1
|
Yang M, Bi W, Zhang Z. Identification and validation of CCL5 as a key gene in HIV infection and pulmonary arterial hypertension. Front Cardiovasc Med 2024; 11:1417701. [PMID: 39119185 PMCID: PMC11306045 DOI: 10.3389/fcvm.2024.1417701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background The relationship between human immunodeficiency virus (HIV) infection and pulmonary arterial hypertension (PAH) has garnered significant scrutiny. Individuals with HIV infection have a higher risk of developing PAH. However, the specific mechanism of HIV-associated PAH remains unclear. Our study aims at investigating the shared biomarkers in HIV infection and PAH and predicting the potential therapeutic target for HIV-associated PAH. Methods Data for HIV infection and PAH were downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) analysis was performed to detect shared genes in HIV infection and PAH. Enrichment analysis was conducted to identify the function of common DEGs. Protein-protein interaction (PPI) analysis was used to detect key genes. These crucial genes were subsequently verified by RT-qPCR. Finally, candidate drugs were identified by using the Drug Signatures Database (DSigDB). Results Nineteen common DEGs were identified in HIV infection and PAH. Enrichment analysis exhibited that the functions of these genes were mainly enriched in inflammatory responses, mainly including cellular immunity and interaction between viral proteins and cytokines. By constructing PPI networks, we identified the key gene CC-type chemokine ligand 5 (CCL5), and we verified that CCL5 was highly expressed in hypoxia induced human pulmonary artery endothelial cells (hPAECs) and human pulmonary artery smooth muscle cells (hPASMCs). In addition, we predicted 10 potential drugs targeting CCL5 by Autodock Vina. Conclusion This study revealed that CCL5 might be a common biomarker of HIV infection and PAH and provided a new therapeutic target for HIV-associated PAH. However, further clinical validation is still indispensable.
Collapse
Affiliation(s)
- Mengyue Yang
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wen Bi
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijie Zhang
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
2
|
Derby N, Biswas S, Yusova S, Luevano-Santos C, Pacheco MC, Meyer KA, Johnson BI, Fischer M, Fancher KA, Fisher C, Abraham YM, McMahon CJ, Lutz SS, Smedley JV, Burwitz BJ, Sodora DL. SIV Infection Is Associated with Transient Acute-Phase Steatosis in Hepatocytes In Vivo. Viruses 2024; 16:296. [PMID: 38400071 PMCID: PMC10892327 DOI: 10.3390/v16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a major cause of morbidity and mortality in HIV-infected individuals, even those receiving optimal antiretroviral therapy. Here, we utilized the SIV rhesus macaque model and advanced laparoscopic techniques for longitudinal collection of liver tissue to elucidate the timing of pathologic changes. The livers of both SIV-infected (N = 9) and SIV-naïve uninfected (N = 8) macaques were biopsied and evaluated at four time points (weeks -4, 2, 6, and 16-20 post-infection) and at necropsy (week 32). SIV DNA within the macaques' livers varied by over 4 logs at necropsy, and liver SIV DNA significantly correlated with SIV RNA in the plasma throughout the study. Acute phase liver pathology (2 weeks post-infection) was characterized by evidence for fat accumulation (microvesicular steatosis), a transient elevation in both AST and cholesterol levels within the serum, and increased hepatic expression of the PPARA gene associated with cholesterol metabolism and beta oxidation. By contrast, the chronic phase of the SIV infection (32 weeks post-infection) was associated with sinusoidal dilatation, while steatosis resolved and concentrations of AST and cholesterol remained similar to those in uninfected macaques. These findings suggest differential liver pathologies associated with the acute and chronic phases of infection and the possibility that therapeutic interventions targeting metabolic function may benefit liver health in people newly diagnosed with HIV.
Collapse
Affiliation(s)
- Nina Derby
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Sreya Biswas
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Sofiya Yusova
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Cristina Luevano-Santos
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | | | - Kimberly A. Meyer
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Brooke I. Johnson
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Miranda Fischer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Katherine A. Fancher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Cole Fisher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Yohannes M. Abraham
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Conor J. McMahon
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Savannah S. Lutz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Donald L. Sodora
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| |
Collapse
|
3
|
The Role of Immunometabolism in HIV-1 Pathogenicity: Links to Immune Cell Responses. Viruses 2022; 14:v14081813. [PMID: 36016435 PMCID: PMC9415820 DOI: 10.3390/v14081813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
With the successful roll-out of combination antiretroviral treatment, HIV is currently managed as a chronic illness. Of note, immune activation and chronic inflammation are hallmarks of HIV-1 infection that persists even though patients are receiving treatments. Despite strong evidence linking immune activation and low-grade inflammation to HIV-1 pathogenesis, the underlying mechanisms remain less well-understood. As intracellular metabolism is emerging as a crucial factor determining the fate and activity of immune cells, this review article focuses on how links between early immune responses and metabolic reprograming may contribute to HIV pathogenicity. Here, the collective data reveal that immunometabolism plays a key role in HIV-1 pathogenesis. For example, the shift from quiescent immune cells to its activation leads to perturbed metabolic circuits that are major drivers of immune cell dysfunction and an altered phenotype. These findings suggest that immunometabolic perturbations play a key role in the onset of non-AIDS-associated comorbidities and that they represent an attractive target to develop improved diagnostic tools and novel therapeutic strategies to help blunt HIV-1 pathogenesis.
Collapse
|
4
|
Dong SXM, Vizeacoumar FS, Bhanumathy KK, Alli N, Gonzalez-Lopez C, Gajanayaka N, Caballero R, Ali H, Freywald A, Cassol E, Angel JB, Vizeacoumar FJ, Kumar A. Identification of novel genes involved in apoptosis of HIV-infected macrophages using unbiased genome-wide screening. BMC Infect Dis 2021; 21:655. [PMID: 34233649 PMCID: PMC8261936 DOI: 10.1186/s12879-021-06346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/15/2021] [Indexed: 12/01/2022] Open
Abstract
Background Macrophages, besides resting latently infected CD4+ T cells, constitute the predominant stable, major non-T cell HIV reservoirs. Therefore, it is essential to eliminate both latently infected CD4+ T cells and tissue macrophages to completely eradicate HIV in patients. Until now, most of the research focus is directed towards eliminating latently infected CD4+ T cells. However, few approaches have been directed at killing of HIV-infected macrophages either in vitro or in vivo. HIV infection dysregulates the expression of many host genes essential for the survival of infected cells. We postulated that exploiting this alteration may yield novel targets for the selective killing of infected macrophages. Methods We applied a pooled shRNA-based genome-wide approach by employing a lentivirus-based library of shRNAs to screen novel gene targets whose inhibition should selectively induce apoptosis in HIV-infected macrophages. Primary human MDMs were infected with HIV-eGFP and HIV-HSA viruses. Infected MDMs were transfected with siRNAs specific for the promising genes followed by analysis of apoptosis by flow cytometry using labelled Annexin-V in HIV-infected, HIV-exposed but uninfected bystander MDMs and uninfected MDMs. The results were analyzed using student’s t-test from at least four independent experiments. Results We validated 28 top hits in two independent HIV infection models. This culminated in the identification of four target genes, Cox7a2, Znf484, Cstf2t, and Cdk2, whose loss-of-function induced apoptosis preferentially in HIV-infected macrophages. Silencing these single genes killed significantly higher number of HIV-HSA-infected MDMs compared to the HIV-HSA-exposed, uninfected bystander macrophages, indicating the specificity in the killing of HIV-infected macrophages. The mechanism governing Cox7a2-mediated apoptosis of HIV-infected macrophages revealed that targeting respiratory chain complex II and IV genes also selectively induced apoptosis of HIV-infected macrophages possibly through enhanced ROS production. Conclusions We have identified above-mentioned novel genes and specifically the respiratory chain complex II and IV genes whose silencing may cause selective elimination of HIV-infected macrophages and eventually the HIV-macrophage reservoirs. The results highlight the potential of the identified genes as targets for eliminating HIV-infected macrophages in physiological environment as part of an HIV cure strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06346-7.
Collapse
Affiliation(s)
- Simon X M Dong
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kalpana K Bhanumathy
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nezeka Alli
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Niranjala Gajanayaka
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ramon Caballero
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hamza Ali
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Jonathan B Angel
- Department of Medicine, the Ottawa Health Research Institute, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Franco J Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada. .,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK, Canada.
| | - Ashok Kumar
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
A Potential Role for Mitochondrial DNA in the Activation of Oxidative Stress and Inflammation in Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [PMID: 32393967 PMCID: PMC7683147 DOI: 10.1155/2020/5835910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria are organelles that are essential for cellular homeostasis including energy harvesting through oxidative phosphorylation. Mitochondrial dysfunction plays a vital role in liver diseases as it produces a large amount of reactive oxygen species (ROS), in turn leading to further oxidative damage to the structure and function of mitochondria and other cellular components. More severe oxidative damage occurred in mitochondrial DNA (mtDNA) than in nuclear DNA. mtDNA dysfunction results in further oxidative damage as it participates in encoding respiratory chain polypeptides. In addition, mtDNA can leave the mitochondria and enter the cytoplasm and extracellular environment. mtDNA is derived from ancient bacteria, contains many unmethylated CpG dinucleotide repeats similar to bacterial DNA, and thus can induce inflammation to exacerbate damage to liver cells and distal organs by activating toll-like receptor 9, inflammatory bodies, and stimulator of interferon genes (STING). In this review, we focus on the mechanism by which mtDNA alterations cause liver injuries, including nonalcoholic fatty liver, alcoholic liver disease, drug-induced liver injury, viral hepatitis, and liver cancer.
Collapse
|
6
|
Xuan W, Song D, Yan Y, Yang M, Sun Y. Police Violence among Adults Diagnosed with Mental Disorders. HEALTH & SOCIAL WORK 2020; 45:81-89. [PMID: 32393967 PMCID: PMC7683147 DOI: 10.1093/hsw/hlaa003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 06/11/2023]
Abstract
Police violence is reportedly common among those diagnosed with mental disorders characterized by the presence of psychotic symptoms or pronounced emotional lability. Despite the perception that people with mental illness are disproportionately mistreated by the police, there is relatively little empirical research on this topic. A cross-sectional general population survey was administered online in 2017 to 1,000 adults in two eastern U.S. cities to examine the relationship between police violence exposure, mental disorders, and crime involvement. Results from hierarchical logistic regression and mediation analyses revealed that a range of mental health conditions are broadly associated with elevated risk for police violence exposure. Individuals with severe mental illness are more likely than the general population to be physically victimized by police, regardless of their involvement in criminal activities. Most of the excess risk of police violence exposure related to common psychiatric diagnoses was explained by confounding factors including crime involvement. However, crime involvement may necessitate more police contact, but does not necessarily justify victimization or excessive force (particularly sexual and psychological violence). Findings support the need for adequate training for police officers on how to safely interact with people with mental health conditions, particularly severe mental illness.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Youyou Yan
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, No. 126 Xinmin Street, Changchun 130041, China
| | - Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
7
|
Judge M, Parker E, Naniche D, Le Souëf P. Gene Expression: the Key to Understanding HIV-1 Infection? Microbiol Mol Biol Rev 2020; 84:e00080-19. [PMID: 32404327 PMCID: PMC7233484 DOI: 10.1128/mmbr.00080-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profiling of the host response to HIV infection has promised to fill the gaps in our knowledge and provide new insights toward vaccine and cure. However, despite 20 years of research, the biggest questions remained unanswered. A literature review identified 62 studies examining gene expression dysregulation in samples from individuals living with HIV. Changes in gene expression were dependent on cell/tissue type, stage of infection, viremia, and treatment status. Some cell types, notably CD4+ T cells, exhibit upregulation of cell cycle, interferon-related, and apoptosis genes consistent with depletion. Others, including CD8+ T cells and natural killer cells, exhibit perturbed function in the absence of direct infection with HIV. Dysregulation is greatest during acute infection. Differences in study design and data reporting limit comparability of existing research and do not as yet provide a coherent overview of gene expression in HIV. This review outlines the extraordinarily complex host response to HIV and offers recommendations to realize the full potential of HIV host transcriptomics.
Collapse
Affiliation(s)
- Melinda Judge
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Erica Parker
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Denise Naniche
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação de Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Peter Le Souëf
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
8
|
Erlandson KM, Bradford Y, Samuels DC, Brown TT, Sun J, Wu K, Tassiopoulos K, Ritchie MD, Haas DW, Hulgan T. Mitochondrial DNA Haplogroups and Frailty in Adults Living with HIV. AIDS Res Hum Retroviruses 2020; 36:214-219. [PMID: 31822125 DOI: 10.1089/aid.2019.0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroup has been associated with disease risk and longevity. Among persons with HIV (PWH), mtDNA haplogroup has been associated with AIDS progression, neuropathy, cognitive impairment, and gait speed decline. We sought to determine whether haplogroup is associated with frailty and its components among older PWH. A cross-sectional analysis was performed of AIDS Clinical Trials Group A5322 (HAILO) participants with available genome-wide genotype and frailty assessments. Multivariable logistic regression models adjusted for age, gender, education, smoking, hepatitis C, and prior use of didanosine/stavudine. Among 634 participants, 81% were male, 49% non-Hispanic white, 31% non-Hispanic black, and 20% Hispanic. Mean age was 51.0 (standard deviation 7.5) years and median nadir CD4 count was 212 (interquartile range 72, 324) cells/μL; 6% were frail, 7% had slow gait, and 21% weak grip. H haplogroup participants were more likely to be frail/prefrail (p = .064), have slow gait (p = .09), or weak grip (p = .017) compared with non-H haplogroup participants (not all comparisons reached statistical significance). In adjusted analyses, PWH with haplogroup H had a greater odds of being frail versus nonfrail [odds ratio (OR) 4.0 (95% confidence interval 1.0-15.4)] and having weak grip [OR 2.1 (1.1, 4.1)], but not slow gait [OR 1.6 (0.5, 5.0)] compared with non-H haplogroup. Among black and Hispanic participants, haplogroup was not significantly associated with frailty, grip, or gait. Among antiretroviral therapy (ART)-treated PWH, mtDNA haplogroup H was independently associated with weak grip and frailty. This association could represent a mechanism of weakness and frailty in the setting of HIV and ART.
Collapse
Affiliation(s)
- Kristine M. Erlandson
- Division of Infectious Diseases, Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Yuki Bradford
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David C. Samuels
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Todd T. Brown
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jing Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Kunling Wu
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Katherine Tassiopoulos
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David W. Haas
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Internal Medicine, Meharry Medical College, Nashville, Tennessee
| | - Todd Hulgan
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
9
|
Kardashian A, Peters MG, Tien PC, Price JC. The Pathogenesis of Liver Disease in People Living With Human Immunodeficiency Virus: The Emerging Role of the Microbiome. Clin Liver Dis (Hoboken) 2020; 15:46-51. [PMID: 32104578 PMCID: PMC7041953 DOI: 10.1002/cld.880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/25/2019] [Indexed: 02/04/2023] Open
Affiliation(s)
- Ani Kardashian
- Division of GastroenterologyDepartment of MedicineUniversity of California San FranciscoSan FranciscoCA
| | - Marion G. Peters
- Division of GastroenterologyDepartment of MedicineUniversity of California San FranciscoSan FranciscoCA
| | - Phyllis C. Tien
- Division of GastroenterologyDepartment of MedicineUniversity of California San FranciscoSan FranciscoCA,Medical ServiceDepartment of Veterans Affairs Medical CenterSan FranciscoCA
| | - Jennifer C. Price
- Division of GastroenterologyDepartment of MedicineUniversity of California San FranciscoSan FranciscoCA
| |
Collapse
|
10
|
Sun J, Longchamps RJ, Piggott DA, Castellani CA, Sumpter JA, Brown TT, Mehta SH, Arking DE, Kirk GD. Association Between HIV Infection and Mitochondrial DNA Copy Number in Peripheral Blood: A Population-Based, Prospective Cohort Study. J Infect Dis 2020; 219:1285-1293. [PMID: 30476184 DOI: 10.1093/infdis/jiy658] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Low mitochondrial DNA (mtDNA) copy number (CN) is a predictor of adverse aging outcomes, and its status may be altered in human immunodeficiency virus (HIV)-infected persons. This study evaluated the cross-sectional and longitudinal change of mtDNA CN by HIV markers. METHODS mtDNA CN was measured in the ALIVE (AIDS Linked to the Intravenous Experience) cohort of persons with a history of injecting drugs. Multivariable linear regression models controlling for demographic characteristics, behavior, and hepatitis C virus (HCV) seropositivity assessed the relationship of mtDNA CN to HIV markers (CD4+ T-cell counts, viral load, antiretroviral therapy [ART] use). Linear mixed models tested the association between HIV markers and age-related mtDNA CN trajectories. RESULTS Among 741 individuals at baseline, 436 (59%) were infected with HIV. HIV-infected individuals who had lower CD4+ T-cell counts (P = .01), had higher viral loads (P < .01), and were not receiving ART (P < .01) had significantly lower mtDNA CNs than uninfected persons; there was no difference between participants who were uninfected and HIV-infected individuals who had well-controlled HIV levels. In longitudinal follow-up of 507 participants, from age 50 years onward, mtDNA CN declined significantly faster among HIV-infected individuals than among HIV-uninfected persons (-0.03 units of change/year vs 0.006 units of change/year; P = .04), even among infected individuals with well-controlled HIV. CONCLUSION Before 50 years of age, mtDNA CN is similar between HIV-infected individuals with well-controlled HIV and uninfected persons, but from age 50 onward, mtDNA CN declines significantly faster among all infected individuals than among HIV-uninfected persons.
Collapse
Affiliation(s)
- Jing Sun
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Ryan J Longchamps
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Damani A Piggott
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Christina A Castellani
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jason A Sumpter
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Todd T Brown
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shruti H Mehta
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Shepard CR. TLR9 in MAFLD and NASH: At the Intersection of Inflammation and Metabolism. Front Endocrinol (Lausanne) 2020; 11:613639. [PMID: 33584545 PMCID: PMC7880160 DOI: 10.3389/fendo.2020.613639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Toll-Like Receptor 9 (TLR9) is an ancient receptor integral to the primordial functions of inflammation and metabolism. TLR9 functions to regulate homeostasis in a healthy system under acute stress. The literature supports that overactivation of TLR9 under the chronic stress of obesity is a critical driver of the pathogenesis of NASH and NASH-associated fibrosis. Research has focused on the core contributions of the parenchymal and non-parenchymal cells in the liver, adipose, and gut compartments. TLR9 is activated by endogenous circulating mitochondrial DNA (mtDNA). Chronically elevated circulating levels of mtDNA, caused by the stress of overnutrition, are observed in obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and NASH. Clinical evidence is supportive of TLR9 overactivation as a driver of disease. The role of TLR9 in metabolism and energy regulation may have an underappreciated contribution in the pathogenesis of NASH. Antagonism of TLR9 in NASH and NASH-associated fibrosis could be an effective therapeutic strategy to target both the inflammatory and metabolic components of such a complex disease.
Collapse
|
12
|
Chinopoulos C. Quantification of mitochondrial DNA from peripheral tissues: Limitations in predicting the severity of neurometabolic disorders and proposal of a novel diagnostic test. Mol Aspects Med 2019; 71:100834. [PMID: 31740079 DOI: 10.1016/j.mam.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022]
Abstract
Neurometabolic disorders stem from errors in metabolic processes yielding a neurological phenotype. A subset of those disorders encompasses mitochondrial abnormalities partially due to mitochondrial DNA (mtDNA) depletion. mtDNA depletion can be attributed to inheritance, spontaneous mutations or acquired from drug-related toxicities. In the armamentarium of diagnostic procedures, mtDNA quantification is a standard for disease classification. However, alterations in mtDNA obtained from peripheral tissues such as skin fibroblasts and blood cells do not often reflect the severity of the affected organ, in this case, the brain. The purpose of this review is to highlight the pitfalls of quantitating mtDNA from peripheral -and not limited to-tissues for diagnosing patients suffering from a variety of mtDNA depletion syndromes exhibiting neurologic abnormalities. In lieu, a qualitative test of mitochondrial substrate-level phosphorylation -even from peripheral tissues-reflecting the ability of mitochondria to rely on glutaminolysis in the presence of respiratory chain defects is proposed as a novel diagnostic assessment of mitochondrial functionality.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Tuzolto St. 37-47, Budapest, 1094, Hungary.
| |
Collapse
|
13
|
Praktiknjo M, Djayadi N, Mohr R, Schierwagen R, Bischoff J, Dold L, Pohlmann A, Schwarze-Zander C, Wasmuth JC, Boesecke C, Rockstroh JK, Trebicka J. Fibroblast growth factor 21 is independently associated with severe hepatic steatosis in non-obese HIV-infected patients. Liver Int 2019; 39:1514-1520. [PMID: 30916873 DOI: 10.1111/liv.14107] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Severe hepatic steatosis shows a high prevalence and contributes to morbidity and mortality in human immunodeficiency virus (HIV) infected patients. Known risk factors include obesity, dyslipidaemia and features of metabolic syndrome. Fibroblast growth factor 21 (FGF-21) is involved with hepatic glucose and lipid metabolism. This study aimed to evaluate FGF-21 as a biomarker for severe hepatic steatosis in non-obese HIV-infected patients. METHODS This is a prospective, cross-sectional, monocentric study including HIV-infected out-patients. Hepatic steatosis was measured via controlled attenuation parameter (CAP) using FibroScan 502 touch (ECHOSENS, France). Severe hepatic steatosis was defined at CAP ≥ 253 dB/m. Peripheral blood samples were collected and plasma was analysed for FGF-21. Demographic and clinical characteristics were collected from patient's health records. RESULTS In total, 73 non-obese HIV-monoinfected patients were included in this study. Prevalence of severe hepatic steatosis was 41%. Patients with severe hepatic steatosis showed significantly higher levels of FGF-21. Univariate analysis revealed FGF-21, BMI, hyperlipidaemia, ALT levels and arterial hypertension as significant, while multivariate analysis showed only FGF-21, arterial hypertension and ALT levels as significant independent risk factors for severe hepatic steatosis. CONCLUSION This study presents FGF-21 as an independent and stronger predictor of severe hepatic steatosis than blood lipids in HIV-infected patients. Moreover, arterial hypertension and ALT levels predict severe steatosis even in non-obese HIV-monoinfected patients. Furthermore, this study supports existing metabolic risk factors and expands them to non-obese HIV-infected patients.
Collapse
Affiliation(s)
| | | | - Raphael Mohr
- Department of Medicine I, University of Bonn, Bonn, Germany
| | | | - Jenny Bischoff
- Department of Medicine I, University of Bonn, Bonn, Germany
| | - Leona Dold
- Department of Medicine I, University of Bonn, Bonn, Germany
| | | | | | | | | | | | - Jonel Trebicka
- Department of Medicine I, University of Bonn, Bonn, Germany.,Department of Medicine I, University of Frankfurt, Frankfurt, Germany.,Department of Gastroenterology, Odense Hospital, University of Southern Denmark, Odense, Denmark.,European Foundation for the Study of Chronic Liver Failure - EF Clif, Barcelona, Spain.,Institute for Bioengineering of Catalonia, Barcelona, Spain
| |
Collapse
|
14
|
Mozhgani SH, Zarei Ghobadi M, Behnam Rad M, Farzanehpour M, Behzadian F. Reconnaissance of the candidate genes involved in the pathogenesis of human immunodeficiency virus and targeted by antiretroviral therapy. J Med Virol 2019; 91:2134-2141. [PMID: 31317550 DOI: 10.1002/jmv.25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/06/2019] [Indexed: 11/11/2022]
Abstract
The expression levels of many genes change after treatment of human immunodeficiency virus (HIV)-infected subjects by antiretroviral drugs. High-throughput analysis of tremendous datasets led to the discovery of genes that are implicated in the treatment pathways. In this study, we performed a gene-enrichment analysis after determining the differentially expressed genes (DEGs) between untreated HIV-positive and HIV-negative subjects and also between treated HIV-positive subjects with antiretroviral therapy (ART; who receiving nucleoside reverse transcriptase inhibitor-based ART) and untreated HIV-positive cases in the peripheral blood mononuclear cells (PBMCs), adipose, and muscle tissues. In sum, the genes that activate inflammatory, immune response, proliferation, metabolism, and viral involvement pathways have different expression patterns in the untreated HIV-positive subjects and treated HIV-positive cases. Moreover, the expression levels of the genes including ACLY, ALDH18A1, HADHA, and YARS in the PBMCs tissue and HBEGF, PKN3, DEGS2, and EDN3 in the fat tissue were found to be different in the HIV-infected patients, which can be considered as new biomarkers for HIV infection.
Collapse
Affiliation(s)
- Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohadeseh Zarei Ghobadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Behnam Rad
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Farzanehpour
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farida Behzadian
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
15
|
da Silva Pontes L, Callegari B, Magno L, Moraes A, Silva BG, Manso K, Barros B, Araújo AP, Silva MC, Dias GA, Vasconcelos BH, Costa E Silva A, Libonati RM, Souza GS. Variations in plantar pressure and balance in HIV-infected children in antiretroviral therapy. Sci Rep 2019; 9:4344. [PMID: 30867540 PMCID: PMC6416285 DOI: 10.1038/s41598-019-41028-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Balance disorders have been poorly investigated and somewhat neglected in people infected with the human immunodeficiency virus, especially in children, whose have intrinsic and extrinsic risk factors that may compromise the balance. To evaluate the foot plantar pressures and the balance in children with acquired immunodeficiency. We recruited 53 children aged between 6 and 15 years: 33 healthy children, and 20 children with positive serology for the human immunodeficiency virus. A physical examination included anthropometric, reflexes, tactile sensitivity of the foot and orthopedic evaluation. We also collected data of them using Pediatric Equilibrium Scale, baropodometry, and stabilometry. We considered significance level of 0.05 for statistics. Both groups were aged-, sex-matched and similar body mass index and scores of the Pediatric Equilibrium Scale. Three infected children had altered tactile sensitivity, and none had orthopedic or reflex alteration. Infected children had higher mean plantar pressure in the hindfoot than of the control group (p = 0.02). There was higher maximum plantar pressure in the hindfoot of the infected children than of the controls (p = 0.04). Controls had lower maximum plantar pressure in the forefoot than the infected children (p = 0.04). Infected children had larger displacement of the center of pressure (p = 0.006), larger mean velocity of displacement (p = 0.006), and longer duration between successive peaks of displacement than the controls (p = 0.02). Children living with the human immunodeficiency virus discharges great plantar pressures in the hindfoot and to present balance disturbances in the absence of neurological symptomatology.
Collapse
Affiliation(s)
- Lucieny da Silva Pontes
- Universidade do Estado do Pará, Belém, Pará, Brazil
- Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | | | | | - Kaio Manso
- Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Subashini D, Dinesha TR, Srirama RB, Boobalan J, Poongulali S, Chitra DA, Mothi SN, Solomon SS, Saravanan S, Solomon S, Balakrishnan P. Mitochondrial DNA content of peripheral blood mononuclear cells in ART untreated & stavudine/zidovudine treated HIV-1-infected patients. Indian J Med Res 2019; 148:207-214. [PMID: 30381544 PMCID: PMC6206766 DOI: 10.4103/ijmr.ijmr_1144_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background & objectives: Nucleoside reverse transcriptase inhibitors (NRTIs) are known to cause mitochondrial toxicity. This study was done to estimate mitochondrial DNA (mtDNA) content of peripheral blood mononuclear cells (PBMCs) among human immunodeficiency virus (HIV) infected, NRTI treated and antiretroviral therapy (ART)-naïve patients and evaluate the utility of mtDNA content as a biomarker of mitochondrial toxicity. Methods: mtDNA content in PBMCs of 57 HIV-infected ART untreated and 30 ART treated with stavudine (d4T) or zidovudine (AZT) containing regimen were compared against 24 low-risk healthy controls (LoRHC). Results: There was a significant (P=0.01) reduction in mtDNA content among HIV-infected (104; 80-135) compared to LoRHC (127; 110-167), and it was the same in both the treated (104.8; 88-130) and untreated patients (104.7; 78-142). mtDNA significantly (P=0.014) declined in ART treated patients symptomatic for toxicity (97; 74-111) than the asymptomatic patients (128; 103- 153). Interpretation & conclusions: mtDNA depletion in PBMCs was evident among HIV-infected individuals on ART. Moreover, as mtDNA content was reduced among the patients symptomatic for toxicity than the asymptomatic in both the HIV-infected groups, the current study supports mtDNA content of PBMCs to serve as a biomarker of mitochondrial dysfunction induced by NRTI and HIV. Longitudinal studies with a large sample need to be done to confirm these findings.
Collapse
Affiliation(s)
- Dhakshinamoorthy Subashini
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research & Education, Voluntary Health Services Hospital Campus, Chennai, India
| | - Thongadi Ramesh Dinesha
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research & Education, Voluntary Health Services Hospital Campus, Chennai, India
| | - Rao B Srirama
- Department of Infectious Diseases, Asha Kirana Hospital, Mysore, India
| | - Jayaseelan Boobalan
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research & Education, Voluntary Health Services Hospital Campus, Chennai, India
| | - Selvamuthu Poongulali
- Medical Centre, Y.R. Gaitonde Centre for AIDS Research & Education, Voluntary Health Services Hospital Campus, Chennai, India
| | - Devaraj A Chitra
- Medical Centre, Y.R. Gaitonde Centre for AIDS Research & Education, Voluntary Health Services Hospital Campus, Chennai, India
| | - Sarvode N Mothi
- Department of Infectious Diseases, Asha Kirana Hospital, Mysore, India
| | - Sunil Suhas Solomon
- Medical Centre, Y.R. Gaitonde Centre for AIDS Research & Education, Voluntary Health Services Hospital Campus, Chennai, India; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Shanmugam Saravanan
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research & Education, Voluntary Health Services Hospital Campus, Chennai, India
| | - Suniti Solomon
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research & Education, Voluntary Health Services Hospital Campus, Chennai, India
| | - Pachamuthu Balakrishnan
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research & Education, Voluntary Health Services Hospital Campus, Chennai, India
| |
Collapse
|
17
|
Hulgan T, Ramsey BS, Koethe JR, Samuels DC, Gerschenson M, Libutti DE, Sax PE, Daar ES, McComsey GA, Brown TT. Relationships Between Adipose Mitochondrial Function, Serum Adiponectin, and Insulin Resistance in Persons With HIV After 96 Weeks of Antiretroviral Therapy. J Acquir Immune Defic Syndr 2019; 80:358-366. [PMID: 30531304 PMCID: PMC6375746 DOI: 10.1097/qai.0000000000001926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Some antiretroviral therapy (ART) and HIV itself confer metabolic risk, perhaps through altered mitochondrial function and adipokines. In AIDS Clinical Trials Group study A5224s, adipose mitochondrial DNA (mtDNA) levels decreased on ART, and electron transport chain complex I (CI) and complex IV (CIV) activity decreased. Another study found decreased serum adiponectin on ART with mtDNA mutation m.10398A>G. We hypothesized that decreased adipose tissue mitochondrial function would be associated with lower adiponectin and insulin sensitivity on ART, and m.10398G would influence these changes. DESIGN Retrospective analysis of an ART-naive substudy population from A5224s. METHODS Analyses included adipose mtDNA levels, CI and CIV activity by immunoassay, visceral adipose tissue by computed tomography, and fasting serum glucose at week 0 and week 96 of ART. Fasting insulin and adiponectin were measured from cryopreserved serum using multiplex bead array. Homeostasis model assessment-2 (HOMA2)-IR and HOMA2-%B estimated insulin resistance and β-cell function, respectively. The m.10398A>G mtDNA variant was available from existing genetic data. RESULTS Thirty-seven participants had adipose biopsies at week 0 and week 96. Percent decreases in CIV activity and adiponectin were correlated (Spearman rho 0.41; P = 0.01); this association persisted after controlling for age, sex, body mass index, or visceral adipose tissue in single-covariate regression. HOMA2-IR correlated with decreased CIV (-0.44; P = 0.01) and CI (-0.34; P = 0.05) activity. Among 12 non-Hispanic white persons, m.10398G was associated with decreased adiponectin (P = 0.04). CONCLUSIONS Decreased adipose mitochondrial activity correlated with changes in adiponectin and glucose homeostasis on ART. Previous findings that a mtDNA mutation modulates adiponectin levels in persons with HIV were replicated.
Collapse
Affiliation(s)
- Todd Hulgan
- Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
| | - Benjamin S Ramsey
- University of South Carolina School of Medicine Greenville, Greenville, SC
| | - John R Koethe
- Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
| | | | | | - Daniel E Libutti
- John A. Burns School of Medicine, University of Hawaii-Manoa, Honolulu, HI
| | - Paul E Sax
- Harvard University, Brigham and Women's Hospital, Boston, MA
| | - Eric S Daar
- David Geffen School of Medicine at UCLA, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Los Angeles, CA
| | - Grace A McComsey
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
18
|
Ahmed D, Roy D, Cassol E. Examining Relationships between Metabolism and Persistent Inflammation in HIV Patients on Antiretroviral Therapy. Mediators Inflamm 2018; 2018:6238978. [PMID: 30363715 PMCID: PMC6181007 DOI: 10.1155/2018/6238978] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022] Open
Abstract
With the advent of antiretroviral therapy (ART), HIV-infected individuals are now living longer and healthier lives. However, ART does not completely restore health and treated individuals are experiencing increased rates of noncommunicable diseases such as dyslipidemia, insulin resistance, type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. While it is well known that persistent immune activation and inflammation contribute to the development of these comorbid diseases, the mechanisms underlying this chronic activation remain incompletely understood. In this review, we will discuss emerging evidence that suggests that alterations in cellular metabolism may play a central role in driving this immune dysfunction in HIV patients on ART.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Masyeni S, Sintya E, Megawati D, Sukmawati NMH, Budiyasa DG, Aryastuti SA, Khairunisa SQ, Arijana I, Nasronudin N. Evaluation of antiretroviral effect on mitochondrial DNA depletion among HIV-infected patients in Bali. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2018; 10:145-150. [PMID: 30104903 PMCID: PMC6072679 DOI: 10.2147/hiv.s166245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of highly active antiretroviral therapy combination regimens for HIV infection. Unfortunately, NRTIs have been noticeably associated with many adverse effects related to mitochondrial toxicity leading to mitochondrial deoxyribonucleic acid (mtDNA) depletion. However, similar mitochondrial dysfunction has recently been found even in antiretroviral therapy-naïve patients, suggesting HIV itself could contribute to this abnormality. In this study, we determine whether mtDNA depletion was present in either antiretroviral therapy-naïve or NRTI-treated patients at Sanjiwani Hospital, Bali, Indonesia. Patients and methods A cross-sectional study was conducted from the peripheral blood mononuclear cells of HIV patients. Specifically, the relative content of mtDNA (mtRNR1 gene) to nuclear DNA (ASPOLG gene) was determined by real-time polymerase chain reaction. Data were analyzed with SPSS 16.0 software and GraphPad Prism 7.02. Results A total of 84 samples (67 on NRTIs and 17 HIV-naïve) were suitable for analysis. We identified 21.4% of the samples (18/84) with mtDNA:nDNA ratio <1. Although it was not significant (P=0.121), the median mtDNA:nDNA ratio of HIV-naïve group was slightly higher (median 1.8; interquartile range [IQR]: 1.1-2.1) than NRTI-treated patients (median 1.5; IQR: 1.3-2.85). Tenofovir-based NRTI was more frequently used (73.13%) than zidovudine-based NRTI (26.86%). The period for which NRTI was used probably contributed to the ratio of mtDNA:nDNA. The median ratio of mtDNA:nDNA zidovudine-treated patients was slightly lower (median 1.2; IQR: 1.08-1.98) when compared to tenofovir-based NRTI (median 1.6; IQR: 1.05-2.10), with the median period of former treatment being significantly longer (P<0.001). Although these data overall indicate that NRTI treatment had no effect on mtDNA:nDNA ratios, patients who undergo more than 12 months of NRTIs treatment show a decrease in the ratio; however, further study is required. Conclusion Almost one-fourth of the samples showed a lower mtDNA:nDNA ratio. The decreasing of the ratio mtDNA:nDNA was most likely present after 12 months of NRTI treatment.
Collapse
Affiliation(s)
- Sri Masyeni
- Faculty of Medicine and Health Sciences, University of Warmadewa, Denpasar, Bali, Indonesia,
| | - Erly Sintya
- Faculty of Medicine and Health Sciences, University of Warmadewa, Denpasar, Bali, Indonesia,
| | - Dewi Megawati
- Faculty of Medicine and Health Sciences, University of Warmadewa, Denpasar, Bali, Indonesia,
| | | | - Dewa Ga Budiyasa
- Internal Medicine Department, Sanjiwani Hospital, Gianyar, Bali, Indonesia
| | - Sri Agung Aryastuti
- Faculty of Medicine and Health Sciences, University of Warmadewa, Denpasar, Bali, Indonesia,
| | - Siti Qamariyah Khairunisa
- Indonesia-Japan Collaborative Research Center for Emerging and Reemerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Igkn Arijana
- Histology Department of Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - N Nasronudin
- Indonesia-Japan Collaborative Research Center for Emerging and Reemerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
20
|
Lee SY, Choi BS, Yoon CH, Kang C, Kim K, Kim KC. Selection of biomarkers for HIV-1 latency by integrated analysis. Genomics 2018; 111:327-333. [PMID: 29454027 DOI: 10.1016/j.ygeno.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 01/10/2023]
Abstract
A major obstacle in the treatment of human immunodeficiency virus type 1 (HIV-1) is its ability to establish latent infection. To find novel biomarkers associated with the mechanism of HIV-1 latent infection, we identified 70 candidate genes in HIV-1 latently infected cells through the integrated analysis in a previous study. It is important to select more effective biomarkers among 70 candidates and to verify the possibility of selected biomarkers for HIV-1 latency. We identified the 24 and 25 genes from 70 candidate genes in significantly enriched categories selected by Database for Annotation, Visualization and Integrated Discovery (DAVID) software and Gene Set Enrichment Analysis (GSEA) software, respectively. Also, we investigated genes regulated in both HIV-1 latently infected cell lines and PBMCs from HIV-1 infected patients and found the genes with a common pattern of expression levels in both cell lines and PBMCs. Consequently, we identified nine genes, APBB2, GMPR, IGF2BP3, LRP1, MAD2L2, MX1, OXR1, PTK2B, and TNFSF13B, via integrated analysis. Especially, APBB2 and MAD2L2 were identified in both DAVID and GSEA software. Our findings suggest that nine genes were identified via integrated analysis as potential biomarkers and in particular, APBB2 and MAD2L2 may be considered as more significant biomarkers for HIV-1 latency.
Collapse
Affiliation(s)
- Sun Young Lee
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Byeong-Sun Choi
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Chun Kang
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Kisoon Kim
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Kyung-Chang Kim
- Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Chung-buk, Republic of Korea.
| |
Collapse
|
21
|
Van Epps P, Kalayjian RC. Human Immunodeficiency Virus and Aging in the Era of Effective Antiretroviral Therapy. Infect Dis Clin North Am 2017; 31:791-810. [DOI: 10.1016/j.idc.2017.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Abstract
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017.
Collapse
Affiliation(s)
- John R Koethe
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Distinct Mitochondrial Disturbance in CD4+T and CD8+T Cells From HIV-Infected Patients. J Acquir Immune Defic Syndr 2017; 74:206-212. [PMID: 27608061 DOI: 10.1097/qai.0000000000001175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mitochondrial dysfunction has frequently been found in HIV-infected patients regardless of whether they received antiretroviral therapy (ART). Accumulating evidence suggests that HIV-infected patients exhibit marked changes in mitochondrial membrane potential (MMP), reactive oxygen species (ROS) accumulation, adenosine triphosphate generation, mitochondrial mass (MM), mitochondrial DNA, etc. However, mitochondrial toxicity in CD4T and CD8T cells caused by different levels of HIV progression and ART is poorly understood. METHODS Blood samples were obtained from 97 ART-naïve HIV-infected patients with different CD4T cell counts, 97 nucleoside-reverse transcriptase inhibitors-exposed HIV-infected patients, and 25 HIV-negative subjects. MMP, ROS, and MM in CD4T and CD8T cells were assessed by flow cytometry. RESULTS In healthy subjects, the levels of MMP and MM in CD4T cells were higher than those in CD8T cells. HIV infection led to an increase in MM in CD4T and CD8T cells, but mainly influenced MMP in CD8T cells and ROS accumulation in CD4T cells. MM in CD4T and CD8T cells gradually increased after the loss of CD4T cells. Although the dynamic changes in MMP in CD4T cells were different from those in CD8T cells during highly active ART, MM in both CD4T and CD8T cells was significantly decreased after 2 years of therapy, but increased again after 3 years. CONCLUSIONS HIV infection and antiretroviral therapy both led to mitochondrial disturbances in CD4T cells and CD8T cells; however, the abnormal changes in mitochondrial parameters in CD4+T cells were different from those in CD8T cells caused by HIV infection and antiretroviral therapy.
Collapse
|
24
|
Willig AL, Kramer PA, Chacko BK, Darley-Usmar VM, Heath SL, Overton ET. Monocyte bioenergetic function is associated with body composition in virologically suppressed HIV-infected women. Redox Biol 2017; 12:648-656. [PMID: 28395172 PMCID: PMC5388916 DOI: 10.1016/j.redox.2017.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 12/20/2022] Open
Abstract
Women living with HIV may present with high levels of body fat that are associated with altered bioenergetic function. Excess body fat may therefore exacerbate the bioenergetic dysfunction observed with HIV infection. To determine if body fat is associated with bioenergetic function in HIV, we conducted a cross-sectional study of 42 women with HIV who were virologically suppressed on antiretroviral therapy. Body composition was determined via dual-energy x-ray absorptiometry. Oxygen consumption rate (OCR) of monocytes was sorted from peripheral blood mononuclear cells obtained from participants in the fasting state. Differences in bioenergetic function, as measured by OCR, was assessed using Kruskal-Wallis tests and Spearman correlations adjusted for age, race, and smoking status. Participants were 86% Black, 45.5 years old, 48% current smokers, and 57% were obese (body mass index ≥30). Nearly all women (93%) had >30% total fat mass, while 12% had >50% total fat mass. Elevated levels of total fat mass, trunk fat, and leg fat were inversely correlated with measures of bioenergetic health as evidenced by lower maximal and reserve capacity OCR, and Bioenergetic Health Index. Measures of extracellular acidification (ECAR) in the absence (basal) or maximal (with oligomycin) were positively correlated with measures of bioenergetics, except proton leak, and were negatively correlated with fat mass. Despite virological suppression, women with HIV present with extremely high levels of adiposity that correlate with impaired bioenergetic health. Without effective interventions, this syndemic of HIV infection and obesity will likely have devastating consequences for our patients, potentially mediated through altered mitochondrial and glycolytic function.
Collapse
Affiliation(s)
- Amanda L Willig
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Philip A Kramer
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Balu K Chacko
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Sonya L Heath
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - E Turner Overton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
25
|
Chwiki S, Campos MM, McLaughlin ME, Kleiner DE, Kovacs JA, Morse CG, Abu-Asab MS. Adverse effects of antiretroviral therapy on liver hepatocytes and endothelium in HIV patients: An ultrastructural perspective. Ultrastruct Pathol 2017; 41:186-195. [PMID: 28277148 DOI: 10.1080/01913123.2017.1282066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human immunodeficiency virus and antiretroviral therapy (ART) together can be far more detrimental to liver cells than either of the two unaided. However, ultrastructural aspects of the synergistic effects of HIV and ART have been understudied. In a patient cohort receiving ART, this study characterizes ultrastructurally sinusoidal degeneration, hepatocytic aberrations, mitochondrial dysfunction, accumulation of bulky lipid droplets (steatosis), and occlusion of sinusoidal lumina. Mitochondrial dysfunction causes the accumulation of acetyl-CoA which leads to insulin upregulation and resistance, lipid synthesis, and steatosis. Lipid droplets deposited in the sinusoids could be the source of the blood's lipid profile alterations in HIV patients on ART.
Collapse
Affiliation(s)
- Sarah Chwiki
- a Section of Histopathology , National Eye Institute, NIH , Bethesda , MD , USA
| | | | - Mary E McLaughlin
- b Laboratory of Immunoregulation , National Institute of Allergy and Infectious Diseases, NIH , Bethesda , MD , USA
| | - David E Kleiner
- c Laboratory of Pathology , National Cancer Institute, NIH , Bethesda , MD , USA
| | - Joseph A Kovacs
- d Critical Care Medicine Department, AIDS Section, Clinical Center, NIH , Bethesda , MD , USA
| | - Caryn G Morse
- d Critical Care Medicine Department, AIDS Section, Clinical Center, NIH , Bethesda , MD , USA
| | - Mones S Abu-Asab
- a Section of Histopathology , National Eye Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
26
|
Verna EC. Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in patients with HIV. Lancet Gastroenterol Hepatol 2017; 2:211-223. [PMID: 28404136 DOI: 10.1016/s2468-1253(16)30120-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022]
Abstract
Liver disease is a leading cause of morbidity and mortality among people with HIV, and in this era of safer and more effective hepatitis C therapy, non-alcoholic fatty liver disease (NAFLD) could soon emerge as the most common liver disease in this population. NAFLD is common among patients with HIV, and might be more likely to progress to non-alcoholic steatohepatitis (NASH) and NAFLD-related fibrosis or cirrhosis in these patients than in individuals without HIV. Several mechanisms of NAFLD pathogenesis are postulated to explain the disease severity in patients with HIV; these mechanisms include the influence of the gut microbiome, and also metabolic, genetic, and immunological factors. Although treatment strategies are currently based on modification of NAFLD risk factors, many new drugs are now in clinical trials, including trials specifically in patients with HIV. Thus, the identification and risk-stratification of patients with HIV and NAFLD are becoming increasingly important for accurately counselling of these patients regarding their prognosis and for establishing the most appropriate disease-altering therapy.
Collapse
Affiliation(s)
- Elizabeth C Verna
- Center for Liver Disease and Transplantation, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
27
|
Debes JD, Bohjanen PR, Boonstra A. Mechanisms of Accelerated Liver Fibrosis Progression during HIV Infection. J Clin Transl Hepatol 2016; 4:328-335. [PMID: 28097102 PMCID: PMC5225153 DOI: 10.14218/jcth.2016.00034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/14/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022] Open
Abstract
With the introduction of antiretroviral therapy (ART), a dramatic reduction in HIV-related morbidity and mortality has been observed. However, it is now becoming increasingly clear that liver-related complications, particularly rapid fibrosis development from ART as well as from the chronic HIV infection itself, are of serious concern to HIV patients. The pathophysiology of liver fibrosis in patients with HIV is a multifactorial process whereby persistent viral replication, and bacterial translocation lead to chronic immune activation and inflammation, which ART is unable to fully suppress, promoting production of fibrinogenic mediators and fibrosis. In addition, mitochondrial toxicity, triggered by both ART and HIV, contributes to intrahepatic damage, which is even more severe in patients co-infected with viral hepatitis. In recent years, new insights into the mechanisms of accelerated fibrosis and liver disease progression in HIV has been obtained, and these are detailed and discussed in this review.
Collapse
Affiliation(s)
- Jose D. Debes
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN, USA
- *Correspondence to: Jose D. Debes, Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA. Tel: +1-612-624-6353, Fax: +1-612-301-1292, E-mail:
| | - Paul R. Bohjanen
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Erlandson KM, Lake JE. Fat Matters: Understanding the Role of Adipose Tissue in Health in HIV Infection. Curr HIV/AIDS Rep 2016; 13:20-30. [PMID: 26830284 DOI: 10.1007/s11904-016-0298-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
More than one-third of adults in the USA are obese and obesity-related disease accounts for some of the leading causes of preventable death. Mid-life obesity may be a strong predictor of physical function impairment later in life regardless of body mass index (BMI) in older age, highlighting the benefits of obesity prevention on health throughout the lifespan. Adipose tissue disturbances including lipodystrophy and obesity are prevalent in the setting of treated and untreated HIV infection. This article will review current knowledge on fat disturbances in HIV-infected persons, including therapeutic options and future directions.
Collapse
Affiliation(s)
- Kristine M Erlandson
- University of Colorado-Anschutz Medical Center, 12700 E 19th Ave, Mailstop B168, Aurora, CO, USA.
| | - Jordan E Lake
- University of California, Los Angeles, 11075 Santa Monica Blvd., Ste. 100, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Saxena M, Busca A, Holcik M, Kumar A. Bacterial DNA Protects Monocytic Cells against HIV-Vpr-Induced Mitochondrial Membrane Depolarization. THE JOURNAL OF IMMUNOLOGY 2016; 196:3754-67. [PMID: 26969755 DOI: 10.4049/jimmunol.1402379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/19/2016] [Indexed: 12/26/2022]
Abstract
Monocytes and macrophages are important HIV reservoirs, as they exhibit marked resistance to apoptosis upon infection. However, the mechanism underlying resistance to apoptosis in these cells is poorly understood. Using HIV-viral protein R-52-96 aa peptide (Vpr), we show that primary monocytes and THP-1 cells treated with Vpr are highly susceptible to mitochondrial depolarization, but develop resistance following stimulation with bacterial DNA or CpG oligodeoxynucleotide. We have shown that Vpr-induced mitochondrial depolarization is mediated by TNFR-associated factor-1 (TRAF-1) and TRAF-2 degradation and subsequent activation of caspase-8, Bid, and Bax. To provide the mechanism governing such resistance to mitochondrial depolarization, our results show that prior stimulation with CpG oligodeoxynucleotide or Escherichia coli DNA prevented: 1) TRAF-1/2 downregulation; 2) activation of caspase-8, Bid, and Bax; and 3) subsequent mitochondrial depolarization and release of apoptosis-inducing factor and cytochrome c Furthermore, this protection was mediated by upregulation of antiapoptotic protein (c-IAP-2) through calmodulin-dependent kinase-II activation. Thus, c-IAP-2 may prevent Vpr-mediated mitochondrial depolarization through stabilizing TRAF-1/2 expression and sequential inhibition of caspase-8, Bid, and Bax.
Collapse
Affiliation(s)
- Mansi Saxena
- Department of Biochemistry, Microbiology and Immunology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Aurelia Busca
- Department of Biochemistry, Microbiology and Immunology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Martin Holcik
- Research Institute, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada; and
| | - Ashok Kumar
- Department of Biochemistry, Microbiology and Immunology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada; Research Institute, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada; and Department of Pathology and Laboratory Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| |
Collapse
|
30
|
Ma L, Chen Z, Huang DW, Kutty G, Ishihara M, Wang H, Abouelleil A, Bishop L, Davey E, Deng R, Deng X, Fan L, Fantoni G, Fitzgerald M, Gogineni E, Goldberg JM, Handley G, Hu X, Huber C, Jiao X, Jones K, Levin JZ, Liu Y, Macdonald P, Melnikov A, Raley C, Sassi M, Sherman BT, Song X, Sykes S, Tran B, Walsh L, Xia Y, Yang J, Young S, Zeng Q, Zheng X, Stephens R, Nusbaum C, Birren BW, Azadi P, Lempicki RA, Cuomo CA, Kovacs JA. Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun 2016; 7:10740. [PMID: 26899007 PMCID: PMC4764891 DOI: 10.1038/ncomms10740] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Zehua Chen
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Da Wei Huang
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Honghui Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Amr Abouelleil
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lisa Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Emma Davey
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Rebecca Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Xilong Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Lin Fan
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Giovanna Fantoni
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Michael Fitzgerald
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Emile Gogineni
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Jonathan M. Goldberg
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Grace Handley
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Xiaojun Hu
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Charles Huber
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Xiaoli Jiao
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Kristine Jones
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Joshua Z. Levin
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Pendexter Macdonald
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Alexandre Melnikov
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Castle Raley
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Monica Sassi
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Brad T. Sherman
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Xiaohong Song
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Sean Sykes
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bao Tran
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Laura Walsh
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Yun Xia
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Jun Yang
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Sarah Young
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Qiandong Zeng
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Xin Zheng
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Robert Stephens
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Chad Nusbaum
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bruce W. Birren
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Richard A. Lempicki
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Christina A. Cuomo
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
Lai HM, Albrecht AA, Steinhöfel KK. iRDA: a new filter towards predictive, stable, and enriched candidate genes. BMC Genomics 2015; 16:1041. [PMID: 26647162 PMCID: PMC4673793 DOI: 10.1186/s12864-015-2129-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022] Open
Abstract
Background Gene expression profiling using high-throughput screening (HTS) technologies allows clinical researchers to find prognosis gene signatures that could better discriminate between different phenotypes and serve as potential biological markers in disease diagnoses. In recent years, many feature selection methods have been devised for finding such discriminative genes, and more recently information theoretic filters have also been introduced for capturing feature-to-class relevance and feature-to-feature correlations in microarray-based classification. Methods In this paper, we present and fully formulate a new multivariate filter, iRDA, for the discovery of HTS gene-expression candidate genes. The filter constitutes a four-step framework and includes feature relevance, feature redundancy, and feature interdependence in the context of feature-pairs. The method is based upon approximate Markov blankets, information theory, several heuristic search strategies with forward, backward and insertion phases, and the method is aiming at higher order gene interactions. Results To show the strengths of iRDA, three performance measures, two evaluation schemes, two stability index sets, and the gene set enrichment analysis (GSEA) are all employed in our experimental studies. Its effectiveness has been validated by using seven well-known cancer gene-expression benchmarks and four other disease experiments, including a comparison to three popular information theoretic filters. In terms of classification performance, candidate genes selected by iRDA perform better than the sets discovered by the other three filters. Two stability measures indicate that iRDA is the most robust with the least variance. GSEA shows that iRDA produces more statistically enriched gene sets on five out of the six benchmark datasets. Conclusions Through the classification performance, the stability performance, and the enrichment analysis, iRDA is a promising filter to find predictive, stable, and enriched gene-expression candidate genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2129-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hung-Ming Lai
- Algorithms and Bioinformatics Research Group, Department of Informatics, King's College London, Strand, London, WC2R 2LS, UK.
| | - Andreas A Albrecht
- School of Science and Technology, Middlesex University, Burroughs, London, NW4 4BT, UK.
| | - Kathleen K Steinhöfel
- Algorithms and Bioinformatics Research Group, Department of Informatics, King's College London, Strand, London, WC2R 2LS, UK.
| |
Collapse
|
32
|
Rodríguez-Mora S, Mateos E, Moran M, Martín MÁ, López JA, Calvo E, Terrón MC, Luque D, Muriaux D, Alcamí J, Coiras M, López-Huertas MR. Intracellular expression of Tat alters mitochondrial functions in T cells: a potential mechanism to understand mitochondrial damage during HIV-1 replication. Retrovirology 2015; 12:78. [PMID: 26376973 PMCID: PMC4571071 DOI: 10.1186/s12977-015-0203-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 08/26/2015] [Indexed: 01/22/2023] Open
Abstract
Background HIV-1 replication results in mitochondrial damage that is enhanced during antiretroviral therapy (ART). The onset of HIV-1 replication is regulated by viral protein Tat, a 101-residue protein codified by two exons that elongates viral transcripts. Although the first exon of Tat (aa 1–72) forms itself an active protein, the presence of the second exon (aa 73–101) results in a more competent transcriptional protein with additional functions. Results Mitochondrial overall functions were analyzed in Jurkat cells stably expressing full-length Tat (Tat101) or one-exon Tat (Tat72). Representative results were confirmed in PBLs transiently expressing Tat101 and in HIV-infected Jurkat cells. The intracellular expression of Tat101 induced the deregulation of metabolism and cytoskeletal proteins which remodeled the function and distribution of mitochondria. Tat101 reduced the transcription of the mtDNA, resulting in low
ATP production. The total amount of mitochondria increased likely to counteract their functional impairment. These effects were enhanced when Tat second exon was expressed. Conclusions Intracellular Tat altered mtDNA transcription, mitochondrial content and distribution in CD4+ T cells. The importance of Tat second exon in non-transcriptional functions was confirmed. Tat101 may be responsible for mitochondrial dysfunctions found in HIV-1 infected patients. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0203-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Rodríguez-Mora
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Elena Mateos
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - María Moran
- Laboratorio de Enfermedades Raras: mitocondriales y neuromusculares, Instituto de Investigación Hospital 12 de Octubre, "i + 12", Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) U723, Madrid, Spain.
| | - Miguel Ángel Martín
- Laboratorio de Enfermedades Raras: mitocondriales y neuromusculares, Instituto de Investigación Hospital 12 de Octubre, "i + 12", Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) U723, Madrid, Spain.
| | - Juan Antonio López
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| | - Enrique Calvo
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| | - María Carmen Terrón
- Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Daniel Luque
- Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Delphine Muriaux
- Unité de Virologie Humaine - INSERM U758/École Normale Supérieure, Lyon, France. .,Laboratoire de Domaines Membranaires et Assemblage Viral, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Montpellier, France.
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Mayte Coiras
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - María Rosa López-Huertas
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain. .,Unité de Virologie Humaine - INSERM U758/École Normale Supérieure, Lyon, France.
| |
Collapse
|
33
|
Epidermal nerve fiber density, oxidative stress, and mitochondrial haplogroups in HIV-infected Thais initiating therapy. AIDS 2014; 28:1625-33. [PMID: 24785954 DOI: 10.1097/qad.0000000000000297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We explored associations between mitochondrial DNA (mtDNA) haplogroups, epidermal nerve fiber density (ENFD), and HIV-associated sensory neuropathy (HIV-SN) in a randomized trial of Thai patients initiating antiretroviral therapy (ART). DESIGN The South East Asia Research Collaboration with Hawaii 003 study evaluated toxicity of nucleoside reverse transcriptase inhibitors (stavudine vs. zidovudine vs. tenofovir). We present secondary analyses of mtDNA haplogroups and ENFD changes. METHODS ENFD, peripheral blood mononuclear cell mitochondrial complex I and IV, and 8-oxo-deoxyguanine (8-oxo-dG) were quantified. Peripheral blood mononuclear cell mtDNA sequences were obtained for haplogroup determination. Multivariate regression of ENFD change was performed. RESULTS Paired ENFD was available from 118 patients. Median age, CD4 cell count, and height at entry were 34 years, 172 cells/μl, and 162 cm, respectively. Major haplogroups included M (42%), F (21%), and B (16%). Baseline ENFD, CD4 cell count, randomized ART, and biomarkers did not differ by haplogroup. Haplogroup B patients were older (P=0.02) at baseline, and had an increase in median ENFD (+1.5 vs. -2.9 fibers/mm; P=0.03) and 8-oxo-dG break frequency (+0.05 vs. 0.00; P=0.05) compared to other haplogroups. In a multivariate model, haplogroup B was associated with increased ENFD (β=3.5, P=0.009) at week 24, whereas older age (P=0.02), higher baseline CD4 cell count, (P=0.03), higher complex I level (P=0.03), and higher ENFD (P<0.001) at baseline were all associated with decreased ENFD. Three of the six HIV-SN cases were haplogroup B (P=0.05). CONCLUSIONS Thai persons belonging to mtDNA haplogroup B had increased ENFD and 8-oxo-dG on ART, and were more likely to develop HIV-SN. These results suggest that mtDNA variation influences early oxidative damage and ENFD changes.
Collapse
|
34
|
Aging of the human innate immune system in HIV infection. Curr Opin Immunol 2014; 29:127-36. [PMID: 24997358 DOI: 10.1016/j.coi.2014.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
HIV infection is associated with a chronic inflammatory state arising from multiple factors, including innate immune recognition of HIV, increased microbial translocation, and release of endogenous ligands from damaged cells (such as CD4 T cells). In many respects, this heightened pro-inflammatory environment resembles that associated with aging in the absence of HIV infection, and evidence of dysregulated innate immune responses can be found in not only older HIV-negative adults, but also adults with HIV infection. While the study of innate immune aging in HIV infection is still in its early stages, it seems likely that at least additive, or potentially synergistic effects of aging and HIV infection will be found.
Collapse
|
35
|
Kampira E, Dzobo K, Kumwenda J, van Oosterhout JJ, Parker MI, Dandara C. Peripheral blood mitochondrial DNA/nuclear DNA (mtDNA/nDNA) ratio as a marker of mitochondrial toxicities of stavudine containing antiretroviral therapy in HIV-infected Malawian patients. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:438-45. [PMID: 24816082 DOI: 10.1089/omi.2014.0026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial toxicity is a major concern related to nucleoside reverse transcriptase inhibitors. Common manifestations are peripheral neuropathy and lipodystrophy. Depletion of mitochondria has been associated with mitochondrial dysfunction. We investigated whether mitochondria DNA (mtDNA) levels in peripheral blood can be used as biomarker of stavudine-associated mitochondrial toxicities. We enrolled 203 HIV-infected Malawian adult patients on stavudine-containing ART and 64 healthy controls of Bantu origin in a cross-sectional study. Total DNA was extracted from whole blood.The glyceraldehyde-3-phosphate dehydrogenase gene was used to estimate nuclear DNA (nDNA) levels and the ATP synthase-8 mitochondrial DNA gene to estimate mtDNA levels, from which mtDNA/nDNA ratios were determined. MtDNA subhaplogroups were established by sequencing. Among patients, peripheral neuropathy was present in 21% (43/203), lipodystrophy in 18% (20/112), elevated lactate level (>2.5 mmol/L) in 17% (19/113). Healthy controls had a higher median mtDNA/nDNA ratio when compared to HIV/AIDS patients (6.64 vs. 5.08; p=0.05), patients presenting with peripheral neuropathy (6.64 vs. 3.40, p=0.039), and patients with high lactate levels (6.64 vs. 0.68, p=0.024), respectively. Significant differences in median mtDNA/nDNA ratios were observed between patients with high and normal lactate levels (5.88 vs. 0.68, p=0.018). The median mtDNA/nDNA ratio of patients in subhaplogroup L0a2 was much lower (0.62 vs. 8.50, p=0.01) than that of those in subhaplogroup L2a. Our data indicate that peripheral blood mtDNA/nDNA ratio is a marker of mitochondrial toxicities of stavudine and is associated with elevated lactate levels and mtDNA subhaplogroups. This could open the prospect to select a substantial group of patients who will not have problematic side effects from stavudine, an affordable and effective antiretroviral drug that is being phased out in Africa due to its toxicity.
Collapse
Affiliation(s)
- Elizabeth Kampira
- 1 Division of Human Genetics, University of Cape Town , Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The treatment of metabolic disease is becoming an increasingly important component of the long-term management of patients with well controlled HIV on antiretroviral therapy (ART). Metabolic diseases probably develop at the intersection of traditional risk factors (such as obesity, tobacco use, and genetic predisposition) and HIV-specific and ART-specific contributors (including chronic inflammation and immune activation). This Review discusses present knowledge on adipose tissue dysfunction, insulin-glucose homoeostasis, lipid disturbances, and cardiovascular disease risk in people with HIV on ART. Although new antiretroviral drugs are believed to induce fewer short-term metabolic perturbations than do older drugs, the long-term effects of these drugs are not fully understood. Additionally, patients remain at increased risk of cardiovascular disease and other metabolic comorbidities. Research and treatment should focus on selection of ART that is both virologically effective and has minimum metabolic effects, minimisation of traditional risk factors for metabolic disease, and development of novel therapies to treat metabolic disease in patients with HIV, including use of anti-inflammatory and immunomodulatory drugs.
Collapse
Affiliation(s)
- Jordan E Lake
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
|
38
|
Role of mitochondria in HIV infection and associated metabolic disorders: focus on nonalcoholic fatty liver disease and lipodystrophy syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:493413. [PMID: 23970949 PMCID: PMC3736404 DOI: 10.1155/2013/493413] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/09/2013] [Accepted: 06/26/2013] [Indexed: 02/06/2023]
Abstract
Highly active antiretroviral therapy (HAART) has considerably improved the prognosis of HIV-infected patients. However, prolonged use of HAART has been related to long-term adverse events that can compromise patient health such as HIV-associated lipodystrophy syndrome (HALS) and nonalcoholic fatty liver disease (NAFLD). There is consistent evidence for a central role of mitochondrial dysfunction in these pathologies. Nucleotide reverse transcriptase inhibitors (NRTIs) have been described to be mainly responsible for mitochondrial dysfunction in adipose tissue and liver although nonnucleoside transcriptase inhibitors (NNRTIs) or protease inhibitors (PIs) have also showed mitochondrial toxicity, which is a major concern for the selection and the long-term adherence to a particular therapy. Several mechanisms explain these deleterious effects of HAART on mitochondria, and evidence points to other mechanisms beyond the “Pol-γ hypothesis.” HIV infection has also direct effects on mitochondria. In addition to the negative effects described for HIV itself and/or HAART on mitochondria, HIV-infected patients are more prone to develop a premature aging and, therefore, to present an increased oxidative state that could lead to the development of these metabolic disturbances observed in HIV-infected patients.
Collapse
|
39
|
McComsey GA, Daar ES, O'Riordan M, Collier AC, Kosmiski L, Santana JL, Fichtenbaum CJ, Fink H, Sax PE, Libutti DE, Gerschenson M. Changes in fat mitochondrial DNA and function in subjects randomized to abacavir-lamivudine or tenofovir DF-emtricitabine with atazanavir-ritonavir or efavirenz: AIDS Clinical Trials Group study A5224s, substudy of A5202. J Infect Dis 2013; 207:604-11. [PMID: 23204164 PMCID: PMC3549598 DOI: 10.1093/infdis/jis720] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/05/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The effect of nonthymidine nucleoside reverse-transcriptase inhibitors (NRTIs) on fat mitochondrial DNA (mtDNA) content and function is unclear. METHODS A5202 randomized antiretroviral therapy-naive human immunodeficiency virus-infected subjects to abacavir-lamivudine (ABC/3TC) versus tenofovir DF-emtricitabine (TDF/FTC) with efavirenz (EFV) or atazanavir-ritonavir (ATV/r). A5224s, substudy of A5202, enrolled 269 subjects with fat measurements by dual-energy x-ray absorptiometry and computed tomography. A subset of subjects underwent fat biopsies at baseline and week 96 for mtDNA content (real-time polymerase chain reaction) and oxidative phosphorylation nicotinamide adenine dinucleotide (reduced) dehydrogenase (complex I) and cytochrome c oxidase (complex IV) activity levels (immunoassays). Intent-to-treat analyses were performed using analysis of variance and paired t tests. RESULTS Fifty-six subjects (87% male; median age, 39 years) were included; their median body mass index, CD4 cell count, and fat mtDNA level were 26 kg/m(2), 227 cells/μL, and 1197 copies/cell, respectively. Fat mtDNA content decreased within the ABC/3TC and TDF/FTC groups (combining EFV and ATV/r arms; median change, -341 [interquartile range, -848 to 190; P = .03] and -400 [-661 to -221; P < .001] copies/cell, respectively), but these changes did not differ significantly between the 2 groups (P = .57). Complex I and IV activity decreased significantly in the TDF/FTC group (median change, -12.45 [interquartile range, -24.70 to 2.90; P = .003] and -8.25 [-13.90 to -1.30; P < .001], optical density × 10(3)/µg, respectively) but not the ABC/3TC group. Differences between the ABC/3TC and TDF/FTC groups were significant for complex I (P = .03). CONCLUSIONS ABC/3TC and TDF/FTC significantly and similarly decreased fat mtDNA content, but only TDF/FTC decreased complex I and complex IV activity levels. CLINICAL TRIALS REGISTRATION NCT00118898.
Collapse
|
40
|
Perrin S, Cremer J, Roll P, Faucher O, Ménard A, Reynes J, Dellamonica P, Naqvi A, Micallef J, Jouve E, Tamalet C, Solas C, Pissier C, Arnoux I, Nicolino-Brunet C, Espinosa L, Lévy N, Kaspi E, Robaglia-Schlupp A, Poizot-Martin I, Cau P. HIV-1 infection and first line ART induced differential responses in mitochondria from blood lymphocytes and monocytes: the ANRS EP45 "Aging" study. PLoS One 2012; 7:e41129. [PMID: 22829920 PMCID: PMC3400613 DOI: 10.1371/journal.pone.0041129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/18/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The ANRS EP45 "Aging" study investigates the cellular mechanisms involved in the accelerated aging of HIV-1 infected and treated patients. The data reported focus on mitochondria, organelles known to be involved in cell senescence. METHODS 49 HIV-1 infected patients untreated with antiretroviral therapy, together with 49 seronegative age- and sex-matched control subjects and 81 HIV-1 infected and treated patients, were recruited by 3 AIDS centres (Marseille, Montpellier, Nice; France; http://clinicaltrials.gov/, NCT01038999). In more than 88% of treated patients, the viral load was <40 copies/ml and the CD4+ cell count was >500/mm(3). ROS (reactive oxygen species) production and ΔΨm (inner membrane potential) were measured by flow cytometry in blood lymphocytes and monocytes (functional parameters). Three mitochondrial network quantitative morphological parameters were computed using confocal microscopy and image analysis. Three PBMC mitochondrial proteins (porin and subunits 2 and 4 of cytochrome C oxidase encoded by mtDNA or nuclear DNA, respectively) were analysed by western blotting. RESULTS Quantitative changes in PBMC mitochondrial proteins were not induced by either HIV-1 infection or ART. Discriminant analysis integrating functional (ROS production and ΔΨm) or morphological (network volume density, fragmentation and branching) parameters revealed HIV-1 infection and ART differential effects according to cell type. First line ART tended to rescue lymphocyte mitochondrial parameters altered by viral infection, but induced slight changes in monocytes. No statistical difference was found between the effects of three ART regimens on mitochondrial parameters. Correlations between functional parameters and viral load confirmed the damaging effects of HIV-1 in lymphocyte mitochondria. CONCLUSIONS In patients considered to be clinically stable, mitochondria exhibited functional and morphological modifications in PBMCs resulting from either direct or indirect effects of HIV-1 infection (lymphocytes), or from first line ART (monocytes). Together with other tissue impairments, these changes may contribute to global aging.
Collapse
Affiliation(s)
- Sophie Perrin
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Jonathan Cremer
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Patrice Roll
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Olivia Faucher
- Service d’Immuno-Hématologie Clinique, CHU (Centre Hospitalier Universitaire) Sainte Marguerite AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Amélie Ménard
- Service d’Immuno-Hématologie Clinique, CHU (Centre Hospitalier Universitaire) Sainte Marguerite AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Jacques Reynes
- Département des Maladies Infectieuses et Tropicales, CHRU (Centre Hospitalier Régional et Universitaire) Gui-de-Chauliac, Montpellier, France
| | - Pierre Dellamonica
- Service d’Infectiologie, CHU (Centre Hospitalier Universitaire) L’Archet 1, Nice, France
| | - Alissa Naqvi
- Service d’Infectiologie, CHU (Centre Hospitalier Universitaire) L’Archet 1, Nice, France
| | - Joëlle Micallef
- Centre d’Investigation Clinique - Unité de Pharmacologie Clinique et d’Evaluations Thérapeutiques (CIC-UPCET), CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Elisabeth Jouve
- Centre d’Investigation Clinique - Unité de Pharmacologie Clinique et d’Evaluations Thérapeutiques (CIC-UPCET), CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Catherine Tamalet
- Fédération de Microbiologie Clinique, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- URMITE CNRS-IRD UMR 6236, Aix-Marseille Univ, Marseille, France
| | - Caroline Solas
- Laboratoire de Pharmacocinétique et de Toxicologie, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- Inserm UMR U911, Aix-Marseille Univ, Marseille, France
| | - Christel Pissier
- Laboratoire de Pharmacocinétique et de Toxicologie, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- Inserm UMR U911, Aix-Marseille Univ, Marseille, France
| | - Isabelle Arnoux
- Laboratoire d’Hématologie, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Corine Nicolino-Brunet
- Laboratoire d’Hématologie, CHU (Centre Hospitalier Universitaire) La Conception AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Léon Espinosa
- URMITE CNRS-IRD UMR 6236, Aix-Marseille Univ, Marseille, France
| | - Nicolas Lévy
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Génetique Moléculaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Elise Kaspi
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Andrée Robaglia-Schlupp
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Isabelle Poizot-Martin
- Service d’Immuno-Hématologie Clinique, CHU (Centre Hospitalier Universitaire) Sainte Marguerite AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Pierre Cau
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- * E-mail:
| |
Collapse
|
41
|
|
42
|
Voss JG, Dobra A, Morse C, Kovacs JA, Raju R, Danner RL, Munson PJ, Logan C, Rangel Z, Adelsberger JW, McLaughlin M, Adams LD, Dalakas MC. Fatigue-related gene networks identified in CD14+ cells isolated from HIV-infected patients: part II: statistical analysis. Biol Res Nurs 2011; 15:152-9. [PMID: 22084402 DOI: 10.1177/1099800411423307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE In limited samples of valuable biological tissues, univariate ranking methods of microarray analyses often fail to show significant differences among expression profiles. In order to allow for hypothesis generation, novel statistical modeling systems can be greatly beneficial. The authors applied new statistical approaches to solve the issue of limited experimental data to generate new hypotheses in CD14(+) cells of patients with HIV-related fatigue (HRF) and healthy controls. METHODOLOGY We compared gene expression profiles of CD14(+) cells of nucleoside reverse transcriptase inhibitor (NRTI)-treated HIV patients with low versus high fatigue to healthy controls (n = 5 each). With novel Bayesian modeling procedures, the authors identified 32 genes predictive of low versus high fatigue and 33 genes predictive of healthy versus HIV infection. Sparse association and liquid association networks further elucidated the possible biological pathways in which these genes are involved. RELEVANCE FOR NURSING PRACTICE: Genetic networks developed in a comprehensive Bayesian framework from small sample sizes allow nursing researchers to design future research approaches to address such issues as HRF. IMPLICATION FOR PRACTICE The findings from this pilot study may take us one step closer to the development of useful biomarker targets for fatigue status. Specific and reliable tests are needed to diagnosis, monitor and treat fatigue and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Joachim G Voss
- Biobehavioral Nursing & Health Systems Department, School of Nursing, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|