1
|
Karau MJ, Alarcon Perico D, Guarin Perez SF, Koscianski C, Abdel MP, Patel R, Bedard NA. Duration of cefazolin prophylaxis did not impact infection risk in a murine model of joint arthroplasty. J Orthop Res 2024; 42:2345-2352. [PMID: 38796743 DOI: 10.1002/jor.25903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
To minimize periprosthetic joint infection (PJI) risk, some clinicians prescribe extended antibiotic prophylaxis (EAP) following total joint arthroplasty (TJA). Given the limited evidence supporting EAP, we sought to evaluate impact of prophylactic antibiotic duration on PJI risk in a murine TJA model. A titanium prosthesis was implanted into the proximal tibia of 89 mice and inoculated with 102 colony forming units (cfu) of Staphylococcus aureus Xen36. Control mice (n = 20) did not receive antibiotics. Treated mice received either 24 h (n = 35) or 4 days (n = 34) of cefazolin prophylaxis. Cultures were obtained from the prostheses, tibia, femur, and knee tissues 3 weeks after surgery. All mice in the control group developed PJI. Both prophylaxis regimens reduced the rate of PJI relative to the control, with only 2/35 mice in the 24-h cohort (p < 0.0001) and 1/34 in 4-day cohort developing PJI (p < 0.0001). CFU counts from the prostheses, bone and knee tissues were reduced for the 24-h and 4-day prophylaxis cohorts relative to the control (p < 0.0001 for both). There was no difference in rates of PJI or CFU counts between the two prophylaxis cohorts (p = 0.58). Prophylactic cefazolin profoundly reduced rates of PJI in a murine model of TJA in which all control animals developed PJI. Extending cefazolin prophylaxis duration from 24 h to 4 days did not result in improved PJI rates or decreased bacterial loads in infected cases. While these results strongly support use of antibiotic prophylaxis for TJA, EAP did not appear to add benefit in the described mouse model.
Collapse
Affiliation(s)
- Melissa J Karau
- Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Rochester, Minnesota, USA
| | | | | | - Christina Koscianski
- Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Rochester, Minnesota, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Rochester, Minnesota, USA
- Department of Medicine, Division of Public Health, Infectious Diseases, and Occupational Medicine, Rochester, Minnesota, USA
| | - Nicholas A Bedard
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
McDonald K, Rodriguez A, Muthukrishnan G. Humanized Mouse Models of Bacterial Infections. Antibiotics (Basel) 2024; 13:640. [PMID: 39061322 PMCID: PMC11273811 DOI: 10.3390/antibiotics13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial infections continue to represent a significant healthcare burden worldwide, causing considerable mortality and morbidity every year. The emergence of multidrug-resistant bacterial strains continues to rise, posing serious risks to controlling global disease outbreaks. To develop novel and more effective treatment and vaccination programs, there is a need for clinically relevant small animal models. Since multiple bacterial species have human-specific tropism for numerous virulence factors and toxins, conventional mouse models do not fully represent human disease. Several human disease characteristic phenotypes, such as lung granulomas in the case of Mycobacterium tuberculosis infections, are absent in standard mouse models. Alternatively, certain pathogens, such as Salmonella enterica serovar typhi and Staphylococcus aureus, can be well tolerated in mice and cleared quickly. To address this, multiple groups have developed humanized mouse models and observed enhanced susceptibility to infection and a more faithful recapitulation of human disease. In the last two decades, multiple humanized mouse models have been developed to attempt to recapitulate the human immune system in a small animal model. In this review, we first discuss the history of immunodeficient mice that has enabled the engraftment of human tissue and the engraftment methods currently used in the field. We then highlight how humanized mouse models successfully uncovered critical human immune responses to various bacterial infections, including Salmonella enterica serovar Typhi, Mycobacterium tuberculosis, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Katya McDonald
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Adryiana Rodriguez
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
3
|
Hofstee MI, Siverino C, Saito M, Meghwani H, Tapia-Dean J, Arveladze S, Hildebrand M, Rangel-Moreno J, Riool M, Zeiter S, Zaat SAJ, Moriarty TF, Muthukrishnan G. Staphylococcus aureus Panton-Valentine Leukocidin worsens acute implant-associated osteomyelitis in humanized BRGSF mice. JBMR Plus 2024; 8:ziad005. [PMID: 38505530 PMCID: PMC10945728 DOI: 10.1093/jbmrpl/ziad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Staphylococcus aureus is the most common pathogen that causes implant-associated osteomyelitis, a clinically incurable disease. Immune evasion of S. aureus relies on various mechanisms to survive within the bone niche, including the secretion of leukotoxins such as Panton-Valentine leukocidin (PVL). PVL is a pore-forming toxin exhibiting selective human tropism for C5a receptors (C5aR1 and C5aR2) and CD45 on neutrophils, monocytes, and macrophages. PVL is an important virulence determinant in lung, skin and soft tissue infections. The involvement of PVL in S. aureus pathogenesis during bone infections has not been studied extensively yet. To investigate this, humanized BALB/c Rag2-/-Il2rg-/-SirpaNODFlk2-/- (huBRGSF) mice were subjected to transtibial implant-associated osteomyelitis with community-acquired methicillin-resistant S. aureus (CA-MRSA) USA300 wild type strain (WT), an isogenic mutant lacking lukF/S-PV (Δpvl), or complemented mutant (Δpvl+pvl). Three days post-surgery, Δpvl-infected huBRGSF mice had a less severe infection compared to WT-infected animals as characterized by 1) improved clinical outcomes, 2) lower ex vivo bacterial bone burden, 3) absence of staphylococcal abscess communities (SACs) in their bone marrow, and 4) compromised MRSA dissemination to internal organs (liver, kidney, spleen, heart). Interestingly, Δpvl-infected huBRGSF mice had fewer human myeloid cells, neutrophils, and HLA-DR+ monocytes in the bone niche compared to WT-infected animals. Expectedly, a smaller fraction of human myeloid cells were apoptotic in the Δpvl-infected huBRGSF animals. Taken together, our study highlights the pivotal role of PVL during acute implant-associated osteomyelitis in humanized mice.
Collapse
Affiliation(s)
- Marloes I Hofstee
- AO Research Institute Davos, 7270 Davos, Switzerland
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | - Motoo Saito
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14618, United States
| | - Himanshu Meghwani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14618, United States
| | | | | | | | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14620, United States
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Sebastian A J Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14618, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
4
|
Zheng P, Liu F, Long J, Jin Y, Chen S, Duan G, Yang H. Latest Advances in the Application of Humanized Mouse Model for Staphylococcus aureus. J Infect Dis 2023; 228:800-809. [PMID: 37392466 DOI: 10.1093/infdis/jiad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important pathogen for humans and can cause a wide range of diseases, from mild skin infections, severe osteomyelitis to fatal pneumonia, sepsis, and septicemia. The mouse models have greatly facilitated the development of S. aureus studies. However, due to the substantial differences in immune system between mice and humans, the conventional mouse studies are not predictive of success in humans, in which case humanized mice may overcome this limitation to some extent. Humanized mice can be used to study the human-specific virulence factors produced by S. aureus and the mechanisms by which S. aureus interacts with humans. This review outlined the latest advances in humanized mouse models used in S. aureus studies.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Hung S, Kasperkowitz A, Kurz F, Dreher L, Diessner J, Ibrahim ES, Schwarz S, Ohlsen K, Hertlein T. Next-generation humanized NSG-SGM3 mice are highly susceptible to Staphylococcus aureus infection. Front Immunol 2023; 14:1127709. [PMID: 36969151 PMCID: PMC10037040 DOI: 10.3389/fimmu.2023.1127709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Humanized hemato-lymphoid system mice, or humanized mice, emerged in recent years as a promising model to study the course of infection of human-adapted or human-specific pathogens. Though Staphylococcus aureus infects and colonizes a variety of species, it has nonetheless become one of the most successful human pathogens of our time with a wide armory of human-adapted virulence factors. Humanized mice showed increased vulnerability to S. aureus compared to wild type mice in a variety of clinically relevant disease models. Most of these studies employed humanized NSG (NOD-scid IL2Rgnull) mice which are widely used in the scientific community, but show poor human myeloid cell reconstitution. Since this immune cell compartment plays a decisive role in the defense of the human immune system against S. aureus, we asked whether next-generation humanized mice, like NSG-SGM3 (NOD-scid IL2Rgnull-3/GM/SF) with improved myeloid reconstitution, would prove to be more resistant to infection. To our surprise, we found the contrary when we infected humanized NSG-SGM3 (huSGM3) mice with S. aureus: although they had stronger human immune cell engraftment than humanized NSG mice, particularly in the myeloid compartment, they displayed even more pronounced vulnerability to S. aureus infection. HuSGM3 mice had overall higher numbers of human T cells, B cells, neutrophils and monocytes in the blood and the spleen. This was accompanied by elevated levels of pro-inflammatory human cytokines in the blood of huSGM3 mice. We further identified that the impaired survival of huSGM3 mice was not linked to higher bacterial burden nor to differences in the murine immune cell repertoire. Conversely, we could demonstrate a correlation of the rate of humanization and the severity of infection. Collectively, this study suggests a detrimental effect of the human immune system in humanized mice upon encounter with S. aureus which might help to guide future therapy approaches and analysis of virulence mechanisms.
Collapse
Affiliation(s)
- Sophia Hung
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Amelie Kasperkowitz
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Florian Kurz
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Liane Dreher
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Joachim Diessner
- Department for Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - Eslam S. Ibrahim
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Tobias Hertlein
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- *Correspondence: Tobias Hertlein,
| |
Collapse
|
6
|
Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, Lee JYH, Hachani A, Monk IR, Stinear TP. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol 2023; 21:380-395. [PMID: 36707725 PMCID: PMC9882747 DOI: 10.1038/s41579-023-00852-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Invasive Staphylococcus aureus infections are common, causing high mortality, compounded by the propensity of the bacterium to develop drug resistance. S. aureus is an excellent case study of the potential for a bacterium to be commensal, colonizing, latent or disease-causing; these states defined by the interplay between S. aureus and host. This interplay is multidimensional and evolving, exemplified by the spread of S. aureus between humans and other animal reservoirs and the lack of success in vaccine development. In this Review, we examine recent advances in understanding the S. aureus-host interactions that lead to infections. We revisit the primary role of neutrophils in controlling infection, summarizing the discovery of new immune evasion molecules and the discovery of new functions ascribed to well-known virulence factors. We explore the intriguing intersection of bacterial and host metabolism, where crosstalk in both directions can influence immune responses and infection outcomes. This Review also assesses the surprising genomic plasticity of S. aureus, its dualism as a multi-mammalian species commensal and opportunistic pathogen and our developing understanding of the roles of other bacteria in shaping S. aureus colonization.
Collapse
Affiliation(s)
- Benjamin P. Howden
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.410678.c0000 0000 9374 3516Department of Infectious Diseases, Austin Health, Heidelberg, Victoria Australia ,grid.416153.40000 0004 0624 1200Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria Australia
| | - Stefano G. Giulieri
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.416153.40000 0004 0624 1200Victorian Infectious Diseases Service, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Tania Wong Fok Lung
- grid.21729.3f0000000419368729Department of Paediatrics, Columbia University, New York, NY USA
| | - Sarah L. Baines
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Liam K. Sharkey
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Jean Y. H. Lee
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.419789.a0000 0000 9295 3933Department of Infectious Diseases, Monash Health, Clayton, Victoria Australia
| | - Abderrahman Hachani
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Ian R. Monk
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Timothy P. Stinear
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| |
Collapse
|
7
|
Jing W, Guo D, Ning Z, Yang Y, Liu T, Wang M, Gao H. New polyphenolic glycosides from the stems of Caesalpinia cucullata and their inhibitory effect on methicillin-resistant Staphylococcus aureus with different ways. Bioorg Chem 2022; 129:106193. [DOI: 10.1016/j.bioorg.2022.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
|
8
|
Oral toxicity evaluation of genetically modified lactic acid bacteria in three generations of Sprague Dawley rats. Food Chem Toxicol 2022; 167:113280. [PMID: 35817259 DOI: 10.1016/j.fct.2022.113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Genetic modification has great advantages in improving performance of bacteria, but its oral safety has not been systematically evaluated. In this study, the toxicity including the reproductive toxicity of two genetically modified bacteria engineered using food-grade vectors on three generations of rats (F0, F1 and F2) were studied. Sprague Dawley rats were administrated by gavage with corresponding parent and genetically modified Lactobacillus plantarum and Lactobacillus delbrueckii at 2.5 × 10 9 CFU every other day for 8 weeks. Results showed that the transgenic Lactobacillus had no significant toxicity to the body weight, food intake or blood biochemical parameters of three generations of rats. There was no significant effect on the reproductive parameters (gestational weight and pregnancy time) and related hormones (FSH, LH, estradiol, progesterone and testosterone) of the parent rats (F0 and F1). Consistently, their offsprings had no abnormal physical conditions including body weight, body length and anogenital distances. Moreover, their pups had normal body organ weight and reasonable abnormal sperm rate. Further analyses were conducted to evaluate SOD, MDA and GPX of the ovarium in the F1 and F2 female rats, which showed no malady phenotypes. In conclusion, transgenic Lactobacillus has no toxicity to the three generations of rats.
Collapse
|
9
|
Hung S, Dreher L, Diessner J, Schwarz S, Ohlsen K, Hertlein T. MRSA Infection in the Thigh Muscle Leads to Systemic Disease, Strong Inflammation, and Loss of Human Monocytes in Humanized Mice. Front Immunol 2022; 13:892053. [PMID: 35795674 PMCID: PMC9251014 DOI: 10.3389/fimmu.2022.892053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
MRSA (Methicillin-resistant Staphylococcus aureus) is the second-leading cause of deaths by antibiotic-resistant bacteria globally, with more than 100,000 attributable deaths annually. Despite the high urgency to develop a vaccine to control this pathogen, all clinical trials with pre-clinically effective candidates failed so far. The recent development of “humanized” mice might help to edge the pre-clinical evaluation closer to the clinical situation and thus close this gap. We infected humanized NSG mice (huNSG: (NOD)-scid IL2Rγnull mice engrafted with human CD34+ hematopoietic stem cells) locally with S. aureus USA300 LAC* lux into the thigh muscle in order to investigate the human immune response to acute and chronic infection. These mice proved not only to be more susceptible to MRSA infection than wild-type or “murinized” mice, but displayed furthermore inferior survival and signs of systemic infection in an otherwise localized infection model. The rate of humanization correlated directly with the severity of disease and survival of the mice. Human and murine cytokine levels in blood and at the primary site of infection were strongly elevated in huNSG mice compared to all control groups. And importantly, differences in human and murine immune cell lineages surfaced during the infection, with human monocyte and B cell numbers in blood and bone marrow being significantly reduced at the later time point of infection. Murine monocytes in contrast behaved conversely by increasing cell numbers. This study demonstrates significant differences in the in vivo behavior of human and murine cells towards S. aureus infection, which might help to sharpen the translational potential of pre-clinical models for future therapeutic approaches.
Collapse
Affiliation(s)
- Sophia Hung
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Liane Dreher
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Joachim Diessner
- Department of Obstetrics and Gynaecology, University Hospital of Würzburg, Würzburg, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- *Correspondence: Tobias Hertlein,
| |
Collapse
|
10
|
Barua N, Yang Y, Huang L, Ip M. VraSR Regulatory System Contributes to the Virulence of Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) in a 3D-Skin Model and Skin Infection of Humanized Mouse Model. Biomedicines 2021; 10:biomedicines10010035. [PMID: 35052714 PMCID: PMC8772825 DOI: 10.3390/biomedicines10010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
The vancomycin-resistance associated sensor/regulator, VraSR two-component regulatory-system (VraSR), regulates virulence and the response of Staphylococcus aureus (SA) to environmental stress. To investigate the role of VraSR in SA skin and soft tissue infections (SSTI), we inactivated the VraSR of a clinical CA-MRSA ST30 strain by insertional mutation in vraR gene using the TargeTron-Gene Knockout System. We constructed an organotypic keratinocyte fibroblast co-culture (3D-skin model) and a humanized mouse as SSTI infection models. In the 3D-skin model, inactivation of VraSR in the strains ST30 and USA300 showed 1-log reduction in adhesion and internalization (p < 0.001) compared to the respective wildtype. The mutant strains of ST30 (p < 0.05) and USA300-LAC (p < 0.001) also exhibited reduced apoptosis. The wildtype ST30 infection in the humanized mouse model demonstrated increased skin lesion size and bacterial burden compared to BALB/c mice (p < 0.01). The response of the humanized mouse towards the MRSA infection exhibited human similarity indicating that the humanized mouse SSTI model is more suitable for evaluating the role of virulence determinants. Inactivation of VraSR in ST30 strain resulted in decreased skin lesion size in the humanized mouse SSTI model (p < 0.05) and reduction in apoptotic index (p < 0.01) when compared with the wildtype. Our results reveal that inactivating the VraSR system may be a potent anti-virulence approach to control MRSA infection.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong 999077, China; (N.B.); (Y.Y.)
| | - Ying Yang
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong 999077, China; (N.B.); (Y.Y.)
| | - Lin Huang
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong 999077, China;
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong 999077, China; (N.B.); (Y.Y.)
- Correspondence:
| |
Collapse
|
11
|
Alphonse MP, Rubens JH, Ortines RV, Orlando NA, Patel AM, Dikeman D, Wang Y, Vuong I, Joyce DP, Zhang J, Mumtaz M, Liu H, Liu Q, Youn C, Patrick GJ, Ravipati A, Miller RJ, Archer NK, Miller LS. Pan-caspase inhibition as a potential host-directed immunotherapy against MRSA and other bacterial skin infections. Sci Transl Med 2021; 13:13/601/eabe9887. [PMID: 34233954 DOI: 10.1126/scitranslmed.abe9887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/02/2021] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
Staphylococcus aureus causes most skin infections in humans, and the emergence of methicillin-resistant S. aureus (MRSA) strains is a serious public health threat. There is an urgent clinical need for nonantibiotic immunotherapies to treat MRSA infections and prevent the spread of antibiotic resistance. Here, we investigated the pan-caspase inhibitor quinoline-valine-aspartic acid-difluorophenoxymethyl ketone (Q-VD-OPH) for efficacy against MRSA skin infection in mice. A single systemic dose of Q-VD-OPH decreased skin lesion sizes and reduced bacterial burden compared with vehicle-treated or untreated mice. Although Q-VD-OPH inhibited inflammasome-dependent apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC) speck formation and caspase-1-mediated interleukin-1β (IL-1β) production, Q-VD-OPH maintained efficacy in mice deficient in IL-1β, ASC, caspase-1, caspase-11, or gasdermin D. Thus, Q-VD-OPH efficacy was independent of inflammasome-mediated pyroptosis. Rather, Q-VD-OPH reduced apoptosis of monocytes and neutrophils. Moreover, Q-VD-OPH enhanced necroptosis of macrophages with concomitant increases in serum TNF and TNF-producing neutrophils, monocytes/macrophages, and neutrophils in the infected skin. Consistent with this, Q-VD-OPH lacked efficacy in mice deficient in TNF (with associated reduced neutrophil influx and necroptosis), in mice deficient in TNF/IL-1R and anti-TNF antibody-treated WT mice. In vitro studies revealed that combined caspase-3, caspase-8, and caspase-9 inhibition reduced apoptosis, and combined caspase-1, caspase-8, and caspase-11 inhibition increased TNF, suggesting a mechanism for Q-VD-OPH efficacy in vivo. Last, Q-VD-OPH also had a therapeutic effect against Streptococcus pyogenes and Pseudomonas aeruginosa skin infections in mice. Collectively, pan-caspase inhibition represents a potential host-directed immunotherapy against MRSA and other bacterial skin infections.
Collapse
Affiliation(s)
- Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jessica H Rubens
- Divison of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nicholas A Orlando
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aman M Patel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ivan Vuong
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniel P Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jeffrey Zhang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mohammed Mumtaz
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Garrett J Patrick
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Advaitaa Ravipati
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
12
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
13
|
Muthukrishnan G, Wallimann A, Rangel-Moreno J, Bentley KLDM, Hildebrand M, Mys K, Kenney HM, Sumrall ET, Daiss JL, Zeiter S, Richards RG, Schwarz EM, Moriarty TF. Humanized Mice Exhibit Exacerbated Abscess Formation and Osteolysis During the Establishment of Implant-Associated Staphylococcus aureus Osteomyelitis. Front Immunol 2021; 12:651515. [PMID: 33815412 PMCID: PMC8012494 DOI: 10.3389/fimmu.2021.651515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is the predominant pathogen causing osteomyelitis. Unfortunately, no immunotherapy exists to treat these very challenging and costly infections despite decades of research, and numerous vaccine failures in clinical trials. This lack of success can partially be attributed to an overreliance on murine models where the immune correlates of protection often diverge from that of humans. Moreover, S. aureus secretes numerous immunotoxins with unique tropism to human leukocytes, which compromises the targeting of immune cells in murine models. To study the response of human immune cells during chronic S. aureus bone infections, we engrafted non-obese diabetic (NOD)-scid IL2Rγnull (NSG) mice with human hematopoietic stem cells (huNSG) and analyzed protection in an established model of implant-associated osteomyelitis. The results showed that huNSG mice have increases in weight loss, osteolysis, bacterial dissemination to internal organs, and numbers of Staphylococcal abscess communities (SACs), during the establishment of implant-associated MRSA osteomyelitis compared to NSG controls (p < 0.05). Flow cytometry and immunohistochemistry demonstrated greater human T cell numbers in infected versus uninfected huNSG mice (p < 0.05), and that T-bet+ human T cells clustered around the SACs, suggesting S. aureus-mediated activation and proliferation of human T cells in the infected bone. Collectively, these proof-of-concept studies underscore the utility of huNSG mice for studying an aggressive form of S. aureus osteomyelitis, which is more akin to that seen in humans. We have also established an experimental system to investigate the contribution of specific human T cells in controlling S. aureus infection and dissemination.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | - Alexandra Wallimann
- AO Research Institute Davos, Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Karen Mys
- AO Research Institute Davos, Davos, Switzerland
| | - H Mark Kenney
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | - John L Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | | | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | |
Collapse
|
14
|
Qiu B, Cobb J, Loiselle AE, Ketonis C. Development of a Murine Model of Pyogenic Flexor Tenosynovitis. J Bone Joint Surg Am 2021; 103:432-438. [PMID: 33411464 DOI: 10.2106/jbjs.20.00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Pyogenic flexor tenosynovitis is a debilitating infection of the hand flexor tendon sheath with high morbidity despite standard treatments of empiric antibiotics with irrigation and debridement. In vivo studies in the available literature have used avian models, but these models are difficult to scale and maintain. The purpose of this study was to demonstrate the plausibility of a murine model of pyogenic flexor tenosynovitis utilizing bioluminescence imaging and tissue analysis at harvest. METHODS A 2-μL inoculate of bioluminescent Xen29 Staphylococcus aureus or sterile phosphate-buffered saline solution (sPBS) was administered to the tendon sheath of 36 male C57BL/6J mice. The infectious course was monitored by bioluminescence imaging (BLI) via an in vivo imaging system, gross anatomic deformity, and weight change. The infected hind paws were harvested at 4 time points: 24 hours, 72 hours, 1 week, and 2 weeks for histological analysis using Alcian blue, hematoxylin, and Orange-G staining. Two-way analysis of variance with the Sidak multiple comparison test was used to assess differences in bioluminescence and weight at each time point. RESULTS The infected cohort displayed significantly elevated bioluminescence values, had reductions in weight, and exhibited swelling of the infected digit throughout the course of infection. By day 4, most infected mice saw a substantial decrease in BLI signal intensity; however, 2 infected mice exhibited persistent BLI intensity through day 14. Histological analysis of the infected cohort showed tissue disorganization and the presence of a cellular infiltrate in and around the flexor tendon sheath. CONCLUSIONS A murine model of pyogenic flexor tenosynovitis is possible and can serve as an experimental platform for further investigation of the pathophysiology of pyogenic flexor tenosynovitis. CLINICAL RELEVANCE This animal model can be utilized in elucidating the basic molecular and/or cellular mechanisms of pyogenic flexor tenosynovitis while simultaneously evaluating novel therapeutic strategies.
Collapse
Affiliation(s)
- Bowen Qiu
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York
| | | | | | | |
Collapse
|
15
|
Laudanski K. Humanized Mice as a Tool to Study Sepsis-More Than Meets the Eye. Int J Mol Sci 2021; 22:2403. [PMID: 33673691 PMCID: PMC7957591 DOI: 10.3390/ijms22052403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background. Repetitive animal studies that have disappointed upon translation into clinical therapies have led to an increased appreciation of humanized mice as a remedy to the shortcomings of rodent-based models. However, their limitations have to be understood in depth. (2) Methods. This is a narrative, comprehensive review of humanized mice and sepsis literature to understand the model's benefits and shortcomings. (3) Results: Studies involving humanized models of sepsis include bacterial, viral, and protozoan etiology. Humanized mice provided several unique insights into the etiology and natural history of sepsis and are particularly useful in studying Ebola, and certain viral and protozoan infections. However, studies are relatively sparse and based on several different models of sepsis and humanized animals. (4) Conclusions. The utilization of humanized mice as a model for sepsis presents complex limitations that, once surpassed, hold some potential for the advancement of sepsis etiology and treatment.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, Department of Neurology, Leonard Davis Institute of Healthcare Economics, University of Pennsylvania, Philadelphia, PA 19194, USA
| |
Collapse
|
16
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|
17
|
Tromp AT, van Strijp JAG. Studying Staphylococcal Leukocidins: A Challenging Endeavor. Front Microbiol 2020; 11:611. [PMID: 32351474 PMCID: PMC7174503 DOI: 10.3389/fmicb.2020.00611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is a well-known colonizer of the human skin and nose, but also a human pathogen that causes a wide spectrum of diseases. It is well established that S. aureus secretes an arsenal of virulence factors that have evolved to circumvent the human immune system. A major group of S. aureus virulence factors is the bi-component β-barrel pore-forming toxins, also known as leukocidins. These pore-forming toxins target specific cells of the innate and adaptive immune system by interacting with specific receptors expressed on the cell membrane. Even though still heavily debated, clinical and epidemiological studies suggest the involvement of one of the bi-component toxin, Panton-Valentine Leukocidin (PVL), as an important factor contributing to the epidemic spread and increased virulence of CA-MRSA strains. However, the host- and cell-specificity of PVL and other leukocidins, and the lack of adequate in vivo models, fuels the controversy and impairs the appropriate assessment of their role in S. aureus pathophysiology. Currently, the mechanisms of pore-formation and the contribution of PVL and other leukocidins to S. aureus pathophysiology are incompletely understood. This review summarizes our current understanding of leukocidin pore-formation, knowledge gaps, and highlights recent findings identifying novel host-factors involved in the toxin-host interface. As a result, this review furthers emphasizes the complexity behind S. aureus leukocidin cytotoxicity and the challenges associated in the quest to study and understand these major virulence factors.
Collapse
Affiliation(s)
- Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
18
|
Alisjahbana A, Mohammad I, Gao Y, Evren E, Ringqvist E, Willinger T. Human macrophages and innate lymphoid cells: Tissue-resident innate immunity in humanized mice. Biochem Pharmacol 2019; 174:113672. [PMID: 31634458 DOI: 10.1016/j.bcp.2019.113672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
Macrophages and innate lymphoid cells (ILCs) are tissue-resident cells that play important roles in organ homeostasis and tissue immunity. Their intricate relationship with the organs they reside in allows them to quickly respond to perturbations of organ homeostasis and environmental challenges, such as infection and tissue injury. Macrophages and ILCs have been extensively studied in mice, yet important species-specific differences exist regarding innate immunity between humans and mice. Complementary to ex-vivo studies with human cells, humanized mice (i.e. mice with a human immune system) offer the opportunity to study human macrophages and ILCs in vivo within their surrounding tissue microenvironments. In this review, we will discuss how humanized mice have helped gain new knowledge about the basic biology of these cells, as well as their function in infectious and malignant conditions. Furthermore, we will highlight active areas of investigation related to human macrophages and ILCs, such as their cellular heterogeneity, ontogeny, tissue residency, and plasticity. In the near future, we expect more fundamental discoveries in these areas through the combined use of improved humanized mouse models together with state-of-the-art technologies, such as single-cell RNA-sequencing and CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Imran Mohammad
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Elza Evren
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Emma Ringqvist
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden.
| |
Collapse
|
19
|
Skirecki T, Drechsler S, Hoser G, Jafarmadar M, Siennicka K, Pojda Z, Kawiak J, Osuchowski MF. The Fluctuations of Leukocytes and Circulating Cytokines in Septic Humanized Mice Vary With Outcome. Front Immunol 2019; 10:1427. [PMID: 31297113 PMCID: PMC6607920 DOI: 10.3389/fimmu.2019.01427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Sepsis remains a major challenge in translational research given its heterogeneous pathophysiology and the lack of specific therapeutics. The use of humanized mouse chimeras with transplanted human hematopoietic cells may improve the clinical relevance of pre-clinical studies. However, knowledge of the human immuno-inflammatory response during sepsis in humanized mice is scarce; it is unclear how similar or divergent mouse and human-origin immuno-inflammatory responses in sepsis are. In this study, we evaluated the early outcome-dependent immuno-inflammatory response in humanized mice generated in the NSG strain after cecal ligation and puncture (CLP) sepsis. Mice were observed for 32 h post-CLP and were assigned to either predicted-to-die (P-DIE) or predicted-to-survive (P-SUR) groups for retrospective comparisons. Blood samples were collected at baseline, 6 and 24 h, whereas the bone marrow and spleen were collected between 24 and 32 h post-CLP. In comparison to P-SUR, P-DIE humanized mice had a 3-fold higher frequency of human splenic monocytes and their CD80 expression was reduced by 1.3-fold; there was no difference in the HLA-DR expression. Similarly, the expression of CD80 on the bone marrow monocytes from P-DIE mice was decreased by 32% (p < 0.05). Sepsis induced a generalized up-regulation of both human and murine plasma cytokines (TNFα, IL-6, IL-10, IL-8/KC, MCP-1); it was additionally aggravated in P-DIE vs. P-SUR. Human cytokines were strongly overridden by the murine ones (approx. ratio 1:9) but human TNFα was 7-fold higher than mouse TNFα. Interestingly, transplantation of human cells did not influence murine cytokine response in NSG mice, but humanized NSG mice were more susceptible to sepsis in comparison with NSG mice (79 vs. 33% mortality; p < 0.05). In conclusion, our results show that humanized mice reflect selected aspects of human immune responses in sepsis and therefore may be a feasible alternative in preclinical immunotherapy modeling.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Grazyna Hoser
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Jerzy Kawiak
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| |
Collapse
|
20
|
Abstract
Human immune system (HIS) mice are created by transplanting human immune cells or their progenitor cells into highly immunodeficient recipient mouse hosts, thereby "humanizing" their immune systems. Over past decades, the field of HIS mice has evolved rapidly, as modifications of existing immunodeficient mouse strains have been developed, resulting in increasing levels of human tissue engraftment as humanization is optimized. Current HIS mouse models not only permit elevated levels of human cell engraftment but also demonstrate graft stability. As such, HIS mice are being extensively used to study the human innate and adaptive immune response against microbial infections in vivo. Compared to nonhumanized animal models, which are frequently infected with surrogate or adapted microbes, the HIS mouse models allow the analysis of interactions between human immune cells and bona fide pathogenic microbes, making them a more clinically relevant model. This article reviews the development of HIS mice and covers the different strategies used to humanize mice, as well as discussing the use of HIS mice for studying bacterial infections that cause human disease.
Collapse
|
21
|
Buchan KD, Foster SJ, Renshaw SA. Staphylococcus aureus: setting its sights on the human innate immune system. MICROBIOLOGY-SGM 2019; 165:367-385. [PMID: 30625113 DOI: 10.1099/mic.0.000759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus has colonized humans for at least 10 000 years, and today inhabits roughly a third of the population. In addition, S. aureus is a major pathogen that is responsible for a significant disease burden, ranging in severity from mild skin and soft-tissue infections to life-threatening endocarditis and necrotizing pneumonia, with treatment often hampered by resistance to commonly available antibiotics. Underpinning its versatility as a pathogen is its ability to evade the innate immune system. S. aureus specifically targets innate immunity to establish and sustain infection, utilizing a large repertoire of virulence factors to do so. Using these factors, S. aureus can resist phagosomal killing, impair complement activity, disrupt cytokine signalling and target phagocytes directly using proteolytic enzymes and cytolytic toxins. Although most of these virulence factors are well characterized, their importance during infection is less clear, as many display species-specific activity against humans or against animal hosts, including cows, horses and chickens. Several staphylococcal virulence factors display species specificity for components of the human innate immune system, with as few as two amino acid changes reducing binding affinity by as much as 100-fold. This represents a major issue for studying their roles during infection, which cannot be examined without the use of humanized infection models. This review summarizes the major factors S. aureus uses to impair the innate immune system, and provides an in-depth look into the host specificity of S. aureus and how this problem is being approached.
Collapse
Affiliation(s)
- Kyle D Buchan
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Simon J Foster
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Stephen A Renshaw
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
22
|
Trübe P, Hertlein T, Mrochen DM, Schulz D, Jorde I, Krause B, Zeun J, Fischer S, Wolf SA, Walther B, Semmler T, Bröker BM, Ulrich RG, Ohlsen K, Holtfreter S. Bringing together what belongs together: Optimizing murine infection models by using mouse-adapted Staphylococcus aureus strains. Int J Med Microbiol 2018; 309:26-38. [PMID: 30391222 DOI: 10.1016/j.ijmm.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/05/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus (S.) aureus is a leading cause of bacterial infection world-wide, and currently no vaccine is available for humans. Vaccine development relies heavily on clinically relevant infection models. However, the suitability of mice for S. aureus infection models has often been questioned, because experimental infection of mice with human-adapted S. aureus requires very high infection doses. Moreover, mice were not considered to be natural hosts of S. aureus. The latter has been disproven by our recent findings, showing that both laboratory mice, as well as wild small mammals including mice, voles, and shrews, are naturally colonized with S. aureus. Here, we investigated whether mouse-and vole-derived S. aureus strains show an enhanced virulence in mice as compared to the human-adapted strain Newman. Using a step-wise approach based on the bacterial genotype and in vitro assays for host adaptation, we selected the most promising candidates for murine infection models out of a total of 254 S. aureus isolates from laboratory mice as well as wild rodents and shrews. Four strains representing the clonal complexes (CC) 8, 49, and 88 (n = 2) were selected and compared to the human-adapted S. aureus strain Newman (CC8) in murine pneumonia and bacteremia models. Notably, a bank vole-derived CC49 strain, named DIP, was highly virulent in BALB/c mice in pneumonia and bacteremia models, whereas the other murine and vole strains showed virulence similar to or lower than that of Newman. At one tenth of the standard infection dose DIP induced disease severity, bacterial load and host cytokine and chemokine responses in the murine bacteremia model similar to that of Newman. In the pneumonia model, DIP was also more virulent than Newman but the effect was less pronounced. Whole genome sequencing data analysis identified a pore-forming toxin gene, lukF-PV(P83)/lukM, in DIP but not in the other tested S. aureus isolates. To conclude, the mouse-adapted S. aureus strain DIP allows a significant reduction of the inoculation dose in mice and is hence a promising tool to develop clinically more relevant infection models.
Collapse
Affiliation(s)
- Patricia Trübe
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Germany
| | - Daniel M Mrochen
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Daniel Schulz
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Ilka Jorde
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Bettina Krause
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Julia Zeun
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Silver A Wolf
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Germany
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
23
|
Laudanski K, Stentz M, DiMeglio M, Furey W, Steinberg T, Patel A. Potential Pitfalls of the Humanized Mice in Modeling Sepsis. Int J Inflam 2018; 2018:6563454. [PMID: 30245803 PMCID: PMC6139216 DOI: 10.1155/2018/6563454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 01/30/2023] Open
Abstract
Humanized mice are a state-of-the-art tool used to study several diseases, helping to close the gap between mice and human immunology. This review focuses on the potential obstacles in the analysis of immune system performance between humans and humanized mice in the context of severe acute inflammation as seen in sepsis or other critical care illnesses. The extent to which the reconstituted human immune system in mice adequately compares to the performance of the human immune system in human hosts is still an evolving question. Although certain viral and protozoan infections can be replicated in humanized mice, whether a highly complex and dynamic systemic inflammation like sepsis can be accurately represented by current humanized mouse models in a clinically translatable manner is unclear. Humanized mice are xenotransplant animals in the most general terms. Several organs (e.g., bone marrow mesenchymal cells, endothelium) cannot interact with the grafted human leukocytes effectively due to species specificity. Also the interaction between mice gut flora and the human immune system may be paradoxical. Often, grafting is performed utilizing an identical batch of stem cells in highly inbred animals which fails to account for human heterogeneity. Limiting factors include the substantial cost and restricting supply of animals. Finally, humanized mice offer an opportunity to gain knowledge of human-like conditions, requiring careful data interpretation just as in nonhumanized animals.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Stentz
- Department of Anesthesiology and Intensive Care, Emory University, Atlanta, GA 30322, USA
| | - Matthew DiMeglio
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - William Furey
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Toby Steinberg
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpit Patel
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Efficacy of Aloe vera, Ananas comosus, and Sansevieria masoniana Cream on the Skin Wound Infected with MRSA. Adv Pharmacol Sci 2018; 2018:4670569. [PMID: 29849604 PMCID: PMC5933069 DOI: 10.1155/2018/4670569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
The tropical area has a lot of herbal medicines such as Aloe vera (AV), Ananas comosus (AC), and Sansevieria masoniana (SM). All the three have a unique potential effect as an antibacterial and wound-healing promoter. The aim of this study is to explore the role of AV, AC, and SM on the skin wound infected with methicillin-resistant Staphylococcus aureus (MRSA). Forty-five adult female Sprague Dawley rats weighing 250–300 grams were divided into 5 groups. All the groups were exposed to two round full-thickness punch biopsy and infected with MRSA. The group C was the control group/untreated; group BC was treated with base cream/without extract; group AV was treated with 75% AV cream; group AC was treated with 75% AC cream, and group SM was treated with 75% SM cream. The wounds were observed on days 5, 10, and 15. The healing of skin wounds was measured by a percentage of closure, skin tensile strength, and histopathology. The result showed that AV, AC, and SM have a similar potential effect on healing in the wound that was infected with MRSA compared to the groups C and BC (P < 0.05). It shows that all the three herbal formulations can be used as the alternative therapy to the wound infected with MRSA.
Collapse
|
25
|
Thomsen IP, Liu GY. Targeting fundamental pathways to disrupt Staphylococcus aureus survival: clinical implications of recent discoveries. JCI Insight 2018. [PMID: 29515041 DOI: 10.1172/jci.insight.98216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of community-associated methicillin-resistant Staphylococcus aureus during the past decade along with an impending shortage of effective antistaphylococcal antibiotics have fueled impressive advances in our understanding of how S. aureus overcomes the host environment to establish infection. Backed by recent technologic advances, studies have uncovered elaborate metabolic, nutritional, and virulence strategies deployed by S. aureus to survive the restrictive and hostile environment imposed by the host, leading to a plethora of promising antimicrobial approaches that have potential to remedy the antibiotic resistance crisis. In this Review, we highlight some of the critical and recently elucidated bacterial strategies that are potentially amenable to intervention, discuss their relevance to human diseases, and address the translational challenges posed by current animal models.
Collapse
Affiliation(s)
- Isaac P Thomsen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, and Vanderbilt Vaccine Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George Y Liu
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
26
|
Wang S, Wang Q, Zeng X, Ye Q, Huang S, Yu H, Yang T, Qiao S. Use of the Antimicrobial Peptide Sublancin with Combined Antibacterial and Immunomodulatory Activities To Protect against Methicillin-Resistant Staphylococcus aureus Infection in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8595-8605. [PMID: 28906115 DOI: 10.1021/acs.jafc.7b02592] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the major pathogen causing serious hospital infections worldwide. With the emergence and rapid spread of drug-resistant bacteria, there is extraordinary interest in antimicrobial peptides (AMPs) as promising candidates for the treatment of antibiotic-resistant bacterial infections. Sublancin, a glycosylated AMP produced by Bacillus subtilis 168, has been reported to possess protective activity against bacterial infection. This study was performed to evaluate the efficacy of sublancin in the prevention of MRSA ATCC43300 intraperitoneal infection in mice. We determined that sublancin had a minimal inhibitory concentration of 15 μM against MRSA ATCC43300. The antimicrobial action of sublancin involved the destruction of the bacterial cell wall. Dosing of mice with sublancin greatly alleviated (p < 0.05) the bacterial burden caused by MRSA intraperitoneal infection and considerably reduced the mortality and weight loss (19.2 ± 0.62 g vs 20.6 ± 0.63 g for MRSA vs 2.0 mg/kg sublancin, respectively, on day 3) of MRSA-challenged mice (p < 0.05). Sublancin was further found to balance the immune response during infection and relieve intestinal inflammation through inhibition of NF-κB activation (p < 0.01). With their combined antibacterial and immunomodulatory activities, sublancin may have potent therapeutic potential for drug-resistant infections and sepsis.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
- Department of Animal Nutrition and Feed Science, College of Animal Science & Technology, Huazhong Agricultural University , Wuhan, Hubei 430070, China
| | - Qingwei Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Tianren Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University , Beijing 100193, China
| |
Collapse
|
27
|
Prince A, Wang H, Kitur K, Parker D. Humanized Mice Exhibit Increased Susceptibility to Staphylococcus aureus Pneumonia. J Infect Dis 2017; 215:1386-1395. [PMID: 27638942 DOI: 10.1093/infdis/jiw425] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a highly successful human pathogen that has evolved in response to human immune pressure. The common USA300 methicillin-resistant S. aureus (MRSA) strains express a number of toxins, such as Panton-Valentine leukocidin and LukAB, that have specificity for human receptors. Using nonobese diabetic (NOD)-scid IL2Rγnull (NSG) mice reconstituted with a human hematopoietic system, we were able to discriminate the roles of these toxins in the pathogenesis of pneumonia. We demonstrate that expression of human immune cells confers increased severity of USA300 infection. The expression of PVL but not LukAB resulted in more-severe pulmonary infection by the wild-type strain (with a 30-fold increase in the number of colony-forming units/mL; P < .01) as compared to infection with the lukS/F-PV (Δpvl) mutant. Treatment of mice with anti-PVL antibody also enhanced bacterial clearance. We found significantly greater numbers (by 95%; P < .05) of macrophages in the airways of mice infected with the Δpvl mutant compared with those infected with the wild-type strain, as well as significantly greater expression of human tumor necrosis factor and interleukin 6 (84% and 51% respectively; P < .01). These results suggest that the development of humanized mice may provide a framework to assess the contribution of human-specific toxins and better explore the roles of specific components of the human immune system in protection from S. aureus infection.
Collapse
Affiliation(s)
- Alice Prince
- Department Pediatrics
- Department of Pharmacology, and
| | - Hui Wang
- Humanized Mouse Core Facility, Columbia Center for Translational Immunology, Columbia University, New York
| | | | | |
Collapse
|
28
|
de Carvalho Dias K, Barbugli PA, de Patto F, Lordello VB, de Aquino Penteado L, Medeiros AI, Vergani CE. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response. BMC Microbiol 2017; 17:146. [PMID: 28666415 PMCID: PMC5493077 DOI: 10.1186/s12866-017-1031-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Background The objective of this study was to better understand the effects of soluble factors from biofilm of single- and mixed-species Candida albicans (C. albicans) and methicillin-sensitive Staphylococcus aureus (MSSA) cultures after 36 h in culture on keratinocytes (NOK-si and HaCaT) and macrophages (J774A.1). Soluble factors from biofilms of C. albicans and MSSA were collected and incubated with keratinocytes and macrophages, which were subsequently evaluated by cell viability assays (MTT). Lactate dehydrogenase (LDH) enzyme release was measured to assess cell membrane damage to keratinocytes. Cells were analysed by brightfield microscopy after 2 and 24 h of exposure to the soluble factors from biofilm. Cell death was detected by labelling apoptotic cells with annexin V and necrotic cells with propidium iodide (PI) and was visualized via fluorescence microscopy. Soluble factors from biofilm were incubated with J774A.1 cells for 24 h; the subsequent production of NO and the cytokines IL-6 and TNF-α was measured by ELISA. Results The cell viability assays showed that the soluble factors of single-species C. albicans cultures were as toxic as the soluble factors from biofilm of mixed cultures, whereas the soluble factors of MSSA cultures were less toxic than those of C. albicans or mixed cultures. The soluble factors from biofilm of mixed cultures were the most toxic to the NOK-si and HaCaT cells, as confirmed by analyses of PI labelling and cell morphology. Soluble factors from biofilm of single-species MSSA and mixed-species cultures induced the production of IL-6, NO and TNF-α by J744A.1 macrophages. The production of IL-6 and NO induced by the soluble factors from biofilm of mixed cultures was lower than that induced by the soluble factors from biofilm of single-species MSSA cultures, whereas the soluble factors from biofilm of C. albicans cultures induced only low levels of NO. Conclusions Soluble factors from 36-h-old biofilm of C. albicans and MSSA cultures promoted cell death and inflammatory responses.
Collapse
Affiliation(s)
- Kassia de Carvalho Dias
- Department of Dental Materials and Prosthodontics, Oral Rehabilitation Program-Araraquara School of Dentistry UNESP-Univ. Estadual Paulista, Centro, Araraquara, SP, 14801903, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, Oral Rehabilitation Program-Araraquara School of Dentistry UNESP-Univ. Estadual Paulista, Centro, Araraquara, SP, 14801903, Brazil
| | - Fernanda de Patto
- Department of Dental Materials and Prosthodontics, Oral Rehabilitation Program-Araraquara School of Dentistry UNESP-Univ. Estadual Paulista, Centro, Araraquara, SP, 14801903, Brazil
| | - Virginia Barreto Lordello
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Letícia de Aquino Penteado
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Alexandra Ivo Medeiros
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, Oral Rehabilitation Program-Araraquara School of Dentistry UNESP-Univ. Estadual Paulista, Centro, Araraquara, SP, 14801903, Brazil.
| |
Collapse
|
29
|
Parker D. Humanized Mouse Models of Staphylococcus aureus Infection. Front Immunol 2017; 8:512. [PMID: 28523002 PMCID: PMC5415562 DOI: 10.3389/fimmu.2017.00512] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is a successful human pathogen that has adapted itself in response to selection pressure by the human immune system. A commensal of the human skin and nose, it is a leading cause of several conditions: skin and soft tissue infection, pneumonia, septicemia, peritonitis, bacteremia, and endocarditis. Mice have been used extensively in all these conditions to identify virulence factors and host components important for pathogenesis. Although significant effort has gone toward development of an anti-staphylococcal vaccine, antibodies have proven ineffective in preventing infection in humans after successful studies in mice. These results have raised questions as to the utility of mice to predict patient outcome and suggest that humanized mice might prove useful in modeling infection. The development of humanized mouse models of S. aureus infection will allow us to assess the contribution of several human-specific virulence factors, in addition to exploring components of the human immune system in protection against S. aureus infection. Their use is discussed in light of several recently reported studies.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Semin Cell Dev Biol 2017; 72:101-116. [PMID: 28445785 DOI: 10.1016/j.semcdb.2017.04.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is a prominent human pathogen capable of infecting a variety of host species and tissue sites. This versatility stems from the pathogen's ability to secrete diverse host-damaging virulence factors. Among these factors, the S. aureus pore-forming toxins (PFTs) α-toxin and the bicomponent leukocidins, have garnered much attention for their ability to lyse cells at low concentrations and modulate disease severity. Although many of these toxins were discovered nearly a century ago, their host cell specificities have only been elucidated over the past five to six years, starting with the discovery of the eukaryotic receptor for α-toxin and rapidly followed by identification of the leukocidin receptors. The identification of these receptors has revealed the species- and cell type-specificity of toxin binding, and provided insight into non-lytic effects of PFT intoxication that contribute to disease pathogenesis.
Collapse
Affiliation(s)
- E Sachiko Seilie
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, United States; Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States
| | | |
Collapse
|
31
|
Host-Bacterial Crosstalk Determines Staphylococcus aureus Nasal Colonization. Trends Microbiol 2016; 24:872-886. [PMID: 27474529 DOI: 10.1016/j.tim.2016.06.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus persistently colonizes the anterior nares of approximately one fifth of the population and nasal carriage is a significant risk factor for infection. Recent advances have significantly refined our understanding of S. aureus-host communication during nasal colonization. Novel bacterial adherence mechanisms in the nasal epithelium have been identified, and novel roles for both the innate and the adaptive immune response in controlling S. aureus nasal colonization have been defined, through the use of both human and rodent models. It is clear that S. aureus maintains a unique, complex relationship with the host immune system and that S. aureus nasal colonization is overall a multifactorial process which is as yet incompletely understood.
Collapse
|
32
|
Smits HH, van der Vlugt LE, von Mutius E, Hiemstra PS. Childhood allergies and asthma: New insights on environmental exposures and local immunity at the lung barrier. Curr Opin Immunol 2016; 42:41-47. [PMID: 27254380 DOI: 10.1016/j.coi.2016.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022]
Abstract
While certain bacteria and respiratory viruses promote local inflammation and disease onset, a more diverse colonization of the different species in the (gut) microbiome may be linked to more regulatory responses and protection against asthma and allergies. These processes are also influenced in part by food intake, both targeting the composition of the gut microbiome and influencing the immune system via metabolites. Early life environmental microbial exposure also contributes to protection against asthma and allergy and is linked with an early activation of the innate immune system and the development of regulatory immune responses. Although greater mechanistic insight is needed, it is tempting to speculate that part of the environmental effect can be explained by modulation of the microbiome composition at mucosal surfaces, epithelial barrier function and/or local immunity. A review of the latest studies is provided.
Collapse
Affiliation(s)
- Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Luciën Epm van der Vlugt
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands; Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilians University of Munich, Munich, Germany; Comprehensive Pneumology Centre Munich (CPC-M), Member of the German Center for Lung Research, Germany
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
McCall LI, Siqueira-Neto JL, McKerrow JH. Location, Location, Location: Five Facts about Tissue Tropism and Pathogenesis. PLoS Pathog 2016; 12:e1005519. [PMID: 27227827 PMCID: PMC4881934 DOI: 10.1371/journal.ppat.1005519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Laura-Isobel McCall
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Tseng CW, Biancotti JC, Berg BL, Gate D, Kolar SL, Müller S, Rodriguez MD, Rezai-Zadeh K, Fan X, Beenhouwer DO, Town T, Liu GY. Increased Susceptibility of Humanized NSG Mice to Panton-Valentine Leukocidin and Staphylococcus aureus Skin Infection. PLoS Pathog 2015; 11:e1005292. [PMID: 26618545 PMCID: PMC4664407 DOI: 10.1371/journal.ppat.1005292] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft-tissue infections worldwide. Mice are the most commonly used animals for modeling human staphylococcal infections. However a supra-physiologic S. aureus inoculum is required to establish gross murine skin pathology. Moreover, many staphylococcal factors, including Panton-Valentine leukocidin (PVL) elaborated by community-associated methicillin-resistant S. aureus (CA-MRSA), exhibit selective human tropism and cannot be adequately studied in mice. To overcome these deficiencies, we investigated S. aureus infection in non-obese diabetic (NOD)/severe combined immune deficiency (SCID)/IL2rγnull (NSG) mice engrafted with human CD34+ umbilical cord blood cells. These “humanized” NSG mice require one to two log lower inoculum to induce consistent skin lesions compared with control mice, and exhibit larger cutaneous lesions upon infection with PVL+ versus isogenic PVL-S. aureus. Neutrophils appear important for PVL pathology as adoptive transfer of human neutrophils alone to NSG mice was sufficient to induce dermonecrosis following challenge with PVL+S. aureus but not PVL-S. aureus. PMX53, a human C5aR inhibitor, blocked PVL-induced cellular cytotoxicity in vitro and reduced the size difference of lesions induced by the PVL+ and PVL-S. aureus, but PMX53 also reduced recruitment of neutrophils and exacerbated the infection. Overall, our findings establish humanized mice as an important translational tool for the study of S. aureus infection and provide strong evidence that PVL is a human virulence factor. S. aureus infection has emerged in the past decade as a major burden to public health and is responsible for a surge in preclinical research. Mice are the most commonly studied animals for modeling of human S. aureus infection. However, it is increasingly evident that available murine models poorly mimic human S. aureus disease. Routinely, a supra-physiologic inoculum is required to establish soft-tissue pathology. Additionally, many S. aureus factors exhibit unique human tropism and cannot be adequately investigated in rodents. Here we investigated S. aureus infection in NSG mice engrafted with human umbilical CD34+ cells. We showed that a one to two log lower infectious inoculum of S. aureus establishes consistent skin lesions in humanized NSG mice. This inoculum is comparable to published inocula required to induce infection in humans. In addition, we showed that Panton-Valentine Leucocidin, a human tropic factor secreted by S. aureus, contributes to the development of dermonecrosis in the humanized mice, and its interaction with human neutrophils and human C5a receptor appears to be important for immunopathology. Overall our study suggests that humanized mice are an improved tool for modeling of human S. aureus infection.
Collapse
Affiliation(s)
- Ching Wen Tseng
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail: (GYL); (CWT)
| | - Juan Carlos Biancotti
- Zilkha Neurogenetic Institute, Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Bethany L. Berg
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - David Gate
- Zilkha Neurogenetic Institute, Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Stacey L. Kolar
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Sabrina Müller
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Maria D. Rodriguez
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Kavon Rezai-Zadeh
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Xuemo Fan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - David O. Beenhouwer
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Terrence Town
- Zilkha Neurogenetic Institute, Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - George Y. Liu
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail: (GYL); (CWT)
| |
Collapse
|