1
|
Fredsgaard-Jones T, Harris SA, Morrison H, Ateere A, Nassanga B, Ramon RL, Mitton C, Fletcher E, Decker J, Preston-Jones H, Jackson S, Mawer A, Satti I, Barer M, Hinks T, Bettinson H, McShane H. A dose escalation study to evaluate the safety of an aerosol BCG infection in previously BCG-vaccinated healthy human UK adults. Front Immunol 2024; 15:1427371. [PMID: 39611145 PMCID: PMC11602284 DOI: 10.3389/fimmu.2024.1427371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Tuberculosis (TB) is the leading cause of death worldwide from a single infectious agent. Bacillus Calmette-Guérin (BCG), the only licensed vaccine, provides limited protection. Controlled human infection models (CHIMs) are useful in accelerating vaccine development for pathogens with no correlates of protection; however, the need for prolonged treatment makes Mycobacterium tuberculosis an unethical challenge agent. Aerosolised BCG provides a potential safe surrogate of infection. A CHIM in BCG-vaccinated as well as BCG-naïve individuals would allow identification of novel BCG-booster vaccine candidates and facilitate CHIM studies in populations with high TB endemicity. The purpose of this study was to evaluate the safety and utility of an aerosol BCG CHIM in historically BCG-vaccinated volunteers. Methods There were 12 healthy, historically BCG-vaccinated UK adults sequentially enrolled into dose-escalating groups. The first three received 1 × 104 CFU aerosol BCG Danish 1331 via a nebuliser. After safety review, subsequent groups received doses of 1 × 105 CFU, 1 × 106 CFU, or 1 × 107 CFU. Safety was monitored through self-reported adverse events (AEs), laboratory tests, and lung function testing. Immunology blood samples were taken pre-infection and at multiple timepoints post-infection. A bronchoalveolar lavage (BAL) taken 14 days post-infection was analysed for presence of live BCG. Results No serious AEs occurred during the study. Solicited systemic and respiratory AEs were frequent in all groups, but generally short-lived and mild in severity. There was a trend for more reported AEs in the highest-dose group. No live BCG was detected in BAL from any volunteers. Aerosol BCG induced potent systemic cellular immune responses in the highest-dose group 7 days post-infection. Discussion Aerosol BCG infection up to a dose of 1 × 107 CFU was well-tolerated in historically BCG-vaccinated healthy, UK adults. No live BCG was detected in the BAL fluid 14 days post-infection despite potent systemic responses, suggesting early clearance. Further work is needed to expand the number of volunteers receiving BCG via the aerosol route to refine and establish utility of this aerosol BCG CHIM. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04777721.
Collapse
Affiliation(s)
| | | | - Hazel Morrison
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alberta Ateere
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Celia Mitton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Eve Fletcher
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Jonathan Decker
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | | | - Susan Jackson
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Andrew Mawer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Michael Barer
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Timothy Hinks
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Henry Bettinson
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines 2024; 9:208. [PMID: 39478007 PMCID: PMC11526030 DOI: 10.1038/s41541-024-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The absence of validated correlates of protection (CoPs) hampers the rational design and clinical development of new tuberculosis vaccines. In this review, we provide an overview of the potential CoPs in tuberculosis vaccine research. Major hindrances and potential opportunities are then discussed. Based on recent progress, it is reasonable to anticipate that success in the ongoing efforts to identify CoPs would be a game-changer in tuberculosis vaccine development.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
3
|
Abate G, Meza KA, Colbert CG, Eickhoff CS. Assays for Assessing Mycobacterium avium Immunity and Evaluating the Effects of Therapeutics. Pathogens 2024; 13:903. [PMID: 39452774 PMCID: PMC11510112 DOI: 10.3390/pathogens13100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
In Europe and North America, the prevalence of pulmonary nontuberculous mycobacteria (NTM) is increasing. Most pulmonary NTM infections are caused by the Mycobacterium avium complex (MAC). Sadly, the treatment of pulmonary MAC is suboptimal with failure rates ranging from 37% to 58%. Therefore, there is a need to develop new therapeutics. Developing new immunotherapies and studying their interaction with standard or new drugs requires reliable assays. Four different assays including CFSE-based flow cytometry, in vitro protection assays, IFN-γ ELISPOT, and murine infection models were optimized using a reference strain of MAC (ATCC 700898) to help with the development of immunotherapies for MAC. Expansion of proliferating and IFN-γ producing human T cells is optimal after 7 days of stimulation with MAC at a multiplicity of infection (MOI) of 0.1, achieving a stimulation index of 26.5 ± 11.6 (mean ± SE). The in vitro protection assay for MAC works best by co-culturing T cells expanded for 7 days with MAC (MOI 1)-infected autologous macrophages. Aerosol MAC infection of mice allows measurement of the effects of the BCG vaccine and clarithromycin. IFN-γ ELISPOT assays with live MAC (MOI 3) stimulation of splenocytes from mice immunized with BCG help identify differences between unimmunized mice and mice immunized with BCG. In conclusion, multiple assays are available for use to identify MAC-specific effector T cells, which will help in the development of new therapeutics or vaccines against pulmonary MAC.
Collapse
Affiliation(s)
- Getahun Abate
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA (C.S.E.)
| | | | | | | |
Collapse
|
4
|
Perez RL, Chase J, Tanner R. Shared challenges to the control of complex intracellular neglected pathogens. Front Public Health 2024; 12:1423420. [PMID: 39324165 PMCID: PMC11422159 DOI: 10.3389/fpubh.2024.1423420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
The complex intracellular pathogens Mycobacterium tuberculosis, Mycobacterium leprae, Leishmania spp., and Burkholderia pseudomallei, which cause tuberculosis, leprosy, leishmaniasis, and melioidosis respectively, represent major health threats with a significant global burden concentrated in low- and middle-income countries. While these diseases vary in their aetiology, pathology and epidemiology, they share key similarities in the biological and sociodemographic factors influencing their incidence and impact worldwide. In particular, their occurrence in resource-limited settings has important implications for research and development, disease prevalence and associated risk factors, as well as access to diagnostics and therapeutics. In accordance with the vision of the VALIDATE (VAccine deveLopment for complex Intracellular neglecteD pAThogeEns) Network, we consider shared challenges to the effective prevention, diagnosis and treatment of these diseases as shaped by both biological and social factors, illustrating the importance of taking an interdisciplinary approach. We further highlight how a cross-pathogen perspective may provide valuable insights for understanding and addressing challenges to the control of all four pathogens.
Collapse
Affiliation(s)
- Rebecca Lynn Perez
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Jemima Chase
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Wadham College, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Church EC, Bishop E, Fiore-Gartland A, Yu KKQ, Chang M, Jones RM, Brache JK, Ballweber Fleming L, Phan JM, Makatsa MS, Heptinstall J, Chiong K, Dintwe O, Naidoo A, Voillet V, Mayer-Blackwell K, Nwanne G, Andersen-Nissen E, Vary JC, Tomaras GD, McElrath MJ, Sherman DR, Murphy SC, Kublin JG, Seshadri C. Probing Dermal Immunity to Mycobacteria through a Controlled Human Infection Model. Immunohorizons 2024; 8:695-711. [PMID: 39283647 PMCID: PMC11447685 DOI: 10.4049/immunohorizons.2400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Cutaneous mycobacterial infections cause substantial morbidity and are challenging to diagnose and treat. An improved understanding of the dermal immune response to mycobacteria may inspire new therapeutic approaches. We conducted a controlled human infection study with 10 participants who received 2 × 106 CFUs of Mycobacterium bovis bacillus Calmette-Guérin (Tice strain) intradermally and were randomized to receive isoniazid or no treatment. Peripheral blood was collected at multiple time points for flow cytometry, bulk RNA sequencing (RNA-seq), and serum Ab assessments. Systemic immune responses were detected as early as 8 d postchallenge in this M. bovis bacillus Calmette-Guérin-naive population. Injection-site skin biopsies were performed at days 3 and 15 postchallenge and underwent immune profiling using mass cytometry and single-cell RNA-seq, as well as quantitative assessments of bacterial viability and burden. Molecular viability testing and standard culture results correlated well, although no differences were observed between treatment arms. Single-cell RNA-seq revealed various immune and nonimmune cell types in the skin, and communication between them was inferred by ligand-receptor gene expression. Day 3 communication was predominantly directed toward monocytes from keratinocyte, muscle, epithelial, and endothelial cells, largely via the migration inhibitory factor pathway and HLA-E-KLRK1 interaction. At day 15, communication was more balanced between cell types. These data reveal the potential role of nonimmune cells in the dermal immune response to mycobacteria and the utility of human challenge studies to augment our understanding of mycobacterial infections.
Collapse
Affiliation(s)
- E Chandler Church
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Seattle-King County Public Health, Seattle, WA
| | - Emma Bishop
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | | | - Krystle K Q Yu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Ming Chang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Richard M Jones
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA
| | - Justin K Brache
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA
| | | | - Jolie M Phan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Mohau S Makatsa
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Jack Heptinstall
- Duke Center for Human Systems Immunology, Duke University, Durham, NC
| | - Kelvin Chiong
- Duke Center for Human Systems Immunology, Duke University, Durham, NC
| | - One Dintwe
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Anneta Naidoo
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Valentin Voillet
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | | | - Gift Nwanne
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Jay C Vary
- Department of Dermatology, University of Washington School of Medicine, Seattle, WA
| | - Georgia D Tomaras
- Duke Center for Human Systems Immunology, Duke University, Durham, NC
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - David R Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
6
|
Bæk O, Schaltz-Buchholzer F, Campbell A, Amenyogbe N, Campbell J, Aaby P, Benn CS, Kollmann TR. The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits. Semin Immunopathol 2024; 46:13. [PMID: 39186134 PMCID: PMC11347488 DOI: 10.1007/s00281-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Skin scar formation following Bacille Calmette-Guérin (BCG) or smallpox (Vaccinia) vaccination is an established marker of successful vaccination and 'vaccine take'. Potent pathogen-specific (tuberculosis; smallpox) and pathogen-agnostic (protection from diseases unrelated to the intentionally targeted pathogen) effects of BCG and smallpox vaccines hold significant translational potential. Yet despite their use for centuries, how scar formation occurs and how local skin-based events relate to systemic effects that allow these two vaccines to deliver powerful health promoting effects has not yet been determined. We review here what is known about the events occurring in the skin and place this knowledge in the context of the overall impact of these two vaccines on human health with a particular focus on maternal-child health.
Collapse
Affiliation(s)
- Ole Bæk
- University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nelly Amenyogbe
- Telethon Kids Institute, Perth, Australia
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada
- Bandim Health Project, Bissau, Guinea-Bissau
| | | | - Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- University of Southern Denmark, Copenhagen, Denmark
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth, Australia.
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada.
- Bandim Health Project, Bissau, Guinea-Bissau.
| |
Collapse
|
7
|
Balasingam S, Dheda K, Fortune S, Gordon SB, Hoft D, Kublin JG, Loynachan CN, McShane H, Morton B, Nambiar S, Sharma NR, Robertson B, Schrager LK, Weller CL. Review of Current Tuberculosis Human Infection Studies for Use in Accelerating Tuberculosis Vaccine Development: A Meeting Report. J Infect Dis 2024; 230:e457-e464. [PMID: 38709726 PMCID: PMC11326834 DOI: 10.1093/infdis/jiae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Tools to evaluate and accelerate tuberculosis (TB) vaccine development are needed to advance global TB control strategies. Validated human infection studies for TB have the potential to facilitate breakthroughs in understanding disease pathogenesis, identify correlates of protection, develop diagnostic tools, and accelerate and de-risk vaccine and drug development. However, key challenges remain for realizing the clinical utility of these models, which require further discussion and alignment among key stakeholders. In March 2023, the Wellcome Trust and the International AIDS Vaccine Initiative convened international experts involved in developing both TB and bacillus Calmette-Guérin (BCG) human infection studies (including mucosal and intradermal challenge routes) to discuss the status of each of the models and the key enablers to move the field forward. This report provides a summary of the presentations and discussion from the meeting. Discussions identified key issues, including demonstrating model validity, to provide confidence for vaccine developers, which may be addressed through demonstration of known vaccine effects (eg, BCG vaccination in specific populations), and by comparing results from field efficacy and human infection studies. The workshop underscored the importance of establishing safe and acceptable studies in high-burden settings, and the need to validate >1 model to allow for different scientific questions to be addressed as well as to provide confidence to vaccine developers and regulators around use of human infection study data in vaccine development and licensure pathways.
Collapse
Affiliation(s)
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town (UCT) Lung Institute and South African Medical Research Council/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, South Africa
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen B Gordon
- Clinical Experimental Medicine, Malawi Liverpool Wellcome Programme, Blantyre
| | - Daniel Hoft
- Departments of Internal Medicine and Molecular Microbiology & Immunology, Saint Louis University of Medicine, Missouri
| | - James G Kublin
- Cancer Center, Vaccine and Infectious Disease Division, Fred Hutchinson Institute, Seattle, Washington
| | | | - Helen McShane
- The Jenner Institute, University of Oxford, United Kingdom
| | - Ben Morton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, United Kingdom
| | - Sujatha Nambiar
- TB Impact Area, International AIDS Vaccine Initiative, New York, New York
| | | | - Brian Robertson
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Lewis K Schrager
- TB Impact Area, International AIDS Vaccine Initiative, New York, New York
| | | |
Collapse
|
8
|
Krishnan N, Priestman M, Uhía I, Charitakis N, Glegola-Madejska IT, Baer TM, Tranberg A, Faraj A, Simonsson USH, Robertson BD. A noninvasive BCG skin challenge model for assessing tuberculosis vaccine efficacy. PLoS Biol 2024; 22:e3002766. [PMID: 39159267 PMCID: PMC11361749 DOI: 10.1371/journal.pbio.3002766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/29/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
We report here on the characterisation in mice of a noninvasive bacille Calmette-Guérin (BCG) skin challenge model for assessing tuberculosis (TB) vaccine efficacy. Controlled human infection models (CHIMs) are valuable tools for assessing the relevant biological activity of vaccine candidates, with the potential to accelerate TB vaccine development into the clinic. TB infection poses significant constraints on the design of a CHIM using the causative agent Mycobacterium tuberculosis (Mtb). A safer alternative is a challenge model using the attenuated vaccine agent Mycobacterium bovis BCG as a surrogate for Mtb, and intradermal (skin) challenge as an alternative to pulmonary infection. We have developed a unique noninvasive imaging system based on fluorescent reporters (FluorBCG) to quantitatively measure bacterial load over time, thereby determining a relevant biological vaccine effect. We assessed the utility of this model to measure the effectiveness of 2 TB vaccines: the currently licenced BCG and a novel subunit vaccine candidate. To assess the efficacy of the skin challenge model, a nonlinear mixed-effects models was built describing the decline of fluorescence over time. The model-based analysis identified that BCG vaccination reduced the fluorescence readout of both fluorophores compared to unvaccinated mice (p < 0.001). However, vaccination with the novel subunit candidate did not alter the fluorescence decline compared to unvaccinated mice (p > 0.05). BCG-vaccinated mice that showed the reduced fluorescent readout also had a reduced bacterial burden in the lungs when challenged with Mtb. This supports the fluorescence activity in the skin as a reflection of vaccine induced functional pulmonary immune responses. This novel noninvasive approach allows for repeated measurements from the challenge site, providing a dynamic readout of vaccine induced responses over time. This BCG skin challenge model represents an important contribution to the ongoing development of controlled challenge models for TB.
Collapse
Affiliation(s)
- Nitya Krishnan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Miles Priestman
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Iria Uhía
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Natalie Charitakis
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Izabella T. Glegola-Madejska
- Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Thomas M. Baer
- Stanford Photonics Research Center, Stanford University, Stanford, California, United States of America
| | - Albin Tranberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Alan Faraj
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ulrika SH Simonsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Brian D. Robertson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Satti I, Marshall JL, Harris SA, Wittenberg R, Tanner R, Lopez Ramon R, Wilkie M, Ramos Lopez F, Riste M, Wright D, Peralta Alvarez MP, Williams N, Morrison H, Stylianou E, Folegatti P, Jenkin D, Vermaak S, Rask L, Cabrera Puig I, Powell Doherty R, Lawrie A, Moss P, Hinks T, Bettinson H, McShane H. Safety of a controlled human infection model of tuberculosis with aerosolised, live-attenuated Mycobacterium bovis BCG versus intradermal BCG in BCG-naive adults in the UK: a dose-escalation, randomised, controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:909-921. [PMID: 38621405 DOI: 10.1016/s1473-3099(24)00143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Mycobacterium tuberculosis is the main causative agent of tuberculosis. BCG, the only licensed vaccine, provides inadequate protection against pulmonary tuberculosis. Controlled human infection models are useful tools for vaccine development. We aimed to determine a safe dose of aerosol-inhaled live-attenuated Mycobacterium bovis BCG as a surrogate for M tuberculosis infection, then compare the safety and tolerability of infection models established using aerosol-inhaled and intradermally administered BCG. METHODS This phase 1 controlled human infection trial was conducted at two clinical research facilities in the UK. Healthy, immunocompetent adults aged 18-50 years, who were both M tuberculosis-naive and BCG-naive and had no history of asthma or other respiratory diseases, were eligible for the trial. Participants were initially enrolled into group 1 (receiving the BCG Danish strain); the trial was subsequently paused because of a worldwide shortage of BCG Danish and, after protocol amendment, was restarted using the BCG Bulgaria strain (group 2). After a dose-escalation study, during which participants were sequentially allocated to receive either 1 × 103, 1 × 104, 1 × 105, 1 × 106, or 1 × 107 colony-forming units (CFU) of aerosol BCG, the maximum tolerated dose was selected for the randomised controlled trial. Participants in this trial were randomly assigned (9:12), by variable block randomisation and using sequentially numbered sealed envelopes, to receive aerosol BCG (1 × 107 CFU) and intradermal saline or intradermal BCG (1 × 106 CFU) and aerosol saline. Participants were masked to treatment allocation until day 14. The primary outcome was to compare the safety of a controlled human infection model based on aerosol-inhaled BCG versus one based on intradermally administered BCG, and the secondary outcome was to evaluate BCG recovery in the airways of participants who received aerosol BCG or skin biopsies of participants who received intradermal BCG. BCG was detected by culture and by PCR. The trial is registered at ClinicalTrials.gov, NCT02709278, and is complete. FINDINGS Participants were assessed for eligibility between April 7, 2016, and Sept 29, 2018. For group 1, 15 participants were screened, of whom 13 were enrolled and ten completed the study; for group 2, 60 were screened and 33 enrolled, all of whom completed the study. Doses up to 1 × 107 CFU aerosol-inhaled BCG were sufficiently well tolerated. No significant difference was observed in the frequency of adverse events between aerosol and intradermal groups (median percentage of solicited adverse events per participant, post-aerosol vs post-intradermal BCG: systemic 7% [IQR 2-11] vs 4% [1-13], p=0·62; respiratory 7% [1-19] vs 4% [1-9], p=0·56). More severe systemic adverse events occurred in the 2 weeks after aerosol BCG (15 [12%] of 122 reported systemic adverse events) than after intradermal BCG (one [1%] of 94; difference 11% [95% CI 5-17]; p=0·0013), but no difference was observed in the severity of respiratory adverse events (two [1%] of 144 vs zero [0%] of 97; 1% [-1 to 3]; p=0·52). All adverse events after aerosol BCG resolved spontaneously. One serious adverse event was reported-a participant in group 2 was admitted to hospital to receive analgesia for a pre-existing ovarian cyst, which was deemed unrelated to BCG infection. On day 14, BCG was cultured from bronchoalveolar lavage samples after aerosol infection and from skin biopsy samples after intradermal infection. INTERPRETATION This first-in-human aerosol BCG controlled human infection model was sufficiently well tolerated. Further work will evaluate the utility of this model in assessing vaccine efficacy and identifying potential correlates of protection. FUNDING Bill & Melinda Gates Foundation, Wellcome Trust, National Institute for Health Research Oxford Biomedical Research Centre, Thames Valley Clinical Research Network, and TBVAC2020.
Collapse
Affiliation(s)
- Iman Satti
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | | | - Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Morven Wilkie
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Michael Riste
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Daniel Wright
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Nicola Williams
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | | | | | - Daniel Jenkin
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Linnea Rask
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | - Alison Lawrie
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Timothy Hinks
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Henry Bettinson
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Jeyanathan M, Xing Z. A new tool for accelerating tuberculosis vaccine development. THE LANCET. INFECTIOUS DISEASES 2024; 24:803-804. [PMID: 38621406 DOI: 10.1016/s1473-3099(24)00178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
11
|
Carter E, Morton B, ElSafadi D, Jambo K, Kenny-Nyazika T, Hyder-Wright A, Chiwala G, Chikaonda T, Chirwa AE, Gonzalez Sanchez J, Yip V, Biagini G, Pennington SH, Saunderson P, Farrar M, Myerscough C, Collins AM, Gordon SB, Ferreira DM. A feasibility study of controlled human infection with intradermal Bacillus Calmette-Guérin (BCG) injection: Pilot BCG controlled human infection model. Wellcome Open Res 2024; 8:424. [PMID: 39219857 PMCID: PMC11362739 DOI: 10.12688/wellcomeopenres.19811.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 09/04/2024] Open
Abstract
Tuberculosis (TB) caused 1.5 million deaths in 2020, making it the leading infectious killer after COVID-19. Bacille Calmette-Guerin (BCG) is the only licensed vaccine against TB but has sub-optimal efficacy against pulmonary TB and reduced effectiveness in regions close to the equator with high burden. Efforts to find novel vaccines are hampered due to the need for large-scale, prolonged, and costly clinical trials. Controlled human infection models (CHIMs) for TB may be used to accelerate vaccine development by ensuring only the most promising vaccine candidates are selected for phase 3 trials, but it is not currently possible to give participants Mycobacterium tuberculosis as a challenge agent. This study aims to replicate and refine an established BCG CHIM at the Liverpool School of Tropical Medicine. Participants will receive an intradermal injection with licensed BCG vaccine (Statens Serum Institut strain). In phase A, participants will undergo punch biopsy two weeks after administration, paired with minimally invasive methods of skin sampling (skin swab, microbiopsy, skin scrape). BCG detection by classical culture and molecular methods will be compared between these techniques and gold standard punch biopsy. Techniques meeting our pre-defined sensitivity and specificity criteria will be applied in Phase B to longitudinally assess intradermal BCG growth two, seven and fourteen days after administration. We will also measure compartmental immune responses in skin, blood and respiratory mucosa in Phase B. This feasibility study will transfer and refine an existing and safe model of BCG controlled human infection. Longitudinal BCG quantification has the potential to increase model sensitivity to detect vaccine and therapeutic responses. If successful, we aim to transfer the model to Malawi in future studies, a setting with endemic TB disease, to accelerate development of vaccines and therapeutics relevant for underserved populations who stand to benefit the most. Registration: ISRCTN: ISRCTN94098600 and ClinicalTrials.gov: NCT05820594.
Collapse
Affiliation(s)
- Emma Carter
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | - Dima ElSafadi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | | | | | - Gift Chiwala
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | - Tarsizio Chikaonda
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | - Anthony E. Chirwa
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | | | - Vincent Yip
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- University of Liverpool, Liverpool, England, L69 3BX, UK
| | | | | | | | - Madlen Farrar
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | | | - Stephen B. Gordon
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre 3, Malawi
| | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- University of Oxford, Oxford, England, UK
| |
Collapse
|
12
|
Muhi S, Buultjens AH, Porter JL, Marshall JL, Doerflinger M, Pidot SJ, O’Brien DP, Johnson PDR, Lavender CJ, Globan M, McCarthy J, Osowicki J, Stinear TP. Mycobacterium ulcerans challenge strain selection for a Buruli ulcer controlled human infection model. PLoS Negl Trop Dis 2024; 18:e0011979. [PMID: 38701090 PMCID: PMC11095734 DOI: 10.1371/journal.pntd.0011979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Critical scientific questions remain regarding infection with Mycobacterium ulcerans, the organism responsible for the neglected tropical disease, Buruli ulcer (BU). A controlled human infection model has the potential to accelerate our knowledge of the immunological correlates of disease, to test prophylactic interventions and novel therapeutics. Here we present microbiological evidence supporting M. ulcerans JKD8049 as a suitable human challenge strain. This non-genetically modified Australian isolate is susceptible to clinically relevant antibiotics, can be cultured in animal-free and surfactant-free media, can be enumerated for precise dosing, and has stable viability following cryopreservation. Infectious challenge of humans with JKD8049 is anticipated to imitate natural infection, as M. ulcerans JKD8049 is genetically stable following in vitro passage and produces the key virulence factor, mycolactone. Also reported are considerations for the manufacture, storage, and administration of M. ulcerans JKD8049 for controlled human infection.
Collapse
Affiliation(s)
- Stephen Muhi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Andrew H. Buultjens
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Julia L. Marshall
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel P. O’Brien
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Infectious Diseases, Barwon Health, Geelong, Victoria, Australia
| | - Paul D. R. Johnson
- Northeast Public Health Unit, Austin Health, Heidelberg, Victoria, Australia
| | - Caroline J. Lavender
- Victorian Infectious Disease Reference Laboratory (VIDRL), Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Disease Reference Laboratory (VIDRL), Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James McCarthy
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, Royal Children’s Hospital Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Disease Reference Laboratory (VIDRL), Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines 2024; 9:57. [PMID: 38461350 PMCID: PMC10924964 DOI: 10.1038/s41541-024-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024] Open
Abstract
In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Collapse
Affiliation(s)
- Saurabh Chugh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | - Ritika Kar Bahal
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India.
| |
Collapse
|
14
|
Painter H, Harriss E, Fletcher HA, McShane H, Tanner R. Development and application of the direct mycobacterial growth inhibition assay: a systematic review. Front Immunol 2024; 15:1355983. [PMID: 38380319 PMCID: PMC10877019 DOI: 10.3389/fimmu.2024.1355983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction First described by Wallis et al. in 2001 for the assessment of TB drugs, the direct mycobacterial growth inhibition assay (MGIA) offers a tractable ex vivo tool measuring the combined influences of host immunity, strain virulence and intervention effects. Over the past 13 years, we have led efforts to adapt the direct MGIA for the assessment of TB vaccines including optimisation, harmonisation and validation of BCG vaccine-induced responses as a benchmark, as well as assay transfer to institutes worldwide. Methods We have performed a systematic review on the primary published literature describing the development and applications of the direct MGIA from 2001 to June 2023 in accordance with the PRISMA reporting guidelines. Results We describe 63 studies in which the direct MGIA has been applied across species for the evaluation of TB drugs and novel TB vaccine candidates, the study of clinical cohorts including those with comorbidities, and to further understanding of potential immune correlates of protection from TB. We provide a comprehensive update on progress of the assay since its conception and critically evaluate current findings and evidence supporting its utility, highlighting priorities for future directions. Discussion While further standardisation and validation work is required, significant advancements have been made in the past two decades. The direct MGIA provides a potentially valuable tool for the early evaluation of TB drug and vaccine candidates, clinical cohorts, and immune mechanisms of mycobacterial control. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023423491.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, United Kingdom
| | - Helen A. Fletcher
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen McShane
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Kapulu M, Manda-Taylor L, Balasingam S, Means G, Ayiro Malungu M, Bejon P, Chi PC, Chiu C, Church EC, Correa-Oliveira R, Day N, Durbin A, Egesa M, Emerson C, Jambo K, Mathur R, Metzger W, Mumba N, Nazziwa W, Olotu A, Rodgers J, Sinyiza F, Talaat K, Kamerling I, Weller C, Baay M, Neels P. Fourth Controlled Human Infection Model (CHIM) meeting - CHIMs in endemic countries, May 22-23, 2023. Biologicals 2024; 85:101747. [PMID: 38350825 PMCID: PMC7616644 DOI: 10.1016/j.biologicals.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Earlier meetings laid the foundations for Controlled Human Infection Models (CHIMs), also known as human challenge studies and human infection studies, including Good Manufacturing Practice (GMP) production of the challenge agent, CHIM ethics, environmental safety in CHIM, recruitment, community engagement, advertising and incentives, pre-existing immunity, and clinical, immunological, and microbiological endpoints. The fourth CHIM meeting focused on CHIM studies being conducted in endemic countries. Over the last ten years we have seen a vast expansion of the number of countries in Africa performing CHIM studies, as well as a growing number of different challenge organisms being used. Community and public engagement with assiduous ethical and regulatory oversight has been central to successful introductions and should be continued, in more community-led or community-driven models. Valuable initiatives for regulation of CHIMs have been undertaken but further capacity building remains essential.
Collapse
Affiliation(s)
| | | | | | - Gary Means
- Bill & Melinda Gates Foundation, Seattle, USA.
| | | | | | | | | | | | | | - Nicholas Day
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Anna Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.
| | - Moses Egesa
- MRC/UVRI and LSHTM Uganda Research Unit, Uganda; London School of Hygiene and Tropical Medicine, UK.
| | - Claudia Emerson
- McMaster University, Institute on Ethics & Policy for Innovation, Canada.
| | | | - Roli Mathur
- Bioethics Unit, Indian Council of Medical Research, India.
| | | | - Noni Mumba
- KEMRI-Wellcome Trust Research Programme, Kenya.
| | | | | | | | - Frank Sinyiza
- National Health Sciences Research Committee, Malawi.
| | - Kawsar Talaat
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.
| | | | | | - Marc Baay
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium.
| | | |
Collapse
|
16
|
Jackson S, McShane H. Challenges in Developing a Controlled Human Tuberculosis Challenge Model. Curr Top Microbiol Immunol 2024; 445:229-255. [PMID: 35332386 DOI: 10.1007/82_2022_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Controlled human infection models (CHIMs) have provided pivotal scientific advancements, contributing to the licensure of new vaccines for many pathogens. Despite being one of the world's oldest known pathogens, there are still significant gaps in our knowledge surrounding the immunobiology of Mycobacterium tuberculosis (M. tb). Furthermore, the only licensed vaccine, BCG, is a century old and demonstrates limited efficacy in adults from endemic areas. Despite good global uptake of BCG, tuberculosis (TB) remains a silent epidemic killing 1.4 million in 2019 (WHO, Global tuberculosis report 2020). A mycobacterial CHIM could expedite the development pipeline of novel TB vaccines and provide critical understanding on the immune response to TB. However, developing a CHIM for such a complex organism is a challenging process. The first hurdle to address is which challenge agent to use, as it would not be ethical to use virulent M. tb. This chapter describes the current progress and outstanding issues in the development of a TB CHIM. Previous and current human studies include both aerosol and intradermal models using either BCG or purified protein derivative (PPD) as a surrogate agent. Future work investigating the use of attenuated M. tb is underway.
Collapse
Affiliation(s)
- Susan Jackson
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK.
| |
Collapse
|
17
|
Abo YN, Jamrozik E, McCarthy JS, Roestenberg M, Steer AC, Osowicki J. Strategic and scientific contributions of human challenge trials for vaccine development: facts versus fantasy. THE LANCET. INFECTIOUS DISEASES 2023; 23:e533-e546. [PMID: 37573871 DOI: 10.1016/s1473-3099(23)00294-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 08/15/2023]
Abstract
The unprecedented speed of delivery of SARS-CoV-2 pandemic vaccines has redefined the limits for all vaccine development. Beyond the aspirational 100-day timeline for tomorrow's hypothetical pandemic vaccines, there is a sense of optimism that development of other high priority vaccines can be accelerated. Early in the COVID-19 pandemic, an intense and polarised academic and public discourse arose concerning the role of human challenge trials for vaccine development. A case was made for human challenge trials as a powerful tool to establish early proof-of-concept of vaccine efficacy in humans, inform vaccine down selection, and address crucial knowledge gaps regarding transmission, pathogenesis, and immune protection. We review the track record of human challenge trials contributing to the development of vaccines for 19 different pathogens and discuss relevant limitations, barriers, and pitfalls. This Review also highlights opportunities for efforts to broaden the scope and boost the effects of human challenge trials, to accelerate all vaccine development.
Collapse
Affiliation(s)
- Yara-Natalie Abo
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia.
| | - Euzebiusz Jamrozik
- Ethox and Pandemic Sciences Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Monash-WHO Collaborating Centre for Bioethics, Monash University, Melbourne, VIC, Australia
| | - James S McCarthy
- Department of Infectious Diseases, The University of Melbourne, Parkville, VIC, Australia; Victorian Infectious Diseases Services, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Meta Roestenberg
- Controlled Human Infections Center, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Gordon SB, Sichone S, Chirwa AE, Hazenberg P, Kafuko Z, Ferreira DM, Flynn J, Fortune S, Balasingam S, Biagini GA, McShane H, Mwandumba HC, Jambo K, Dheda K, Raj Sharma N, Robertson BD, Walker NF, Morton B. Practical considerations for a TB controlled human infection model (TB-CHIM); the case for TB-CHIM in Africa, a systematic review of the literature and report of 2 workshop discussions in UK and Malawi. Wellcome Open Res 2023; 8:71. [PMID: 37007907 PMCID: PMC10064019 DOI: 10.12688/wellcomeopenres.18767.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).
Collapse
Affiliation(s)
- Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Simon Sichone
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Anthony E. Chirwa
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - JoAnne Flynn
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | | | - Naomi F Walker
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - TB Controlled Human Infection Model Development Group
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- 1Day Africa, 1Day Sooner, Lusaka Province, Zambia
- Oxford Vaccine Group, University of Oxford, Oxford, UK
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Wellcome Trust, London, UK
- The Jenner Institute, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Imperial College London, London, UK
| |
Collapse
|
19
|
Morrison H, Jackson S, McShane H. Controlled human infection models in COVID-19 and tuberculosis: current progress and future challenges. Front Immunol 2023; 14:1211388. [PMID: 37304270 PMCID: PMC10248465 DOI: 10.3389/fimmu.2023.1211388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Controlled Human Infection Models (CHIMs) involve deliberately exposing healthy human volunteers to a known pathogen, to allow the detailed study of disease processes and evaluate methods of treatment and prevention, including next generation vaccines. CHIMs are in development for both tuberculosis (TB) and Covid-19, but challenges remain in their ongoing optimisation and refinement. It would be unethical to deliberately infect humans with virulent Mycobacteria tuberculosis (M.tb), however surrogate models involving other mycobacteria, M.tb Purified Protein Derivative or genetically modified forms of M.tb either exist or are under development. These utilise varying routes of administration, including via aerosol, per bronchoscope or intradermal injection, each with their own advantages and disadvantages. Intranasal CHIMs with SARS-CoV-2 were developed against the backdrop of the evolving Covid-19 pandemic and are currently being utilised to both assess viral kinetics, interrogate the local and systemic immunological responses post exposure, and identify immune correlates of protection. In future it is hoped they can be used to assess new treatments and vaccines. The changing face of the pandemic, including the emergence of new virus variants and increasing levels of vaccination and natural immunity within populations, has provided a unique and complex environment within which to develop a SARS-CoV-2 CHIM. This article will discuss current progress and potential future developments in CHIMs for these two globally significant pathogens.
Collapse
|
20
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
21
|
Gordon SB, Sichone S, Chirwa AE, Hazenberg P, Kafuko Z, Ferreira DM, Flynn J, Fortune S, Balasingam S, Biagini GA, McShane H, Mwandumba HC, Jambo K, Dheda K, Raj Sharma N, Robertson BD, Walker NF, Morton B. Practical considerations for a TB controlled human infection model (TB-CHIM); the case for TB-CHIM in Africa, a systematic review of the literature and report of 2 workshop discussions in UK and Malawi. Wellcome Open Res 2023; 8:71. [PMID: 37007907 PMCID: PMC10064019 DOI: 10.12688/wellcomeopenres.18767.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).
Collapse
Affiliation(s)
- Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Simon Sichone
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Anthony E. Chirwa
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Daniela M. Ferreira
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - JoAnne Flynn
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | | | - Naomi F Walker
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ben Morton
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - TB Controlled Human Infection Model Development Group
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- 1Day Africa, 1Day Sooner, Lusaka Province, Zambia
- Oxford Vaccine Group, University of Oxford, Oxford, UK
- Centre for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Wellcome Trust, London, UK
- The Jenner Institute, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Imperial College London, London, UK
| |
Collapse
|
22
|
Walker EM, Merino KM, Slisarenko N, Grasperge BF, Mehra S, Roy CJ, Kaushal D, Rout N. Impact of SIV infection on mycobacterial lipid-reactive T cell responses in Bacillus Calmette-Guérin (BCG) inoculated macaques. Front Immunol 2023; 13:1085786. [PMID: 36726992 PMCID: PMC9885173 DOI: 10.3389/fimmu.2022.1085786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Although BCG vaccine protects infants from tuberculosis (TB), it has limited efficacy in adults against pulmonary TB. Further, HIV coinfection significantly increases the risk of developing active TB. In the lack of defined correlates of protection in TB disease, it is essential to explore immune responses beyond conventional CD4 T cells to gain a better understanding of the mechanisms of TB immunity. Methods Here, we evaluated unconventional lipid-reactive T cell responses in cynomolgus macaques following aerosol BCG inoculation and examined the impact of subsequent SIV infection on these responses. Immune responses to cellular lipids of M. bovis and M. tuberculosis were examined ex vivo in peripheral blood and bronchioalveolar lavage (BAL). Results Prior to BCG inoculation, innate-like IFN-γ responses to mycobacterial lipids were observed in T cells. Aerosol BCG exposure induced an early increase in frequencies of BAL γδT cells, a dominant subset of lipid-reactive T cells, along with enhanced IL-7R and CXCR3 expression. Further, BCG exposure stimulated greater IFN-γ responses to mycobacterial lipids in peripheral blood and BAL, suggesting the induction of systemic and local Th1-type response in lipid-reactive T cells. Subsequent SIV infection resulted in a significant loss of IL-7R expression on blood and BAL γδT cells. Additionally, IFN-γ responses of mycobacterial lipid-reactive T cells in BAL fluid were significantly lower in SIV-infected macaques, while perforin production was maintained through chronic SIV infection. Conclusions Overall, these data suggest that despite SIV-induced decline in IL-7R expression and IFN-γ production by mycobacterial lipid-reactive T cells, their cytolytic potential is maintained. A deeper understanding of anti-mycobacterial lipid-reactive T cell functions may inform novel approaches to enhance TB control in individuals with or without HIV infection.
Collapse
Affiliation(s)
- Edith M. Walker
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Kristen M. Merino
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Nadia Slisarenko
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Brooke F. Grasperge
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Chad J. Roy
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Namita Rout
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
23
|
Immune cell interactions in tuberculosis. Cell 2022; 185:4682-4702. [PMID: 36493751 DOI: 10.1016/j.cell.2022.10.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Despite having been identified as the organism that causes tuberculosis in 1882, Mycobacterium tuberculosis has managed to still evade our understanding of the protective immune response against it, defying the development of an effective vaccine. Technology and novel experimental models have revealed much new knowledge, particularly with respect to the heterogeneity of the bacillus and the host response. This review focuses on certain immunological elements that have recently yielded exciting data and highlights the importance of taking a holistic approach to understanding the interaction of M. tuberculosis with the many host cells that contribute to the development of protective immunity.
Collapse
|
24
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
25
|
García JI, Allué-Guardia A, Tampi RP, Restrepo BI, Torrelles JB. New Developments and Insights in the Improvement of Mycobacterium tuberculosis Vaccines and Diagnostics Within the End TB Strategy. CURR EPIDEMIOL REP 2021; 8:33-45. [PMID: 33842192 PMCID: PMC8024105 DOI: 10.1007/s40471-021-00269-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW The alignment of sustainable development goals (SDGs) with the End Tuberculosis (TB) strategy provides an integrated roadmap to implement key approaches towards TB elimination. This review summarizes current social challenges for TB control, and yet, recent developments in TB diagnosis and vaccines in the context of the End TB strategy and SDGs to transform global health. RECENT FINDINGS Advances in non-sputum based TB biomarkers and whole genome sequencing technologies could revolutionize TB diagnostics. Moreover, synergistic novel technologies such as mRNA vaccination, nanovaccines and promising TB vaccine models are key promising developments for TB prevention and control. SUMMARY The End TB strategy depends on novel developments in point-of-care TB diagnostics and effective vaccines. However, despite outstanding technological developments in these fields, TB elimination will be unlikely achieved if TB social determinants are not fully addressed. Indeed, the End TB strategy and SDGs emphasize the importance of implementing sustainable universal health coverage and social protection.
Collapse
Affiliation(s)
- Juan Ignacio García
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, 8715 W. Military Dr, San Antonio, TX 78227 USA
| | - Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, 8715 W. Military Dr, San Antonio, TX 78227 USA
| | - Radhika P. Tampi
- PhD Program in Health Policy, Harvard University, Cambridge, MA 02138 USA
| | - Blanca I. Restrepo
- University of Texas Health Science Center at Houston, School of Public Health, Brownsville, TX 78520 USA
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX 78539 USA
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, 8715 W. Military Dr, San Antonio, TX 78227 USA
| |
Collapse
|
26
|
Tanner R, Hoogkamer E, Bitencourt J, White A, Boot C, Sombroek CC, Harris SA, O'Shea MK, Wright D, Wittenberg R, Sarfas C, Satti I, Verreck FA, Sharpe SA, Fletcher HA, McShane H. The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Res 2021; 10:257. [PMID: 33976866 PMCID: PMC8097740 DOI: 10.12688/f1000research.51640.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 04/04/2024] Open
Abstract
The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.
Collapse
Affiliation(s)
- Rachel Tanner
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Emily Hoogkamer
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Public Health England, Salisbury, SP4 0JG, UK
| | - Julia Bitencourt
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Gonҫalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, 40296-710, Brazil
| | | | - Charelle Boot
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Claudia C. Sombroek
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Matthew K. O'Shea
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK, Birmingham, B15 2TH, UK
| | - Daniel Wright
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Rachel Wittenberg
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | | | - Iman Satti
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Frank A.W. Verreck
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Helen A. Fletcher
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Helen McShane
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| |
Collapse
|
27
|
Tanner R, Hoogkamer E, Bitencourt J, White A, Boot C, Sombroek CC, Harris SA, O'Shea MK, Wright D, Wittenberg R, Sarfas C, Satti I, Verreck FAW, Sharpe SA, Fletcher HA, McShane H. The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Res 2021; 10:257. [PMID: 33976866 PMCID: PMC8097740.2 DOI: 10.12688/f1000research.51640.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.
Collapse
Affiliation(s)
- Rachel Tanner
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Emily Hoogkamer
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Public Health England, Salisbury, SP4 0JG, UK
| | - Julia Bitencourt
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Gonҫalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, 40296-710, Brazil
| | | | - Charelle Boot
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Claudia C Sombroek
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Stephanie A Harris
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Matthew K O'Shea
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK, Birmingham, B15 2TH, UK
| | - Daniel Wright
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Rachel Wittenberg
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | | | - Iman Satti
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Frank A W Verreck
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Helen A Fletcher
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Helen McShane
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| |
Collapse
|
28
|
Noé A, Cargill TN, Nielsen CM, Russell AJC, Barnes E. The Application of Single-Cell RNA Sequencing in Vaccinology. J Immunol Res 2020; 2020:8624963. [PMID: 32802896 PMCID: PMC7411487 DOI: 10.1155/2020/8624963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Single-cell RNA sequencing allows highly detailed profiling of cellular immune responses from limited-volume samples, advancing prospects of a new era of systems immunology. The power of single-cell RNA sequencing offers various opportunities to decipher the immune response to infectious diseases and vaccines. Here, we describe the potential uses of single-cell RNA sequencing methods in prophylactic vaccine development, concentrating on infectious diseases including COVID-19. Using examples from several diseases, we review how single-cell RNA sequencing has been used to evaluate the immunological response to different vaccine platforms and regimens. By highlighting published and unpublished single-cell RNA sequencing studies relevant to vaccinology, we discuss some general considerations how the field could be enriched with the widespread adoption of this technology.
Collapse
MESH Headings
- Animals
- Betacoronavirus/immunology
- COVID-19
- Cell Line
- Clinical Trials as Topic
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Immunogenicity, Vaccine
- Pandemics/prevention & control
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- RNA, Viral/isolation & purification
- RNA-Seq/methods
- SARS-CoV-2
- Single-Cell Analysis
- Vaccinology/methods
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Andrés Noé
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Tamsin N. Cargill
- Peter Medawar Building for Pathogen Research and Oxford NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Carolyn M. Nielsen
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research and Oxford NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
29
|
Tanner R, Satti I, Harris SA, O'Shea MK, Cizmeci D, O'Connor D, Chomka A, Matsumiya M, Wittenberg R, Minassian AM, Meyer J, Fletcher HA, McShane H. Tools for Assessing the Protective Efficacy of TB Vaccines in Humans: in vitro Mycobacterial Growth Inhibition Predicts Outcome of in vivo Mycobacterial Infection. Front Immunol 2020; 10:2983. [PMID: 31998295 PMCID: PMC6968127 DOI: 10.3389/fimmu.2019.02983] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) remains a leading global cause of morbidity and mortality and an effective new vaccine is urgently needed. A major barrier to the rational development of novel TB vaccines is the lack of a validated immune correlate or biomarker of protection. Mycobacterial Growth Inhibition Assays (MGIAs) provide an unbiased measure of ability to control mycobacterial growth in vitro, and may represent a functional correlate of protection. However, the biological relevance of any potential correlate can only be assessed by determining the association with in vivo protection from either a controlled mycobacterial infection or natural development of TB disease. Our data demonstrate that the direct MGIA using peripheral blood mononuclear cells (PBMC) is measuring a biologically relevant response that correlates with protection from in vivo human BCG infection across two independent cohorts. This is the first report of an MGIA correlating with in vivo protection in the species-of-interest, humans, and furthermore on a per-individual as well as per-group basis. Control of mycobacterial growth in the MGIA is associated with a range of immune parameters measured post-BCG infection in vivo including the IFN-γ ELISpot response, frequency of PPD-specific IFN-γ or TNF-α producing CD4+ T cells and frequency of specific sub-populations of polyfunctional CD4+ T cells. Distinct transcriptomic profiles are associated with good vs. poor mycobacterial control in the MGIA, with good controllers showing enrichment for gene sets associated with antigen processing/presentation and the IL-23 pathway, and poor controllers showing enrichment for hypoxia-related pathways. This study represents an important step toward biologically validating the direct PBMC MGIA for use in TB vaccine development and furthermore demonstrates the utility of this assay in determining relevant immune mechanisms and pathways of protection.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie A. Harris
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew K. O'Shea
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Deniz Cizmeci
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Agnieszka Chomka
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Magali Matsumiya
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel Wittenberg
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Angela M. Minassian
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Joel Meyer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen A. Fletcher
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Biffar L, Blunt L, Atkins W, Anderson P, Holder T, Xing Z, Vordermeier M, McShane H, Villarreal-Ramos B. Evaluating the sensitivity of the bovine BCG challenge model using a prime boost Ad85A vaccine regimen. Vaccine 2019; 38:1241-1248. [PMID: 31759733 DOI: 10.1016/j.vaccine.2019.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
In the absence of biomarkers of protective immunity, newly developed vaccines against bovine tuberculosis need to be evaluated in virulent Mycobacterium bovis challenge experiments, which require the use of expensive and highly in demand Biological Safety Level 3 (BSL3) animal facilities. The recently developed bovine BCG challenge model offers a cheaper and faster way to test new vaccine candidates and additionally reduces the severity of the challenge compared to virulent M. bovis challenge in line with the remits of the NC3Rs. In this work we sought to establish the sensitivity of the BCG challenge model by testing a prime boost vaccine regimen that previously increased protection over BCG alone against M. bovis challenge. All animals, except the control group, were vaccinated subcutaneously with BCG Danish, and half of those were then boosted with a recombinant adenoviral vector expressing Antigen 85A, Ad85A. All animals were challenged with BCG Tokyo into the prescapular lymph node and the bacterial load within the lymph nodes was established. All vaccinated animals, independent of the vaccination regimen, cleared BCG significantly faster from the lymph node than control animals, suggesting a protective effect. There was however, no difference between the BCG and the BCG-Ad85A regimens. Additionally, we analysed humoral and cellular immune responses taken prior to challenge for possible predictors of protection. Cultured ELISpot identified significantly higher IFN-ɣ responses in protected vaccinated animals, relative to controls, but not in unprotected vaccinated animals. Furthermore, a trend for protected animals to produce more IFN-ɣ by quantitative PCR and intracellular staining was observed. Thus, this model can also be an attractive alternative to M. bovis challenge models for the discovery of protective biomarkers.
Collapse
Affiliation(s)
- Lucia Biffar
- Jenner Institute Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, UK; TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Laura Blunt
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - William Atkins
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Paul Anderson
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Tom Holder
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Zhou Xing
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Martin Vordermeier
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK; Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Helen McShane
- Jenner Institute Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, UK
| | - Bernardo Villarreal-Ramos
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK; Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK.
| |
Collapse
|
31
|
McShane H. Insights and challenges in tuberculosis vaccine development. THE LANCET. RESPIRATORY MEDICINE 2019; 7:810-819. [PMID: 31416767 DOI: 10.1016/s2213-2600(19)30274-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/30/2019] [Accepted: 07/15/2019] [Indexed: 02/09/2023]
Abstract
Tuberculosis kills more people than any other pathogen and the need for a universally effective vaccine has never been greater. An effective vaccine will be a key tool in achieving the targets set by WHO in the End TB Strategy. Tuberculosis vaccine development is difficult and slow. Substantial progress has been made in research and development of tuberculosis vaccines in the past 20 years, and two clinical trial results from 2018 provide reason for optimism. However, many challenges to the successful licensure and deployment of an effective tuberculosis vaccine remain. The development of new tools for vaccine evaluation might facilitate these processes, and continued collaborative working and sustained funding will be essential.
Collapse
Affiliation(s)
- Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Abstract
BACKGROUND Tuberculosis causes more deaths than any other infectious disease globally. Bacillus Calmette-Guérin (BCG) is the only available vaccine, but protection is incomplete and variable. The modified Vaccinia Ankara virus expressing antigen 85A (MVA85A) is a viral vector vaccine produced to prevent tuberculosis. OBJECTIVES To assess and summarize the effects of the MVA85A vaccine boosting BCG in humans. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; Central Register of Controlled Trials (CENTRAL); MEDLINE (PubMed); Embase (Ovid); and four other databases. We searched the WHO ICTRP and ClinicalTrials.gov. All searches were run up to 10 May 2018. SELECTION CRITERIA We evaluated randomized controlled trials of MVA85A vaccine given with BCG in people regardless of age or HIV status. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the eligibility and risk of bias of trials, and extracted and analyzed data. The primary outcome was active tuberculosis disease. We summarized dichotomous outcomes using risk ratios (RR) and risk differences (RD), with 95% confidence intervals (CI). Where appropriate, we combined data in meta-analyses. Where meta-analysis was inappropriate, we summarized results narratively. MAIN RESULTS The search identified six studies relating to four Phase 2 randomized controlled trials enrolling 3838 participants. Funding was by government bodies, charities, and philanthropic donors. Five studies included infants, one of them infants born to HIV-positive mothers. One study included adults living with HIV. All trials included authors from Oxford University who led the laboratory development of the vaccine. Participants received intradermal MVA85A after BCG in some studies, and before selective deferred BCG in HIV-exposed infants.The largest trial in 2797 African children was well conducted with low risk of bias for most parameters. Risk of bias was uncertain for selective reporting because there were no precise case definition endpoints for active tuberculosis published prior to the trial analysis.MVA85A added to BCG compared to BCG alone probably has no effect on the risk of developing microbiologically confirmed tuberculosis (RR 0.97, 95% CI 0.58 to 1.62; 3439 participants, 2 trials; moderate-certainty evidence), or the risk of starting on tuberculosis treatment (RR 1.10, 95% CI 0.92 to 1.33; 3687 participants, 3 trials; moderate-certainty evidence). MVA85A probably has no effect on the risk of developing latent tuberculosis (RR 1.01, 95% CI 0.85 to 1.21; 3831 participants, 4 trials; moderate-certainty evidence). Vaccinating people with MVA85A in addition to BCG did not cause life-threatening serious adverse effects (RD 0.00, 95% CI -0.00 to 0.00; 3692 participants, 3 trials; high-certainty evidence). Vaccination with MVA85A is probably associated with an increased risk of local skin adverse effects (3187 participants, 3 trials; moderate-certainty evidence), but not systemic adverse effect related to vaccination (144 participants, 1 trial; low-certainty evidence). This safety profile is consistent with Phase 1 studies which outlined a transient, superficial reaction local to the injection site and mild short-lived symptoms such as malaise and fever. AUTHORS' CONCLUSIONS MVA85A delivered by intradermal injection in addition to BCG is safe but not effective in reducing the risk of developing tuberculosis.
Collapse
Affiliation(s)
| | - Sophie Jullien
- Jigme Dorji Wangchuck National Referral HospitalThimphuBhutan
| | - Paul Garner
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | - Samuel Johnson
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | | |
Collapse
|
33
|
Lee H, Kim J, Kang YA, Kim DR, Sim B, Zelmer A, Fletcher HA, Dockrell HM, Smith SG, Cho SN. In vitro Mycobacterial Growth Inhibition in South Korean Adults With Latent TB Infection. Front Immunol 2019; 10:896. [PMID: 31105706 PMCID: PMC6497970 DOI: 10.3389/fimmu.2019.00896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/08/2019] [Indexed: 01/24/2023] Open
Abstract
Background: It is important to understand the ability to inhibit mycobacterial growth in healthy adults who would have been Bacillus Calmette-Guérin (BCG) vaccinated in childhood as this group will be the potential target population for novel booster TB vaccine trials. In this study we investigated not only the long-term immunity induced by childhood BCG vaccination but also protective immunity in terms of the ability to inhibit mycobacterial growth in those who were BCG vaccinated in childhood, with evidence of recent or remote TB infection. Methods: We measured the baseline immune response using a functional mycobacterial growth inhibition assay (MGIA) as a novel approach and an intracellular cytokine staining (ICS) assay as a reference approach in healthy adults, with different status of Mycobacterium tuberculosis (Mtb) infection. Results: Based on MGIA responses in historically BCG-vaccinated healthy adults, demographical characteristics including age, and gender did not affect mycobacterial growth inhibition in PBMC. However, the uninfected healthy control (HC) group showed a greater ability to inhibit mycobacterial growth compared with the latent TB infection (LTBI) group (P = 0.0005). In terms of the M. tuberculosis antigen-specific T-cell immune response in diluted whole blood quantitated using an ICS assay, the LTBI group had a higher frequency of polyfunctional CD 4+ T cells compared with the HC group (P = 0.0002), although there was no correlation between ICS and the MGIA assay. Conclusion: The Mtb infection status had a significant impact on mycobacterial growth inhibition in PBMC from healthy adults in South Korea, a country with an intermediate burden of tuberculosis, with healthy controls showing the greatest mycobacterial growth inhibition.
Collapse
Affiliation(s)
- Hyejon Lee
- Clinical Vaccine Research Section, International Tuberculosis Research Center, Seoul, South Korea
- Department of Microbiology, Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Jungho Kim
- Clinical Vaccine Research Section, International Tuberculosis Research Center, Seoul, South Korea
- Department of Microbiology, Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Ae Kang
- Division of Pulmonary, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Deok Ryun Kim
- Development and Delivery Unit, International Vaccine Institute, Seoul, South Korea
| | - Bora Sim
- Department of Microbiology, Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Andrea Zelmer
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Helen A. Fletcher
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hazel M. Dockrell
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Steven G. Smith
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sang-Nae Cho
- Clinical Vaccine Research Section, International Tuberculosis Research Center, Seoul, South Korea
- Department of Microbiology, Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
34
|
Satti I, McShane H. Current approaches toward identifying a correlate of immune protection from tuberculosis. Expert Rev Vaccines 2018; 18:43-59. [PMID: 30466332 DOI: 10.1080/14760584.2019.1552140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Mycobacterium tuberculosis kills more people than any other pathogen. Vaccination is the most cost-effective control measure for any infectious disease. Development of an effective vaccine against tuberculosis is hindered by the uncertain predictive value of preclinical animal models, incomplete understanding of protective immunity and lack of validated immune correlates of protection (COP). AREAS COVERED Here we review what is known about protective immunity against M.tb, the preclinical and clinical cohorts that can be utilized to identify COP, and COP that have been identified to date. EXPERT COMMENTARY The identification of COP would allow the rational design and development of vaccine candidates which can then be optimized and prioritized based on the induction of these immune responses. Once validated in field efficacy trials, such COP could potentially facilitate the development and licensure of vaccines, in combination with human efficacy data. The identification and validation of COP would represent a very significant advance in TB vaccine development. Every opportunity to collect samples and cohorts on which to cross-validate pre-existing COP and identify novel COP should be exploited. Furthermore, global cooperation and collaboration on such samples will ensure that the utility of such precious samples is fully exploited.
Collapse
Affiliation(s)
- Iman Satti
- a Jenner Institute, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - Helen McShane
- a Jenner Institute, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
35
|
Abstract
Tuberculosis kills more people worldwide than any other single infectious disease agent, a threat made more dire by the spread of drug-resistant strains of Mycobacterium tuberculosis (Mtb). Development of new vaccines capable of preventing TB disease and new Mtb infection are an essential component of the strategy to combat the TB epidemic. Accordingly, the WHO considers the development of new TB vaccines a major public health priority. In October 2017, the WHO convened a consultation with global leaders in the TB vaccine development field to emphasize the WHO commitment to this effort and to facilitate creative approaches to the discovery and development of TB vaccine candidates. This review summarizes the presentations at this consultation, updated with scientific literature references, and includes discussions of the public health need for a TB vaccine; the status of efforts to develop vaccines to replace or potentiate BCG in infants and develop new TB vaccines for adolescents and adults; strategies being employed to diversify vaccine platforms; and new animal models being developed to facilitate TB vaccine development. A perspective on the status of these efforts from the major funders and organizational contributors also is included. This presentation highlights the extraordinary progress being made to develop new TB vaccines and provided a clear picture of the exciting development pathways that are being explored.
Collapse
Affiliation(s)
| | | | - Johan Vekemans
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|
36
|
Abstract
Tuberculosis kills more people worldwide than any other single infectious disease agent, a threat made more dire by the spread of drug-resistant strains of Mycobacterium tuberculosis (Mtb). Development of new vaccines capable of preventing TB disease and new Mtb infection are an essential component of the strategy to combat the TB epidemic. Accordingly, the WHO considers the development of new TB vaccines a major public health priority. In October 2017, the WHO convened a consultation with global leaders in the TB vaccine development field to emphasize the WHO commitment to this effort and to facilitate creative approaches to the discovery and development of TB vaccine candidates. This review summarizes the presentations at this consultation, updated with scientific literature references, and includes discussions of the public health need for a TB vaccine; the status of efforts to develop vaccines to replace or potentiate BCG in infants and develop new TB vaccines for adolescents and adults; strategies being employed to diversify vaccine platforms; and new animal models being developed to facilitate TB vaccine development. A perspective on the status of these efforts from the major funders and organizational contributors also is included. This presentation highlights the extraordinary progress being made to develop new TB vaccines and provided a clear picture of the exciting development pathways that are being explored.
Collapse
Affiliation(s)
| | | | - Johan Vekemans
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|
37
|
Fletcher HA. Systems approaches to correlates of protection and progression to TB disease. Semin Immunol 2018; 39:81-87. [PMID: 30316693 DOI: 10.1016/j.smim.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) is the leading cause of death due to a single infectious disease and an effective vaccine would substantially accelerate global efforts to control TB. An immune correlate of protection (CoP) from TB disease could aid vaccine optimization and licensure. This paper summarises opportunities for identifying CoP and highlights results from correlates of risk studies. Although we don't have CoP, there are ongoing efficacy trials with both disease and infection endpoints which provide opportunities for such an analysis. Transcriptomics has successfully identified robust CoR, with transcripts found in the Type I IFN pathway. Correlates of lower risk include BCG antigen specific IFN-γ and natural killer cells. Collating evidence from multiple studies using a range of systems approaches supports a role for IFN-γ in protection from TB disease. In addition, the cells that express the IFN-γ receptor are also important in protective immunity. Protection is a culmination not only of the amount of IFN-γ produced by T cells and NK cells but by the ability of IFN-γ receptor expressing monocytes to respond to IFN-γ. To better understand IFN-γ as a correlate we need to understand host-factors such as age, sex, co-infection, nutritional status and stress which may alter or impair the ability of cells to respond to IFN-γ. These studies highlight recent advances in our understanding of the immune mechanisms of TB disease risk and show the importance of whole systems approaches to correlates of risk analysis. CoP may be useful tools for specific vaccine products in specific populations, but a well-designed CoR analysis can identify novel immune mechanisms and provide insights critical for the development of new and better TB vaccines.
Collapse
Affiliation(s)
- Helen A Fletcher
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
38
|
Radloff J, Heyckendorf J, van der Merwe L, Sanchez Carballo P, Reiling N, Richter E, Lange C, Kalsdorf B. Mycobacterium Growth Inhibition Assay of Human Alveolar Macrophages as a Correlate of Immune Protection Following Mycobacterium bovis Bacille Calmette-Guérin Vaccination. Front Immunol 2018; 9:1708. [PMID: 30087678 PMCID: PMC6066571 DOI: 10.3389/fimmu.2018.01708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background In order to eliminate tuberculosis (TB), an effective vaccine is urgently needed to prevent infection with Mycobacterium tuberculosis. A key obstacle for the development of novel TB vaccines is the lack of surrogate markers for immune protection against M. tuberculosis. Methods We investigated growth rates of M. tuberculosis in the mycobacterial growth inhibition assay (MGIA) as a marker for mycobacterial growth control of human bronchoalveolar lavage (BALC) and peripheral blood mononuclear cells (PBMC) before and after vaccination with Mycobacterium bovis Bacille Calmette–Guérin (BCG) of healthy adult volunteers. Results Vaccination induced a positive response (p < 0.001) to purified protein derivate (PPD) in 58.8% of the individuals in an interferon-γ release assay-ELISpot. Intraindividual evaluation of the MGIA growth rates before and after M. bovis BCG-vaccination revealed no significant difference in time to culture positivity before and after vaccination in BALC (p = 0.604) and PBMC (p = 0.199). The magnitude of the PPD-response induced by M. bovis BCG-vaccination did not correlate with growth control in BALC and PBMC (correlation = 0.468, 95% CI: −0.016 to 0.775). Conclusion In conclusion, M. bovis BCG-vaccination-induced mycobacterial-specific cytokine immune response does not result in functional immune control against M. tuberculosis in the MGIA.
Collapse
Affiliation(s)
- Juliane Radloff
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Hamburg, Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Jan Heyckendorf
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Hamburg, Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Lize van der Merwe
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | - Patricia Sanchez Carballo
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Hamburg, Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Norbert Reiling
- German Center for Infection Research (DZIF), Hamburg, Germany.,Division of Microbial Interface Biology, Research Center Borstel, Borstel, Germany
| | - Elvira Richter
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Hamburg, Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany.,Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Barbara Kalsdorf
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Hamburg, Germany.,International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| |
Collapse
|
39
|
Baay MFD, Richie TL, Neels P. Human challenge trials in vaccine development, Rockville, MD, USA, September 28-30, 2017. Biologicals 2018; 61:85-94. [PMID: 29573967 DOI: 10.1016/j.biologicals.2018.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/21/2018] [Indexed: 11/17/2022] Open
Abstract
The International Alliance for Biological Standardization organized the second workshop on human challenge trials (HCT) in Rockville, MD, in September 2017. The objective of this meeting was to examine the use of HCT, in response to the continuing human suffering caused by infectious diseases, preventable by the development of new and improved vaccines. For this, the approach of HCT could be valuable, as HCT can provide key safety, tolerability, immunogenicity, and efficacy data, and can be used to study host-pathogen biology. HCT can generate these data with speed, efficiency and minimal expense, albeit not with the same level of robustness as clinical trials. Incorporated wisely into a clinical development plan, HCT can support optimization or down-selection of new vaccine candidates, assuring that only the worthiest candidates progress to field testing. HCT may also provide pivotal efficacy data in support of licensure, particularly when field efficacy studies are not feasible. Many aspects of HCT were discussed by the participants, including new and existing models, standardization and ethics. A consensus was achieved that HCT, if ethically justified and performed with careful attention to safety and informed consent, should be pursued to promote and accelerate vaccine development.
Collapse
Affiliation(s)
- Marc F D Baay
- P95 Pharmacovigilance and Epidemiology Services, Leuven, Belgium.
| | - Thomas L Richie
- Sanaria Institute for Global Health and Tropical Medicine, Rockville, MD, USA.
| | - Pieter Neels
- International Alliance for Biological Standardization, Lyon, France.
| | | |
Collapse
|
40
|
Voss G, Casimiro D, Neyrolles O, Williams A, Kaufmann SH, McShane H, Hatherill M, Fletcher HA. Progress and challenges in TB vaccine development. F1000Res 2018; 7:199. [PMID: 29568497 PMCID: PMC5850090 DOI: 10.12688/f1000research.13588.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The Bacille Calmette Guerin (BCG) vaccine can provide decades of protection against tuberculosis (TB) disease, and although imperfect, BCG is proof that vaccine mediated protection against TB is a possibility. A new TB vaccine is, therefore, an inevitability; the question is how long will it take us to get there? We have made substantial progress in the development of vaccine platforms, in the identification of antigens and of immune correlates of risk of TB disease. We have also standardized animal models to enable head-to-head comparison and selection of candidate TB vaccines for further development. To extend our understanding of the safety and immunogenicity of TB vaccines we have performed experimental medicine studies to explore route of administration and have begun to develop controlled human infection models. Driven by a desire to reduce the length and cost of human efficacy trials we have applied novel approaches to later stage clinical development, exploring alternative clinical endpoints to prevention of disease outcomes. Here, global leaders in TB vaccine development discuss the progress made and the challenges that remain. What emerges is that, despite scientific progress, few vaccine candidates have entered clinical trials in the last 5 years and few vaccines in clinical trials have progressed to efficacy trials. Crucially, we have undervalued the knowledge gained from our "failed" trials and fostered a culture of risk aversion that has limited new funding for clinical TB vaccine development. The unintended consequence of this abundance of caution is lack of diversity of new TB vaccine candidates and stagnation of the clinical pipeline. We have a variety of new vaccine platform technologies, mycobacterial antigens and animal and human models. However, we will not encourage progression of vaccine candidates into clinical trials unless we evaluate and embrace risk in pursuit of vaccine development.
Collapse
Affiliation(s)
- Gerald Voss
- Tuberculosis Vaccine Initiative (TBVI), Lelystad, Netherlands
| | - Danilo Casimiro
- Aeras Global TB Vaccine Foundation, Rockville, MD, 20850, USA
- Sanofi Pasteur, Swiftwater, PA, 18370, USA
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ann Williams
- Centre for Emergency Preparedness and Response, Public Health England, Salisbury, UK
| | | | - Helen McShane
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Helen A Fletcher
- London School of Hygiene & Tropical Medicine, Immunology & Infection, TB Centre, London, UK
| |
Collapse
|
41
|
Kashangura R, Jullien S, Garner P, Young T, Johnson S. MVA85A vaccine to enhance BCG for preventing tuberculosis. Hippokratia 2018. [DOI: 10.1002/14651858.cd012915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Sophie Jullien
- Jigme Dorji Wangchuck National Referral Hospital; Thimphu Bhutan
| | - Paul Garner
- Liverpool School of Tropical Medicine; Department of Clinical Sciences; Pembroke Place Liverpool Merseyside UK L3 5QA
| | - Taryn Young
- Stellenbosch University; Centre for Evidence-based Health Care, Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences; PO Box 241 Cape Town South Africa 8000
- South African Medical Research Council; Cochrane South Africa; PO Box 19070 Tygerberg Cape Town South Africa 7505
| | - Samuel Johnson
- Liverpool School of Tropical Medicine; Department of Clinical Sciences; Pembroke Place Liverpool Merseyside UK L3 5QA
| |
Collapse
|
42
|
Harris SA, White A, Stockdale L, Tanner R, Sibley L, Sarfas C, Meyer J, Peter J, O'Shea MK, Manjaly Thomas ZR, Hamidi A, Satti I, Dennis MJ, McShane H, Sharpe S. Development of a non-human primate BCG infection model for the evaluation of candidate tuberculosis vaccines. Tuberculosis (Edinb) 2018; 108:99-105. [PMID: 29523335 PMCID: PMC5854371 DOI: 10.1016/j.tube.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022]
Abstract
The lack of validated immunological correlates of protection makes tuberculosis vaccine development difficult and expensive. Using intradermal bacille Calmette-Guréin (BCG) as a surrogate for aerosol Mycobacterium tuberculosis (M.tb) in a controlled human infection model could facilitate vaccine development, but such a model requires preclinical validation. Non-human primates (NHPs) may provide the best model in which to do this. Cynomolgus and rhesus macaques were infected with BCG by intradermal injection. BCG was quantified from a skin biopsy of the infection site and from draining axillary lymph nodes, by culture on solid agar and quantitative polymerase chain reaction. BCG was detected up to 28 days post-infection, with higher amounts of BCG detected in lymph nodes after high dose compared to standard dose infection. Quantifying BCG from lymph nodes of cynomolgus macaques 14 days post-high dose infection showed a significant reduction in the amount of BCG detected in the BCG-vaccinated compared to BCG-naïve animals. Demonstrating a detectable vaccine effect in the lymph nodes of cynomolgus macaques, which is similar in magnitude to that seen in an aerosol M.tb infection model, provides support for proof-of-concept of an intradermal BCG infection model and evidence to support the further evaluation of a human BCG infection model.
Collapse
Affiliation(s)
- Stephanie A. Harris
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Lisa Stockdale
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Rachel Tanner
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Joel Meyer
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jonathan Peter
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Matthew K. O'Shea
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Ali Hamidi
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Iman Satti
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Helen McShane
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
43
|
Dockrell HM, Smith SG. What Have We Learnt about BCG Vaccination in the Last 20 Years? Front Immunol 2017; 8:1134. [PMID: 28955344 PMCID: PMC5601272 DOI: 10.3389/fimmu.2017.01134] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022] Open
Abstract
A number of new tuberculosis (TB) vaccines have been or are entering clinical trials, which include genetically modified mycobacteria, mycobacterial antigens delivered by viral vectors, or mycobacterial antigens in adjuvant. Some of these vaccines aim to replace the existing BCG vaccine but others will be given as a boosting vaccine following BCG vaccination given soon after birth. It is clear that the existing BCG vaccines provide incomplete and variable protection against pulmonary TB. This review will discuss what we have learnt over the last 20 years about how the BCG vaccine induces specific and non-specific immunity, what factors influence the immune responses induced by BCG, and progress toward identifying correlates of immunity against TB from BCG vaccination studies. There is still a lot to learn about the BCG vaccine and the insights gained can help the development of more protective vaccines.
Collapse
Affiliation(s)
- Hazel M Dockrell
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Steven G Smith
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
44
|
Abstract
It is almost 100 years since the development of bacille Calmette-Guérin (BCG), the only licensed vaccine against tuberculosis (TB). While BCG does confer consistent protection against disseminated disease, there is an urgent need for a more effective vaccine against pulmonary disease. There are several indications for such an improved vaccine, including prevention of infection, prevention of disease, and a therapeutic vaccine to prevent recurrent disease. The two main approaches to TB vaccine development are developing an improved whole mycobacterial priming agent to replace BCG and/or developing a subunit booster vaccine to be administered after a BCG or BCG replacement priming vaccination. In this article we review the status of the current candidate vaccines being evaluated in clinical trials. The critical challenges to successful TB vaccine development are the uncertain predictive value of the preclinical animal models and the lack of a validated immune correlate of protection. While it is relatively simple to evaluate safety and immunogenicity in phase 1/2 studies, the evaluation of efficacy requires complex studies with large numbers of subjects and long periods of follow-up. This article reviews the potential role for human Experimental Medicine studies, in parallel with product development, to help improve the predictive value of the early-stage trials.
Collapse
|
45
|
Izzo AA. Tuberculosis vaccines - perspectives from the NIH/NIAID Mycobacteria vaccine testing program. Curr Opin Immunol 2017; 47:78-84. [PMID: 28750280 PMCID: PMC5626602 DOI: 10.1016/j.coi.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
The development of novel vaccine candidates against infections with Mycobacterium tuberculosis has highlighted our limited understanding of immune mechanisms required to kill M. tuberculosis. The induction of a Th1 immunity is vital, but new studies are required to identify other mechanisms that may be necessary. Novel vaccines formulations that invoke effector cells such as innate lymphoid cells may provide an environment that promote effector mechanisms including T cell and B cell mediated immunity. Identifying pathways associated with killing this highly successful infectious agent has become critical to achieving the goal of reducing the global tuberculosis burden.
Collapse
Affiliation(s)
- Angelo A Izzo
- Colorado State University, Department of Microbiology, Immunology & Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, United States.
| |
Collapse
|
46
|
Xu Z, Hu T, Xia A, Li X, Liu Z, Min J, He J, Meng C, Yin Y, Chen X, Jiao X. Generation of Monoclonal Antibodies against Ag85A Antigen of Mycobacterium tuberculosis and Application in a Competitive ELISA for Serodiagnosis of Bovine Tuberculosis. Front Vet Sci 2017; 4:107. [PMID: 28713817 PMCID: PMC5492497 DOI: 10.3389/fvets.2017.00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/20/2017] [Indexed: 01/29/2023] Open
Abstract
The Ag85 complex functions as the main secretory protein of Mycobacterium tuberculosis (M. tuberculosis) and BCG. This complex is composed of the proteins, Ag85A, Ag85B, and Ag85C, with Ag85A thought to play the largest role within the complex. However, the lack of commercially available monoclonal antibodies (mAbs) against Ag85A still hinders the biological and applicative research on this protein. In this study, we developed and identified anti-Ag85A mAbs, and five hybridoma cells were established. Using the indirect immunofluorescence test, we found that two anti-Ag85A mAbs did not cross-react with Ag85B and/or Ag85C. In addition, we showed that all of the mAbs tested in this study are able to react with endogenous Ag85A protein in BCG and rBCG:Ag85A using indirect ELISA and Western blot analyses. A competitive ELISA (cELISA) based on mAb 3B8 was developed, the analyses of clinic serum samples from cattle with bovine tuberculosis (TB) and healthy cattle demonstrated that the sensitivity of the cELISA was 54.2% (26/48) and the specificity was 83.5% (167/200). This study demonstrated that the mAbs against Ag85A will provide useful reagents for further investigation into the function of the Ag85 complex and can be used for serodiagnosis of bovine TB.
Collapse
Affiliation(s)
- Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ting Hu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, China
| | - Aihong Xia
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xin Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, China
| | - Ze Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingjing Min
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingjing He
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Chuang Meng
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, China
| | - Yuelan Yin
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Kaufmann SH, Weiner J, Maertzdorf J. Accelerating tuberculosis vaccine trials with diagnostic and prognostic biomarkers. Expert Rev Vaccines 2017; 16:845-853. [DOI: 10.1080/14760584.2017.1341316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stefan H.E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
48
|
Tanner R, O'Shea MK, Fletcher HA, McShane H. In vitro mycobacterial growth inhibition assays: A tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine 2016; 34:4656-4665. [PMID: 27527814 DOI: 10.1016/j.vaccine.2016.07.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 07/29/2016] [Indexed: 01/28/2023]
Abstract
Tuberculosis (TB) continues to pose a serious global health threat, and the current vaccine, BCG, has variable efficacy. However, the development of a more effective vaccine is severely hampered by the lack of an immune correlate of protection. Candidate vaccines are currently evaluated using preclinical animal models, but experiments are long and costly and it is unclear whether the outcomes are predictive of efficacy in humans. Unlike measurements of single immunological parameters, mycobacterial growth inhibition assays (MGIAs) represent an unbiased functional approach which takes into account a range of immune mechanisms and their complex interactions. Such a controlled system offers the potential to evaluate vaccine efficacy and study mediators of protective immunity against Mycobacterium tuberculosis (M.tb). This review discusses the underlying principles and relative merits and limitations of the different published MGIAs, their demonstrated abilities to measure mycobacterial growth inhibition and vaccine efficacy, and what has been learned about the immune mechanisms involved.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK.
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Santhi D, Raja A. T cell recall response of two hypothetical proteins (Rv2251 and Rv2721c) from Mycobacterium tuberculosis in healthy household contacts of TB - Possible subunit vaccine candidates. J Infect 2016; 73:455-467. [PMID: 27404979 DOI: 10.1016/j.jinf.2016.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
The demonstrated variable efficacy of the only licensed TB vaccine Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG) encourages the need for new vaccine candidates against TB. Antigen specific cellular immune response is often considered imperative during Mycobacterium tuberculosis (M. tuberculosis) infection and antigens that are strongly associated with the latent phase of infection are drawing increasing attention for anti-TB vaccine development. Here, we investigated the phenotypic and functional profiles of two novel mycobacterial antigens Rv2251 and Rv2721c during T cell recall response via multi-color flow cytometry. Healthy household contacts of TB (latent/HHC) and active pulmonary TB (PTB) patients were recruited to investigate the difference in antigen specific T cell recall response. These two antigens induced expansion of CD45RA- CCR7+ central memory subtypes and CD45RA- CCR7- effector memory cells in latent population which suggests their possible association with HHC. Rv2251 and Rv2721c antigen specific IFN-γ, TNF-α and IL-2 response was also significantly high in HHC when compared to the PTB (p < 0.005, p < 0.05 and p < 0.05 respectively). The frequency of multifunctional T cells also was high in HHC compared to the PTB with statistical significance only for the antigen Rv2251. Often, the dominant Th1 immune response in HHC is correlated with the protection against the active TB disease. Collectively, we report the first insights into Rv2251 and Rv2721c antigen specific immune response in human donors of TB and provide the immunologic rationale for selecting them for vaccine development against TB.
Collapse
Affiliation(s)
- D Santhi
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), No.1, Mayor Sathyamoorthy Road, Chetpet, Chennai 600 031, India
| | - Alamelu Raja
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), No.1, Mayor Sathyamoorthy Road, Chetpet, Chennai 600 031, India.
| |
Collapse
|
50
|
Fletcher HA, Dockrell HM. Human biomarkers: can they help us to develop a new tuberculosis vaccine? Future Microbiol 2016; 11:781-7. [PMID: 27203133 DOI: 10.2217/fmb.16.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The most effective intervention for the control of infectious disease is vaccination. The BCG vaccine, the only licensed vaccine for the prevention of tuberculosis (TB) disease, is only partially effective and a new vaccine is urgently needed. Biomarkers can aid the development of new TB vaccines through discovery of immune mechanisms, early assessment of vaccine immunogenicity or vaccine take and identification of those at greatest risk of disease progression for recruitment into smaller, targeted efficacy trials. The ultimate goal, however, remains a biomarker of TB vaccine efficacy that can be used as a surrogate for a TB disease end point and there remains an urgent need for further research in this area.
Collapse
Affiliation(s)
- Helen A Fletcher
- London School of Hygiene & Tropical Medicine, London, W1CE 7HT, UK
| | - Hazel M Dockrell
- London School of Hygiene & Tropical Medicine, London, W1CE 7HT, UK
| |
Collapse
|