each. The five VAR2CSA variants purified ~0.7% of total IgG and yielded both strain-transcending and strain-specific reactivity to VAR2CSA and IE-surface antigen. In two independent antibody purification/depletion experiments with permutated order of VAR2CSA variants, IgG purified on the first VAR2CSA antigen displayed broad cross-reactivity to both recombinant and native VAR2CSA variants, and inhibited binding of all isolates to CSA. IgG remaining after depletion on all variants showed significantly reduced binding-inhibition activity compared to initial total IgG. These findings demonstrate that a single VAR2CSA ectodomain variant displays conserved epitopes that are targeted by neutralizing (or binding-inhibitory) antibodies shared by multiple parasite strains, including maternal isolates. This suggests that a broadly effective PM-vaccine can be achieved with a limited number of VAR2CSA variants. Contracting malaria during pregnancy – especially a first pregnancy – can lead to a severe, placental form of the disease that is often fatal. Red blood cells infected with the malaria parasite Plasmodium falciparum display a protein, VAR2CSA, which can recognize and bind CSA molecules present on placental cells and in placental blood spaces. This leads to the infected blood cells accumulating in the placenta and inducing harmful inflammation. Having been exposed to the parasite in prior pregnancies generates antibodies that target VAR2CSA, stopping the infected blood cells from latching onto placental CSA or tagging them for immune destruction. Overall, this makes placental malaria less severe in following pregnancies, and suggests that vaccines could be developed based on VAR2CSA. However, this protein has regions that can vary in structure, meaning that P. falciparaum can generate many VAR2CSA variants. Individuals exposed to the parasite naturally generate antibodies that block a wide array of variants from attaching to CSA. In contrast, first-generation vaccines based on VAR2CSA fragments have only induced variant-specific antibodies, therefore offering limited protection against infection. As a response, Doritchamou et al. set out to find VAR2CSA structures that could be recognized by antibodies targeting an array of variants. Blood was obtained from women who had had multiple pregnancies and were immune to malaria. Their plasma was passed over five different large VAR2CSA variants in order to isolate and purify antibodies that attached to these structures. Doritchamou et al. found that antibodies binding to individual VAR2CSA structures could also recognise a wide array of VAR2CSA variants and blocked all tested parasites from sticking to CSA. While further research is needed, these findings highlight antibodies that cross-react to diverse VAR2CSA variants and could be used to design more effective vaccines targeting placental malaria.
Collapse
Affiliation(s)
- Justin Ya Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Jonathan P Renn
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Bethany Jenkins
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Rockville, United States
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| |
Collapse
|
4
|
Renn JP, Doritchamou JYA, Tentokam BCN, Morrison RD, Cowles MV, Burkhardt M, Ma R, Tolia NH, Fried M, Duffy PE. Allelic variants of full-length VAR2CSA, the placental malaria vaccine candidate, differ in antigenicity and receptor binding affinity. Commun Biol 2021; 4:1309. [PMID: 34799664 PMCID: PMC8604988 DOI: 10.1038/s42003-021-02787-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum-infected erythrocytes (IE) sequester in the placenta via surface protein VAR2CSA, which binds chondroitin sulfate A (CSA) expressed on the syncytiotrophoblast surface, causing placental malaria (PM) and severe adverse outcomes in mothers and their offspring. VAR2CSA belongs to the PfEMP1 variant surface antigen family; PfEMP1 proteins mediate IE adhesion and facilitate parasite immunoevasion through antigenic variation. Here we produced deglycosylated (native-like) and glycosylated versions of seven recombinant full-length VAR2CSA ectodomains and compared them for antigenicity and adhesiveness. All VAR2CSA recombinants bound CSA with nanomolar affinity, and plasma from Malian pregnant women demonstrated antigen-specific reactivity that increased with gravidity and trimester. However, allelic and glycosylation variants differed in their affinity to CSA and their serum reactivities. Deglycosylated proteins (native-like) showed higher CSA affinity than glycosylated proteins for all variants except NF54. Further, the gravidity-related increase in serum VAR2CSA reactivity (correlates with acquisition of protective immunity) was absent with the deglycosylated form of atypical M200101 VAR2CSA with an extended C-terminal region. Our findings indicate significant inter-allelic differences in adhesion and seroreactivity that may contribute to the heterogeneity of clinical presentations, which could have implications for vaccine design. Full-length VAR2CSA is a potential placental malaria vaccine candidate and in this study, Renn et al. compare antigenicity and receptor binding affinity of different allelic variants in blood samples from pregnant women. Their data show that inter-allelic differences may contribute to the heterogeneity of clinical presentations, which could have implications for vaccine design.
Collapse
Affiliation(s)
- Jonathan P Renn
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Y A Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bergeline C Nguemwo Tentokam
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert D Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew V Cowles
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martin Burkhardt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rui Ma
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Gamain B, Chêne A, Viebig NK, Tuikue Ndam N, Nielsen MA. Progress and Insights Toward an Effective Placental Malaria Vaccine. Front Immunol 2021; 12:634508. [PMID: 33717176 PMCID: PMC7947914 DOI: 10.3389/fimmu.2021.634508] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
In areas where Plasmodium falciparum transmission is endemic, clinical immunity against malaria is progressively acquired during childhood and adults are usually protected against the severe clinical consequences of the disease. Nevertheless, pregnant women, notably during their first pregnancies, are susceptible to placental malaria and the associated serious clinical outcomes. Placental malaria is characterized by the massive accumulation of P. falciparum infected erythrocytes and monocytes in the placental intervillous spaces leading to maternal anaemia, hypertension, stillbirth and low birth weight due to premature delivery, and foetal growth retardation. Remarkably, the prevalence of placental malaria sharply decreases with successive pregnancies. This protection is associated with the development of antibodies directed towards the surface of P. falciparum-infected erythrocytes from placental origin. Placental sequestration is mediated by the interaction between VAR2CSA, a member of the P. falciparum erythrocyte membrane protein 1 family expressed on the infected erythrocytes surface, and the placental receptor chondroitin sulfate A. VAR2CSA stands today as the leading candidate for a placental malaria vaccine. We recently reported the safety and immunogenicity of two VAR2CSA-derived placental malaria vaccines (PRIMVAC and PAMVAC), spanning the chondroitin sulfate A-binding region of VAR2CSA, in both malaria-naïve and P. falciparum-exposed non-pregnant women in two distinct Phase I clinical trials (ClinicalTrials.gov, NCT02658253 and NCT02647489). This review discusses recent advances in placental malaria vaccine development, with a focus on the recent clinical data, and discusses the next clinical steps to undertake in order to better comprehend vaccine-induced immunity and accelerate vaccine development.
Collapse
Affiliation(s)
- Benoît Gamain
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Arnaud Chêne
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | | | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
6
|
Doritchamou JYA, Suurbaar J, Tuikue Ndam N. Progress and new horizons toward a VAR2CSA-based placental malaria vaccine. Expert Rev Vaccines 2021; 20:215-226. [PMID: 33472449 DOI: 10.1080/14760584.2021.1878029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Several malaria vaccines are under various phases of development with some promising results. In placental malaria (PM) a deliberately anti-disease approach is considered as many studies have underlined the key role of VAR2CSA protein, which therefore represents the leading vaccine candidate. However, evidence indicates that VAR2CSA antigenic polymorphism remains an obstacle to overcome.Areas covered: This review analyzes the progress made thus far in developing a VAR2CSA-based vaccine, and addresses the current issues and challenges that must be overcome to develop an effective PM vaccine.Expert opinion: Phase I trials of PAMVAC and PRIMVAC VAR2CSA vaccines have shown more or less satisfactory results with regards to safety and immunogenicity. The second generation of VAR2CSA-based vaccines could benefit from optimization approaches to broaden the activity spectrum against various placenta-binding isolates through continued advances in the structural understanding of the interaction with CSA.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Suurbaar
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| | - Nicaise Tuikue Ndam
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
PRIMVAC vaccine adjuvanted with Alhydrogel or GLA-SE to prevent placental malaria: a first-in-human, randomised, double-blind, placebo-controlled study. THE LANCET. INFECTIOUS DISEASES 2020; 20:585-597. [DOI: 10.1016/s1473-3099(19)30739-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/22/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
8
|
Cutts JC, Agius PA, Zaw Lin, Powell R, Moore K, Draper B, Simpson JA, Fowkes FJI. Pregnancy-specific malarial immunity and risk of malaria in pregnancy and adverse birth outcomes: a systematic review. BMC Med 2020; 18:14. [PMID: 31941488 PMCID: PMC6964062 DOI: 10.1186/s12916-019-1467-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In endemic areas, pregnant women are highly susceptible to Plasmodium falciparum malaria characterized by the accumulation of parasitized red blood cells (pRBC) in the placenta. In subsequent pregnancies, women develop protective immunity to pregnancy-associated malaria and this has been hypothesized to be due to the acquisition of antibodies to the parasite variant surface antigen VAR2CSA. In this systematic review we provide the first synthesis of the association between antibodies to pregnancy-specific P. falciparum antigens and pregnancy and birth outcomes. METHODS We conducted a systematic review and meta-analysis of population-based studies (published up to 07 June 2019) of pregnant women living in P. falciparum endemic areas that examined antibody responses to pregnancy-specific P. falciparum antigens and outcomes including placental malaria, low birthweight, preterm birth, peripheral parasitaemia, maternal anaemia, and severe malaria. RESULTS We searched 6 databases and identified 33 studies (30 from Africa) that met predetermined inclusion and quality criteria: 16 studies contributed estimates in a format enabling inclusion in meta-analysis and 17 were included in narrative form only. Estimates were mostly from cross-sectional data (10 studies) and were heterogeneous in terms of magnitude and direction of effect. Included studies varied in terms of antigens tested, methodology used to measure antibody responses, and epidemiological setting. Antibody responses to pregnancy-specific pRBC and VAR2CSA antigens, measured at delivery, were associated with placental malaria (9 studies) and may therefore represent markers of infection, rather than correlates of protection. Antibody responses to pregnancy-specific pRBC, but not recombinant VAR2CSA antigens, were associated with trends towards protection from low birthweight (5 studies). CONCLUSIONS Whilst antibody responses to several antigens were positively associated with the presence of placental and peripheral infections, this review did not identify evidence that any specific antibody response is associated with protection from pregnancy-associated malaria across multiple populations. Further prospective cohort studies using standardized laboratory methods to examine responses to a broad range of antigens in different epidemiological settings and throughout the gestational period, will be necessary to identify and prioritize pregnancy-specific P. falciparum antigens to advance the development of vaccines and serosurveillance tools targeting pregnant women.
Collapse
Affiliation(s)
- Julia C Cutts
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Paul A Agius
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zaw Lin
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Rosanna Powell
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Kerryn Moore
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Bridget Draper
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Freya J I Fowkes
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia. .,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia. .,Department of Infectious Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
9
|
Doritchamou JYA, Morrison R, Renn JP, Ribeiro J, Duan J, Fried M, Duffy PE. Placental malaria vaccine candidate antigen VAR2CSA displays atypical domain architecture in some Plasmodium falciparum strains. Commun Biol 2019; 2:457. [PMID: 31840102 PMCID: PMC6897902 DOI: 10.1038/s42003-019-0704-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Two vaccines based on Plasmodium falciparum protein VAR2CSA are currently in clinical evaluation to prevent placental malaria (PM), but a deeper understanding of var2csa variability could impact vaccine design. Here we identified atypical extended or truncated VAR2CSA extracellular structures and confirmed one extended structure in a Malian maternal isolate, using a novel protein fragment assembly method for RNA-seq and DNA-seq data. Extended structures included one or two additional DBL domains downstream of the conventional NTS-DBL1X-6ɛ domain structure, with closest similarity to DBLɛ in var2csa and non-var2csa genes. Overall, 4/82 isolates displayed atypical VAR2CSA structures. The maternal isolate expressing an extended VAR2CSA bound to CSA, but its recombinant VAR2CSA bound less well to CSA than VAR2CSANF54 and showed lower reactivity to naturally acquired parity-dependent antibody. Our protein fragment sequence assembly approach has revealed atypical VAR2CSA domain architectures that impact antigen reactivity and function, and should inform the design of VAR2CSA-based vaccines.
Collapse
Affiliation(s)
- Justin Y. A. Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Robert Morrison
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Jonathan P. Renn
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Jose Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Junhui Duan
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Michal Fried
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| |
Collapse
|
10
|
Moxon CA, Gibbins MP, McGuinness D, Milner DA, Marti M. New Insights into Malaria Pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:315-343. [PMID: 31648610 DOI: 10.1146/annurev-pathmechdis-012419-032640] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria remains a major public health threat in tropical and subtropical regions across the world. Even though less than 1% of malaria infections are fatal, this leads to about 430,000 deaths per year, predominantly in young children in sub-Saharan Africa. Therefore, it is imperative to understand why a subset of infected individuals develop severe syndromes and some of them die and what differentiates these cases from the majority that recovers. Here, we discuss progress made during the past decade in our understanding of malaria pathogenesis, focusing on the major human parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Christopher A Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Matthew P Gibbins
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Dagmara McGuinness
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois 60603, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; , .,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
11
|
Functional Antibodies against Placental Malaria Parasites Are Variant Dependent and Differ by Geographic Region. Infect Immun 2019; 87:IAI.00865-18. [PMID: 30988054 DOI: 10.1128/iai.00865-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
During pregnancy, Plasmodium falciparum-infected erythrocytes (IE) accumulate in the intervillous spaces of the placenta by binding to chondroitin sulfate A (CSA) and elicit inflammatory responses that are associated with poor pregnancy outcomes. Primigravidae lack immunity to IE that sequester in the placenta and thus are susceptible to placental malaria (PM). Women become resistant to PM over successive pregnancies as antibodies to placental IE are acquired. Here, we assayed plasma collected at delivery from Malian and Tanzanian women of different parities for total antibody levels against recombinant VAR2CSA antigens (FCR3 allele), and for surface reactivity and binding inhibition and opsonizing functional activities against IE using two CSA-binding laboratory isolates (FCR3 and NF54). Overall, antibody reactivity to VAR2CSA recombinant proteins and to CSA-binding IE was higher in multigravidae than in primigravidae. However, plasma from Malian gravid women reacted more strongly with FCR3 whereas Tanzanian plasma preferentially reacted with NF54. Further, acquisition of functional antibodies was variant dependent: binding inhibition of P. falciparum strain NF54 (P < 0.001) but not of the strain FCR3 increased significantly with parity, while only opsonizing activity against FCR3 (P < 0.001) increased significantly with parity. In addition, opsonizing and binding inhibition activities of plasma of multigravidae were significantly correlated in assays of FCR3 (r = 0.4, P = 0.01) but not of NF54 isolates; functional activities did not correlate in plasma from primigravidae. These data suggest that IE surface-expressed epitopes involved in each functional activity differ among P. falciparum strains. Consequently, geographic bias in circulating strains may impact antibody functions. Our study has implications for the development of PM vaccines aiming to achieve broad protection against various parasite strains.
Collapse
|
12
|
Salinas ND, Tang WK, Tolia NH. Blood-Stage Malaria Parasite Antigens: Structure, Function, and Vaccine Potential. J Mol Biol 2019; 431:4259-4280. [PMID: 31103771 DOI: 10.1016/j.jmb.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Plasmodium parasites are the causative agent of malaria, a disease that kills approximately 450,000 individuals annually, with the majority of deaths occurring in children under the age of 5 years and the development of a malaria vaccine is a global health priority. Plasmodium parasites undergo a complex life cycle requiring numerous diverse protein families. The blood stage of parasite development results in the clinical manifestation of disease. A vaccine that disrupts the blood stage is highly desired and will aid in the control of malaria. The blood stage comprises multiple steps: invasion of, asexual growth within, and egress from red blood cells. This review focuses on blood-stage antigens with emphasis on antigen structure, antigen function, neutralizing antibodies, and vaccine potential.
Collapse
Affiliation(s)
- Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Wai Kwan Tang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA.
| |
Collapse
|
13
|
Seitz J, Morales-Prieto DM, Favaro RR, Schneider H, Markert UR. Molecular Principles of Intrauterine Growth Restriction in Plasmodium Falciparum Infection. Front Endocrinol (Lausanne) 2019; 10:98. [PMID: 30930847 PMCID: PMC6405475 DOI: 10.3389/fendo.2019.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Malaria in pregnancy still constitutes a particular medical challenge in tropical and subtropical regions. Of the five Plasmodium species that are pathogenic to humans, infection with Plasmodium falciparum leads to fulminant progression of the disease with massive impact on pregnancy. Severe anemia of the mother, miscarriage, stillbirth, preterm delivery and intrauterine growth restriction (IUGR) with reduced birth weight are frequent complications that lead to more than 10,000 maternal and 200,000 perinatal deaths annually in sub-Saharan Africa alone. P. falciparum can adhere to the placenta via the expression of the surface antigen VAR2CSA, which leads to sequestration of infected erythrocytes in the intervillous space. This process induces a placental inflammation with involvement of immune cells and humoral factors. Especially, monocytes get activated and change the release of soluble mediators, including a variety of cytokines. This proinflammatory environment contributes to disorders of angiogenesis, blood flow, autophagy, and nutrient transport in the placenta and erythropoiesis. Collectively, they impair placental functions and, consequently, fetal growth. The discovery that women in endemic regions develop a certain immunity against VAR2CSA-expressing parasites with increasing number of pregnancies has redefined the understanding of malaria in pregnancy and offers strategies for the development of vaccines. The following review gives an overview of molecular processes in P. falciparum infection in pregnancy which may be involved in the development of IUGR.
Collapse
Affiliation(s)
- Johanna Seitz
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | | - Rodolfo R. Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Henning Schneider
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Udo Rudolf Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
14
|
Gavina K, Gnidehou S, Arango E, Hamel-Martineau C, Mitran C, Agudelo O, Lopez C, Karidio A, Banman S, Carmona-Fonseca J, Salanti A, Tuikue Ndam N, Hawkes M, Maestre A, Yanow SK. Clinical Outcomes of Submicroscopic Infections and Correlates of Protection of VAR2CSA Antibodies in a Longitudinal Study of Pregnant Women in Colombia. Infect Immun 2018; 86:e00797-17. [PMID: 29378797 PMCID: PMC5865023 DOI: 10.1128/iai.00797-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/22/2018] [Indexed: 11/20/2022] Open
Abstract
Malaria in pregnancy can cause serious adverse outcomes for the mother and the fetus. However, little is known about the effects of submicroscopic infections (SMIs) in pregnancy, particularly in areas where Plasmodium falciparum and Plasmodium vivax cocirculate. A cohort of 187 pregnant women living in Puerto Libertador in northwest Colombia was followed longitudinally from recruitment to delivery. Malaria was diagnosed by microscopy, reverse transcription-quantitative PCR (RT-qPCR), and placental histopathology. Gestational age, hemoglobin concentration, VAR2CSA-specific IgG levels, and adhesion-blocking antibodies were measured during pregnancy. Statistical analyses were performed to evaluate the impact of SMIs on birth weight and other delivery outcomes. Twenty-five percent of women (45/180) were positive for SMIs during pregnancy. Forty-seven percent of infections (21/45) were caused by P. falciparum, 33% were caused by P. vivax, and 20% were caused by mixed Plasmodium spp. Mixed infections of P. falciparum and P. vivax were associated with lower gestational age at delivery (P = 0.0033), while other outcomes were normal. Over 60% of women had antibodies to VAR2CSA, and there was no difference in antibody levels between those with and without SMIs. The anti-adhesion function of these antibodies was associated with protection from SMI-related anemia at delivery (P = 0.0086). SMIs occur frequently during pregnancy, and while mixed infections of both P. falciparum and P. vivax were not associated with a decrease in birth weight, they were associated with significant risk of preterm birth. We propose that the lack of adverse delivery outcomes is due to functional VAR2CSA antibodies that can protect pregnant women from SMI-related anemia.
Collapse
Affiliation(s)
- Kenneth Gavina
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Sedami Gnidehou
- Department of Biology, Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Arango
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Chloe Hamel-Martineau
- Department of Biology, Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine Mitran
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Olga Agudelo
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Lopez
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Aisha Karidio
- Department of Biology, Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Shanna Banman
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Jaime Carmona-Fonseca
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Michael Hawkes
- Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Stephanie K Yanow
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Fried M, Kurtis JD, Swihart B, Morrison R, Pond-Tor S, Barry A, Sidibe Y, Keita S, Mahamar A, Andemel N, Attaher O, Dembele AB, Cisse KB, Diarra BS, Kanoute MB, Narum DL, Dicko A, Duffy PE. Antibody levels to recombinant VAR2CSA domains vary with Plasmodium falciparum parasitaemia, gestational age, and gravidity, but do not predict pregnancy outcomes. Malar J 2018. [PMID: 29523137 PMCID: PMC5845157 DOI: 10.1186/s12936-018-2258-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Maternal malaria is a tropical scourge associated with poor pregnancy outcomes. Women become resistant to Plasmodium falciparum pregnancy malaria as they acquire antibodies to the variant surface antigen VAR2CSA, a leading vaccine candidate. Because malaria infection may increase VAR2CSA antibody levels and thereby confound analyses of immune protection, gravidity-dependent changes in antibody levels during and after infection, and the effect of VAR2CSA antibodies on pregnancy outcomes were evaluated. Methods Pregnant women enrolled in a longitudinal cohort study of mother-infant pairs in Ouelessebougou, Mali provided plasma samples at enrollment, gestational week 30–32, and delivery. Antibody levels to VAR2CSA domains were measured using a multiplex bead-based assay. Results Antibody levels to VAR2CSA were higher in multigravidae than primigravidae. Malaria infection was associated with increased antibody levels to VAR2CSA domains. In primigravidae but not in secundigravidae or multigravidae, antibodies levels sharply declined after an infection. A relationship between any VAR2CSA antibody specificity and protection from adverse pregnancy outcomes was not detected. Conclusions During malaria infection, primigravidae acquire short-lived antibodies. The lack of an association between VAR2CSA domain antibody reactivity and improved pregnancy outcomes suggests that the recombinant proteins may not present native epitopes targeted by protective antibodies. Electronic supplementary material The online version of this article (10.1186/s12936-018-2258-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA.
| | - Jonathan D Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, RI, USA
| | - Bruce Swihart
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, RI, USA
| | - Amadou Barry
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Youssoufa Sidibe
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Sekouba Keita
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Almahamoudou Mahamar
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Naissem Andemel
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Oumar Attaher
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Adama B Dembele
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Kadidia B Cisse
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Bacary S Diarra
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Moussa B Kanoute
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Alassane Dicko
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| |
Collapse
|
16
|
Manirakiza A, Serdouma E, Ngbalé RN, Moussa S, Gondjé S, Degana RM, Bata GGB, Moyen JM, Delmont J, Grésenguet G, Sepou A. A brief review on features of falciparum malaria during pregnancy. J Public Health Afr 2017; 8:668. [PMID: 29456824 PMCID: PMC5812306 DOI: 10.4081/jphia.2017.668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022] Open
Abstract
Malaria in pregnancy is a serious public health problem in tropical areas. Frequently, the placenta is infected by accumulation of Plasmodium falciparum-infected erythrocytes in the intervillous space. Falciparum malaria acts during pregnancy by a range of mechanisms, and chronic or repeated infection and co-infections have insidious effects. The susceptibility of pregnant women to malaria is due to both immunological and humoral changes. Until a malaria vaccine becomes available, the deleterious effects of malaria in pregnancy can be avoided by protection against infection and prompt treatment with safe, effective antimalarial agents; however, concurrent infections such as with HIV and helminths during pregnancy are jeopardizing malaria control in sub-Saharan Africa.
Collapse
Affiliation(s)
| | | | | | - Sandrine Moussa
- Pasteur Institute of Bangui, Bangui, Central African Republic
| | - Samuel Gondjé
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | - Rock Mbetid Degana
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | | | - Jean Methode Moyen
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | - Jean Delmont
- Center for Training and Research in Tropical Medicine and Health, Faculty of Medicine North, Marseille, France
| | | | | |
Collapse
|
17
|
PFI1785w: A highly conserved protein associated with pregnancy associated malaria. PLoS One 2017; 12:e0187817. [PMID: 29121643 PMCID: PMC5679621 DOI: 10.1371/journal.pone.0187817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022] Open
Abstract
Pregnancy-associated malaria (PAM) is one of the severe forms of Plasmodium falciparum infection. The main antigen VAR2CSA is the target of vaccine development. However, the large size of VAR2CSA protein and its high degree of variability limit to the efficiency of the vaccination. Using quantitative mass spectrometry method, we detected and quantified proteotypic peptides from 5 predicted PAM associated proteins. Our results confirmed that PFI1785w is over-expressed in PAM samples. Then, we investigated PFI1785w variability among a set of parasite samples from various endemic areas. PFI1785w appear to be more conserved than VAR2CSA. PFB0115w, another PAM associated protein, seems also associated with the pathology. Further vaccination strategies could integrate other proteins in addition to the major VAR2CSA antigen to improve immune response to vaccination.
Collapse
|
18
|
Siriwardhana C, Fang R, Salanti A, Leke RGF, Bobbili N, Taylor DW, Chen JJ. Statistical prediction of immunity to placental malaria based on multi-assay antibody data for malarial antigens. Malar J 2017; 16:391. [PMID: 28962616 PMCID: PMC5622501 DOI: 10.1186/s12936-017-2041-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022] Open
Abstract
Background Plasmodium falciparum infections are especially severe in pregnant women because infected erythrocytes (IE) express VAR2CSA, a ligand that binds to placental trophoblasts, causing IE to accumulate in the placenta. Resulting inflammation and pathology increases a woman’s risk of anemia, miscarriage, premature deliveries, and having low birthweight (LBW) babies. Antibodies (Ab) to VAR2CSA reduce placental parasitaemia and improve pregnancy outcomes. Currently, no single assay is able to predict if a woman has adequate immunity to prevent placental malaria (PM). This study measured Ab levels to 28 malarial antigens and used the data to develop statistical models for predicting if a woman has sufficient immunity to prevent PM. Methods Archival plasma samples from 1377 women were screened in a bead-based multiplex assay for Ab to 17 VAR2CSA-associated antigens (full length VAR2CSA (FV2), DBL 1-6 of the FCR3, 3D7 and 7G8 lines, ID1-ID2a (FCR3 and 3D7) and 11 antigens that have been reported to be associated with immunity to P. falciparum (AMA-1, CSP, EBA-175, LSA1, MSP1, MSP2, MSP3, MSP11, Pf41, Pf70 and RESA)). Ab levels along with clinical variables (age, gravidity) were used in the following seven statistical approaches: logistic regression full model, logistic regression reduced model, recursive partitioning, random forests, linear discriminant analysis, quadratic discriminant analysis, and support vector machine. Results The best and simplest model proved to be the logistic regression reduced model. AMA-1, MSP2, EBA-175, Pf41, and MSP11 were found to be the top five most important predictors for the PM status based on overall prediction performance. Conclusions Not surprising, significant differences were observed between PM positive (PM+) and PM negative (PM−) groups for Ab levels to the majority of malaria antigens. Individually though, these malarial antigens did not achieve reasonably high performances in terms of predicting the PM status. Utilizing multiple antigens in predictive models considerably improved discrimination power compared to individual assays. Among seven different classifiers considered, the reduced logistic regression model produces the best overall predictive performance. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2041-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chathura Siriwardhana
- Biostatistics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Rui Fang
- Biostatistics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rose G F Leke
- The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Naveen Bobbili
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - John J Chen
- Biostatistics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
19
|
Patel JC, Hathaway NJ, Parobek CM, Thwai KL, Madanitsa M, Khairallah C, Kalilani-Phiri L, Mwapasa V, Massougbodji A, Fievet N, Bailey JA, Ter Kuile FO, Deloron P, Engel SM, Taylor SM, Juliano JJ, Tuikue Ndam N, Meshnick SR. Increased risk of low birth weight in women with placental malaria associated with P. falciparum VAR2CSA clade. Sci Rep 2017; 7:7768. [PMID: 28801627 PMCID: PMC5554196 DOI: 10.1038/s41598-017-04737-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/30/2017] [Indexed: 11/17/2022] Open
Abstract
Pregnancy associated malaria (PAM) causes adverse pregnancy and birth outcomes owing to Plasmodium falciparum accumulation in the placenta. Placental accumulation is mediated by P. falciparum protein VAR2CSA, a leading PAM-specific vaccine target. The extent of its antigen diversity and impact on clinical outcomes remain poorly understood. Through amplicon deep-sequencing placental malaria samples from women in Malawi and Benin, we assessed sequence diversity of VAR2CSA’s ID1-DBL2x region, containing putative vaccine targets and estimated associations of specific clades with adverse birth outcomes. Overall, var2csa diversity was high and haplotypes subdivided into five clades, the largest two defined by homology to parasites strains, 3D7 or FCR3. Across both cohorts, compared to women infected with only FCR3-like variants, women infected with only 3D7-like variants delivered infants with lower birthweight (difference: −267.99 g; 95% Confidence Interval [CI]: −466.43 g,−69.55 g) and higher odds of low birthweight (<2500 g) (Odds Ratio [OR] 5.41; 95% CI:0.99,29.52) and small-for-gestational-age (OR: 3.65; 95% CI: 1.01,13.38). In two distinct malaria-endemic African settings, parasites harboring 3D7-like variants of VAR2CSA were associated with worse birth outcomes, supporting differential effects of infection with specific parasite strains. The immense diversity coupled with differential clinical effects of this diversity suggest that an effective VAR2CSA-based vaccine may require multivalent activity.
Collapse
Affiliation(s)
- Jaymin C Patel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
| | - Christian M Parobek
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, USA
| | - Kyaw L Thwai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Mwayiwawo Madanitsa
- College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carole Khairallah
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Victor Mwapasa
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le paludisme associé à la Grossesse et à l'Enfance, Université d'Abomey-Calavi, Cotonou, Benin
| | - Nadine Fievet
- COMUE Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| | - Jeffery A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA.,Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA
| | - Feiko O Ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Philippe Deloron
- COMUE Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Steve M Taylor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.,Division of Infectious Diseases, Duke University Medical Center and Duke Global Health Institute, Durham, NC, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, USA.,Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Nicaise Tuikue Ndam
- COMUE Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
20
|
Mustaffa KMF, Storm J, Whittaker M, Szestak T, Craig AG. In vitro inhibition and reversal of Plasmodium falciparum cytoadherence to endothelium by monoclonal antibodies to ICAM-1 and CD36. Malar J 2017; 16:279. [PMID: 28679447 PMCID: PMC5499065 DOI: 10.1186/s12936-017-1930-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/01/2017] [Indexed: 12/04/2022] Open
Abstract
Background Sequestration of parasitized red blood cells from the peripheral circulation during an infection with Plasmodium falciparum is caused by an interaction between the parasite protein PfEMP1 and receptors on the surface of host endothelial cells, known as cytoadherence. Several lines of evidence point to a link between the pathology of severe malaria and cytoadherence, therefore blocking adhesion receptors involved in this process could be a good target to inhibit pRBC sequestration and prevent disease. In a malaria endemic setting this is likely to be used as an adjunct therapy by reversing existing cytoadherence. Two well-characterized parasite lines plus three recently derived patient isolates were tested for their cytoadherence to purified receptors (CD36 and ICAM-1) as well as endothelial cells. Monoclonal antibodies against human CD36 and ICAM-1 were used to inhibit and reverse infected erythrocyte binding in static and flow-based adhesion assays. Results Anti-ICAM-1 and CD36 monoclonal antibodies were able to inhibit and reverse P. falciparum binding of lab and recently adapted patient isolates in vitro. However, reversal of binding was incomplete and varied in its efficiency between parasite isolates. Conclusions The results show that, as a proof of concept, disturbing existing ligand–receptor interactions is possible and could have potential therapeutic value for severe malaria. The variation seen in the degree of reversing existing binding with different parasite isolates and the incomplete nature of reversal, despite the use of high affinity inhibitors, suggest that anti-adhesion approaches as adjunct therapies for severe malaria may not be effective, and the focus may need to be on inhibitory approaches such as vaccines.
Collapse
Affiliation(s)
- Khairul M F Mustaffa
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Janet Storm
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Megan Whittaker
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,School of Medicine, University of Liverpool, Cedar House, Ashton Street, Liverpool, L69 3GE, UK
| | - Tadge Szestak
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Alister G Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
21
|
Gbédandé K, Fievet N, Viwami F, Ezinmegnon S, Issifou S, Chippaux JP, Dossou Y, Moutairou K, Massougbodji A, Ndam N, de Jongh WA, Søgaard TMM, Salanti A, Nielsen MA, Esen M, Mordmüller B, Deloron P, Luty AJF. Clinical development of a VAR2CSA-based placental malaria vaccine PAMVAC: Quantifying vaccine antigen-specific memory B & T cell activity in Beninese primigravidae. Vaccine 2017; 35:3474-3481. [PMID: 28527688 DOI: 10.1016/j.vaccine.2017.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND The antigen VAR2CSA plays a pivotal role in the pathophysiology of pregnancy-associated malaria (PAM) caused by Plasmodium falciparum. A VAR2CSA-based vaccine candidate, PAMVAC, is under development by an EU-funded multi-country consortium (PlacMalVac project). As part of PAMVAC's clinical development, we quantified naturally acquired vaccine antigen-specific memory B and T cell responses in Beninese primigravidae recruited at the beginning of pregnancy and followed up to delivery and beyond. METHODS Clinical and parasitological histories were compiled from monthly clinic visits. On 4 occasions (first and fifth month of pregnancy, delivery, 6months post-delivery) peripheral blood mononuclear cells were isolated for in vitro assays. PAMVAC-specific memory B cells as well as those specific for a PAM unrelated P. falciparum antigen (PfEMP1-CIDR1a) and for tetanus toxoid were quantified by ELISpot. Memory T cell responses were assessed by quantifying cytokines (IL-5, IL-6, IL-10, IL-13, IFN-γ, TNF-α) in supernatants of cells stimulated in vitro either with PAMVAC, or mitogen (PHA). RESULTS Both tetanus toxoid- and PAMVAC-specific memory B cell frequencies increased to reach peak levels in the 5th month and at delivery, respectively and persisted post-delivery. The frequency of CIDR1a-specific memory B cells was stable during pregnancy, but declined post-delivery. The cumulated prevalence of infection with P. falciparum during pregnancy was 61% by microscopy. In women with a history of such infections, a significantly higher frequency of PAMVAC-specific memory B cells was observed at delivery. PAMVAC-specific pro-inflammatory (IFN-γ, TNF) responses tended to be higher at delivery in those with a history of infection. Mitogen-induced IL-5/IL-13 responses were significantly enhanced in the same women. CONCLUSIONS PAMVAC-specific memory B cells are induced during first pregnancies and are maintained post-delivery. Women with a T helper cell profile biased towards production of Th2-type cytokines have a greater risk of infection with P. falciparum.
Collapse
Affiliation(s)
- Komi Gbédandé
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Benin; Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Benin; MERIT UMR D216, Institut de Recherche pour le Développement, Université Paris Descartes, COMUE Sorbonne Paris Cité, 75006 Paris, France.
| | - Nadine Fievet
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Benin; MERIT UMR D216, Institut de Recherche pour le Développement, Université Paris Descartes, COMUE Sorbonne Paris Cité, 75006 Paris, France.
| | - Firmine Viwami
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Benin.
| | - Sem Ezinmegnon
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Benin.
| | - Saadou Issifou
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Benin.
| | - Jean-Philippe Chippaux
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Benin; MERIT UMR D216, Institut de Recherche pour le Développement, Université Paris Descartes, COMUE Sorbonne Paris Cité, 75006 Paris, France.
| | - Yannelle Dossou
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Benin.
| | - Kabirou Moutairou
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Benin.
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Benin.
| | - Nicaise Ndam
- MERIT UMR D216, Institut de Recherche pour le Développement, Université Paris Descartes, COMUE Sorbonne Paris Cité, 75006 Paris, France.
| | | | - T Max M Søgaard
- ExpreS(2)ion Biotechnologies SCION-DTU Science Park DK-2970, Hoersholm, Denmark.
| | - Ali Salanti
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Morten A Nielsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Meral Esen
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - Philippe Deloron
- MERIT UMR D216, Institut de Recherche pour le Développement, Université Paris Descartes, COMUE Sorbonne Paris Cité, 75006 Paris, France.
| | - Adrian J F Luty
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Benin; MERIT UMR D216, Institut de Recherche pour le Développement, Université Paris Descartes, COMUE Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
22
|
Pehrson C, Salanti A, Theander TG, Nielsen MA. Pre-clinical and clinical development of the first placental malaria vaccine. Expert Rev Vaccines 2017; 16:613-624. [PMID: 28434376 DOI: 10.1080/14760584.2017.1322512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.
Collapse
Affiliation(s)
- Caroline Pehrson
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Ali Salanti
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Thor G Theander
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Morten A Nielsen
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| |
Collapse
|
23
|
Novel adenovirus encoded virus-like particles displaying the placental malaria associated VAR2CSA antigen. Vaccine 2017; 35:1140-1147. [PMID: 28131394 DOI: 10.1016/j.vaccine.2017.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
The malaria parasite Plasmodium falciparum presents antigens on the infected erythrocyte surface that bind human receptors expressed on the vascular endothelium. The VAR2CSA mediated binding to a distinct chondroitin sulphate A (CSA) is a crucial step in the pathophysiology of placental malaria and the CSA binding region of VAR2CSA has been identified as a promising vaccine target against placental malaria. Here we designed adenovirus encoded virus-like particles (VLP) by co-encoding Simian Immunodeficiency Virus (SIV) gag and VAR2CSA. The VAR2CSA antigen was fused to the transmembrane (TM) and cytoplasmic tail (CT) domains of either the envelope protein of mouse mammary tumour virus (MMTV) or the hemagglutinin (HA) of influenza A. For a non-VLP incorporation control, a third design was made where VAR2CSA was expressed without TM-CT domains. In the primary immunogenicity study in Balb/c mice, VAR2CSA fused to HA TM-CT was significantly superior in inducing ID1-ID2a specific antibodies after the first immunization. A sequential study was performed to include a comparison to the soluble VAR2CSA protein vaccine, which has entered a phase I clinical trial (NCT02647489). The results revealed the induction of higher antibody responses and increased inhibition of parasite binding to CSA using either VAR2CSA HA TM-CT or VAR2CSA MMTV TM-CT as priming vaccines for protein double-boost immunizations, compared to protein prime-double boost regimen. Analysis of pooled serum samples on peptide arrays revealed a unique targeting of several epitopes in mice that had been primed with VAR2CSA HA TM-CT. Consequently, modification of VLP anchors is an important point of optimization in virus-encoded retroviral VLP-based vaccines, and adenovirus VLPs boosted by recombinant proteins offer hope of increasing the levels of protective VAR2CSA specific antibodies.
Collapse
|
24
|
Pehrson C, Heno KK, Adams Y, Resende M, Mathiesen L, Soegaard M, de Jongh WA, Theander TG, Salanti A, Nielsen MA. Comparison of functional assays used in the clinical development of a placental malaria vaccine. Vaccine 2016; 35:610-618. [PMID: 28012775 DOI: 10.1016/j.vaccine.2016.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Malaria in pregnancy is associated with significant morbidity in pregnant women and their offspring. Plasmodium falciparum infected erythrocytes (IE) express VAR2CSA that mediates binding to chondroitin sulphate A (CSA) in the placenta. Two VAR2CSA-based vaccines for placental malaria are in clinical development. The purpose of this study was to evaluate the robustness and comparability of binding inhibition assays used in the clinical development of placental malaria vaccines. METHODS The ability of sera from animals immunised with different VAR2CSA constructs to inhibit IE binding to CSA was investigated in three in vitro assays using 96-well plates, petri dishes, capillary flow and an ex vivo placental perfusion assay. RESULTS The inter-assay variation was not uniform between assays and ranged from above ten-fold in the flow assay to two-fold in the perfusion assay. The intra-assay variation was highest in the petri dish assay. A positive correlation between IE binding avidity and the level of binding after antibody inhibition in the petri dish assay indicate that high avidity IE binding is more difficult to inhibit. The highest binding inhibition sensitivity was found in the 96-well and petri dish assays compared to the flow and perfusion assays where binding inhibition required higher antibody titers. CONCLUSIONS The inhibitory capacity of antibodies is not easily translated between assays and the high sensitivity of the 96-well and petri dish assays stresses the need for comparing serial dilutions of serum. Furthermore, IE binding avidity must be in the same range when comparing data from different days. There was an overall concordance in the capacity of antibody-mediated inhibition, when comparing the in vitro assays with the perfusion assay, which more closely represents in vivo conditions. Importantly the ID1-ID2a protein in a liposomal formulation, currently in a phase I trial, effectively induced antibodies that inhibited IE adhesion in placental tissue.
Collapse
Affiliation(s)
- Caroline Pehrson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Kristine K Heno
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark.
| | - Max Soegaard
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark.
| | - Willem A de Jongh
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark.
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| |
Collapse
|
25
|
Doritchamou JYA, Herrera R, Aebig JA, Morrison R, Nguyen V, Reiter K, Shimp RL, MacDonald NJ, Narum DL, Fried M, Duffy PE. VAR2CSA Domain-Specific Analysis of Naturally Acquired Functional Antibodies to Plasmodium falciparum Placental Malaria. J Infect Dis 2016; 214:577-86. [PMID: 27190180 DOI: 10.1093/infdis/jiw197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/05/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Placental malaria is caused by Plasmodium falciparum-infected erythrocytes (IEs) that surface-express VAR2CSA and bind chondroitin sulfate A. The inflammatory response to placenta-sequestered parasites is associated with poor pregnancy outcomes, and protection may be mediated in part by VAR2CSA antibodies that block placental IE adhesion. METHODS In this study, we used a new approach to assess VAR2CSA domains for functional epitopes recognized by naturally acquired antibodies. Antigen-specific immunoglobulin (Ig) G targeting Duffy binding-like (DBL) domains from different alleles were sequentially purified from plasma pooled from multigravid women and then characterized using enzyme-linked immunosorbent assay, flow cytometry, and antiadhesion assays. RESULTS Different DBL domain-specific IgGs could react to homologous as well as heterologous antigens and parasites, suggesting that conserved epitopes are shared between allelic variants. Homologous blocking of IE binding was observed with ID1-DBL2-ID2a-, DBL4-, and DBL5-specific IgG (range, 42%-75%), whereas partial cross-inhibition activity was observed with purified IgG specific to ID1-DBL2-ID2a and DBL4 antigens. Plasma retained broadly neutralizing activity after complete depletion of these VAR2CSA specificities. CONCLUSIONS Broadly neutralizing antibodies of multigravidae are not depleted on VAR2CSA recombinant antigens, and hence development of VAR2CSA vaccines based on a single construct and variant might induce antibodies with limited broadly neutralizing activity.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Raul Herrera
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Joan A Aebig
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Robert Morrison
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland MOMS Project, Seattle Biomedical Research Institute, Washington
| | - Vu Nguyen
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Karine Reiter
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Richard L Shimp
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - David L Narum
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Michal Fried
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Patrick E Duffy
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| |
Collapse
|
26
|
Ndam NT, Denoeud-Ndam L, Doritchamou J, Viwami F, Salanti A, Nielsen MA, Fievet N, Massougbodji A, Luty AJF, Deloron P. Protective Antibodies against Placental Malaria and Poor Outcomes during Pregnancy, Benin. Emerg Infect Dis 2016; 21:813-23. [PMID: 25898123 PMCID: PMC4412227 DOI: 10.3201/eid2105.141626] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Immunity requires a vaccine that inhibits binding of infected erythrocytes to chondroitin sulfate. Placental malaria is caused by Plasmodium falciparum–infected erythrocytes that bind to placental tissue. Binding is mediated by VAR2CSA, a parasite antigen coded by the var gene, which interacts with chondroitin sulfate A (CSA). Consequences include maternal anemia and fetal growth retardation. Antibody-mediated immunity to placental malaria is acquired during successive pregnancies, but the target of VAR2CSA-specific protective antibodies is unclear. We assessed VAR2CSA-specific antibodies in pregnant women and analyzed their relationships with protection against placental infection, preterm birth, and low birthweight. Antibody responses to the N-terminal region of VAR2CSA during early pregnancy were associated with reduced risks for infections and low birthweight. Among women infected during pregnancy, an increase in CSA binding inhibition was associated with reduced risks for placental infection, preterm birth, and low birthweight. These data suggest that antibodies against VAR2CSA N-terminal region mediate immunity to placental malaria and associated outcomes. Our results validate current vaccine development efforts with VAR2CSA N-terminal constructs.
Collapse
MESH Headings
- Adult
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antibody Specificity/immunology
- Antigens, Protozoan/immunology
- Benin/epidemiology
- Erythrocytes/immunology
- Erythrocytes/parasitology
- Female
- Follow-Up Studies
- Humans
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Infant
- Infant, Newborn
- Malaria/epidemiology
- Malaria/immunology
- Malaria/parasitology
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Patient Outcome Assessment
- Placenta/parasitology
- Plasmodium falciparum/immunology
- Pregnancy
- Pregnancy Complications, Parasitic/epidemiology
- Pregnancy Complications, Parasitic/immunology
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Outcome
- Protein Binding
- Risk Factors
- Young Adult
Collapse
|
27
|
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse. However, several lines of evidence suggest that underneath this molecular diversity there are a restricted set of epitopes which may act as effective targets for a vaccine against severe malaria. Here we review some of the recent developments in this area of research, focusing on work that has assessed the potential of these molecules as possible vaccine targets.
Collapse
|
28
|
Fried M, Duffy PE. Designing a VAR2CSA-based vaccine to prevent placental malaria. Vaccine 2015; 33:7483-8. [PMID: 26469717 PMCID: PMC5077158 DOI: 10.1016/j.vaccine.2015.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
Placental malaria (PM) due to Plasmodium falciparum is a major cause of maternal, fetal and infant mortality, but the mechanisms of pathogenesis and protective immunity are relatively well-understood for this condition, providing a path for vaccine development. P. falciparum parasites bind to chondroitin sulfate A (CSA) to sequester in the placenta, and women become resistant over 1–2 pregnancies as they acquire antibodies that block adhesion to CSA. The protein VAR2CSA, a member of the PfEMP1 variant surface antigen family, mediates parasite adhesion to CSA, and is the leading target for a vaccine to prevent PM. Obstacles to PM vaccine development include the large size (~350 kD), high cysteine content, and sequence variation of VAR2CSA. A number of approaches have been taken to identify the combination of VAR2CSA domains and alleles that can induce broadly active antibodies that block adhesion of heterologous parasite isolates to CSA. This review summarizes these approaches, which have examined VAR2CSA fragments for binding activity, antigenicity with naturally acquired antibodies, and immunogenicity in animals for inducing anti-adhesion or surface-reactive antibodies. Two products are expected to enter human clinical studies in the near future based on N-terminal VAR2CSA fragments that have high binding affinity for CSA, and additional proteins preferentially expressed by placental parasites are also being examined for their potential contribution to a PM vaccine.
Collapse
Affiliation(s)
- Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, 5640 Fishers Lane, TWB1/Room 1111, Rockville, MD, USA.
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, 5640 Fishers Lane, TWB1/Room 1111, Rockville, MD, USA.
| |
Collapse
|
29
|
Doritchamou J, Sabbagh A, Jespersen JS, Renard E, Salanti A, Nielsen MA, Deloron P, Tuikue Ndam N. Identification of a Major Dimorphic Region in the Functionally Critical N-Terminal ID1 Domain of VAR2CSA. PLoS One 2015; 10:e0137695. [PMID: 26393516 PMCID: PMC4579133 DOI: 10.1371/journal.pone.0137695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/19/2015] [Indexed: 01/18/2023] Open
Abstract
The VAR2CSA protein of Plasmodium falciparum is transported to and expressed on the infected erythrocyte surface where it plays a key role in placental malaria (PM). It is the current leading candidate for a vaccine to prevent PM. However, the antigenic polymorphism integral to VAR2CSA poses a challenge for vaccine development. Based on detailed analysis of polymorphisms in the sequence of its ligand-binding N-terminal region, currently the main focus for vaccine development, we assessed var2csa from parasite isolates infecting pregnant women. The results reveal for the first time the presence of a major dimorphic region in the functionally critical N-terminal ID1 domain. Parasite isolates expressing VAR2CSA with particular motifs present within this domain are associated with gravidity- and parasite density-related effects. These observations are of particular interest in guiding efforts with respect to optimization of the VAR2CSA-based vaccines currently under development.
Collapse
Affiliation(s)
- Justin Doritchamou
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France; UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| | - Audrey Sabbagh
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Jakob S Jespersen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ali Salanti
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Morten A Nielsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Philippe Deloron
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France; UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| | - Nicaise Tuikue Ndam
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France; UMR216 - MERIT, Institut de Recherche pour le Développement, Paris, France
| |
Collapse
|
30
|
Guillotte M, Juillerat A, Igonet S, Hessel A, Petres S, Crublet E, Le Scanf C, Lewit-Bentley A, Bentley GA, Vigan-Womas I, Mercereau-Puijalon O. Immunogenicity of the Plasmodium falciparum PfEMP1-VarO Adhesin: Induction of Surface-Reactive and Rosette-Disrupting Antibodies to VarO Infected Erythrocytes. PLoS One 2015. [PMID: 26222304 PMCID: PMC4519321 DOI: 10.1371/journal.pone.0134292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Cross Reactions
- Epitopes/chemistry
- Epitopes/genetics
- Erythrocytes/parasitology
- Female
- Humans
- Malaria Vaccines/chemistry
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Mice
- Mice, Inbred BALB C
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Rosette Formation
Collapse
Affiliation(s)
- Micheline Guillotte
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2581, Paris, France
| | - Alexandre Juillerat
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Sébastien Igonet
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Audrey Hessel
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Plate-forme de Protéines recombinantes (PFPR), Paris, France
| | - Elodie Crublet
- Institut Pasteur, Plate-forme de Protéines recombinantes (PFPR), Paris, France
| | - Cécile Le Scanf
- Bordeaux Biothèques Santé, Groupe hospitalier Pellegrin, Centre Hospitalier Universitaire de Bordeaux - Bordeaux, France
| | - Anita Lewit-Bentley
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Graham A. Bentley
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Inès Vigan-Womas
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2581, Paris, France
| | - Odile Mercereau-Puijalon
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2581, Paris, France
- * E-mail:
| |
Collapse
|
31
|
Abstract
INTRODUCTION Placental malaria (PM) is a major public health problem that constitutes a significant health concern for the mother, and especially for the developing fetus and offspring. Current means of prevention have limitations, including a restricted window of intervention that excludes the first trimester of pregnancy, and the fact that very few drugs can be used for this purpose. The identification of the VAR2CSA antigen, specific to PM parasites, offers an excellent opportunity to develop a vaccine against this disease. Proof of concept of a first-generation vaccine is nearing completion, and two clinical trials are underway. AREAS COVERED This review focuses on PM, which is mainly caused by Plasmodium falciparum. The review highlights recent advances and the key milestones that led to the identification of the optimal vaccine target within the large VAR2CSA protein. The paper also points out how future improvements can strengthen this process to achieve an effective vaccine in the field. EXPERT OPINION The approach taken to develop a P. falciparum erythrocyte membrane protein 1-based vaccine to protect pregnant women is very promising in view of the current difficulties of achieving a sterilizing vaccine against malaria parasite. This approach could help us to control the deleterious effect of malaria infections that characterize severe clinical forms.
Collapse
|
32
|
Nielsen MA, Salanti A. High-Throughput Testing of Antibody-Dependent Binding Inhibition of Placental Malaria Parasites. Methods Mol Biol 2015; 1325:241-53. [PMID: 26450394 DOI: 10.1007/978-1-4939-2815-6_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The particular virulence of Plasmodium falciparum manifests in diverse severe malaria syndromes as cerebral malaria, severe anemia and placental malaria. The cause of both the severity and the diversity of infection outcome, is the ability of the infected erythrocyte (IE) to bind a range of different human receptors through Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of the infected cell. As the var genes encoding the large PfEMP1 antigens are extensively polymorphic, vaccine development strategies are focused on targeting the functional binding epitopes. This involves identification of recombinant fragments of PfEMP1s that induce antibodies, which hinder the adhesion of the IE to a given receptor or tissue. Different assays to measure the blocking of adhesion have been described in the literature, each with different advantages. This chapter describes a high-throughput assay used in the preclinical and clinical development of a VAR2CSA based vaccine against placental malaria.
Collapse
Affiliation(s)
- Morten A Nielsen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, CSS Building 22/23, Øster Farimagsgade 5, 2099, Copenhagen K, 1014, Denmark.
| | - Ali Salanti
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, CSS Building 22/23, Øster Farimagsgade 5, 2099, Copenhagen K, 1014, Denmark.
| |
Collapse
|
33
|
Llama immunization with full-length VAR2CSA generates cross-reactive and inhibitory single-domain antibodies against the DBL1X domain. Sci Rep 2014; 4:7373. [PMID: 25487735 PMCID: PMC5376981 DOI: 10.1038/srep07373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022] Open
Abstract
VAR2CSA stands today as the leading vaccine candidate aiming to protect future pregnant women living in malaria endemic areas against the severe clinical outcomes of pregnancy associated malaria (PAM). The rational design of an efficient VAR2CSA-based vaccine relies on a profound understanding of the molecular interactions associated with P. falciparum infected erythrocyte sequestration in the placenta. Following immunization of a llama with the full-length VAR2CSA recombinant protein, we have expressed and characterized a panel of 19 nanobodies able to recognize the recombinant VAR2CSA as well as the surface of erythrocytes infected with parasites originating from different parts of the world. Domain mapping revealed that a large majority of nanobodies targeted DBL1X whereas a few of them were directed towards DBL4ε, DBL5ε and DBL6ε. One nanobody targeting the DBL1X was able to recognize the native VAR2CSA protein of the three parasite lines tested. Furthermore, four nanobodies targeting DBL1X reproducibly inhibited CSA adhesion of erythrocytes infected with the homologous NF54-CSA parasite strain, providing evidences that DBL1X domain is part or close to the CSA binding site. These nanobodies could serve as useful tools to identify conserved epitopes shared between different variants and to characterize the interactions between VAR2CSA and CSA.
Collapse
|
34
|
Almelli T, Ndam NT, Ezimegnon S, Alao MJ, Ahouansou C, Sagbo G, Amoussou A, Deloron P, Tahar R. Cytoadherence phenotype of Plasmodium falciparum-infected erythrocytes is associated with specific pfemp-1 expression in parasites from children with cerebral malaria. Malar J 2014; 13:333. [PMID: 25156105 PMCID: PMC4150962 DOI: 10.1186/1475-2875-13-333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/29/2014] [Indexed: 11/25/2022] Open
Abstract
Background Cytoadherence of Plasmodium falciparum-infected erythrocytes (IEs) in deep microvasculature endothelia plays a major role in the pathogenesis of cerebral malaria (CM). This biological process is thought to be mediated by P. falciparum erythrocyte membrane protein-1 (PfEMP-1) and human receptors such as CD36 and ICAM-1. The relationship between the expression of PfEMP-1 variants and cytoadherence phenotype in the pathology of malaria is not well established. Methods Cytoadherence phenotypes of IEs to CD36, ICAM-1, CSPG and the transcription patterns of A, B, var2csa, var3, var gene groups and domain cassettes DC8 and DC13 were assessed in parasites from children with CM and uncomplicated malaria (UM) to determine if cytoadherence is related to a specific transcription profile of pfemp-1 variants. Results Parasites from CM patients bind significantly more to CD36 than those from UM patients, but no difference was observed in their binding ability to ICAM-1 and CSPG. CM isolates highly transcribed groups A, B, var2csa, var3, DC8 and DC13 compared to UM parasites. The high transcription levels of var genes belonging to group B positively correlated with increased binding level to CD36. Conclusion CM isolates bind significantly more to CD36 than to ICAM-1, which was correlated with high transcription level of group B var genes, supporting their implication in malaria pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rachida Tahar
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et Enfant Face aux Infections Tropicales, 4, avenue de l'Observatoire, Paris 75270, France.
| |
Collapse
|
35
|
Antigen reversal identifies targets of opsonizing IgGs against pregnancy-associated malaria. Infect Immun 2014; 82:4842-53. [PMID: 25156731 DOI: 10.1128/iai.02097-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Clinical immunity to pregnancy associated-malaria (PAM) in multigravida women has been attributed to antibodies that recognize VAR2CSA on the infected erythrocyte (IE) surface. The size and complexity of VAR2CSA have focused efforts on selecting one or more of its six Duffy binding-like (DBL) domains for vaccine development. Presently, however, there is no consensus as to which DBL domain(s) would be most effective in eliciting immunity. This is because antibodies to a number of the DBL domains have been found to block the adhesion of VAR2CSA-expressing erythrocytes to chondroitin sulfate A (CSA)-a major criterion for evaluating vaccine candidacy. Opsonization of IEs by cytophilic antibodies that recognize VAR2CSA represents an important yet understudied effector mechanism in acquired immunity to PAM. To date, no studies have sought to determine the targets of those antibodies. In this study, we found that IgGs from multigravida Malian women showed (i) higher reactivity to recombinant DBL domains by enzyme-linked immunosorbent assay (ELISA), (ii) more binding to VAR2CSA-expressing IEs, and (iii) greater opsonization of these IEs by human monocytic cells than IgGs from malaria-exposed Malian men and malaria-naive American adults. Preincubation of IgGs from multigravida women with recombinant DBL2χ, DBL3χ, or DBL5ε domains significantly diminished opsonization of VAR2CSA-expressing IEs by human monocytes. These data identify the DBL2χ, DBL3χ, and DBL5ε domains as the primary targets of opsonizing IgGs for the first time. Our study introduces a new approach to determining the antigenic targets of opsonizing IgGs in phagocytosis assays.
Collapse
|
36
|
Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria. INFECTION GENETICS AND EVOLUTION 2014; 25:81-92. [PMID: 24768682 DOI: 10.1016/j.meegid.2014.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/18/2022]
Abstract
In placental malaria (PM), sequestration of infected erythrocytes in the placenta is mediated by an interaction between VAR2CSA, a Plasmodium falciparum protein expressed on erythrocytes, and chondroitin sulfate A (CSA) on syncytiotrophoblasts. Recent works have identified ID1-DBL2Xb as the minimal CSA-binding region within VAR2CSA able to induce strong protective immunity, making it the leading candidate for the development of a vaccine against PM. Assessing the existence of population differences in the distribution of ID1-DBL2Xb polymorphisms is of paramount importance to determine whether geographic diversity must be considered when designing a candidate vaccine based on this fragment. In this study, we examined patterns of sequence variation of ID1-DBL2Xb in a large collection of P. falciparum field isolates (n=247) from different malaria-endemic areas, including Africa (Benin, Senegal, Cameroon and Madagascar), Asia (Cambodia), Oceania (Papua New Guinea), and Latin America (Peru). Detection of variants and estimation of their allele frequencies were performed using next-generation sequencing of DNA pools. A considerable amount of variation was detected along the whole gene segment, suggesting that several allelic variants may need to be included in a candidate vaccine to achieve broad population coverage. However, most sequence variants were common and extensively shared among worldwide parasite populations, demonstrating long term persistence of those polymorphisms, probably maintained through balancing selection. Therefore, a vaccine mixture including such stable antigen variants will be putatively applicable and efficacious in all world regions where malaria occurs. Despite similarity in ID1-DBL2Xb allele repertoire across geographic areas, several peaks of strong population differentiation were observed at specific polymorphic loci, pointing out putative targets of humoral immunity subject to positive immune selection.
Collapse
|
37
|
Chan JA, Fowkes FJI, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci 2014; 71:3633-57. [PMID: 24691798 PMCID: PMC4160571 DOI: 10.1007/s00018-014-1614-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Understanding the targets and mechanisms of human immunity to malaria caused by Plasmodium falciparum is crucial for advancing effective vaccines and developing tools for measuring immunity and exposure in populations. Acquired immunity to malaria predominantly targets the blood stage of infection when merozoites of Plasmodium spp. infect erythrocytes and replicate within them. During the intra-erythrocytic development of P. falciparum, numerous parasite-derived antigens are expressed on the surface of infected erythrocytes (IEs). These antigens enable P. falciparum-IEs to adhere in the vasculature and accumulate in multiple organs, which is a key process in the pathogenesis of disease. IE surface antigens, often referred to as variant surface antigens, are important targets of acquired protective immunity and include PfEMP1, RIFIN, STEVOR and SURFIN. These antigens are highly polymorphic and encoded by multigene families, which generate substantial antigenic diversity to mediate immune evasion. The most important immune target appears to be PfEMP1, which is a major ligand for vascular adhesion and sequestration of IEs. Studies are beginning to identify specific variants of PfEMP1 linked to disease pathogenesis that may be suitable for vaccine development, but overcoming antigenic diversity in PfEMP1 remains a major challenge. Much less is known about other surface antigens, or antigens on the surface of gametocyte-IEs, the effector mechanisms that mediate immunity, and how immunity is acquired and maintained over time; these are important topics for future research.
Collapse
|
38
|
Functional antibodies against VAR2CSA in nonpregnant populations from colombia exposed to Plasmodium falciparum and Plasmodium vivax. Infect Immun 2014; 82:2565-73. [PMID: 24686068 DOI: 10.1128/iai.01594-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In pregnancy, parity-dependent immunity is observed in response to placental infection with Plasmodium falciparum. Antibodies recognize the surface antigen, VAR2CSA, expressed on infected red blood cells and inhibit cytoadherence to the placental tissue. In most settings of malaria endemicity, antibodies against VAR2CSA are predominantly observed in multigravid women and infrequently in men, children, and nulligravid women. However, in Colombia, we detected antibodies against multiple constructs of VAR2CSA among men and children with acute P. falciparum and Plasmodium vivax infection. The majority of men and children (>60%) had high levels of IgGs against three recombinant domains of VAR2CSA: DBL5ε, DBL3X, and ID1-ID2. Surprisingly, these antibodies were observed only in pregnant women, men, and children exposed either to P. falciparum or to P. vivax. Moreover, the anti-VAR2CSA antibodies are of high avidity and efficiently inhibit adherence of infected red blood cells to chondroitin sulfate A in vitro, suggesting that they are specific and functional. These unexpected results suggest that there may be genotypic or phenotypic differences in the parasites of this region or in the host response to either P. falciparum or P. vivax infection outside pregnancy. These findings may hold significant clinical relevance to the pathophysiology and outcome of malaria infections in this region.
Collapse
|
39
|
Doritchamou J, Bigey P, Nielsen MA, Gnidehou S, Ezinmegnon S, Burgain A, Massougbodji A, Deloron P, Salanti A, Ndam NT. Differential adhesion-inhibitory patterns of antibodies raised against two major variants of the NTS-DBL2X region of VAR2CSA. Vaccine 2013; 31:4516-22. [PMID: 23933341 DOI: 10.1016/j.vaccine.2013.07.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND VAR2CSA is a large polymorphic Plasmodium falciparum protein expressed on infected erythrocytes (IE) that allows their binding in the placenta, thus precipitating placental malaria (PM). The N-terminal part of VAR2CSA that contains the binding site to placental chondroitin sulfate A (CSA) is currently recognized as the most attractive region for vaccine development. An ultimate challenge is to define epitopes in this region that induce a broad cross-reactive adhesion inhibitory antibody response. METHODS Based on phylogenetic data that identified a dimorphic sequence motif in the VAR2CSA DBL2X, we raised antibodies against the NTS-DBL2X constructs containing one sequence or the other (3D7 and FCR3) and tested their functional properties on P. falciparum isolates from pregnant women and on laboratory-adapted strains. RESULTS The CSA binding inhibitory capacity of the antibodies induced varied from one parasite isolate to another (range, 10%–100%), but the combined analysis of individual activity highlighted a broader functionality that increased the total number of isolates inhibited. Interestingly, the differential inhibitory effect of the antibodies observed on field isolates resulted in significant inhibition of all field isolates tested, suggesting that optimal inhibitory spectrum on field isolates from pregnant women might be achieved with antibodies targeting limited variants of the N-terminal VAR2CSA. CONCLUSIONS Our findings indicate that the NTS-DBL2X region of VAR2CSA can elicit strain-transcending anti-adhesion antibodies and suggest that the combination of the two major variants used here could represent the basis for an effective bivalent VAR2CSA-based vaccine.
Collapse
Affiliation(s)
- Justin Doritchamou
- PRES Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, France; Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France; Centre d'Etude et de Recherche sur le paludisme associé à la Grossesse et à l'Enfance, Université d'Abomey-Calavi, Cotonou, Benin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rovira-Vallbona E, Monteiro I, Bardají A, Serra-Casas E, Neafsey DE, Quelhas D, Valim C, Alonso P, Dobaño C, Ordi J, Menéndez C, Mayor A. VAR2CSA signatures of high Plasmodium falciparum parasitemia in the placenta. PLoS One 2013; 8:e69753. [PMID: 23936092 PMCID: PMC3723727 DOI: 10.1371/journal.pone.0069753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum infected erythrocytes (IE) accumulate in the placenta through the interaction between Duffy-binding like (DBL) domains of parasite-encoded ligand VAR2CSA and chondroitin sulphate-A (CSA) receptor. Polymorphisms in these domains, including DBL2X and DBL3X, may affect their antigenicity or CSA-binding affinity, eventually increasing parasitemia and its adverse effects on pregnancy outcomes. A total of 373 DBL2X and 328 DBL3X sequences were obtained from transcripts of 20 placental isolates infecting Mozambican women, resulting in 176 DBL2X and 191 DBL3X unique sequences at the protein level. Sequence alignments were divided in segments containing combinations of correlated polymorphisms and the association of segment sequences with placental parasite density was tested using Bonferroni corrected regression models, taking into consideration the weight of each sequence in the infection. Three DBL2X and three DBL3X segments contained signatures of high parasite density (P<0.003) that were highly prevalent in the parasite population (49-91%). Identified regions included a flexible loop that contributes to DBL3X-CSA interaction and two DBL3X motifs with evidence of positive natural selection. Limited antibody responses against signatures of high parasite density among malaria-exposed pregnant women could not explain the increased placental parasitemia. These results suggest that a higher binding efficiency to CSA rather than reduced antigenicity might provide a biological advantage to parasites with high parasite density signatures in VAR2CSA. Sequences contributing to high parasitemia may be critical for the functional characterization of VAR2CSA and the development of tools against placental malaria.
Collapse
MESH Headings
- Adolescent
- Amino Acid Sequence
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/metabolism
- Binding Sites
- Chondroitin Sulfates/chemistry
- Chondroitin Sulfates/metabolism
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Female
- Humans
- Malaria, Falciparum/immunology
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Molecular Docking Simulation
- Molecular Sequence Data
- Placenta/immunology
- Placenta/parasitology
- Placenta/pathology
- Plasmodium falciparum/chemistry
- Plasmodium falciparum/genetics
- Plasmodium falciparum/metabolism
- Pregnancy
- Pregnancy Complications, Parasitic/immunology
- Pregnancy Complications, Parasitic/metabolism
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/pathology
- Protein Binding
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Eduard Rovira-Vallbona
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Isadora Monteiro
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Azucena Bardají
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Elisa Serra-Casas
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | | | - Diana Quelhas
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clarissa Valim
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro Alonso
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlota Dobaño
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Jaume Ordi
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Department of Pathology, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Clara Menéndez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- * E-mail:
| |
Collapse
|
41
|
Burgain A, Rochard A, Trollet C, Mazuet C, Popoff MR, Escriou V, Scherman D, Bigey P. DNA electroporation in rabbits as a method for generation of high-titer neutralizing antisera: examples of the botulinum toxins types A, B, and E. Hum Vaccin Immunother 2013; 9:2147-56. [PMID: 23877030 DOI: 10.4161/hv.25192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Raising high titer antibodies in animals is usually performed by protein immunization, which requires the long and sometimes difficult step of production of the recombinant protein. DNA immunization is an alternative to recombinant proteins, only requiring the building of an eukaryotic expression plasmid. Thanks to efficient DNA delivery techniques such as in vivo electroporation, DNA vaccination has proven useful the last few years. In this work, we have shown that it is possible to raise very high antibody titers in rabbit by DNA electroporation of an antigen encoding plasmid in the skeletal muscle with the right set of electrodes and rabbit strain. In a model of botulinum toxins types A and E, the neutralizing titers obtained after three treatments were high enough to fit the European Pharmacopeia, while it did not for type B toxin. Furthermore, the raised antibodies have high avidity and are suitable for in vitro and in vivo immunodetection of proteins.
Collapse
Affiliation(s)
- Aurore Burgain
- Université Paris Descartes; Paris, France; ENSCP Chimie ParisTech; Paris, France; CNRS UMR8151; Paris, France; Inserm U1022; Paris, France
| | - Alice Rochard
- Université Paris Descartes; Paris, France; ENSCP Chimie ParisTech; Paris, France; CNRS UMR8151; Paris, France; Inserm U1022; Paris, France
| | - Capucine Trollet
- Université Paris Descartes; Paris, France; ENSCP Chimie ParisTech; Paris, France; CNRS UMR8151; Paris, France; Inserm U1022; Paris, France
| | | | | | - Virginie Escriou
- Université Paris Descartes; Paris, France; ENSCP Chimie ParisTech; Paris, France; CNRS UMR8151; Paris, France; Inserm U1022; Paris, France
| | - Daniel Scherman
- Université Paris Descartes; Paris, France; ENSCP Chimie ParisTech; Paris, France; CNRS UMR8151; Paris, France; Inserm U1022; Paris, France
| | - Pascal Bigey
- Université Paris Descartes; Paris, France; ENSCP Chimie ParisTech; Paris, France; CNRS UMR8151; Paris, France; Inserm U1022; Paris, France
| |
Collapse
|
42
|
Berger SS, Turner L, Wang CW, Petersen JEV, Kraft M, Lusingu JPA, Mmbando B, Marquard AM, Bengtsson DBAC, Hviid L, Nielsen MA, Theander TG, Lavstsen T. Plasmodium falciparum expressing domain cassette 5 type PfEMP1 (DC5-PfEMP1) bind PECAM1. PLoS One 2013; 8:e69117. [PMID: 23874884 PMCID: PMC3706608 DOI: 10.1371/journal.pone.0069117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Members of the Plasmodium falciparum Erythrocyte Membrane protein 1 (PfEMP1) family expressed on the surface of malaria-infected erythrocytes mediate binding of the parasite to different receptors on the vascular lining. This process drives pathologies, and severe childhood malaria has been associated with the expression of particular subsets of PfEMP1 molecules. PfEMP1 are grouped into subtypes based on upstream sequences and the presence of semi-conserved PfEMP1 domain compositions named domain cassettes (DCs). Earlier studies have indicated that DC5-containing PfEMP1 (DC5-PfEMP1) are more likely to be expressed in children with severe malaria disease than in children with uncomplicated malaria, but these PfEMP1 subtypes only dominate in a relatively small proportion of the children with severe disease. In this study, we have characterised the genomic sequence characteristic for DC5, and show that two genetically different parasite lines expressing DC5-PfEMP1 bind PECAM1, and that anti-DC5-specific antibodies inhibit binding of DC5-PfEMP1-expressing parasites to transformed human bone marrow endothelial cells (TrHBMEC). We also show that antibodies against each of the four domains characteristic for DC5 react with native PfEMP1 expressed on the surface of infected erythrocytes, and that some of these antibodies are cross-reactive between the two DC5-containing PfEMP1 molecules tested. Finally, we confirm that anti-DC5 antibodies are acquired early in life by individuals living in malaria endemic areas, that individuals having high levels of these antibodies are less likely to develop febrile malaria episodes and that the antibody levels correlate positively with hemoglobin levels.
Collapse
Affiliation(s)
- Sanne S. Berger
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SB); (TL)
| | - Louise Turner
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Christian W. Wang
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Jens E. V. Petersen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Maria Kraft
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - John P. A. Lusingu
- National Institute for Medical Research (NIMR), Tanga Medical Research Centre, Tanga, Tanzania
| | - Bruno Mmbando
- National Institute for Medical Research (NIMR), Tanga Medical Research Centre, Tanga, Tanzania
| | - Andrea M. Marquard
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Dominique B. A. C. Bengtsson
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Morten A. Nielsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SB); (TL)
| |
Collapse
|
43
|
Plasmodium falciparum variability and immune evasion proceed from antigenicity of consensus sequences from DBL6ε; generalization to all DBL from VAR2CSA. PLoS One 2013; 8:e54882. [PMID: 23372786 PMCID: PMC3555990 DOI: 10.1371/journal.pone.0054882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
We studied all consensus sequences within the four least ‘variable blocks’ (VB) present in the DBL6ε domain of VAR2CSA, the protein involved in the adhesion of infected red blood cells by Plasmodium falciparum that causes the Pregnancy-Associated Malaria (PAM). Characterising consensus sequences with respect to recognition of antibodies and percentage of responders among pregnant women living in areas where P. falciparum is endemic allows the identification of the most antigenic sequences within each VB. When combining these consensus sequences among four serotypes from VB1 or VB5, the most often recognized ones are expected to induce pan-reactive antibodies recognizing VAR2CSA from all plasmodial strains. These sequences are of main interest in the design of an immunogenic molecule. Using a similar approach than for DBL6ε, we studied the five other DBL and the CIDRpam from VAR2CSA, and again identified VB segments with highly conserved consensus sequences. In addition, we identified consensus sequences in other var genes expressed by non-PAM parasites. This finding paves the way for vaccine design against other pathologies caused by P. falciparum.
Collapse
|
44
|
Identification of VAR2CSA domain-specific inhibitory antibodies of the Plasmodium falciparum erythrocyte membrane protein 1 using a novel flow cytometry assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:433-42. [PMID: 23345587 DOI: 10.1128/cvi.00638-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
VAR2CSA, a member of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, is a leading candidate for use in vaccines to protect first-time mothers from placental malaria (PM). VAR2CSA, which is comprised of a series of six Duffy binding-like (DBL) domains, binds chondroitin sulfate A (CSA) on placental syncytiotrophoblast. Several recombinant DBL domains have been shown to bind CSA. In order to identify and develop recombinant proteins suitable for clinical development, DBL2X and DBL3X, as well as their respective third subdomain (S3) from the FCR3 parasite clone, were expressed in Escherichia coli, refolded, and purified. All but DBL3X-S3 recombinant proteins bound to CSA expressed on Chinese hamster ovary (CHO)-K1 cells but not to CHO-pgsA745 cells, which are CSA negative as determined by flow cytometry. All but DBL3X-S3 bound to CSA on chondroitin sulfate proteoglycan (CSPG) as determined by surface plasmon resonance (SPR) analysis. Purified IgG from rats and rabbits immunized with these four recombinant proteins bound homologous and some heterologous parasite-infected erythrocytes (IE). Using a novel flow cytometry inhibition-of-binding assay (flow-IBA), antibodies against DBL3X-S3 inhibited 35% and 45% of IE binding to CSA on CHO-K1 cells compared to results for soluble CSA (sCSA) and purified multigravida (MG) IgG, respectively, from areas in Tanzania to which malaria is endemic. Antibodies generated against the other domains provided little or no inhibition of IE binding to CSA on CHO-K1 cells as determined by the flow cytometry inhibition-of-binding assay. These results demonstrate for the first time the ability to identify antibodies to VAR2CSA DBL domains and subdomains capable of inhibiting VAR2CSA parasite-IE binding to CSA by flow cytometry. The flow cytometry inhibition-of-binding assay was robust and provided an accurate, reproducible, and reliable means to identify blocking of IE binding to CSA and promises to be significant in the development of a vaccine to protect pregnant women.
Collapse
|
45
|
Antibodies to Escherichia coli-expressed C-terminal domains of Plasmodium falciparum variant surface antigen 2-chondroitin sulfate A (VAR2CSA) inhibit binding of CSA-adherent parasites to placental tissue. Infect Immun 2013; 81:1031-9. [PMID: 23319559 DOI: 10.1128/iai.00978-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Placental malaria (PM) is characterized by infected erythrocytes (IEs) that selectively bind to chondroitin sulfate A (CSA) and sequester in placental tissue. Variant surface antigen 2-CSA (VAR2CSA), a Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) protein family member, is expressed on the surface of placental IEs and mediates adherence to CSA on the surface of syncytiotrophoblasts. This transmembrane protein contains 6 Duffy binding-like (DBL) domains which might contribute to the specific adhesive properties of IEs. Here, we use laboratory isolate 3D7 VAR2CSA DBL domains expressed in Escherichia coli to generate antibodies specific for this protein. Flow cytometry results showed that antibodies generated against DBL4ε, DBL5ε, DBL6ε, and tandem double domains of DBL4-DBL5 and DBL5-DBL6 all bind to placental parasite isolates and to lab strains selected for CSA binding but do not bind to children's parasites. Antisera to DBL4ε and to DBL5ε inhibit maternal IE binding to placental tissue in a manner comparable to that for plasma collected from multigravid women. These antibodies also inhibit binding to CSA of several field isolates derived from pregnant women, while antibodies to double domains do not enhance the functional immune response. These data support DBL4ε and DBL5ε as vaccine candidates for pregnancy malaria and demonstrate that E. coli is a feasible tool for the large-scale manufacture of a vaccine based on these VAR2CSA domains.
Collapse
|
46
|
Multilaboratory approach to preclinical evaluation of vaccine immunogens for placental malaria. Infect Immun 2012. [PMID: 23208604 DOI: 10.1128/iai.01106-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes that adhere to the placental receptor chondroitin sulfate A (CSA) and sequester in the placenta; women become resistant to pregnancy malaria as they acquire antiadhesion antibodies that target surface proteins of placental parasites. VAR2CSA, a member of the P. falciparum EMP1 variant surface antigen family, is the leading candidate for a pregnancy malaria vaccine. Because VAR2CSA is a high-molecular-weight protein, a vaccine based on the full-length protein may not be feasible. An alternative approach has been to develop a vaccine targeting individual Duffy binding-like (DBL) domains. In this study, a consortium of laboratories under the Pregnancy Malaria Initiative compared the functional activity of antiadhesion antibodies elicited by different VAR2CSA domains and variants produced in prokaryotic and eukaryotic expression systems. Antisera were initially tested against laboratory lines of maternal parasites, and the most promising reagents were evaluated in the field against fresh placental parasite samples. Recombinant proteins expressed in Escherichia coli elicited antibody levels similar to those expressed in eukaryotic systems, as did the two allelic forms of the DBL4 and DBL5 domains. The procedures developed for this head-to-head comparison will be useful for future evaluation and down-selection of malaria vaccine immunogens.
Collapse
|
47
|
Doritchamou J, Bertin G, Moussiliou A, Bigey P, Viwami F, Ezinmegnon S, Fievet N, Massougbodji A, Deloron P, Tuikue Ndam N. First-trimester Plasmodium falciparum infections display a typical "placental" phenotype. J Infect Dis 2012; 206:1911-9. [PMID: 23045626 DOI: 10.1093/infdis/jis629] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Plasmodium falciparum-infected erythrocytes (IEs) adhere to host cell receptors, allowing parasites to sequester into deep vascular beds of various organs. This defining phenomenon of malaria pathogenesis is key to the severe clinical complications associated with cerebral and placental malaria. The principal ligand associated with the binding to chondroitin sulfate A (CSA) that allows placental sequestration of IEs is a P. falciparum erythrocyte membrane protein 1 (PfEMP1) family member encoded by the var2csa gene. METHODS Here, we investigated the transcription pattern of var genes by real-time polymerase chain reaction, the expression of VAR2CSA, protein by flow cytometry, and the CSA-binding ability of IEs collected at different stages of pregnancy using a static-based Petri dish assay. RESULTS Through comparison with the profiles of isolates from nonpregnant hosts, we report several lines of evidence showing that parasites infecting women during pregnancy preferentially express VAR2CSA protein, and that selection for the capacity to adhere to CSA via VAR2CSA expression occurs early in pregnancy. CONCLUSIONS Our data suggest that the placental tropism of P. falciparum is already established in the first trimester of pregnancy, with consequent implications for the development of the pathology associated with placental malaria.
Collapse
Affiliation(s)
- Justin Doritchamou
- PRES Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Talundzic E, Shah S, Fawole O, Owino S, Moore JM, Peterson DS. Sequence polymorphism, segmental recombination and toggling amino acid residues within the DBL3X domain of the VAR2CSA placental malaria antigen. PLoS One 2012; 7:e31565. [PMID: 22347496 PMCID: PMC3276574 DOI: 10.1371/journal.pone.0031565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/13/2012] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum malaria remains one of the world's foremost health problems, primarily in highly endemic regions such as Sub-Saharan Africa, where it is responsible for substantial morbidity, mortality and economic losses. Malaria is a significant cause of severe disease and death in pregnant women and newborns, with pathogenesis being associated with expression of a unique variant of the multidomain Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) called VAR2CSA. Here, we characterize the polymorphism of the DBL3X domain of VAR2CSA and identify regions under selective pressure among placental parasites from women living in endemic western Kenya. In addition to significant levels of polymorphism, our analysis reveals evidence for diversification through intra-segmental recombination and novel mutations that likely contributed to the high number of unique VAR2CSA sequence types identified in this study. Interestingly, we also identified a number of critical residues that may be implicated in immune evasion through switching (or toggling) to alternative amino acids, including an arginine residue within the predicted binding pocket in subdomain III, which was previously implicated in binding to placental CSA. Overall, these findings are important for understanding parasite diversity in pregnant women and will be useful for identifying epitopes and variants of DBL3X to be included in a vaccine against placental malaria.
Collapse
Affiliation(s)
- Eldin Talundzic
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Sheel Shah
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Ope Fawole
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Simon Owino
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Julie M. Moore
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - David S. Peterson
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Diseases, The University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
49
|
Hviid L. The case for PfEMP1-based vaccines to protect pregnant women against Plasmodium falciparum malaria. Expert Rev Vaccines 2012; 10:1405-14. [PMID: 21988306 DOI: 10.1586/erv.11.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccines are very cost-effective tools in combating infectious disease mortality and morbidity. Unfortunately, vaccines efficiently protecting against infection with malaria parasites are not available and are not likely to appear in the near future. An alternative strategy would be vaccines protecting against the disease and its consequences rather than against infection per se, by accelerating the development of the protective immunity that is normally acquired after years of exposure to malaria parasites in areas of stable transmission. This latter strategy is being energetically pursued to develop a vaccine protecting pregnant women and their offspring against mortality and morbidity caused by the accumulation of Plasmodium falciparum-infected erythrocytes in the placenta. It is based on a detailed understanding of the parasite antigen and the host receptor involved in this accumulation, as well as knowledge regarding the protective immune response that is acquired in response to placental P. falciparum infection. Nevertheless, it remains controversial in some quarters whether such a vaccine would have the desired impact, or indeed whether the strategy is meaningful. This article critically examines the relevance of several perceived obstacles to development of a vaccine against placental malaria.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
50
|
Bordbar B, Tuikue-Ndam N, Bigey P, Doritchamou J, Scherman D, Deloron P. Identification of Id1-DBL2X of VAR2CSA as a key domain inducing highly inhibitory and cross-reactive antibodies. Vaccine 2012; 30:1343-8. [PMID: 22226864 DOI: 10.1016/j.vaccine.2011.12.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 11/29/2022]
Abstract
PURPOSE OF THE RESEARCH VAR2CSA is considered as the main target of protective immunity against pregnancy-associated malaria. VAR2CSA high molecular weight complicates scaling up production of VAR2CSA recombinant protein for large-scale vaccination programmes. We previously demonstrated that antibodies induced by NTS-DBL1X-Id1-DBL2X efficiently block parasite binding to CSA in a similar manner to antibodies induced by the full-length extracellular part of VAR2CSA. In order to identifying the shortest fragment of VAR2CSA carrying major protective epitopes able to elicit inhibitory antibodies, we performed a refined antigenic mapping of NTS-DBL1X-Id1-DBL2X through a DNA vaccination technique. PRINCIPAL RESULTS Five single or double domains constructs encoding NTS-DBL1X, NTS-DBL1X-Id1, Id1, Id1-DBL2X and DBL2X were made and used to immunize mice. The NTS-DBL1X, NTS-DBL1X-Id1, and Id1-DBL2X fragments all raised high titer immune response, as measured by ELISA. The DBL2X fragment raised a weaker antibody titer, and the Id1 construct failed to elicit antibody. Sera from mice immunized with NTS-DBL1X or DBL2X constructs failed to block infected erythrocytes binding to CSA, whereas sera from mice immunized with NTS-DBL1X-Id1 showed partial inhibitory activity, and the Id1-DBL2X fragment elicited antisera that totally abrogated infected erythrocytes adhesion to CSA. IgG purified from Id1-DBL2X antisera showed a similar inhibitory profile than Id1-DBL2X antisera. Anti-FCR3 anti-Id1-DBL2X antibodies also efficiently block the adhesion of erythrocytes infected by the HB3 parasite line to CSA. Id1-DBL2X antisera recognized the surface of field isolates from pregnant women, and inhibited CSA-binding of all 8 isolates tested, although to a variable level. MAJOR CONCLUSIONS We raised high-titer antibodies against several parts of the protein, and identified Id1-DBL2X as the minimal VAR2CSA fragment inducing antibodies with CSA-binding inhibitory efficiency in the same range as the full-length extracellular part of VAR2CSA.
Collapse
Affiliation(s)
- Bita Bordbar
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|