1
|
Hwang J, Jang IY, Bae E, Choi J, Kim JH, Lee SB, Kim JH, Lee JP, Jang HY, Kim HT, Lim JW, Yeom M, Jang E, Kim SE, Jeong HH, Kim JW, Seong SY, Song D, Na W. H1N1 nanobody development and therapeutic efficacy verification in H1N1-challenged mice. Biomed Pharmacother 2024; 176:116781. [PMID: 38805966 DOI: 10.1016/j.biopha.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A virus causes numerous deaths and infections worldwide annually. Therefore, we have considered nanobodies as a potential treatment for patients with severe cases of influenza. We developed a nanobody that was expected to have protective efficacy against the A/California/04/2009 (CA/04; pandemic 2009 flu strain) and evaluated its therapeutic efficacy against CA/04 in mice experiments. This nanobody was derived from the immunization of the alpaca, and the inactivated CA/04 virus was used as an immunogen. We successfully generated a nanobody library through bio-panning, phage ELISA, and Bio-layer interferometry. Moreover, we confirmed that administering nanobodies after lethal doses of CA/04 reduced viral replication in the lungs and influenza-induced clinical signs in mice. These research findings will help to develop nanobodies as viral therapeutics for CA/04 and other infectious viruses.
Collapse
Affiliation(s)
- Jaehyun Hwang
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - In-Young Jang
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Eunseo Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Jaeseok Choi
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Jeong Hwan Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Sang Beum Lee
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jong Hyun Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jae Pil Lee
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Ho Young Jang
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Hyoung Tae Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jong-Woo Lim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjoo Yeom
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhee Jang
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Seong-Eun Kim
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Hyoung Hwa Jeong
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Jung Woo Kim
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Seung-Yong Seong
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea.
| | - Daesub Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Woonsung Na
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea; Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
2
|
Franchini M, Focosi D. Monoclonal Antibodies and Hyperimmune Immunoglobulins in the Next Pandemic. Curr Top Microbiol Immunol 2024. [PMID: 38877202 DOI: 10.1007/82_2024_274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Pandemics are highly unpredictable events that are generally caused by novel viruses. There is a high likelihood that such novel pathogens belong to entirely novel viral families for which no targeted small-molecule antivirals exist. In addition, small-molecule antivirals often have pharmacokinetic properties that make them contraindicated for the frail patients who are often the most susceptible to a novel virus. Passive immunotherapies-available from the first convalescent patients-can then play a key role in controlling pandemics. Convalescent plasma is immediately available, but if manufacturers have fast platforms to generate marketable drugs, other forms of passive antibody treatment can be produced. In this chapter, we will review the technological platforms for generating monoclonal antibodies and hyperimmune immunoglobulins, the current experience on their use for treatment of COVID-19, and the pipeline for pandemic candidates.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| |
Collapse
|
3
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. Retracted and republished from: "The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs". mBio 2024; 15:e0017524. [PMID: 38551343 PMCID: PMC11077966 DOI: 10.1128/mbio.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Department of High-Tech Development, Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Epidemic Prevention Laboratory, Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Focosi D, Franchini M, Senefeld JW, Joyner MJ, Sullivan DJ, Pekosz A, Maggi F, Casadevall A. Passive immunotherapies for the next influenza pandemic. Rev Med Virol 2024; 34:e2533. [PMID: 38635404 DOI: 10.1002/rmv.2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Influenzavirus is among the most relevant candidates for a next pandemic. We review here the phylogeny of former influenza pandemics, and discuss candidate lineages. After briefly reviewing the other existing antiviral options, we discuss in detail the evidences supporting the efficacy of passive immunotherapies against influenzavirus, with a focus on convalescent plasma.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Mantua Hospital, Mantua, Italy
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Lim CML, Komarasamy TV, Adnan NAAB, Radhakrishnan AK, Balasubramaniam VRMT. Recent Advances, Approaches and Challenges in the Development of Universal Influenza Vaccines. Influenza Other Respir Viruses 2024; 18:e13276. [PMID: 38513364 PMCID: PMC10957243 DOI: 10.1111/irv.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/23/2024] Open
Abstract
Every year, influenza virus infections cause significant morbidity and mortality worldwide. They pose a substantial burden of disease, in terms of not only health but also the economy. Owing to the ability of influenza viruses to continuously evolve, annual seasonal influenza vaccines are necessary as a prophylaxis. However, current influenza vaccines against seasonal strains have limited effectiveness and require yearly reformulation due to the virus undergoing antigenic drift or shift. Vaccine mismatches are common, conferring suboptimal protection against seasonal outbreaks, and the threat of the next pandemic continues to loom. Therefore, there is a great need to develop a universal influenza vaccine (UIV) capable of providing broad and durable protection against all influenza virus strains. In the quest to develop a UIV that would obviate the need for annual vaccination and formulation, a multitude of strategies is currently underway. Promising approaches include targeting the highly conserved epitopes of haemagglutinin (HA), neuraminidase (NA), M2 extracellular domain (M2e) and internal proteins of the influenza virus. The identification and characterization of broadly neutralizing antibodies (bnAbs) targeting conserved regions of the viral HA protein, in particular, have provided important insight into novel vaccine designs and platforms. This review discusses universal vaccine approaches presently under development, with an emphasis on those targeting the highly conserved stalk of the HA protein, recent technological advancements used and the future prospects of a UIV in terms of its advantages, developmental obstacles and potential shortcomings.
Collapse
Affiliation(s)
- Caryn Myn Li Lim
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Nur Amelia Azreen Binti Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Ammu Kutty Radhakrishnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| |
Collapse
|
6
|
Jonniya NA, Poddar S, Mahapatra S, Kar P. Computer-aided Affinity Enhancement of a Cross-reactive Antibody against Dengue Virus Envelope Domain III. Cell Biochem Biophys 2023; 81:737-755. [PMID: 37735329 DOI: 10.1007/s12013-023-01175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
The dengue virus (DENV), composed of four distinct but serologically related Flaviviruses, causes the most important emerging viral disease, with nearly 400 million infections yearly. Currently, there are no approved therapies. Although DENV infection induces lifelong immunity against the same serotype, the antibodies raised contribute to severe disease in heterotypic infections. Therefore, understanding the mechanism of DENV neutralization by antibodies is crucial in the design of vaccines against all serotypes. This study reports a comparative structural and energetic analysis of the monoclonal antibody (mAb) 4E11 in complex with its target domain III of the envelope protein for all four DENV serotypes. We use extensive replica molecular dynamics simulations in conjunction with the binding free energy calculations. Further single point and double mutations were designed through computational site-directed mutagenesis and observed that the re-engineered antibody exhibits high affinity to binding and broadly neutralizing activity against serotypes. Our results showed improved binding affinity by the gain of enthalpy, which could be attributed to the stabilization of salt-bridge and hydrogen bond interactions at the antigen-antibody interface. The findings provide valuable results in understanding the structural dynamics and energetic contributions that will be helpful to the design of high-affinity antibodies against dengue infections.
Collapse
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
7
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs. mBio 2023; 14:e0127323. [PMID: 37610204 PMCID: PMC10653855 DOI: 10.1128/mbio.01273-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Vanderven HA, Wentworth DN, Han WM, Peck H, Barr IG, Davey RT, Beigel JH, Dwyer DE, Jain MK, Angus B, Brandt CT, Mykietiuk A, Law MG, Neaton JD, Kent SJ. Understanding the treatment benefit of hyperimmune anti-influenza intravenous immunoglobulin (Flu-IVIG) for severe human influenza. JCI Insight 2023; 8:e167464. [PMID: 37289541 PMCID: PMC10443807 DOI: 10.1172/jci.insight.167464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUNDAntibody-based therapies for respiratory viruses are of increasing importance. The INSIGHT 006 trial administered anti-influenza hyperimmune intravenous immunoglobulin (Flu-IVIG) to patients hospitalized with influenza. Flu-IVIG treatment improved outcomes in patients with influenza B but showed no benefit for influenza A.METHODSTo probe potential mechanisms of Flu-IVIG utility, sera collected from patients hospitalized with influenza A or B viruses (IAV or IBV) were analyzed for antibody isotype/subclass and Fcγ receptor (FcγR) binding by ELISA, bead-based multiplex, and NK cell activation assays.RESULTSInfluenza-specific FcγR-binding antibodies were elevated in Flu-IVIG-infused IBV- and IAV-infected patients. In IBV-infected participants (n = 62), increased IgG3 and FcγR binding were associated with more favorable outcomes. Flu-IVIG therapy also improved the odds of a more favorable outcome in patients with low levels of anti-IBV Fc-functional antibody. Higher FcγR-binding antibody was associated with less favorable outcomes in IAV-infected patients (n = 50), and Flu-IVIG worsened the odds of a favorable outcome in participants with low levels of anti-IAV Fc-functional antibody.CONCLUSIONThese detailed serological analyses provide insights into antibody features and mechanisms required for a successful humoral response against influenza, suggesting that IBV-specific, but not IAV-specific, antibodies with Fc-mediated functions may assist in improving influenza outcome. This work will inform development of improved influenza immunotherapies.TRIAL REGISTRATIONClinicalTrials.gov NCT02287467.FUNDINGFunding for this research was provided by subcontract 13XS134 under Leidos Biomedical Research Prime Contract HHSN261200800001E and HHSN261201500003I, NCI/NIAID.
Collapse
Affiliation(s)
- Hillary A. Vanderven
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, and
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Deborah N. Wentworth
- Divison of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Win Min Han
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Heidi Peck
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Richard T. Davey
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, Maryland, USA
| | - John H. Beigel
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, Maryland, USA
| | - Dominic E. Dwyer
- New South Wales Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia
| | | | - Brian Angus
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Christian T. Brandt
- Department of Infectious Diseases, Zealand University Hospital Roskilde, Denmark
| | | | - Matthew G. Law
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - James D. Neaton
- Divison of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, Victoria, Australia
| | | |
Collapse
|
9
|
Sun T, Wang Y, Zou P, Wang Q, Liu J, Liu W, Huang J, Wu F. M2e-specific antibodies protect against influenza PR8 virus in an isotype and route dependent manner. J Med Virol 2023; 95:e28721. [PMID: 37185862 DOI: 10.1002/jmv.28721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
The ectodomain of influenza matrix protein 2 (M2e) is a promising target for the development of universal prophylactic and therapeutic agents against influenza viruses of different subtypes. We constructed three M2e-specific monoclonal antibody variants, M2A1-1 (IgG1), M2A1-2a (IgG2a), M2A1-2b (IgG2b), which have the same Fab region targeting the M2e epitope but different isotypes, and compared their protective efficacy in influenza PR8-infected mice. We found that anti-M2e antibodies provided protection against influenza virus in a subtype-dependent manner, with the IgG2a variant providing significantly better protection with lower virus titers and milder lung injury than IgG1 and IgG2b isotypes. Additionally, we observed that the protective efficacy was dependent on the administration routes, with intranasal administration of antibody providing better protection than intraperitoneal administration. The timing of administration was also critical in determining the protective efficacy; while all the antibody isotypes provided protection when administered before influenza challenge, only IgG2a provided minimal protection when the antibodies were administered after virus challenge. These results provide valuable information for optimizing the therapeutics usage of M2e-based antibodies and furthering the development of M2e-based universal influenza vaccines.
Collapse
Affiliation(s)
- Tingting Sun
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yingdan Wang
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qimin Wang
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiangyan Liu
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jinghe Huang
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fan Wu
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
10
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
11
|
Schotsaert M, Cox RJ, Mallett CP. Editorial: Pandemic influenza vaccine approaches: Current status and future directions. Front Immunol 2022; 13:980956. [PMID: 36059549 PMCID: PMC9434270 DOI: 10.3389/fimmu.2022.980956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Michael Schotsaert
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Corey P. Mallett
- GSK, Rockville, MD, United States
- *Correspondence: Corey P. Mallett,
| |
Collapse
|
12
|
Mokhtary P, Pourhashem Z, Mehrizi AA, Sala C, Rappuoli R. Recent Progress in the Discovery and Development of Monoclonal Antibodies against Viral Infections. Biomedicines 2022; 10:biomedicines10081861. [PMID: 36009408 PMCID: PMC9405509 DOI: 10.3390/biomedicines10081861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs), the new revolutionary class of medications, are fast becoming tools against various diseases thanks to a unique structure and function that allow them to bind highly specific targets or receptors. These specialized proteins can be produced in large quantities via the hybridoma technique introduced in 1975 or by means of modern technologies. Additional methods have been developed to generate mAbs with new biological properties such as humanized, chimeric, or murine. The inclusion of mAbs in therapeutic regimens is a major medical advance and will hopefully lead to significant improvements in infectious disease management. Since the first therapeutic mAb, muromonab-CD3, was approved by the U.S. Food and Drug Administration (FDA) in 1986, the list of approved mAbs and their clinical indications and applications have been proliferating. New technologies have been developed to modify the structure of mAbs, thereby increasing efficacy and improving delivery routes. Gene delivery technologies, such as non-viral synthetic plasmid DNA and messenger RNA vectors (DMabs or mRNA-encoded mAbs), built to express tailored mAb genes, might help overcome some of the challenges of mAb therapy, including production restrictions, cold-chain storage, transportation requirements, and expensive manufacturing and distribution processes. This paper reviews some of the recent developments in mAb discovery against viral infections and illustrates how mAbs can help to combat viral diseases and outbreaks.
Collapse
Affiliation(s)
- Pardis Mokhtary
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Department of Biochemistry and Molecular Biology, University of Siena, 53100 Siena, Italy
| | - Zeinab Pourhashem
- Student Research Committee, Pasteur Institute of Iran, Tehran 1316943551, Iran;
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Akram Abouei Mehrizi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| | - Rino Rappuoli
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| |
Collapse
|
13
|
Reduced protection of RIPK3-deficient mice against influenza by matrix protein 2 ectodomain targeted active and passive vaccination strategies. Cell Death Dis 2022; 13:280. [PMID: 35351865 PMCID: PMC8961492 DOI: 10.1038/s41419-022-04710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Abstract
AbstractRIPK3 partially protects against disease caused by influenza A virus (IAV) infection in the mouse model. Here, we compared the immune protection of active vaccination with a universal influenza A vaccine candidate based on the matrix protein 2 ectodomain (M2e) and of passive immunization with anti-M2e IgG antibodies in wild type and Ripk3−/− mice. We observed that the protection against IAV after active vaccination with M2e viral antigen is lost in Ripk3−/− mice. Interestingly, M2e-specific serum IgG levels induced by M2e vaccination were not significantly different between wild type and Ripk3−/− vaccinated mice demonstrating that the at least the humoral immune response was not affected by the absence of RIPK3 during active vaccination. Moreover, following IAV challenge, lungs of M2e vaccinated Ripk3−/− mice revealed a decreased number of immune cell infiltrates and an increased accumulation of dead cells, suggesting that phagocytosis could be reduced in Ripk3−/− mice. However, neither efferocytosis nor antibody-dependent phagocytosis were affected in macrophages isolated from Ripk3−/− mice. Likewise following IAV infection of Ripk3−/− mice, active vaccination and infection resulted in decreased presence of CD8+ T-cells in the lung. However, it is unclear whether this reflects a deficiency in vaccination or an inability following infection. Finally, passively transferred anti-M2e monoclonal antibodies at higher dose than littermate wild type mice completely protected Ripk3−/− mice against an otherwise lethal IAV infection, demonstrating that the increased sensitivity of Ripk3−/− mice could be overcome by increased antibodies. Therefore we conclude that passive immunization strategies with monoclonal antibody could be useful for individuals with reduced IAV vaccine efficacy or increased IAV sensitivity, such as may be expected in patients treated with future anti-inflammatory therapeutics for chronic inflammatory diseases such as RIPK inhibitors.
Collapse
|
14
|
Sarker A, Rathore AS, Khalid MF, Gupta RD. Structure-guided affinity maturation of a single-chain variable fragment antibody against the Fu-bc epitope of the dengue virus envelope protein. J Biol Chem 2022; 298:101772. [PMID: 35218775 PMCID: PMC8956951 DOI: 10.1016/j.jbc.2022.101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/05/2022] Open
Abstract
Dengue is one of the most dominant arthropod-borne viral diseases, infecting at least 390 million people every year throughout the world. Despite this, there is no effective treatment against dengue, and the only available vaccine has already been withdrawn owing to the significant adverse effects. Therefore, passive immunotherapy using monoclonal antibodies is now being sought as a therapeutic option. To date, many dengue monoclonal antibodies have been identified, most of which are serotype-specific, and only a few of which are cross-reactive. Furthermore, antibodies that cross-react within serotypes are weakly neutralizing and frequently induce antibody-dependent enhancement, which promotes viral entry and replication. Therefore, broadly neutralizing antibodies with no risk of antibody-dependent enhancement are required for the treatment of dengue. Here, we developed a single-chain variable fragment (scFv) antibody from an anti-fusion loop E53 antibody (PDB: 2IGF). We introduced previously predicted favorable complementarity-determining region (CDR) mutations into the gene encoding the scFv antibody for affinity maturation, and the resultant variants were tested in vitro against the highly conserved fusion and bc epitope of the dengue virus envelope protein. We show some of these scFv variants with two to three substitution mutations in three different CDRs possess affinity constants (KD) ranging from 20 to 200 nM. The scFv-mutant15, containing D31L, Y105W, and S227W substitutions, showed the lowest affinity constant, (KD = 24 ± 7 nM), approximately 100-fold lower than its parental construct. We propose that the scFv-derivative antibody may be a good candidate for the development of an effective and safe immunotherapy.
Collapse
Affiliation(s)
- Animesh Sarker
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Abhishek Singh Rathore
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Md Fahim Khalid
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India.
| |
Collapse
|
15
|
Paudyal B, McNee A, Rijal P, Carr BV, Nunez A, McCauley J, Daniels RS, Townsend AR, Hammond JA, Tchilian E. Low Dose Pig Anti-Influenza Virus Monoclonal Antibodies Reduce Lung Pathology but Do Not Prevent Virus Shedding. Front Immunol 2022; 12:790918. [PMID: 34975888 PMCID: PMC8716435 DOI: 10.3389/fimmu.2021.790918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 01/24/2023] Open
Abstract
We have established the pig, a large natural host animal for influenza, with many physiological similarities to humans, as a robust model for testing the therapeutic potential of monoclonal antibodies (mAbs). In this study we demonstrated that prophylactic intravenous administration of 15 mg/kg of porcine mAb pb18, against the K160-163 site of the hemagglutinin, significantly reduced lung pathology and nasal virus shedding and eliminated virus from the lung of pigs following H1N1pdm09 challenge. When given at 1 mg/kg, pb18 significantly reduced lung pathology and lung and BAL virus loads, but not nasal shedding. Similarly, when pb18 was given in combination with pb27, which recognized the K130 site, at 1 mg/kg each, lung virus load and pathology were reduced, although without an apparent additive or synergistic effect. No evidence for mAb driven virus evolution was detected. These data indicate that intravenous administration of high doses was required to reduce nasal virus shedding, although this was inconsistent and seldom complete. In contrast, the effect on lung pathology and lung virus load is consistent and is also seen at a one log lower dose, strongly indicating that a lower dose might be sufficient to reduce severity of disease, but for prevention of transmission other measures would be needed.
Collapse
Affiliation(s)
- Basudev Paudyal
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Adam McNee
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Pramila Rijal
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom.,Medical Research and Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - B Veronica Carr
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Alejandro Nunez
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Addlestone, United Kingdom
| | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Rodney S Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Alain R Townsend
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom.,Medical Research and Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John A Hammond
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
16
|
Van den Hoecke S, Ballegeer M, Vrancken B, Deng L, Job ER, Roose K, Schepens B, Van Hoecke L, Lemey P, Saelens X. In Vivo Therapy with M2e-Specific IgG Selects for an Influenza A Virus Mutant with Delayed Matrix Protein 2 Expression. mBio 2021; 12:e0074521. [PMID: 34253060 PMCID: PMC8406285 DOI: 10.1128/mbio.00745-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
The ectodomain of matrix protein 2 (M2e) of influenza A viruses is a universal influenza A vaccine candidate. Here, we report potential evasion strategies of influenza A viruses under in vivo passive anti-M2e IgG immune selection pressure in severe combined immune-deficient (SCID) mice. A/Puerto Rico/8/34-infected SCID mice were treated with the M2e-specific mouse IgG monoclonal antibodies (MAbs) MAb 65 (IgG2a) or MAb 37 (IgG1), which recognize amino acids 5 to 15 in M2e, or with MAb 148 (IgG1), which binds to the invariant N terminus of M2e. Treatment of challenged SCID mice with any of these MAbs significantly prolonged survival compared to isotype control IgG treatment. Furthermore, M2e-specific IgG2a protected significantly better than IgG1, and even resulted in virus clearance in some of the SCID mice. Deep sequencing analysis of viral RNA isolated at different time points after treatment revealed that the sequence variation in M2e was limited to P10H/L and/or I11T in anti-M2e MAb-treated mice. Remarkably, in half of the samples isolated from moribund MAb 37-treated mice and in all MAb 148-treated mice, virus was isolated with a wild-type M2 sequence but with nonsynonymous mutations in the polymerases and/or the hemagglutinin genes. Some of these mutations were associated with delayed M2 and other viral gene expression and with increased resistance to anti-M2e MAb treatment of SCID mice. Treatment with M2e-specific MAbs thus selects for viruses with limited variation in M2e. Importantly, influenza A viruses may also undergo an alternative escape route by acquiring mutations that result in delayed wild-type M2 expression. IMPORTANCE Broadly protective influenza vaccine candidates may have a higher barrier to immune evasion compared to conventional influenza vaccines. We used Illumina MiSeq deep sequence analysis to study the mutational patterns in A/Puerto Rico/8/34 viruses that evolve in chronically infected SCID mice that were treated with different M2e-specific MAbs. We show that under these circumstances, viruses emerged in vivo with mutations in M2e that were limited to positions 10 and 11. Moreover, we discovered an alternative route for anti-M2e antibody immune escape, in which a virus is selected with wild-type M2e but with mutations in other gene segments that result in delayed M2 and other viral protein expression. Delayed expression of the viral antigen that is targeted by a protective antibody thus represents an influenza virus immune escape mechanism that does not involve epitope alterations.
Collapse
Affiliation(s)
- Silvie Van den Hoecke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bram Vrancken
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Lei Deng
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emma R. Job
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Philippe Lemey
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Isakova-Sivak I, Stepanova E, Mezhenskaya D, Matyushenko V, Prokopenko P, Sychev I, Wong PF, Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev Vaccines 2021; 20:1097-1112. [PMID: 34348561 DOI: 10.1080/14760584.2021.1964961] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The licensed seasonal influenza vaccines predominantly induce neutralizing antibodies against immunodominant hypervariable epitopes of viral surface proteins, with limited protection against antigenically distant influenza viruses. Strategies have been developed to improve vaccines' performance in terms of broadly reactive and long-lasting immune response induction. AREAS COVERED We have summarized the advancements in the development of cross-protective influenza vaccines and discussed the challenges in evaluating them in preclinical and clinical trials. Here, the literature regarding the current stage of development of universal influenza vaccine candidates was reviewed. EXPERT OPINION Although various strategies aim to redirect adaptive immune responses from variable immunodominant to immunosubdominant antigens, more conserved epitopes are being investigated. Approaches that improve antibody responses to conserved B cell epitopes have increased the protective efficacy of vaccines within a subtype or phylogenetic group of influenza viruses. Vaccines that elicit significant levels of T cells recognizing highly conserved viral epitopes possess a high cross-protective potential and may cover most circulating influenza viruses. However, the development of T cell-based universal influenza vaccines is challenging owing to the diversity of MHCs in the population, unpredictable degree of immunodominance, lack of adequate animal models, and difficulty in establishing T cell immunity in humans. ABBREVIATIONS cHA: chimeric HA; HBc: hepatitis B virus core protein; HA: hemagglutinin; HLA: human leucocyte antigen; IIV: inactivated influenza vaccine; KLH: keyhole limpet hemocyanin; LAH: long alpha helix; LAIV: live attenuated influenza vaccine; M2e: extracellular domain of matrix 2 protein; MHC: major histocompatibility complex; mRNA: messenger ribonucleic acid; NA: neuraminidase; NS1: non-structural protein 1; qNIV: quadrivalent nanoparticle influenza vaccine; TRM: tissue-resident memory T cells; VE: vaccine effectiveness; VLP: virus-like particles; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina Stepanova
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ivan Sychev
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Pei-Fong Wong
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
18
|
Tan MP, Tan WS, Mohamed Alitheen NB, Yap WB. M2e-Based Influenza Vaccines with Nucleoprotein: A Review. Vaccines (Basel) 2021; 9:739. [PMID: 34358155 PMCID: PMC8310010 DOI: 10.3390/vaccines9070739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022] Open
Abstract
Discovery of conserved antigens for universal influenza vaccines warrants solutions to a number of concerns pertinent to the currently licensed influenza vaccines, such as annual reformulation and mismatching with the circulating subtypes. The latter causes low vaccine efficacies, and hence leads to severe disease complications and high hospitalization rates among susceptible and immunocompromised individuals. A universal influenza vaccine ensures cross-protection against all influenza subtypes due to the presence of conserved epitopes that are found in the majority of, if not all, influenza types and subtypes, e.g., influenza matrix protein 2 ectodomain (M2e) and nucleoprotein (NP). Despite its relatively low immunogenicity, influenza M2e has been proven to induce humoral responses in human recipients. Influenza NP, on the other hand, promotes remarkable anti-influenza T-cell responses. Additionally, NP subunits are able to assemble into particles which can be further exploited as an adjuvant carrier for M2e peptide. Practically, the T-cell immunodominance of NP can be transferred to M2e when it is fused and expressed as a chimeric protein in heterologous hosts such as Escherichia coli without compromising the antigenicity. Given the ability of NP-M2e fusion protein in inducing cross-protective anti-influenza cell-mediated and humoral immunity, its potential as a universal influenza vaccine is therefore worth further exploration.
Collapse
Affiliation(s)
- Mei Peng Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.P.T.); (N.B.M.A.)
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.P.T.); (N.B.M.A.)
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Biomedical Science Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
19
|
Alexandre M, Prague M, Thiébaut R. Between-group comparison of area under the curve in clinical trials with censored follow-up: Application to HIV therapeutic vaccines. Stat Methods Med Res 2021; 30:2130-2147. [PMID: 34218746 DOI: 10.1177/09622802211023963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In clinical trials, longitudinal data are commonly analyzed and compared between groups using a single summary statistic such as area under the outcome versus time curve (AUC). However, incomplete data, arising from censoring due to a limit of detection or missing data, can bias these analyses. In this article, we present a statistical test based on splines-based mixed-model accounting for both the censoring and missingness mechanisms in the AUC estimation. Inferential properties of the proposed method were evaluated and compared to ad hoc approaches and to a non-parametric method through a simulation study based on two-armed trial where trajectories and the proportion of missing data were varied. Simulation results highlight that our approach has significant advantages over the other methods. A real working example from two HIV therapeutic vaccine trials is presented to illustrate the applicability of our approach.
Collapse
Affiliation(s)
- Marie Alexandre
- University of Bordeaux, Inria Bordeaux Sud-Ouest, Inserm, Bordeaux Population Health Research Center, SISTM Team, France.,Data Science Division, Vaccine Research Institute (VRI), Créteil, France
| | - Mélanie Prague
- University of Bordeaux, Inria Bordeaux Sud-Ouest, Inserm, Bordeaux Population Health Research Center, SISTM Team, France.,Data Science Division, Vaccine Research Institute (VRI), Créteil, France
| | - Rodolphe Thiébaut
- University of Bordeaux, Inria Bordeaux Sud-Ouest, Inserm, Bordeaux Population Health Research Center, SISTM Team, France.,Data Science Division, Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|
20
|
Jung J, Mundle ST, Ustyugova IV, Horton AP, Boutz DR, Pougatcheva S, Prabakaran P, McDaniel JR, King GR, Park D, Person MD, Ye C, Tan B, Tanno Y, Kim JE, Curtis NC, DiNapoli J, Delagrave S, Ross TM, Ippolito GC, Kleanthous H, Lee J, Georgiou G. Influenza vaccination in the elderly boosts antibodies against conserved viral proteins and egg-produced glycans. J Clin Invest 2021; 131:148763. [PMID: 34196304 PMCID: PMC8245176 DOI: 10.1172/jci148763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Seasonal influenza vaccination elicits a diminished adaptive immune response in the elderly, and the mechanisms of immunosenescence are not fully understood. Using Ig-Seq, we found a marked increase with age in the prevalence of cross-reactive (CR) serum antibodies that recognize both the H1N1 (vaccine-H1) and H3N2 (vaccine-H3) components of an egg-produced split influenza vaccine. CR antibodies accounted for 73% ± 18% of the serum vaccine responses in a cohort of elderly donors, 65% ± 15% in late middle-aged donors, and only 13% ± 5% in persons under 35 years of age. The antibody response to non-HA antigens was boosted by vaccination. Recombinant expression of 19 vaccine-H1+H3 CR serum monoclonal antibodies (s-mAbs) revealed that they predominantly bound to non-HA influenza proteins. A sizable fraction of vaccine-H1+H3 CR s-mAbs recognized with high affinity the sulfated glycans, in particular sulfated type 2 N-acetyllactosamine (Galβ1-4GalNAcβ), which is found on egg-produced proteins and thus unlikely to contribute to protection against influenza infection in humans. Antibodies against sulfated glycans in egg-produced vaccine had been identified in animals but were not previously characterized in humans. Collectively, our results provide a quantitative basis for how repeated exposure to split influenza vaccine correlates with unintended focusing of serum antibody responses to non-HA antigens that may result in suboptimal immunity against influenza.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Sophia T. Mundle
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Irina V. Ustyugova
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | | | | | | | - Ponraj Prabakaran
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | | | | | - Daechan Park
- Institute for Cellular and Molecular Biology, and
| | - Maria D. Person
- Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas, USA
| | - Congxi Ye
- Department of Molecular Biosciences
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Bing Tan
- Department of Chemical Engineering
| | | | - Jin Eyun Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Nicholas C. Curtis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Joshua DiNapoli
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Simon Delagrave
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Gregory C. Ippolito
- Department of Molecular Biosciences
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Harry Kleanthous
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - George Georgiou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Department of Chemical Engineering
- Department of Molecular Biosciences
- Institute for Cellular and Molecular Biology, and
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
21
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
22
|
Abstract
Influenza infection poses significant risk for solid organ transplant recipients who often experience more severe infection with increased rates of complications, including those relating to the allograft. Although symptoms of influenza experienced by transplant recipients are similar to that of the general population, fever is not a ubiquitous symptom and lymphopenia is common. Annual inactivated influenza vaccine is recommended for all transplant recipients. Newer strategies such as using a higher dose vaccine or multiple doses in the same season appear to provide greater immunogenicity. Neuraminidase inhibitors are the mainstay of treatment and chemoprophylaxis although resistance may occur in the transplant setting. Influenza therapeutics are advancing, including the recent licensure of baloxavir; however, many remain to be evaluated in transplant recipients and are not yet in routine clinical use. Further population-based studies spanning multiple influenza seasons are needed to enhance our understanding of influenza epidemiology in solid organ transplant recipients. Specific assessment of newer influenza therapeutics in transplant recipients and refinement of prevention strategies are vital to reducing morbidity and mortality.
Collapse
Affiliation(s)
- Tina M Marinelli
- Division of Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
23
|
Beigel JH, Hayden FG. Influenza Therapeutics in Clinical Practice-Challenges and Recent Advances. Cold Spring Harb Perspect Med 2021; 11:a038463. [PMID: 32041763 PMCID: PMC8015700 DOI: 10.1101/cshperspect.a038463] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few years, several new direct-acting influenza antivirals have been licensed, and others have advanced in clinical development. The increasing diversity of antiviral classes should allow an adequate public health response should a resistant virus to one agent or class widely circulate. One new antiviral, baloxavir marboxil, has been approved in the United States for treatment of influenza in those at high risk of developing influenza-related complications. Except for intravenous zanamivir in European Union countries, no antivirals have been licensed specifically for the indication of severe influenza or hospitalized influenza. This review addresses recent clinical developments involving selected polymerase inhibitors, neuraminidase inhibitors, antibody-based therapeutics, and host-directed therapies. There are many knowledge gaps for most of these agents because some data are not published and multiple pivotal studies are in progress at present. This review also considers important clinical research issues, including regulatory pathways, study designs, endpoints, and target populations encountered during the clinical development of novel therapeutics.
Collapse
Affiliation(s)
- John H Beigel
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20892-9826, USA
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
24
|
Matrix Protein 2 Extracellular Domain-Specific Monoclonal Antibodies Are an Effective and Potentially Universal Treatment for Influenza A. J Virol 2021; 95:JVI.01027-20. [PMID: 33268521 PMCID: PMC8092830 DOI: 10.1128/jvi.01027-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Influenza virus infection causes significant morbidity and mortality worldwide. Humans fail to make a universally protective memory immune response to influenza A. Hemagglutinin and Neuraminidase undergo antigenic drift and shift, resulting in new influenza A strains to which humans are naive. Seasonal vaccines are often ineffective and escape mutants have been reported to all treatments for influenza A. In the absence of a universal influenza A vaccine or treatment, influenza A will remain a significant threat to human health. The extracellular domain of the M2-ion channel (M2e) is an ideal antigenic target for a universal therapeutic agent, as it is highly conserved across influenza A serotypes, has a low mutation rate, and is essential for viral entry and replication. Previous M2e-specific monoclonal antibodies (M2e-MAbs) show protective potential against influenza A, however, they are either strain specific or have limited efficacy. We generated seven murine M2e-MAbs and utilized in vitro and in vivo assays to validate the specificity of our novel M2e-MAbs and to explore the universality of their protective potential. Our data shows our M2e-MAbs bind to M2e peptide, HEK cells expressing the M2 channel, as well as, influenza virions and MDCK-ATL cells infected with influenza viruses of multiple serotypes. Our antibodies significantly protect highly influenza A virus susceptible BALB/c mice from lethal challenge with H1N1 A/PR/8/34, pH1N1 A/CA/07/2009, H5N1 A/Vietnam/1203/2004, and H7N9 A/Anhui/1/2013 by improving survival rates and weight loss. Based on these results, at least four of our seven M2e-MAbs show strong potential as universal influenza A treatments.IMPORTANCE Despite a seasonal vaccine and multiple therapeutic treatments, Influenza A remains a significant threat to human health. The biggest obstacle is producing a vaccine or treatment for influenza A is their universality or efficacy against not only seasonal variances in the influenza virus, but also against all human, avian, and swine serotypes and, therefore, potential pandemic strains. M2e has huge potential as a target for a vaccine or treatment against influenza A. It is the most conserved external protein on the virus. Antibodies against M2e have made it to clinical trials, but not succeeded. Here, we describe novel M2e antibodies produced in mice that are not only protective at low doses, but that we extensively test to determine their universality and found to be cross protective against all strains tested. Additionally, our work begins to elucidate the critical role of isotype for an influenza A monoclonal antibody therapeutic.
Collapse
|
25
|
McMillan CL, Young PR, Watterson D, Chappell KJ. The Next Generation of Influenza Vaccines: Towards a Universal Solution. Vaccines (Basel) 2021; 9:vaccines9010026. [PMID: 33430278 PMCID: PMC7825669 DOI: 10.3390/vaccines9010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Influenza viruses remain a constant burden in humans, causing millions of infections and hundreds of thousands of deaths each year. Current influenza virus vaccine modalities primarily induce antibodies directed towards the highly variable head domain of the hemagglutinin protein on the virus surface. Such antibodies are often strain-specific, meaning limited cross-protection against divergent influenza viruses is induced, resulting in poor vaccine efficacy. To attempt to counteract this, yearly influenza vaccination with updated formulations containing antigens from more recently circulating viruses is required. This is an expensive and time-consuming exercise, and the constant arms race between host immunity and virus evolution presents an ongoing challenge for effective vaccine development. Furthermore, there exists the constant pandemic threat of highly pathogenic avian influenza viruses with high fatality rates (~30–50%) or the emergence of new, pathogenic reassortants. Current vaccines would likely offer little to no protection from such viruses in the event of an epidemic or pandemic. This highlights the urgent need for improved influenza virus vaccines capable of providing long-lasting, robust protection from both seasonal influenza virus infections as well as potential pandemic threats. In this narrative review, we examine the next generation of influenza virus vaccines for human use and the steps being taken to achieve universal protection.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- Correspondence: (C.L.D.M.); (K.J.C.)
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Keith J. Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (C.L.D.M.); (K.J.C.)
| |
Collapse
|
26
|
Learning from past failures: Challenges with monoclonal antibody therapies for COVID-19. J Control Release 2020; 329:87-95. [PMID: 33276017 PMCID: PMC7836766 DOI: 10.1016/j.jconrel.2020.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023]
Abstract
COVID-19, the disease caused by infection with SARS-CoV-2, requires urgent development of therapeutic interventions. Due to their safety, specificity, and potential for rapid advancement into the clinic, monoclonal antibodies (mAbs) represent a highly promising class of antiviral or anti-inflammatory agents. Herein, by analyzing prior efforts to advance antiviral mAbs for other acute respiratory infections (ARIs), we highlight the challenges faced by mAb-based immunotherapies for COVID-19. We present evidence supporting early intervention immediately following a positive diagnosis via inhaled delivery of mAbs with vibrating mesh nebulizers as a promising approach for the treatment of COVID-19.
Collapse
|
27
|
Wang Q, Zhang Y, Zou P, Wang M, Fu W, She J, Song Z, Xu J, Huang J, Wu F. Self-Assembly M2e-Based Peptide Nanovaccine Confers Broad Protection Against Influenza Viruses. Front Microbiol 2020; 11:1961. [PMID: 32922379 PMCID: PMC7457018 DOI: 10.3389/fmicb.2020.01961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/24/2020] [Indexed: 11/27/2022] Open
Abstract
The extracellular domain of influenza M2 protein (M2e) is highly conserved and is a promising target for development of universal influenza vaccines. Here, we synthesized a peptide vaccine consisting of M2e epitope linked to a fibrillizing peptide, which could self-assemble into nanoparticle in physiological salt solutions. When administrated into mice without additional adjuvant, the influenza A M2e epitope-bearing nanoparticles induced antibodies against M2e of different influenza subtypes. Comparing with other M2e-based vaccine, these M2e nanoparticles did not induce immune response against the fibrillizing peptide, demonstrating minimal immunogenicity of vaccine carrier. Furthermore, vaccination with M2e-based nanoparticles did not only protect mice against homologous challenge of influenza PR8 H1N1 virus, but also provide protection against heterologous challenge of highly pathogenic avian influenza H7N9 virus. These results indicated that M2e-based self-assembled nanoparticle vaccine is safe and can elicit cross-protection, therefore is a promising candidate of universal influenza vaccines.
Collapse
Affiliation(s)
- Qimin Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuling Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Meixiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Weihui Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jialei She
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jinghe Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fan Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Samal S, Shrivastava T, Sonkusre P, Rizvi ZA, Kumar R, Ahmed S, Vishwakarma P, Yadav N, Bansal M, Chauhan K, Pokhrel S, Das S, Tambare P, Awasthi A. Tetramerizing tGCN4 domain facilitates production of Influenza A H1N1 M2e higher order soluble oligomers that show enhanced immunogenicity in vivo. J Biol Chem 2020; 295:14352-14366. [PMID: 32817314 DOI: 10.1074/jbc.ra120.013233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
One strategy for the development of a next generation influenza vaccine centers upon using conserved domains of the virus to induce broader and long-lasting immune responses. The production of artificial proteins by mimicking native-like structures has shown to be a promising approach for vaccine design against diverse enveloped viruses. The amino terminus of influenza A virus matrix 2 ectodomain (M2e) is highly conserved among influenza subtypes, and previous studies have shown M2e-based vaccines are strongly immunogenic, making it an attractive target for further exploration. We hypothesized that stabilizing M2e protein in the mammalian system might influence the immunogenicity of M2e with the added advantage to robustly produce the large scale of proteins with native-like fold and hence can act as an efficient vaccine candidate. In this study, we created an engineered construct in which the amino terminus of M2e is linked to the tetramerizing domain tGCN4, expressed the construct in a mammalian system, and tested for immunogenicity in BALB/c mice. We have also constructed a stand-alone M2e construct (without tGCN4) and compared the protein expressed in mammalian cells and in Escherichia coli using in vitro and in vivo methods. The mammalian-expressed protein was found to be more stable, more antigenic than the E. coli protein, and form higher-order oligomers. In an intramuscular protein priming and boosting regimen in mice, these proteins induced high titers of antibodies and elicited a mixed Th1/Th2 response. These results highlight the mammalian-expressed M2e soluble proteins as a promising vaccine development platform.
Collapse
Affiliation(s)
- Sweety Samal
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Tripti Shrivastava
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Praveen Sonkusre
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zaigham Abbas Rizvi
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Rajesh Kumar
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Shubbir Ahmed
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Preeti Vishwakarma
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Naveen Yadav
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Manish Bansal
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Kanchana Chauhan
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Sebanta Pokhrel
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Supratik Das
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Padmakar Tambare
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Amit Awasthi
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| |
Collapse
|
29
|
Wang X, Zhou P, Wu M, Yang K, Guo J, Wang X, Li J, Fang Z, Wang G, Xing M, Zhou D. Adenovirus delivery of encoded monoclonal antibody protects against different types of influenza virus infection. NPJ Vaccines 2020; 5:57. [PMID: 32665862 PMCID: PMC7347565 DOI: 10.1038/s41541-020-0206-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Due to the high mutation and recombination rates of the influenza virus, current clinically licensed influenza vaccines and anti-influenza drugs provide limited protection against the emerging influenza virus epidemic. Therefore, universal influenza vaccines with high efficacy are urgently needed to ensure human safety and health. Passive immunization of influenza broadly neutralizing antibodies may become an ideal option for controlling influenza infection. CR9114 isolated from the peripheral blood mononuclear cells of healthy donors is a broadly neutralizing monoclonal antibody that targets different types of influenza viruses. As the adenovirus vector is one of the most promising delivery vehicles, we employed the chimpanzee adenoviral vector, AdC68, to express CR9114 as a universal anti-influenza vaccine, termed AdC68-CR9114, and evaluated its antibody expression and its broad spectrum of prophylactic and therapeutic effects in animal models. Based on our findings, AdC68-CR9114-infected cell expressed the broadly neutralizing antibody at a high level in vitro and in vivo, exhibited biological functions, and protected mice from different types of influenza virus infection at different time points. The findings from this study shed light on a new strategy for controlling and preventing influenza infection.
Collapse
Affiliation(s)
- Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508 China
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ping Zhou
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mangteng Wu
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kaiyan Yang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingao Guo
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuchen Wang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jun Li
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zihao Fang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guiqin Wang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508 China
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
30
|
Li Y, Wang L, Si H, Yu Z, Tian S, Xiang R, Deng X, Liang R, Jiang S, Yu F. Influenza virus glycoprotein-reactive human monoclonal antibodies. Microbes Infect 2020; 22:263-271. [PMID: 32569735 PMCID: PMC7303604 DOI: 10.1016/j.micinf.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 11/05/2022]
Abstract
Influenza continues to be a significant public health challenge. Two glycoproteins on the surface of influenza virus, hemagglutinin and neuraminidase, play a prominent role in the process of influenza virus infection and release. Monoclonal antibodies targeting glycoproteins can effectively prevent the spread of the virus. In this review, we summarized currently reported human monoclonal antibodies targeting glycoproteins of influenza A and B viruses.
Collapse
Affiliation(s)
- Yanbai Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Helong Si
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhengsen Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shijun Tian
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Rong Xiang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Ruiying Liang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
31
|
Saelens X. The Role of Matrix Protein 2 Ectodomain in the Development of Universal Influenza Vaccines. J Infect Dis 2020; 219:S68-S74. [PMID: 30715367 PMCID: PMC6452325 DOI: 10.1093/infdis/jiz003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The influenza A virus matrix protein 2 ectodomain (M2e) is a universal influenza A vaccine candidate. Numerous studies in laboratory mice, but very few in natural influenza A virus hosts, have demonstrated that M2e-based vaccines can provide protection against any influenza A virus challenge. M2e-based immunity is largely accomplished by IgG and early stage clinical studies have demonstrated that the vaccine is safe. Yet M2e is considered a difficult target to develop as a vaccine: it does not offer sterilizing immunity and its mode of action relies on Fcγ receptor-mediated effector mechanisms, most likely in concert with alveolar macrophages. In a human challenge study with an H3N2 virus, treatment with a monoclonal M2e-specific human IgG was associated with a faster recovery compared to placebo treatment. If the universal influenza vaccine field incorporates this antigen into next generation vaccines, M2e could prove its merit when the next influenza pandemic strikes.
Collapse
Affiliation(s)
- Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, Ghent.,Department of Biomedical Molecular Biology, Ghent University, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| |
Collapse
|
32
|
Van Hoecke L, Verbeke R, De Vlieger D, Dewitte H, Roose K, Van Nevel S, Krysko O, Bachert C, Schepens B, Lentacker I, Saelens X. mRNA Encoding a Bispecific Single Domain Antibody Construct Protects against Influenza A Virus Infection in Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:777-787. [PMID: 32438313 PMCID: PMC7240188 DOI: 10.1016/j.omtn.2020.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
To date, mRNA-based biologics have mainly been developed for prophylactic and therapeutic vaccination to combat infectious diseases or cancer. In the past years, optimization of the characteristics of in vitro transcribed mRNA has led to significant reduction of the inflammatory responses. Thanks to this, mRNA therapeutics have entered the field of passive immunization. Here, we established an mRNA treatment that is based on mRNA that codes for a bispecific single-domain antibody construct that can selectively recruit innate immune cells to cells infected with influenza A virus. The constructs consist of a single-domain antibody that binds to the ectodomain of the conserved influenza A matrix protein 2, while the other single-domain antibody binds to the activating mouse Fcγ receptor IV. Formulating the mRNA into DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)/cholesterol nanoparticles and delivering these intratracheally to mice allowed the production of the bispecific single-domain antibody in the lungs, and administration of these mRNA-particles prior to influenza A virus infection was associated with a significant reduction in viral titers and a reduced morbidity in mice. Overall, our data provide evidence that the local delivery of mRNA encoding a bispecific single-domain antibody format in the lungs could be a promising pulmonary antiviral prophylactic treatment.
Collapse
Affiliation(s)
- Lien Van Hoecke
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rein Verbeke
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Dorien De Vlieger
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Heleen Dewitte
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, 1090 Jette, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Sharon Van Nevel
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
33
|
Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 2020; 19:239-252. [PMID: 32060419 PMCID: PMC7223957 DOI: 10.1038/s41573-019-0056-x] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem. Strategies employed to improve vaccine efficacy involve using structure-based design and nanoparticle display to optimize the antigenicity and immunogenicity of target antigens; increasing the antigen dose; using novel adjuvants; stimulating cellular immunity; and targeting other viral proteins, including neuraminidase, matrix protein 2 or nucleoprotein. Improved understanding of influenza antigen structure and immunobiology is advancing novel vaccine candidates into human trials.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Sanofi Global Research and Development, Cambridge, MA, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Sanofi Global Research and Development, Cambridge, MA, USA.
| |
Collapse
|
34
|
Sloan SE, Szretter KJ, Sundaresh B, Narayan KM, Smith PF, Skurnik D, Bedard S, Trevejo JM, Oldach D, Shriver Z. Clinical and virological responses to a broad-spectrum human monoclonal antibody in an influenza virus challenge study. Antiviral Res 2020; 184:104763. [PMID: 32151645 DOI: 10.1016/j.antiviral.2020.104763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 01/03/2023]
Abstract
Influenza A infections cause significant seasonal morbidity and mortality as well as periodic pandemic infections. Currently, no approved therapies exist for patients hospitalized with influenza. The efficacy of VIS410, a broadly neutralizing human immunoglobulin IgG1 monoclonal antibody engineered to bind to the stem region of group 1 and 2 influenza A hemagglutinins, was explored in experimental human influenza infection. Healthy volunteers were inoculated with influenza A/California/07/2009 (H1N1) and received a single dose of VIS410 or placebo 24 h later. Subjects were monitored for symptoms, viral shedding, and safety, including cytokine measurements. The primary efficacy endpoint was the area under the curve (AUC) of viral load (VL) in the VIS410 group versus placebo. VIS410 treatment was associated with a 76% reduction in median VL AUC as measured by qRT-PCR (p = 0.024). Similar VIS410 antiviral activity was observed by virus culture, with a 91% reduction in median VL AUC by TCID50 (p = 0.019) compared to placebo-treated volunteers. Influenza symptoms were generally mild or moderate, with a trend toward faster resolution in VIS410-treated subjects. Treatment with VIS410 was generally safe, with an increase in gastrointestinal events that were largely mitigated by pre-treatment with oral diphenhydramine (50 mg) in combination with 600 mg of ibuprofen. Transient elevation of specific cytokines (IL-8 and TNFα) were associated with gastrointestinal adverse events. Treatment with VIS410 did not interfere with the endogenous immune response to influenza A. These data indicate that VIS410 may provide therapeutic benefit in influenza A infection. TRIAL REGISTRATION: ClinicaTtrials.gov Identification NCT02468115; https://clinicaltrials.gov/ct2/show/NCT02468115?term=NCT02468115&rank=1).
Collapse
Affiliation(s)
| | - Kristy J Szretter
- Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts 02139, USA
| | | | | | | | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR, 8253, Paris, France; Université Paris Descartes, Paris, France; Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | | | | |
Collapse
|
35
|
Abstract
The adaptive immune response to influenza virus infection is multifaceted and complex, involving antibody and cellular responses at both systemic and mucosal levels. Immune responses to natural infection with influenza virus in humans are relatively broad and long-lived, but influenza viruses can escape from these responses over time owing to their high mutation rates and antigenic flexibility. Vaccines are the best available countermeasure against infection, but vaccine effectiveness is low compared with other viral vaccines, and the induced immune response is narrow and short-lived. Furthermore, inactivated influenza virus vaccines focus on the induction of systemic IgG responses but do not effectively induce mucosal IgA responses. Here, I review the differences between natural infection and vaccination in terms of the antibody responses they induce and how these responses protect against future infection. A better understanding of how natural infection induces broad and long-lived immune responses will be key to developing next-generation influenza virus vaccines.
Collapse
|
36
|
Vogel OA, Manicassamy B. Broadly Protective Strategies Against Influenza Viruses: Universal Vaccines and Therapeutics. Front Microbiol 2020; 11:135. [PMID: 32117155 PMCID: PMC7020694 DOI: 10.3389/fmicb.2020.00135] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Influenza virus is a respiratory pathogen that can cause disease in humans, with symptoms ranging from mild to life-threatening. The vast majority of influenza virus infections in humans are observed during seasonal epidemics and occasional pandemics. Given the substantial public health burden associated with influenza virus infection, yearly vaccination is recommended for protection against seasonal influenza viruses. Despite vigilant surveillance for new variants and careful selection of seasonal vaccine strains, the efficacy of seasonal vaccines can vary widely from year to year. This often results in lowered protection within the population, regardless of vaccination status. In order to broaden the protection afforded by seasonal influenza vaccines, the National Institute of Allergy and Infectious Diseases (NIAID) has deemed the development of a universal influenza virus vaccine to be a priority in influenza virus vaccine research. This universal vaccine would provide protection against all influenza virus strains, eliminating the need for the yearly reformulations of seasonal influenza vaccines. In addition to universal influenza vaccine efforts, substantial progress has been made in developing novel influenza virus therapeutics that utilize broadly neutralizing antibodies to provide protection against influenza virus infection and to mitigate disease outcomes during infection. In this review, we discuss various approaches toward the goal of improving influenza virus vaccine efficacy through a universal influenza virus vaccine. We also address the novel methods of discovery and utilization of broadly neutralizing antibodies to improve influenza disease outcomes.
Collapse
Affiliation(s)
- Olivia A Vogel
- Department of Microbiology, The University of Chicago, Chicago, IL, United States
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
37
|
De Vlieger D, Hoffmann K, Van Molle I, Nerinckx W, Van Hoecke L, Ballegeer M, Creytens S, Remaut H, Hengel H, Schepens B, Saelens X. Selective Engagement of FcγRIV by a M2e-Specific Single Domain Antibody Construct Protects Against Influenza A Virus Infection. Front Immunol 2019; 10:2920. [PMID: 31921179 PMCID: PMC6921966 DOI: 10.3389/fimmu.2019.02920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/27/2019] [Indexed: 11/21/2022] Open
Abstract
Lower respiratory tract infections, such as infections caused by influenza A viruses, are a constant threat for public health. Antivirals are indispensable to control disease caused by epidemic as well as pandemic influenza A. We developed a novel anti-influenza A virus approach based on an engineered single-domain antibody (VHH) construct that can selectively recruit innate immune cells to the sites of virus replication. This protective construct comprises two VHHs. One VHH binds with nanomolar affinity to the conserved influenza A matrix protein 2 (M2) ectodomain (M2e). Co-crystal structure analysis revealed that the complementarity determining regions 2 and 3 of this VHH embrace M2e. The second selected VHH specifically binds to the mouse Fcγ Receptor IV (FcγRIV) and was genetically fused to the M2e-specific VHH, which resulted in a bi-specific VHH-based construct that could be efficiently expressed in Pichia pastoris. In the presence of M2 expressing or influenza A virus-infected target cells, this single domain antibody construct selectively activated the mouse FcγRIV. Moreover, intranasal delivery of this bispecific FcγRIV-engaging VHH construct protected wild type but not FcγRIV−/− mice against challenge with an H3N2 influenza virus. These results provide proof of concept that VHHs directed against a surface exposed viral antigen can be readily armed with effector functions that trigger protective antiviral activity beyond direct virus neutralization.
Collapse
Affiliation(s)
- Dorien De Vlieger
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Katja Hoffmann
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inge Van Molle
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Wim Nerinckx
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sarah Creytens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Dibo M, Battocchio EC, dos Santos Souza LM, da Silva MDV, Banin-Hirata BK, Sapla MM, Marinello P, Rocha SP, Faccin-Galhardi LC. Antibody Therapy for the Control of Viral Diseases: An Update. Curr Pharm Biotechnol 2019; 20:1108-1121. [DOI: 10.2174/1389201020666190809112704] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/22/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022]
Abstract
The epidemiological impact of viral diseases, combined with the emergence and reemergence of some viruses, and the difficulties in identifying effective therapies, have encouraged several studies to develop new therapeutic strategies for viral infections. In this context, the use of immunotherapy for the treatment of viral diseases is increasing. One of the strategies of immunotherapy is the use of antibodies, particularly the monoclonal antibodies (mAbs) and multi-specific antibodies, which bind directly to the viral antigen and bring about activation of the immune system. With current advancements in science and technology, several such antibodies are being tested, and some are already approved and are undergoing clinical trials. The present work aims to review the status of mAb development for the treatment of viral diseases.
Collapse
Affiliation(s)
- Miriam Dibo
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Eduardo C. Battocchio
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Lucas M. dos Santos Souza
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | | | - Bruna K. Banin-Hirata
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Milena M.M. Sapla
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Poliana Marinello
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Sérgio P.D. Rocha
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Lígia C. Faccin-Galhardi
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This review summarizes past and ongoing efforts for using polyclonal and monoclonal antibodies for the treatment of influenza, and is focused on products that have entered clinical trials. RECENT FINDINGS At least three polyclonal and eight monoclonal antibody products have been tested in clinical trials for the treatment of influenza. Considered across the two classes of therapeutics, these products appear to be safe and well tolerated. However, the efficacy results have been mixed and inconclusive. To date, no products have consistently shown superiority to currently available antivirals. SUMMARY No products within these two classes have been licensed, and several products appear to have stopped further clinical development. There are several ongoing studies that are anticipated to be completed or reported in the next 1-2 years which will be critical for understanding the value of polyclonal and monoclonal antibodies in the treatment of influenza.
Collapse
|
40
|
Mezhenskaya D, Isakova-Sivak I, Rudenko L. M2e-based universal influenza vaccines: a historical overview and new approaches to development. J Biomed Sci 2019; 26:76. [PMID: 31629405 PMCID: PMC6800501 DOI: 10.1186/s12929-019-0572-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023] Open
Abstract
The influenza A virus was isolated for the first time in 1931, and the first attempts to develop a vaccine against the virus began soon afterwards. In addition to causing seasonal epidemics, influenza viruses can cause pandemics at random intervals, which are very hard to predict. Vaccination is the most effective way of preventing the spread of influenza infection. However, seasonal vaccination is ineffective against pandemic influenza viruses because of antigenic differences, and it takes approximately six months from isolation of a new virus to develop an effective vaccine. One of the possible ways to fight the emergence of pandemics may be by using a new type of vaccine, with a long and broad spectrum of action. The extracellular domain of the M2 protein (M2e) of influenza A virus is a conservative region, and an attractive target for a universal influenza vaccine. This review gives a historical overview of the study of M2 protein, and summarizes the latest developments in the preparation of M2e-based universal influenza vaccines.
Collapse
Affiliation(s)
- Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St. Petersburg, 197376, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St. Petersburg, 197376, Russia.
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St. Petersburg, 197376, Russia
| |
Collapse
|
41
|
Sun W, Zheng A, Miller R, Krammer F, Palese P. An Inactivated Influenza Virus Vaccine Approach to Targeting the Conserved Hemagglutinin Stalk and M2e Domains. Vaccines (Basel) 2019; 7:vaccines7030117. [PMID: 31540436 PMCID: PMC6789539 DOI: 10.3390/vaccines7030117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Universal influenza virus vaccine candidates that focus on the conserved hemagglutinin (HA) stalk domain and the extracellular domain of the matrix protein 2 (M2e) have been developed to increase the breadth of protection against multiple strains. In this study, we report a novel inactivated influenza virus vaccine approach that combines these two strategies. We inserted a human consensus M2e epitope into the immunodominant antigenic site (Ca2 site) of three different chimeric HAs (cHAs). Sequential immunization with inactivated viruses containing these modified cHAs substantially enhanced M2e antibody responses while simultaneously boosting stalk antibody responses. The combination of additional M2e antibodies with HA stalk antibodies resulted in superior antibody-mediated protection in mice against challenge viruses expressing homologous or heterosubtypic hemagglutinin and neuraminidase compared to vaccination strategies that targeted the HA stalk or M2e epitopes in isolation.
Collapse
Affiliation(s)
- Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Allen Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Robert Miller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
42
|
Padilla-Quirarte HO, Lopez-Guerrero DV, Gutierrez-Xicotencatl L, Esquivel-Guadarrama F. Protective Antibodies Against Influenza Proteins. Front Immunol 2019; 10:1677. [PMID: 31379866 PMCID: PMC6657620 DOI: 10.3389/fimmu.2019.01677] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
The influenza A virus infection continues to be a threat to the human population. The seasonal variation of the virus and the likelihood of periodical pandemics caused by completely new virus strains make it difficult to produce vaccines that efficiently protect against this infection. Antibodies (Abs) are very important in preventing the infection and in blocking virus propagation once the infection has taken place. However, the precise protection mechanism provided by these Abs still needs to be established. Furthermore, most research has focused on Abs directed to the globular head domain of hemagglutinin (HA). However, other domains of HA (like the stem) and other proteins are also able to elicit protective Ab responses. In this article, we review the current knowledge about the role of both neutralizing and non-neutralizing anti-influenza proteins Abs that play a protective role during infection or vaccination.
Collapse
Affiliation(s)
- Herbey O Padilla-Quirarte
- LIV, Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Mexico.,Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico
| | | | | | | |
Collapse
|
43
|
Sedeyn K, Saelens X. New antibody-based prevention and treatment options for influenza. Antiviral Res 2019; 170:104562. [PMID: 31323236 DOI: 10.1016/j.antiviral.2019.104562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
The antigenic diversity of human influenza viruses represents a challenge to the development of vaccines with durable immune protection. In addition, small molecule anti-influenza viral drugs can bring clinical relief to influenza patients but the emergence of drug resistant viruses can rapidly limit the effectiveness of such drugs. In the past decade, a number of human monoclonal antibodies have been described that can bind to and neutralize a broad range of influenza A and B viruses. Most of these monoclonal antibodies are directed against the viral hemagglutinin (HA) stalk and some have now been evaluated in early to mid-stage clinical trials. An important conclusion from these clinical studies is that hemagglutinin stalk-specific antibodies are safe and can reduce influenza symptoms. In addition, examples of bi- and multi-specific anti-influenza antibodies are discussed, although such antibodies have not yet progressed into clinical testing. In the future, antibody-based therapies might become part of our arsenal to prevent and treat influenza.
Collapse
Affiliation(s)
- Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biochemistry and Microbiology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biochemistry and Microbiology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
| |
Collapse
|
44
|
Abstract
Annual seasonal influenza epidemics of variable severity result in significant morbidity and mortality in the United States (U.S.) and worldwide. In temperate climate countries, including the U.S., influenza activity peaks during the winter months. Annual influenza vaccination is recommended for all persons in the U.S. aged 6 months and older, and among those at increased risk for influenza-related complications in other parts of the world (e.g. young children, elderly). Observational studies have reported effectiveness of influenza vaccination to reduce the risks of severe disease requiring hospitalization, intensive care unit admission, and death. A diagnosis of influenza should be considered in critically ill patients admitted with complications such as exacerbation of underlying chronic comorbidities, community-acquired pneumonia, and respiratory failure during influenza season. Molecular tests are recommended for influenza testing of respiratory specimens in hospitalized patients. Antigen detection assays are not recommended in critically ill patients because of lower sensitivity; negative results of these tests should not be used to make clinical decisions, and respiratory specimens should be tested for influenza by molecular assays. Because critically ill patients with lower respiratory tract disease may have cleared influenza virus in the upper respiratory tract, but have prolonged influenza viral replication in the lower respiratory tract, an endotracheal aspirate (preferentially) or bronchoalveolar lavage fluid specimen (if collected for other diagnostic purposes) should be tested by molecular assay for detection of influenza viruses.Observational studies have reported that antiviral treatment of critically ill adult influenza patients with a neuraminidase inhibitor is associated with survival benefit. Since earlier initiation of antiviral treatment is associated with the greatest clinical benefit, standard-dose oseltamivir (75 mg twice daily in adults) for enteric administration is recommended as soon as possible as it is well absorbed in critically ill patients. Based upon observational data that suggest harms, adjunctive corticosteroid treatment is currently not recommended for children or adults hospitalized with influenza, including critically ill patients, unless clinically indicated for another reason, such as treatment of asthma or COPD exacerbation, or septic shock. A number of pharmaceutical agents are in development for treatment of severe influenza.
Collapse
Affiliation(s)
- Eric J Chow
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mailstop H24-7, 1600 Clifton Road, N.E., Atlanta, GA, 30329, USA
| | - Joshua D Doyle
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mailstop H24-7, 1600 Clifton Road, N.E., Atlanta, GA, 30329, USA
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mailstop H24-7, 1600 Clifton Road, N.E., Atlanta, GA, 30329, USA.
| |
Collapse
|
45
|
Chow EJ, Doyle JD, Uyeki TM. Influenza virus-related critical illness: prevention, diagnosis, treatment. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:214. [PMID: 31189475 PMCID: PMC6563376 DOI: 10.1186/s13054-019-2491-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/26/2019] [Indexed: 01/20/2023]
Abstract
Annual seasonal influenza epidemics of variable severity result in significant morbidity and mortality in the United States (U.S.) and worldwide. In temperate climate countries, including the U.S., influenza activity peaks during the winter months. Annual influenza vaccination is recommended for all persons in the U.S. aged 6 months and older, and among those at increased risk for influenza-related complications in other parts of the world (e.g. young children, elderly). Observational studies have reported effectiveness of influenza vaccination to reduce the risks of severe disease requiring hospitalization, intensive care unit admission, and death. A diagnosis of influenza should be considered in critically ill patients admitted with complications such as exacerbation of underlying chronic comorbidities, community-acquired pneumonia, and respiratory failure during influenza season. Molecular tests are recommended for influenza testing of respiratory specimens in hospitalized patients. Antigen detection assays are not recommended in critically ill patients because of lower sensitivity; negative results of these tests should not be used to make clinical decisions, and respiratory specimens should be tested for influenza by molecular assays. Because critically ill patients with lower respiratory tract disease may have cleared influenza virus in the upper respiratory tract, but have prolonged influenza viral replication in the lower respiratory tract, an endotracheal aspirate (preferentially) or bronchoalveolar lavage fluid specimen (if collected for other diagnostic purposes) should be tested by molecular assay for detection of influenza viruses.Observational studies have reported that antiviral treatment of critically ill adult influenza patients with a neuraminidase inhibitor is associated with survival benefit. Since earlier initiation of antiviral treatment is associated with the greatest clinical benefit, standard-dose oseltamivir (75 mg twice daily in adults) for enteric administration is recommended as soon as possible as it is well absorbed in critically ill patients. Based upon observational data that suggest harms, adjunctive corticosteroid treatment is currently not recommended for children or adults hospitalized with influenza, including critically ill patients, unless clinically indicated for another reason, such as treatment of asthma or COPD exacerbation, or septic shock. A number of pharmaceutical agents are in development for treatment of severe influenza.
Collapse
Affiliation(s)
- Eric J Chow
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mailstop H24-7, 1600 Clifton Road, N.E., Atlanta, GA, 30329, USA
| | - Joshua D Doyle
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mailstop H24-7, 1600 Clifton Road, N.E., Atlanta, GA, 30329, USA
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mailstop H24-7, 1600 Clifton Road, N.E., Atlanta, GA, 30329, USA.
| |
Collapse
|
46
|
Li W, Santra A, Yu H, Slack TJ, Muthana MM, Shi D, Liu Y, Chen X. 9-Azido-9-deoxy-2,3-difluorosialic Acid as a Subnanomolar Inhibitor against Bacterial Sialidases. J Org Chem 2019; 84:6697-6708. [PMID: 31083938 DOI: 10.1021/acs.joc.9b00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A library of 2(a),3(a/e)-difluorosialic acids and their C-5 and/or C-9 derivatives were chemoenzymatically synthesized. Pasteurella multocida sialic acid aldolase (PmAldolase), but not its Escherichia coli homologue (EcAldolase), was found to catalyze the formation of C5-azido analogue of 3-fluoro(a)-sialic acid. In comparison, both PmAldolase and EcAldolase could catalyze the synthesis of 3-fluoro(a/e)-sialic acids and their C-9 analogues although PmAldolase was generally more efficient. The chemoenzymatically synthesized 3-fluoro(a/e)-sialic acid analogues were purified and chemically derivatized to form the desired difluorosialic acids and derivatives. Inhibition studies against several bacterial sialidases and a recombinant human cytosolic sialidase hNEU2 indicated that sialidase inhibition was affected by the C-3 fluorine stereochemistry and derivatization at C-5 and/or C-9 of the inhibitor. Opposite to that observed for influenza A virus sialidases and hNEU2, compounds with axial fluorine at C-3 were better inhibitors (up to 100-fold) against bacterial sialidases compared to their 3F-equatorial counterparts. While C-5-modified compounds were less-efficient antibacterial sialidase inhibitors, 9-N3-modified 2,3-difluoro-Neu5Ac showed increased inhibitory activity against bacterial sialidases. 9-Azido-9-deoxy-2-(e)-3-(a)-difluoro- N-acetylneuraminic acid [2(e)3(a)DFNeu5Ac9N3] was identified as an effective inhibitor with a long effective duration selectively against pathogenic bacterial sialidases from Clostridium perfringens (CpNanI) and Vibrio cholerae.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Chemistry , University of California-Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Abhishek Santra
- Department of Chemistry , University of California-Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Hai Yu
- Department of Chemistry , University of California-Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Teri J Slack
- Department of Chemistry , University of California-Davis , One Shields Avenue , Davis , California 95616 , United States
| | | | | | | | - Xi Chen
- Department of Chemistry , University of California-Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
47
|
Destabilization of the human RED-SMU1 splicing complex as a basis for host-directed antiinfluenza strategy. Proc Natl Acad Sci U S A 2019; 116:10968-10977. [PMID: 31076555 DOI: 10.1073/pnas.1901214116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New therapeutic strategies targeting influenza are actively sought due to limitations in current drugs available. Host-directed therapy is an emerging concept to target host functions involved in pathogen life cycles and/or pathogenesis, rather than pathogen components themselves. From this perspective, we focused on an essential host partner of influenza viruses, the RED-SMU1 splicing complex. Here, we identified two synthetic molecules targeting an α-helix/groove interface essential for RED-SMU1 complex assembly. We solved the structure of the SMU1 N-terminal domain in complex with RED or bound to one of the molecules identified to disrupt this complex. We show that these compounds inhibiting RED-SMU1 interaction also decrease endogenous RED-SMU1 levels and inhibit viral mRNA splicing and viral multiplication, while preserving cell viability. Overall, our data demonstrate the potential of RED-SMU1 destabilizing molecules as an antiviral therapy that could be active against a wide range of influenza viruses and be less prone to drug resistance.
Collapse
|
48
|
Gianchecchi E, Torelli A, Montomoli E. The use of cell-mediated immunity for the evaluation of influenza vaccines: an upcoming necessity. Hum Vaccin Immunother 2019; 15:1021-1030. [PMID: 30614754 PMCID: PMC6605831 DOI: 10.1080/21645515.2019.1565269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza vaccines are a fundamental tool for preventing the disease and reducing its consequences, particularly in specific high-risk groups. In order to be licensed, influenza vaccines have to meet strict criteria established by European Medicines Agency. Although the licensure of influenza vaccines started 65 years ago, Hemagglutination Inhibition and Single Radial Hemolysis are the only serological assays that can ascertain correlates of protection. However, they present evident limitations. The present review focuses on the evaluation of cell-mediated immunity (CMI), which plays an important role in the host immune response in protecting against virus-related illness and in the establishment of long-term immunological memory. Although correlates of protection are not currently available for CMI, it would be advisable to investigate this kind of immunological response for the evaluation of next-generation vaccines.
Collapse
Affiliation(s)
| | - A Torelli
- a VisMederi srl , Siena , Italy.,b Department of Life Sciences , University of Siena , Siena , Italy
| | - E Montomoli
- a VisMederi srl , Siena , Italy.,c Department of Molecular and Developmental Medicine , University of Siena , Siena , Italy
| |
Collapse
|
49
|
Pelfrene E, Mura M, Cavaleiro Sanches A, Cavaleri M. Monoclonal antibodies as anti-infective products: a promising future? Clin Microbiol Infect 2019; 25:60-64. [PMID: 29715552 PMCID: PMC7128139 DOI: 10.1016/j.cmi.2018.04.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND The paucity of licensed monoclonal antibodies (mAbs) in the infectious diseases arena strongly contrasts with the ready availability of these therapeutics for use in other conditions. AIMS This narrative review aims to assess the potential of monoclonal antibody-based interventions for infectious diseases. SOURCES A review of the literature via the Medline database was performed and complemented by published official documents on licensed anti-infective mAbs. In addition, ongoing trials were identified through a search of the clinical trial registration platform ClinicalTrials.gov. CONTENT We identified the few infections for which mAbs have been added to the therapeutic armamentarium and stressed their potential in representing a readily available protection tool against biothreats and newly emerging and reemerging infectious agents. In reviewing the historical context and main features of mAbs, we assert a potentially wider applicability and cite relevant examples of ongoing therapeutic developments. Factors hindering successful introduction of mAbs on a larger scale are outlined and thoughts are offered on how to possibly address some of these limitations. IMPLICATIONS mAbs may represent important tools in treating or preventing infections occurring with reasonably sufficient prevalence to justify demand and for which existing alternatives are not deemed fully adequate. Future initiatives need to address the prohibitive costs encountered in the development process. The feasibility of more large-scale administration of alternative modalities merits further exploration. In order to ensure optimal prospect of regulatory success, an early dialogue with competent authorities is encouraged.
Collapse
Affiliation(s)
- E Pelfrene
- Office of Anti-infectives and Vaccines, Human Medicines Evaluation Division, European Medicines Agency, London, UK.
| | - M Mura
- Office of Anti-infectives and Vaccines, Human Medicines Evaluation Division, European Medicines Agency, London, UK
| | - A Cavaleiro Sanches
- Quality Office, Human Medicines Research & Development Support Division, European Medicines Agency, London, UK
| | - M Cavaleri
- Office of Anti-infectives and Vaccines, Human Medicines Evaluation Division, European Medicines Agency, London, UK
| |
Collapse
|
50
|
Kolpe A, Schepens B, Ye L, Staeheli P, Saelens X. Passively transferred M2e-specific monoclonal antibody reduces influenza A virus transmission in mice. Antiviral Res 2018; 158:244-254. [PMID: 30179634 DOI: 10.1016/j.antiviral.2018.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
Influenza represents a global public health threat. Currently available influenza vaccines are effective against strain-matched influenza A and B viruses but do not protect against novel pandemic viruses. Vaccine candidates that target conserved B or T cell epitopes of influenza viruses could circumvent this shortcoming. The conserved extracellular domain of matrix protein 2 (M2e) of influenza A is an example of such a broadly protective vaccine candidate. Protection by M2e-based vaccine candidates largely depends on M2e-specific IgG antibodies. Here we show that the M2e-specific IgG2a monoclonal antibody 65 (MAb 65) can reduce influenza A/Udorn/72 (H3N2) and A/Hong Kong/68 (H3N2) virus plaque formation. This effect was not observed with other influenza A virus strains tested. We further show that passive transfer of MAb 65 to mice can reduce viral loads in the upper and lower airways, which results in reduced transmission of A/Udorn/72 and A/Hong Kong/68 viruses to cohoused, unimmunized contact mice. Virus restriction by passively transferred Mab 65 was significantly less pronounced in Fcgr1-/-Fcgr3-/- mutant mice compared with wild type controls, suggesting that in vivo protection provided by MAb 65 depends on Fcγ receptor-mediated antibody effector mechanisms. We conclude that M2e-based antibody immune therapy has the potential to diminish influenza A virus replication in the immunized host as well as in exposed naïve contacts.
Collapse
Affiliation(s)
- Annasaheb Kolpe
- VIB Center for Medical Biotechnology, VIB, Technologiepark 927, Ghent, B-9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - Bert Schepens
- VIB Center for Medical Biotechnology, VIB, Technologiepark 927, Ghent, B-9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - Liang Ye
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Technologiepark 927, Ghent, B-9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium.
| |
Collapse
|