1
|
Petri E, Biswal S, Lloyd E, Tricou V, Folschweiller N. Early onset of protection of the TAK-003 dengue vaccine: Data from the DEN-301 clinical trial. Vaccine 2024; 42:126309. [PMID: 39244427 DOI: 10.1016/j.vaccine.2024.126309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Exploring time-to-onset of efficacy of the live-attenuated dengue vaccine TAK-003 is important for individuals living in, or traveling to, dengue-endemic areas. This protocol-defined exploratory analysis of the Tetravalent Immunization against Dengue Efficacy Study (TIDES) investigated TAK-003's onset of efficacy after the first and before the second dose, administered 3 months later, in healthy participants aged 4-16 years randomly assigned 2:1 to receive TAK-003 or placebo. The number of virologically confirmed dengue (VCD) cases between first and second vaccinations and the time-to-onset of vaccine efficacy (VE) were assessed in the safety population. Fifty VCD cases occurred between the first and second doses (placebo = 37, TAK-003 = 13). The VE against VCD up to 3 months after the first dose was 82.1 %, with an estimated time-to-onset of ∼14 days. TAK-003 provides rapid onset of protection after the first dose and may be useful in the context of a dengue outbreak or as a travel vaccine.
Collapse
Affiliation(s)
- Eckhardt Petri
- Takeda Pharmaceuticals International AG, Zurich, Switzerland.
| | | | - Eric Lloyd
- Takeda Vaccines, Inc., Cambridge, MA, USA
| | - Vianney Tricou
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | |
Collapse
|
2
|
Flacco ME, Bianconi A, Cioni G, Fiore M, Calò GL, Imperiali G, Orazi V, Tiseo M, Troia A, Rosso A, Manzoli L. Immunogenicity, Safety and Efficacy of the Dengue Vaccine TAK-003: A Meta-Analysis. Vaccines (Basel) 2024; 12:770. [PMID: 39066408 PMCID: PMC11281463 DOI: 10.3390/vaccines12070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The TAK-003 dengue vaccine was licensed in Europe in December 2022, and the official recommendations from most EU countries are still under formulation. To support policymakers, we performed a meta-analysis to quantify TAK-003's immunogenicity, efficacy and safety among seronegative and seropositive populations after the administration of one or two vaccine doses. We included trials retrieved from MEDLINE, Scopus and ClinicalTrials.gov. The outcomes were the rates of seroconversion, virologically confirmed dengue fever and serious adverse events after each vaccine dose. Data were combined using random-effect proportion or head-to-head meta-analyses. We retrieved a total of 19 datasets, including >20,000 participants. TAK-003 showed an excellent safety profile, and the immunogenicity after two doses against the four DENV serotypes was ≥90% among both adults and children/adolescents who were either seronegative or seropositive at baseline. A single dose was able to elicit a high immunogenic response among adults (≥70%) and children/adolescents (≥90%). The primary two-dose immunization course halved the risk of all types of virologically confirmed dengue fever among seropositive children/adolescents, but seronegative minors were only protected against the diseases caused by DENV-1 and DENV-2. Overall, the results support the use of TAK-003 for the prevention of dengue fever in the pediatric population of endemic countries. Uncertainties remain on the use of a single vaccine dose in non-endemic countries.
Collapse
Affiliation(s)
- Maria Elena Flacco
- Department of Environmental and Prevention Sciences, School of Public Health, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy; (M.E.F.); (G.C.); (G.L.C.); (G.I.); (V.O.); (M.T.); (A.T.); (A.R.)
| | - Alessandro Bianconi
- Department of Medical and Surgical Sciences, School of Public Health, University of Bologna, Via San Giacomo 12, 40138 Bologna, Italy; (A.B.); (M.F.)
| | - Giovanni Cioni
- Department of Environmental and Prevention Sciences, School of Public Health, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy; (M.E.F.); (G.C.); (G.L.C.); (G.I.); (V.O.); (M.T.); (A.T.); (A.R.)
| | - Matteo Fiore
- Department of Medical and Surgical Sciences, School of Public Health, University of Bologna, Via San Giacomo 12, 40138 Bologna, Italy; (A.B.); (M.F.)
| | - Giovanna Letizia Calò
- Department of Environmental and Prevention Sciences, School of Public Health, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy; (M.E.F.); (G.C.); (G.L.C.); (G.I.); (V.O.); (M.T.); (A.T.); (A.R.)
| | - Gianmarco Imperiali
- Department of Environmental and Prevention Sciences, School of Public Health, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy; (M.E.F.); (G.C.); (G.L.C.); (G.I.); (V.O.); (M.T.); (A.T.); (A.R.)
| | - Vittorio Orazi
- Department of Environmental and Prevention Sciences, School of Public Health, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy; (M.E.F.); (G.C.); (G.L.C.); (G.I.); (V.O.); (M.T.); (A.T.); (A.R.)
| | - Marco Tiseo
- Department of Environmental and Prevention Sciences, School of Public Health, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy; (M.E.F.); (G.C.); (G.L.C.); (G.I.); (V.O.); (M.T.); (A.T.); (A.R.)
| | - Anastasia Troia
- Department of Environmental and Prevention Sciences, School of Public Health, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy; (M.E.F.); (G.C.); (G.L.C.); (G.I.); (V.O.); (M.T.); (A.T.); (A.R.)
| | - Annalisa Rosso
- Department of Environmental and Prevention Sciences, School of Public Health, University of Ferrara, Via Fossato di Mortara 44, 44121 Ferrara, Italy; (M.E.F.); (G.C.); (G.L.C.); (G.I.); (V.O.); (M.T.); (A.T.); (A.R.)
| | - Lamberto Manzoli
- Department of Medical and Surgical Sciences, School of Public Health, University of Bologna, Via San Giacomo 12, 40138 Bologna, Italy; (A.B.); (M.F.)
| |
Collapse
|
3
|
Patel SS, Winkle P, Faccin A, Nordio F, LeFevre I, Tsoukas CG. An open-label, Phase 3 trial of TAK-003, a live attenuated dengue tetravalent vaccine, in healthy US adults: immunogenicity and safety when administered during the second half of a 24-month shelf-life. Hum Vaccin Immunother 2023; 19:2254964. [PMID: 37846724 PMCID: PMC10583633 DOI: 10.1080/21645515.2023.2254964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 10/18/2023] Open
Abstract
Dengue is caused by a mosquito-transmitted flavivirus. The disease is now endemic to many tropical and subtropical regions, manifesting as approximately 96 million symptomatic cases of dengue each year. Clinical trials have shown TAK-003 (Qdenga®), a live attenuated dengue tetravalent vaccine, to be well-tolerated, immunogenic, and efficacious in adults with no prior exposure to dengue virus infection living in non-endemic regions, as well as in adults and children living in dengue-endemic areas. This open-label, single-arm phase 3 trial (NCT03771963) was conducted in two dengue non-endemic areas of the USA, and it evaluated the immunogenicity and safety of naturally-aged TAK-003 administered to adult participants. Overall, the immunogenicity data from this trial are consistent with those reported from other TAK-003 phase 2 and 3 trials, and the safety data are consistent with the broader integrated safety data analysis. The data show that naturally-aged TAK-003 had a well-tolerated reactogenicity and adverse events profile when administered in the second half of its clinical 24-month shelf-life and that it still elicited an immune response that persisted up to 6 months after the second dose against all four dengue serotypes, with no important safety risks identified during the trial.
Collapse
Affiliation(s)
- Sanjay S. Patel
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | - Alice Faccin
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | - Inge LeFevre
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | |
Collapse
|
4
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
5
|
Wu B, Qi Z, Qian X. Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development. Viruses 2023; 15:813. [PMID: 37112794 PMCID: PMC10143207 DOI: 10.3390/v15040813] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lately, the global incidence of flavivirus infection has been increasing dramatically and presents formidable challenges for public health systems around the world. Most clinically significant flaviviruses are mosquito-borne, such as the four serotypes of dengue virus, Zika virus, West Nile virus, Japanese encephalitis virus and yellow fever virus. Until now, no effective antiflaviviral drugs are available to fight flaviviral infection; thus, a highly immunogenic vaccine would be the most effective weapon to control the diseases. In recent years, flavivirus vaccine research has made major breakthroughs with several vaccine candidates showing encouraging results in preclinical and clinical trials. This review summarizes the current advancement, safety, efficacy, advantages and disadvantages of vaccines against mosquito-borne flaviviruses posing significant threats to human health.
Collapse
Affiliation(s)
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| |
Collapse
|
6
|
Tricou V, Essink B, Ervin JE, Turner M, Escudero I, Rauscher M, Brose M, Lefevre I, Borkowski A, Wallace D. Immunogenicity and safety of concomitant and sequential administration of yellow fever YF-17D vaccine and tetravalent dengue vaccine candidate TAK-003: A phase 3 randomized, controlled study. PLoS Negl Trop Dis 2023; 17:e0011124. [PMID: 36888687 PMCID: PMC9994689 DOI: 10.1371/journal.pntd.0011124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Yellow fever (YF) vaccination is often mandatory for travelers to YF-endemic areas. The areas with risk of YF partially overlap with those of dengue, for which there is currently no recommended vaccine available for dengue-naïve individuals. This phase 3 study assessed the immunogenicity and safety of concomitant and sequential administration of YF (YF-17D) and tetravalent dengue (TAK-003) vaccines in healthy adults aged 18-60 years living in areas of the US non-endemic for either virus. METHODS Participants were randomized 1:1:1 to receive the following vaccinations at Months 0, 3, and 6, respectively: YF-17D+placebo, TAK-003, and TAK-003 (Group 1); TAK-003+placebo, TAK-003, and YF-17D (Group 2); or YF-17D+TAK-003, TAK-003, and placebo (Group 3). The primary objective was to demonstrate non-inferiority (upper bound of 95% confidence interval [UB95%CI] of difference <5%) of YF seroprotection rate one month following concomitant administration of YF-17D and TAK-003 (Group 3) compared with YF-17D plus placebo (Group 1). The secondary objectives included demonstration of non-inferiority of YF and dengue geometric mean titers (GMTs) (UB95%CI for GMT ratio <2.0), and safety. RESULTS 900 adults were randomized. YF seroprotection rates one month post-YF-17D (Month 1) were 99.5% and 99.1% in Group 1 and 3, respectively, and non-inferiority was demonstrated (UB95%CI = 2.69% i.e. <5%). Non-inferiority was also demonstrated for GMTs against YF one month post-YF-17D, and against DENV-2, -3, and -4 (UB95%CI <2), but not DENV-1 (UB95%CI: 2.22), one month post-second TAK-003 vaccination. Adverse event rates following TAK-003 were consistent with previous results, and no important safety risks were identified. CONCLUSIONS In this study, YF-17D vaccine and TAK-003 were immunogenic and well tolerated when sequentially or concomitantly administered. The non-inferiority of immune responses to YF-17D and TAK-003 was demonstrated for concomitant administration of the 2 vaccines compared to separate vaccination, except against DENV-1 but with GMTs similar to those observed in other TAK-003 trials. TRIAL REGISTRATION ClinicalTrials.gov identified: NCT03342898.
Collapse
Affiliation(s)
- Vianney Tricou
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
- * E-mail:
| | - Brandon Essink
- Meridian Clinical Research, Omaha, Nebraska, United States of America
| | - John E. Ervin
- Center for Pharmaceutical Research Inc, Kansas City, Missouri, United States of America
| | - Mark Turner
- Advanced Clinical Research, Boise, Idaho, United States of America
| | | | | | - Manja Brose
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Inge Lefevre
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | - Derek Wallace
- Takeda Vaccines Inc., Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Raju N, Zhan X, Das S, Karwal L, Dean HJ, Crowe JE, Carnahan RH, Georgiev IS. Neutralization fingerprinting technology for characterizing polyclonal antibody responses to dengue vaccines. Cell Rep 2022; 41:111807. [PMID: 36516766 DOI: 10.1016/j.celrep.2022.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/08/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Dengue is a major public health threat. There are four dengue virus (DENV) serotypes; therefore, efforts are focused on developing safe and effective tetravalent DENV vaccines. While neutralizing antibodies contribute to protective immunity, there are still important gaps in understanding of immune responses elicited by dengue infection and vaccination. To that end, here, we develop a computational modeling framework based on the concept of antibody-virus neutralization fingerprints in order to characterize samples from clinical studies of TAK-003, a tetravalent vaccine candidate currently in phase 3 trials. Our results suggest a similarity of neutralizing antibody specificities in baseline-seronegative individuals. In contrast, amplification of pre-existing neutralizing antibody specificities is predicted for baseline-seropositive individuals, thus quantifying the role of immunologic imprinting in driving antibody responses to DENV vaccines. The neutralization fingerprinting analysis framework presented here can contribute to understanding dengue immune correlates of protection and help guide further vaccine development and optimization.
Collapse
Affiliation(s)
- Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaoyan Zhan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Subash Das
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Hansi J Dean
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
9
|
Patel SS, Rauscher M, Kudela M, Pang H. Clinical Safety Experience of TAK-003 for Dengue Fever: A New Tetravalent Live Attenuated Vaccine Candidate. Clin Infect Dis 2022; 76:e1350-e1359. [PMID: 35639602 PMCID: PMC9907483 DOI: 10.1093/cid/ciac418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND An unmet medical need remains for an effective dengue tetravalent vaccine that can be administered irrespective of previous dengue exposure. TAK-003, a dengue tetravalent vaccine, has demonstrated efficacy in an ongoing phase 3 trial in children and adolescents living in dengue-endemic areas, with an acceptable safety profile in both dengue-naive and dengue-exposed individuals. METHODS Safety findings are presented herein from an integrated analysis of data for healthy 4-60-year-olds from two phase 2 and three phase 3 double-blind, placebo-controlled clinical trials of TAK-003 (TAK-003, n = 14 627; placebo, n = 7167). Safety evaluation included analyses of postinjection reactogenicity, unsolicited adverse events (AEs), serious AEs (SAEs), and deaths. Subgroup analyses were performed by age group, baseline serostatus, and gender. RESULTS The most common local and systemic AEs were injection site pain (43% for TAK-003 and 26% for placebo) and headache (34% and 30%, respectively). Injection site AEs were mostly mild and resolved within 1-3 days. Unsolicited AEs and AEs leading to discontinuation occurred with similar frequency across both groups, while SAEs were fewer for TAK-003 recipients (6% vs 8% for placebo). Four of the 5 vaccine-related SAEs (which included hypersensitivity, dengue fever, and dengue hemorrhagic fever) occurred in the placebo group. No deaths were considered vaccine-related. Subgroup analyses showed no differences in safety by baseline serostatus or by gender, albeit analysis by age indicated greater local reactogenicity rates for adolescents (46% for TAK-003 and 28% for placebo) and adults (56% and 19%, respectively) than for children (37% and 25%, respectively). CONCLUSIONS No important safety risks were identified, and TAK-003 was well tolerated irrespective of age, gender, or baseline dengue serostatus in recipients aged 4-60 years.
Collapse
Affiliation(s)
- Sanjay S Patel
- Correspondence: Sanjay S. Patel, PhD, Thurgauerstrasse 130, 8152 Glattpark-Opfikon (Zurich), Switzerland ()
| | | | - Maria Kudela
- Present affiliation: Pfizer, Cambridge, Massachusetts, USA
| | | |
Collapse
|
10
|
López-Medina E, Biswal S, Saez-Llorens X, Borja-Tabora C, Bravo L, Sirivichayakul C, Vargas LM, Alera MT, Velásquez H, Reynales H, Rivera L, Watanaveeradej V, Rodriguez-Arenales EJ, Yu D, Espinoza F, Dietze R, Fernando LK, Wickramasinghe P, Duarte Moreira E, Fernando AD, Gunasekera D, Luz K, da Cunha RV, Tricou V, Rauscher M, Liu M, LeFevre I, Wallace D, Kosalaraksa P, Borkowski A. Efficacy of a Dengue Vaccine Candidate (TAK-003) in Healthy Children and Adolescents 2 Years after Vaccination. J Infect Dis 2022; 225:1521-1532. [PMID: 33319249 PMCID: PMC9071282 DOI: 10.1093/infdis/jiaa761] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Takeda's dengue vaccine is under evaluation in an ongoing phase 3 efficacy study; we present a 2-year update. METHODS Children (20 099, 4-16 years old) were randomized to receive 2 doses of TAK-003 or placebo 3 months apart and are under surveillance to detect dengue by serotype-specific RT-PCR. RESULTS Cumulative efficacy against dengue approximately 27 months since first dose was 72.7% (95% confidence interval [CI], 67.1%-77.3%), including 67.0% (95% CI, 53.6%-76.5%) in dengue-naive and 89.2% (95% CI, 82.4%-93.3%) against hospitalized dengue. In the second year, decline in efficacy was observed (56.2%; 95% CI, 42.3%-66.8%) with the largest decline in 4-5 year olds (24.5%; 95% CI, -34.2% to 57.5%); efficacy was 60.6% (95% CI, 43.8%-72.4%) in 6-11 year and 71.2% (95% CI, 41.0%-85.9%) in 12-16 year age groups. As TAK-003 efficacy varies by serotype, changes in serotype dominance partially contributed to efficacy differences in year-by-year analysis. No related serious adverse events occurred during the second year. CONCLUSIONS TAK-003 demonstrated continued benefit independent of baseline serostatus in reducing dengue with some decline in efficacy during the second year. Three-year data will be important to see if efficacy stabilizes or declines further.Clinical Trials Registration. NCT02747927.Takeda's tetravalent dengue vaccine (TAK-003) continued to demonstrate benefit in reducing dengue independent of baseline serostatus up to 2 years after completing vaccination with some decline in efficacy during the second year in 4-16 year olds in dengue-endemic countries.
Collapse
Affiliation(s)
- Eduardo López-Medina
- Centro de Estudios en Infectología Pediátrica, Universidad del Valle and Centro Médico Imbanaco, Cali, Colombia
| | | | - Xavier Saez-Llorens
- Hospital del Niño Dr José Renán Esquivel, Sistema Nacional de Investigación, Secretaria Nacional de Ciencia y Tecnologia, Centro de Vacunación Internacional, Panama City, Panama
| | | | - Lulu Bravo
- University of the Philippines Manila, Ermita, Philippines
| | - Chukiat Sirivichayakul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Luis Martinez Vargas
- Centro de Atención e Investigación Médica Dominicana, Santo Domingo, Dominican Republic
| | - Maria Theresa Alera
- Philippines-Armed Forces Research Institute of Medical Sciences Virology Research Unit, Cebu City, Philippines
| | | | | | - Luis Rivera
- Hospital Maternidad Nuestra Senora de Altagracia, Santo Domingo, Dominican Republic
| | | | | | - Delia Yu
- De La Salle Medical and Health Sciences Institute, Dasmariñas, Philippines
| | - Felix Espinoza
- National Autonomous University of Nicaragua, León, Nicaragua
| | - Reynaldo Dietze
- Universidade Federal Do Espirito Santo, Hospital Universitário Cassiano Antônio de Moraes, Vitória, Brazil
| | - Lak Kumar Fernando
- Centre for Clinical Management of Dengue and Dengue Haemorrhagic Fever, Negombo General Hospital, Negombo, Sri Lanka
| | | | - Edson Duarte Moreira
- Associação Obras Sociais Irmã Dulce Hospital Santo Antônio and Oswaldo Cruz Foundation, Bahia, Brazil
| | | | - Dulanie Gunasekera
- Faculty of Medical Sciences, University of Sri Jayawardenenpura, Nugegoda, Sri Lanka
| | - Kleber Luz
- Instituto de Medicina Tropical da Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Vianney Tricou
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | - Mengya Liu
- Takeda Vaccines, Inc., Boston, Massachusetts, USA
| | - Inge LeFevre
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | | | | |
Collapse
|
11
|
Sirivichayakul C, Barranco-Santana EA, Rivera IE, Kilbury J, Raanan M, Borkowski A, Papadimitriou A, Wallace D. Long-term Safety and Immunogenicity of a Tetravalent Dengue Vaccine Candidate in Children and Adults: A Randomized, Placebo-Controlled, Phase 2 Study. J Infect Dis 2022; 225:1513-1520. [PMID: 32658250 PMCID: PMC9071315 DOI: 10.1093/infdis/jiaa406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/11/2020] [Indexed: 11/15/2022] Open
Abstract
Background We report long-term safety and immunogenicity of Takeda’s tetravalent dengue vaccine candidate (TAK-003) in healthy children and adults living in dengue-endemic areas in Puerto Rico, Columbia, Singapore, and Thailand. Methods In part 1 of this phase 2, randomized, placebo-controlled trial we sequentially enrolled 1.5–45 year olds (n = 148) into 4 age-descending groups, randomized 2:1 to receive 2 doses of TAK-003 or placebo 90 days apart. In part 2, 1–11 year olds (n = 212) were enrolled and randomized 3:1 to TAK-003 or placebo groups. We assessed neutralizing antibody titers for the 4 dengue serotypes (DENV) up to month 36 in part 1, and symptomatic dengue and serious adverse events (SAEs) up to month 36 in both parts. Results At month 36, seropositivity rates were 97.3%, 98.7%, 88.0% and 56.0% for DENV-1, -2, -3 and -4, respectively. Seropositivity rates varied significantly for DENV-4 according to serostatus at baseline (89.5% in seropositives versus 21.6% in seronegatives). No vaccine-related SAEs were reported. Conclusions The trial demonstrated persistence of neutralizing antibody titers against TAK-003 over 3 years in children and adults living in dengue-endemic countries, with limited contribution from natural infection. TAK-003 was well tolerated. Clinical Trials Registration NCT01511250
Collapse
Affiliation(s)
- Chukiat Sirivichayakul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Inés Esquilín Rivera
- Department of Pediatrics, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | | | | | | | | | - Derek Wallace
- Takeda Vaccines Inc., Cambridge, Massachusetts, USA
- Correspondence: Derek Wallace, MBBS, Takeda Vaccines Inc., 75 Sidney Street, Cambridge, MA 02139 ()
| |
Collapse
|
12
|
Hou J, Ye W, Chen J. Current Development and Challenges of Tetravalent Live-Attenuated Dengue Vaccines. Front Immunol 2022; 13:840104. [PMID: 35281026 PMCID: PMC8907379 DOI: 10.3389/fimmu.2022.840104] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Dengue is the most common arboviral disease caused by one of four distinct but closely related dengue viruses (DENV) and places significant economic and public health burdens in the endemic areas. A dengue vaccine will be important in advancing disease control. However, the effort has been challenged by the requirement to induce effective protection against all four DENV serotypes and the potential adverse effect due to the phenomenon that partial immunity to DENV may worsen the symptoms upon subsequent heterotypic infection. Currently, the most advanced dengue vaccines are all tetravalent and based on recombinant live attenuated viruses. CYD-TDV, developed by Sanofi Pasteur, has been approved but is limited for use in individuals with prior dengue infection. Two other tetravalent live attenuated vaccine candidates: TAK-003 by Takeda and TV003 by National Institute of Allergy and Infectious Diseases, have completed phase 3 and phase 2 clinical trials, respectively. This review focuses on the designs and evaluation of TAK-003 and TV003 vaccine candidates in humans in comparison to the licensed CYD-TDV vaccine. We highlight specific lessons from existing studies and challenges that must be overcome in order to develop a dengue vaccine that confers effective and balanced protection against all four DENV serotypes but with minimal adverse effects.
Collapse
Affiliation(s)
- Jue Hou
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Weijian Ye
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Jianzhu Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore.,Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
13
|
Tricou V, Gottardo R, Egan MA, Clement F, Leroux-Roels G, Sáez-Llorens X, Borkowski A, Wallace D, Dean HJ. Characterization of the cell-mediated immune response to Takeda’s live-attenuated tetravalent dengue vaccine in adolescents participating in a phase 2 randomized controlled trial conducted in a dengue-endemic setting. Vaccine 2022; 40:1143-1151. [DOI: 10.1016/j.vaccine.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/25/2022]
|
14
|
Rivera L, Biswal S, Sáez-Llorens X, Reynales H, López-Medina E, Borja-Tabora C, Bravo L, Sirivichayakul C, Kosalaraksa P, Martinez Vargas L, Yu D, Watanaveeradej V, Espinoza F, Dietze R, Fernando L, Wickramasinghe P, Duarte Moreira E, Fernando AD, Gunasekera D, Luz K, Venâncio da Cunha R, Rauscher M, Zent O, Liu M, Hoffman E, LeFevre I, Tricou V, Wallace D, Alera MT, Borkowski A. Three years efficacy and safety of Takeda's dengue vaccine candidate (TAK-003). Clin Infect Dis 2021; 75:107-117. [PMID: 34606595 PMCID: PMC9402653 DOI: 10.1093/cid/ciab864] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Takeda’s live attenuated tetravalent dengue vaccine candidate (TAK-003) is under evaluation in a long-term clinical trial across 8 dengue-endemic countries. Previously, we have reported its efficacy and safety in both seronegative and seropositive participants and that its performance varies by serotype, with some decline in efficacy from first to second year postvaccination. This exploratory analysis provides an update with cumulative and third-year data. Methods Healthy 4–16 year olds (n = 20099) were randomized 2:1 to receive TAK-003 or placebo (0, 3 month schedule). The protocol included baseline serostatus testing of all participants and detection of all symptomatic dengue throughout the trial with a serotype specific reverse transcriptase-polymerase chain reaction. Results Cumulative efficacy after 3 years was 62.0% (95% confidence interval, 56.6–66.7) against virologically confirmed dengue (VCD) and 83.6% (76.8–88.4) against hospitalized VCD. Efficacy was 54.3% (41.9–64.1) against VCD and 77.1% (58.6–87.3) against hospitalized VCD in baseline seronegatives, and 65.0% (58.9–70.1) against VCD and 86.0% (78.4–91.0) against hospitalized VCD in baseline seropositives. Efficacy against VCD during the third year declined to 44.7% (32.5–54.7), whereas efficacy against hospitalized VCD was sustained at 70.8% (49.6–83.0). Rates of serious adverse events were 2.9% in TAK-003 group and 3.5% in placebo group during the ongoing long-term follow-up (ie, second half of the 3 years following vaccination), but none were related. No important safety risks were identified. Conclusions TAK-003 was efficacious against symptomatic dengue over 3 years. Efficacy declined over time but remained robust against hospitalized dengue. A booster dose evaluation is planned.
Collapse
Affiliation(s)
- Luis Rivera
- Hospital Maternidad Nuestra Senora de Altagracia, Santo Domingo, Dominican Republic
| | | | - Xavier Sáez-Llorens
- Hospital del Niño Dr. José Renán Esquivel, Sistema Nacional de Investigación at SENACYT, Centro de Vacunación Internacional (Cevaxin), Panama City, Panama
| | | | - Eduardo López-Medina
- Centro de Estudios en Infectología Pediátrica, Universidad del Valle and Centro Medico Imbanaco, Cali, Colombia
| | | | - Lulu Bravo
- University of the Philippines Manila, Ermita, Philippines
| | - Chukiat Sirivichayakul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | | | - Delia Yu
- De La Salle Medical and Health Sciences Institute, Dasmariñas, Philippines
| | | | - Felix Espinoza
- National Autonomous University of Nicaragua, León, Nicaragua
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Centro de Ciencias da Saude-UFES, Vitória, Brazil
| | - LakKumar Fernando
- Centre for Clinical Management of Dengue & Dengue Haemorrhagic Fever, Negombo General Hospital, Negombo, Sri Lanka
| | | | - Edson Duarte Moreira
- Associação Obras Sociais Irmã Dulce Hospital Santo Antônio and Oswaldo Cruz Foundation, Bahia, Brazil
| | | | - Dulanie Gunasekera
- Faculty of Medical Sciences, University of Sri Jayawardenenpura, Sri Lanka
| | - Kleber Luz
- Instituto de Medicina Tropical da Universidade Federal do Rio Grande do Norte, Brazil
| | | | | | - Olaf Zent
- Takeda Pharmaceuticals International AG., Zurich, Switzerland
| | | | | | - Inge LeFevre
- Takeda Pharmaceuticals International AG., Zurich, Switzerland
| | - Vianney Tricou
- Takeda Pharmaceuticals International AG., Zurich, Switzerland
| | | | - Maria Theresa Alera
- Philippines-Armed Forces Research Institute of Medical Sciences Virology Research Unit, Cebu City, Philippines
| | | | | |
Collapse
|
15
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights Into the Molecular Mechanism of Toll-Like Receptor Response to Dengue Virus Infection. Front Microbiol 2021; 12:744233. [PMID: 34603272 PMCID: PMC8483762 DOI: 10.3389/fmicb.2021.744233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is the most prevalent and rapidly spreading mosquito-borne viral disease caused by dengue virus (DENV). Recently, DENV has been affecting humans within an expanding geographic range due to the warming of the earth. Innate immune responses play a significant role in antiviral defense, and Toll-like receptors (TLRs) are key regulators of innate immunity. Therefore, a detailed understanding of TLR and DENV interactions is important for devising therapeutic and preventive strategies. Several studies have indicated the ability of DENV to modulate the TLR signaling pathway and host immune response. Vaccination is considered one of the most successful medical interventions for preventing viral infections. However, only a partially protective dengue vaccine, the first licensed dengue vaccine CYD-TDV, is available in some dengue-endemic countries to protect against DENV infection. Therefore, the development of a fully protective, durable, and safe DENV vaccine is a priority for global health. Here, we demonstrate the progress made in our understanding of the host response to DENV infection, with a particular focus on TLR response and how DENV avoids the response toward establishing infection. We also discuss dengue vaccine candidates in late-stage development and the issues that must be overcome to enable their success.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
16
|
Michlmayr D, Andrade P, Nascimento EJM, Parker A, Narvekar P, Dean HJ, Harris E. Characterization of the Type-Specific and Cross-Reactive B-Cell Responses Elicited by a Live-Attenuated Tetravalent Dengue Vaccine. J Infect Dis 2021; 223:247-257. [PMID: 32572472 DOI: 10.1093/infdis/jiaa346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dengue is caused by 4 antigenically distinct serotypes of dengue virus (DENV1-4). Takeda's live attenuated tetravalent dengue vaccine (TAK-003) candidate is composed of an attenuated DENV2 and chimeric viruses containing prM/E of DENV1, 3 and 4 on the DENV2 backbone. The multicolor FluoroSpot (MCF) assay enables quantitation of serotype-specific and cross-reactive individual memory B cells (MBCs) secreting DENV-specific antibodies in a polyclonal mixture. METHODS Using the MCF assay, we determined the type-specific and cross-reactive MBC response in peripheral blood mononuclear cells collected pre- and postvaccination from 7 macaques and 15 randomly selected individuals who received TAK-003 (8 DENV seronegative and 7 DENV seropositive) in a phase 2 clinical trial in Singapore (DEN-205 study). RESULTS Preexisting DENV-specific MBC responses were detected only in seropositive vaccine recipients at day 0. Following vaccination, both type-specific and cross-reactive MBCs to all 4 DENV serotypes were observed in all macaques and clinical trial participants. The proportion of type-specific MBCs was higher than cross-reactive MBCs and remained stable between day 30 and 360 post vaccination. CONCLUSIONS These results demonstrate that, unlike primary or secondary natural DENV infection, tetravalent vaccination elicits tetravalent type-specific MBCs, and thus all 4 components of TAK-003 contribute to the DENV-specific MBC response following vaccination. CLINICAL TRIALS REGISTRATION NCT02425098.
Collapse
Affiliation(s)
- Daniela Michlmayr
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Paulina Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA.,Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Quito, Ecuador
| | | | - Allan Parker
- Takeda Vaccines, Inc., Cambridge, Massachusetts, USA
| | - Parnal Narvekar
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Hansi J Dean
- Takeda Vaccines, Inc., Cambridge, Massachusetts, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
17
|
Biswal S, Mendez Galvan JF, Macias Parra M, Galan-Herrera JF, Carrascal Rodriguez MB, Rodriguez Bueno EP, Brose M, Rauscher M, LeFevre I, Wallace D, Borkowski A. Immunogenicity and safety of a tetravalent dengue vaccine in dengue-naïve adolescents in Mexico City. Rev Panam Salud Publica 2021; 45:e67. [PMID: 34131423 PMCID: PMC8196333 DOI: 10.26633/rpsp.2021.67] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Objective. To describe the immunogenicity and safety of a tetravalent dengue vaccine (TAK-003) in healthy adolescents living in Mexico City, an area considered non-endemic for dengue (NCT03341637). Methods. Participants aged 12–17 years were randomized 3:1 to receive two doses (Month 0 and Month 3) of TAK-003 or placebo. Immunogenicity was assessed by microneutralization assay of dengue neutralizing antibodies at baseline, Months 4 and 9. Solicited and unsolicited adverse events (AEs) were recorded after each vaccination. Serious (SAEs) and medically-attended AEs (MAAEs) were recorded throughout the study. Results. 400 adolescents were enrolled, 391 (97.8%) completed the study. Thirty-six (9%) were baseline seropositive to ≥1 serotypes (reciprocal titer ≥10). Geometric mean titers (GMTs) in baseline seronegative TAK-003 recipients were 328, 1743, 120, and 143 at Month 4, and 135, 741, 46, and 38 at Month 9 against DENV-1, -2, -3, and -4, respectively. Placebo GMTs remained <10. Tetravalent seropositivity rates in vaccine recipients were 99.6% and 85.8% at Months 4 and 9, respectively. One MAAE in each group was considered treatment-related (TAK-003: injection-site erythema, and placebo: pharyngitis). Conclusion. TAK-003 was immunogenic against all four serotypes and was well tolerated in dengue-naïve adolescents living in Mexico City.
Collapse
Affiliation(s)
- Shibadas Biswal
- Takeda Vaccines Inc. Boston United States of America Takeda Vaccines Inc., Boston, United States of America
| | - Jorge Fernando Mendez Galvan
- Hospital Infantil de México Federico Gómez Mexico City Mexico Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Mercedes Macias Parra
- Instituto Nacional de Pediatría Mexico City Mexico Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | | | - Manja Brose
- Takeda Pharmaceuticals International AG. Zurich Switzerland Takeda Pharmaceuticals International AG., Zurich, Switzerland
| | - Martina Rauscher
- Takeda Pharmaceuticals International AG. Zurich Switzerland Takeda Pharmaceuticals International AG., Zurich, Switzerland
| | - Inge LeFevre
- Takeda Pharmaceuticals International AG. Zurich Switzerland Takeda Pharmaceuticals International AG., Zurich, Switzerland
| | - Derek Wallace
- Takeda Vaccines Inc. Boston United States of America Takeda Vaccines Inc., Boston, United States of America
| | - Astrid Borkowski
- Takeda Pharmaceuticals International AG. Zurich Switzerland Takeda Pharmaceuticals International AG., Zurich, Switzerland
| |
Collapse
|
18
|
Enhanced dengue vaccine virus replication and neutralizing antibody responses in immune primed rhesus macaques. NPJ Vaccines 2021; 6:77. [PMID: 34021159 PMCID: PMC8140083 DOI: 10.1038/s41541-021-00339-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Antibody-dependent enhancement (ADE) is suspected to influence dengue virus (DENV) infection, but the role ADE plays in vaccination strategies incorporating live attenuated virus components is less clear. Using a heterologous prime-boost strategy in rhesus macaques, we examine the effect of priming with DENV purified inactivated vaccines (PIVs) on a tetravalent live attenuated vaccine (LAV). Sera exhibited low-level neutralizing antibodies (NAb) post PIV priming, yet moderate to high in vitro ADE activity. Following LAV administration, the PIV primed groups exhibited DENV-2 LAV peak viremias up to 1,176-fold higher than the mock primed group, and peak viremia correlated with in vitro ADE. Furthermore, PIV primed groups had more balanced and higher DENV-1–4 NAb seroconversion and titers than the mock primed group following LAV administration. These results have implications for the development of effective DENV vaccine prime-boost strategies and for our understanding of the role played by ADE in modulating DENV replication.
Collapse
|
19
|
Idris F, Ting DHR, Alonso S. An update on dengue vaccine development, challenges, and future perspectives. Expert Opin Drug Discov 2021. [DOI: 10.1080/17460441.2020.1811675
expr 880867630 + 907120263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Fakhriedzwan Idris
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Donald Heng Rong Ting
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Sharma M, Glasner DR, Watkins H, Puerta-Guardo H, Kassa Y, Egan MA, Dean H, Harris E. Magnitude and Functionality of the NS1-Specific Antibody Response Elicited by a Live-Attenuated Tetravalent Dengue Vaccine Candidate. J Infect Dis 2020; 221:867-877. [PMID: 30783676 DOI: 10.1093/infdis/jiz081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/15/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) can cause life-threatening disease characterized by endothelial dysfunction and vascular leakage. DENV nonstructural protein 1 (NS1) induces human endothelial hyperpermeability and vascular leak in mice, and NS1 vaccination confers antibody-mediated protective immunity. We evaluated the magnitude, cross-reactivity, and functionality of NS1-specific IgG antibody responses in sera from a phase 2 clinical trial of Takeda's live-attenuated tetravalent dengue vaccine candidate (TAK-003). METHODS We developed an enzyme-linked immunosorbent assay to measure anti-DENV NS1 IgG in sera from DENV-naive or preimmune subjects pre- and postvaccination with TAK-003 and evaluated the functionality of this response using in vitro models of endothelial permeability. RESULTS TAK-003 significantly increased DENV-2 NS1-specific IgG in naive individuals, which cross-reacted with DENV-1, -3, and -4 NS1 to varying extents. NS1-induced endothelial hyperpermeability was unaffected by prevaccination serum from naive subjects but was variably inhibited by serum from preimmune subjects. After TAK-003 vaccination, all samples from naive and preimmune vaccinees completely abrogated DENV-2 NS1-induced hyperpermeability and cross-inhibited hyperpermeability induced by DENV-1, -3, and -4 NS1. Inhibition of NS1-induced hyperpermeability correlated with NS1-specific IgG concentrations. Postvaccination sera also prevented NS1-induced degradation of endothelial glycocalyx components. CONCLUSION We provide evidence for functional NS1-specific IgG responses elicited by a candidate dengue vaccine. CLINICAL TRIALS REGISTRATION NCT01511250.
Collapse
Affiliation(s)
- Mayuri Sharma
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Heather Watkins
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Yoseph Kassa
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Michael A Egan
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Hansi Dean
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| |
Collapse
|
21
|
McDonald EM, Anderson J, Wilusz J, Ebel GD, Brault AC. Zika Virus Replication in Myeloid Cells during Acute Infection Is Vital to Viral Dissemination and Pathogenesis in a Mouse Model. J Virol 2020; 94:e00838-20. [PMID: 32847848 PMCID: PMC7565634 DOI: 10.1128/jvi.00838-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022] Open
Abstract
Zika virus (ZIKV) can establish infection in immune privileged sites such as the testes, eye, and placenta. Whether ZIKV infection of white blood cells is required for dissemination of the virus to immune privileged sites has not been definitively shown. To assess whether initial ZIKV replication in myeloid cell populations is critical for dissemination during acute infection, recombinant ZIKVs were generated that could not replicate in these specific cells. ZIKV was cell restricted by insertion of a complementary sequence to a myeloid-specific microRNA in the 3' untranslated region. Following inoculation of a highly sensitive immunodeficient mouse model, crucial immune parameters, such as quantification of leukocyte cell subsets, cytokine and chemokine secretion, and viremia, were assessed. Decreased neutrophil numbers in the spleen were observed during acute infection with myeloid-restricted ZIKV that precluded the generation of viremia and viral dissemination to peripheral organs. Mice inoculated with a nontarget microRNA control ZIKV demonstrated increased expression of key cytokines and chemokines critical for neutrophil and monocyte recruitment and increased neutrophil influx in the spleen. In addition, ZIKV-infected Ly6Chi monocytes were identified in vivo in the spleen. Mice inoculated with myeloid-restricted ZIKV had a decrease in Ly6Chi ZIKV RNA-positive monocytes and a lack of inflammatory cytokine production compared to mice inoculated with control ZIKV.IMPORTANCE Myeloid cells, including monocytes, play a crucial role in immune responses to pathogens. Monocytes have also been implicated as "Trojan horses" during viral infections, carrying infectious virus particles to immune privileged sites and/or to sites protected by physical blood-tissue barriers, such as the blood-testis barrier and the blood-brain barrier. In this study, we found that myeloid cells are crucial to Zika virus (ZIKV) pathogenesis. By engineering ZIKV clones to encode myeloid-specific microRNA target sequences, viral replication was inhibited in myeloid cells by harnessing the RNA interference pathway. Severely immunodeficient mice inoculated with myeloid-restricted ZIKV did not demonstrate clinical signs of disease and survived infection. Furthermore, viral dissemination to peripheral organs was not observed in these mice. Lastly, we identified Ly6Cmid/hi murine monocytes as the major myeloid cell population that disseminates ZIKV.
Collapse
Affiliation(s)
- Erin M McDonald
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - John Anderson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jeff Wilusz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
22
|
Idris F, Ting DHR, Alonso S. An update on dengue vaccine development, challenges, and future perspectives. Expert Opin Drug Discov 2020; 16:47-58. [PMID: 32838577 DOI: 10.1080/17460441.2020.1811675] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION From both a public health and economic perspective, vaccination is arguably the most effective approach to combat endemic and pandemic infectious diseases. Dengue affects more than 100 countries in the tropical and subtropical world, with 100-400 million infections every year. In the wake of the recent setback faced by Dengvaxia, the only FDA-approved dengue vaccine, safer and more effective dengue vaccines candidates are moving along the clinical pipeline. AREA COVERED This review provides an update of the latest outcomes of dengue vaccine clinical trials. In the light of recent progress made in our understanding of dengue pathogenesis and immune correlates of protection, novel vaccine strategies have emerged with promising second-generation dengue vaccine candidates. Finally, the authors discuss the dengue-specific challenges that remain to be addressed and overcome. EXPERT OPINION The authors propose to explore various adjuvants and delivery systems that may help improve the design of safe, effective, and affordable vaccines against dengue. They also challenge the concept of a 'universal' dengue vaccine as increasing evidence support that DENV strains have evolved different virulence mechanisms.
Collapse
Affiliation(s)
- Fakhriedzwan Idris
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| | - Donald Heng Rong Ting
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| | - Sylvie Alonso
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| |
Collapse
|
23
|
Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: A Minireview. Viruses 2020; 12:v12080829. [PMID: 32751561 PMCID: PMC7472303 DOI: 10.3390/v12080829] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dengue, caused by infection of any of four dengue virus serotypes (DENV-1 to DENV-4), is a mosquito-borne disease of major public health concern associated with significant morbidity, mortality, and economic cost, particularly in developing countries. Dengue incidence has increased 30-fold in the last 50 years and over 50% of the world’s population, in more than 100 countries, live in areas at risk of DENV infection. We reviews DENV biology, epidemiology, transmission dynamics including circulating serotypes and genotypes, the immune response, the pathogenesis of the disease as well as updated diagnostic methods, treatments, vector control and vaccine developments.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| |
Collapse
|
24
|
Macias A, Ruiz-Palacios G, Ramos-Castaneda J. Combine dengue vaccines to optimize effectiveness. Vaccine 2020; 38:4801-4804. [PMID: 32507334 DOI: 10.1016/j.vaccine.2020.05.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Developing a completely effective and safe dengue vaccine has been a complicated process. Dengvaxia®, by Sanofi-Pasteur, and recently TAK003, by Takeda, have strengths and weaknesses, but they seem to complement each other. In this work, we elaborate a rationale that could be applicable in a combined program of these vaccines for the control of dengue.
Collapse
Affiliation(s)
| | - Guillermo Ruiz-Palacios
- Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| | - Jose Ramos-Castaneda
- Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico; Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
25
|
Pinheiro-Michelsen JR, Souza RDSO, Santana IVR, da Silva PDS, Mendez EC, Luiz WB, Amorim JH. Anti-dengue Vaccines: From Development to Clinical Trials. Front Immunol 2020; 11:1252. [PMID: 32655561 PMCID: PMC7325986 DOI: 10.3389/fimmu.2020.01252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Dengue Virus (DENV) is an arbovirus (arthropod-borne virus). Four serotypes of DENV are responsible for the infectious disease called dengue that annually affects nearly 400 million people worldwide. Although there is only one vaccine formulation licensed for use in humans, there are other vaccine formulations under development that apply different strategies. In this review, we present information about anti-dengue vaccine formulations regarding development, pre-clinical tests, and clinical trials. The improvement in vaccine development against dengue is much needed, but it should be considered that the correlate of protection is still uncertain. Neutralizing antibodies have been proposed as a correlate of protection, but this ignores the key role of T-cell mediated immunity in controlling DENV infection. It is important to confirm the accurate correlate of protection against DENV infection, and also to have other anti-dengue vaccine formulations licensed for use.
Collapse
Affiliation(s)
- Josilene Ramos Pinheiro-Michelsen
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Rayane da Silva Oliveira Souza
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | - Itana Vivian Rocha Santana
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | - Patrícia de Souza da Silva
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Erick Carvalho Mendez
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Wilson Barros Luiz
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Jaime Henrique Amorim
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| |
Collapse
|
26
|
Tricou V, Sáez-Llorens X, Yu D, Rivera L, Jimeno J, Villarreal AC, Dato E, Saldaña de Suman O, Montenegro N, DeAntonio R, Mazara S, Vargas M, Mendoza D, Rauscher M, Brose M, Lefevre I, Tuboi S, Borkowski A, Wallace D. Safety and immunogenicity of a tetravalent dengue vaccine in children aged 2-17 years: a randomised, placebo-controlled, phase 2 trial. Lancet 2020; 395:1434-1443. [PMID: 32197107 DOI: 10.1016/s0140-6736(20)30556-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND An unmet clinical need remains for an effective tetravalent dengue vaccine suitable for all age groups, regardless of serostatus. We assessed the immunogenicity and safety of three different dose schedules of a tetravalent dengue vaccine (TAK-003) over a 48-month period in children living in dengue-endemic countries. METHODS We did a large, phase 2, double-blind, placebo-controlled trial at three sites in the Dominican Republic, Panama, and the Philippines. Healthy participants aged 2-17 years were randomly assigned 1:2:5:1 using an interactive web response system with stratification by age to receive either a two-dose primary series (days 1 and 91), one primary dose (day 1), one primary dose plus booster (days 1 and 365), or placebo. Participants and relevant study personnel were masked to the random assignment until completion of the study at month 48. To maintain masking, TAK-003 recipients were administered placebo doses when appropriate. The primary objective was assessment of neutralising geometric mean titres for each serotype to month 48 assessed in the per-protocol immunogenicity subset. Secondary safety endpoints included proportions of participants with serious adverse events and symptomatic virologically confirmed dengue. This study is registered with ClinicalTrials.gov, NCT02302066. FINDINGS Between Dec 5, 2014, and Feb 13, 2015, 1800 children were randomly assigned to the following groups: two-dose primary series (n=201), one primary dose (n=398), one primary dose plus 1-year booster (n=1002), and placebo (n=199). Of them, 1479 (82%) participants completed the 48-month study. Immunogenicity endpoints were assessed in 562 participants enrolled in the immunogenicity subset, of whom 509 were included in the per-protocol subset. At month 48, antibody titres remained elevated in all TAK-003 groups compared with placebo, irrespective of baseline serostatus. At month 48, geometric mean titres were 378 (95% CI 226-632) in two-dose, 421 (285-622) in one-dose, 719 (538-960) in one-dose plus 1-year booster, and 100 (50-201) in placebo recipients against DENV 1; 1052 (732-1511), 1319 (970-1794), 1200 (927-1553), and 208 (99-437) against DENV 2; 183 (113-298), 201 (135-298), 288 (211-392), and 71 (37-139) against DENV 3; and 152 (97-239), 164 (114-236), 219 (165-290), and 46 (26-82) against DENV 4; and tetravalent seropositivity rate was 89% (79-96), 86% (80-92), 97% (93-99), and 60% (47-72), respectively. Virologically confirmed dengue was recorded in 37 (2%) TAK-003 and 13 (7%) placebo participants, with a relative risk of 0·35 (0·19-0·65). No vaccine-related serious adverse events or severe dengue virus disease were reported. INTERPRETATION TAK-003 elicited antibody responses against all four serotypes, which persisted to 48 months post-vaccination, regardless of baseline serostatus. No important safety risks were identified. We observed a long-term reduction in risk of symptomatic dengue virus disease in vaccinees. Results from this study provide a long-term safety database and support assessment of the vaccine in the ongoing phase 3 efficacy study. FUNDING Takeda Vaccines.
Collapse
Affiliation(s)
- Vianney Tricou
- Takeda Pharmaceuticals International, Zurich, Switzerland.
| | - Xavier Sáez-Llorens
- Hospital del Niño Dr José Renán Esquivel, Panama City, Panama; Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación, Panama City, Panama
| | - Delia Yu
- De La Salle Health Sciences Institute, Cavite, Philippines
| | - Luis Rivera
- Hospital Universitario Maternidad Nuestra Señora de la Altagracia, Santo Domingo, Dominican Republic
| | - José Jimeno
- Centro de Vacunación Internacional (Cevaxin), Panama City, Panama
| | | | - Epiphany Dato
- De La Salle Health Sciences Institute, Cavite, Philippines
| | | | | | - Rodrigo DeAntonio
- Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación, Panama City, Panama; Centro de Vacunación Internacional (Cevaxin), Panama City, Panama
| | - Sonia Mazara
- Hospital Universitario Maternidad Nuestra Señora de la Altagracia, Santo Domingo, Dominican Republic
| | - Maria Vargas
- Hospital Universitario Maternidad Nuestra Señora de la Altagracia, Santo Domingo, Dominican Republic
| | | | | | - Manja Brose
- Takeda Pharmaceuticals International, Zurich, Switzerland
| | - Inge Lefevre
- Takeda Pharmaceuticals International, Zurich, Switzerland
| | - Suely Tuboi
- Takeda Pharmaceuticals, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
27
|
Biswal S, Borja-Tabora C, Martinez Vargas L, Velásquez H, Theresa Alera M, Sierra V, Johana Rodriguez-Arenales E, Yu D, Wickramasinghe VP, Duarte Moreira E, Fernando AD, Gunasekera D, Kosalaraksa P, Espinoza F, López-Medina E, Bravo L, Tuboi S, Hutagalung Y, Garbes P, Escudero I, Rauscher M, Bizjajeva S, LeFevre I, Borkowski A, Saez-Llorens X, Wallace D. Efficacy of a tetravalent dengue vaccine in healthy children aged 4-16 years: a randomised, placebo-controlled, phase 3 trial. Lancet 2020; 395:1423-1433. [PMID: 32197105 DOI: 10.1016/s0140-6736(20)30414-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND A substantial unmet need remains for safe and effective vaccines against dengue virus disease, particularly for individuals who are dengue-naive and those younger than 9 years. We aimed to assess the efficacy, safety, and immunogenicity of a live attenuated tetravalent dengue vaccine (TAK-003) in healthy children aged 4-16 years. METHODS We present data up to 18 months post-vaccination from an ongoing phase 3, randomised, double-blind trial of TAK-003 in endemic regions of Asia and Latin America (26 medical and research centres across Brazil, Colombia, Dominican Republic, Nicaragua, Panama, Philippines, Sri Lanka, and Thailand). Healthy children aged 4-16 years were randomly assigned 2:1 (stratified by age and region) to receive two doses of TAK-003 or two doses of placebo, 3 months apart. Investigators, participants and their parents or guardians, and sponsor representatives advising on trial conduct were masked to trial group assignments. Participants presenting with febrile illness were tested for virologically confirmed dengue (VCD) by serotype-specific RT-PCR. In timeframes beginning 30 days post-second dose, the primary endpoint (overall vaccine efficacy) was assessed in the first 11 months, and the secondary endpoints (efficacy by baseline serostatus, serotype, hospitalised dengue, and severe dengue) in the first 17 months. This study is registered with ClinicalTrials.gov, NCT02747927. FINDINGS 20 099 participants were randomly assigned and vaccinated between Sept 7, 2016, and Aug 18, 2017; 19 021 (94·6%) were included in the per protocol analysis, and 20 071 (99·9%) in the safety set. The primary endpoint was achieved with an overall vaccine efficacy of 80·2% (95% CI 73·3 to 85·3; 61 cases of VCD in the TAK-003 group vs 149 cases of VCD in the placebo group). In the secondary endpoint assessment timeframe, an overall vaccine efficacy of 73·3% (95% CI 66·5 to 78·8) was observed. Analysis of secondary endpoints showed efficacies of 76·1% (95% CI 68·5 to 81·9) in individuals who were seropositive at baseline, 66·2% (49·1 to 77·5) in individuals who were seronegative at baseline, 90·4% (82·6 to 94·7) against hospitalised dengue, and 85·9% (31·9 to 97·1) against dengue haemorrhagic fever. Efficacy varied by individual serotypes (DENV 1, 69·8% [95% CI 54·8 to 79·9]; DENV 2, 95·1% [89·9 to 97·6]; DENV 3, 48·9% [27·2 to 64·1]; DENV 4, 51·0% [-69·4 to 85·8]). Cumulative rates of serious adverse events were similar in TAK-003 (4·0%) and placebo (4·8%) recipients, and were consistent with expected medical disorders in the study population. Infection was the most frequent reason leading to serious adverse events. 20 participants (<0·1% of the safety set) were withdrawn from the trial due to 21 adverse events by the end of part two; 14 of these participants received TAK-003 and six received placebo. INTERPRETATION TAK-003 was well tolerated and efficacious against symptomatic dengue in children regardless of serostatus before immunisation. Vaccine efficacy varied by serotype, warranting continued follow-up to assess longer-term vaccine performance. FUNDING Takeda Vaccines.
Collapse
Affiliation(s)
| | | | - Luis Martinez Vargas
- Centro de Atención e Investigación Médica, Dominicana, Santo Domingo, Dominican Republic
| | | | - Maria Theresa Alera
- Philippines-Armed Forces Research Institute of Medical Sciences Virology Research Unit, Cebu City, Philippines
| | - Victor Sierra
- Centro de Atención e Investigación Médica, Yopal, Colombia
| | | | - Delia Yu
- De La Salle Medical and Health Sciences Institute, Dasmariñas, Philippines
| | | | - Edson Duarte Moreira
- Associação Obras Sociais Irmã Dulce Hospital Santo Antônio and Oswaldo Cruz Foundation, Bahia, Brazil
| | | | - Dulanie Gunasekera
- Faculty of Medical Sciences, University of Sri Jayawardenenpura, Gangodawila, Sri Lanka
| | | | - Felix Espinoza
- National Autonomous University of Nicaragua, León, Nicaragua
| | - Eduardo López-Medina
- Centro de Estudios en Infectología Pediátrica, Universidad del Valle and Centro Médico Imbanaco, Cali, Colombia
| | - Lulu Bravo
- University of the Philippines Manila, Ermita, Philippines
| | | | | | | | | | | | | | - Inge LeFevre
- Takeda Pharmaceuticals International, Zurich, Switzerland
| | | | - Xavier Saez-Llorens
- Hospital del Niño Dr José Renán Esquivel, Sistema Nacional de Investigación at Secretaría Nacional de Ciencia y Tecnología, Centro de Vacunación Internacional (Cevaxin), Panama City, Panama
| | | |
Collapse
|
28
|
Swaminathan S, Khanna N. Tetravalent Dengue Vaccine in Healthy Children. N Engl J Med 2020; 382:1769-1770. [PMID: 32348659 DOI: 10.1056/nejmc2000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Navin Khanna
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
29
|
Sun J, Du S, Zheng Z, Cheng G, Jin X. Defeat Dengue and Zika Viruses With a One-Two Punch of Vaccine and Vector Blockade. Front Microbiol 2020; 11:362. [PMID: 32265852 PMCID: PMC7100368 DOI: 10.3389/fmicb.2020.00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/18/2020] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are two mosquito-borne flaviviruses afflicting nearly half of the world population. Human infection by these viruses can either be asymptomatic or manifest as clinical diseases from mild to severe. Despite more cases are presented as self-limiting febrile illness, severe dengue disease can be manifested as hemorrhagic fever and hemorrhagic shock syndrome, and ZIKV infection has been linked to increased incidence of peripheral neuropathy Guillain-Barre syndrome and central neural disease such as microcephaly. The current prevention and treatment of these infectious diseases are either non-satisfactory or entirely lacking. Because DENV and ZIKV have much similarities in genomic and structural features, almost identical mode of mosquito-mediated transmission, and probably the same pattern of host innate and adaptive immunity toward them, it is reasonable and often desirable to investigate these two viruses side-by-side, and thereby devise common countermeasures against both. Here, we review the existing knowledge on DENV and ZIKV regarding epidemiology, molecular virology, protective immunity and vaccine development, discuss recent new discoveries on the functions of flavivirus NS1 protein in viral pathogenesis and transmission, and propose a one-two punch strategy using vaccine and vector blockade to overcome antibody-dependent enhancement and defeat Dengue and Zika viruses.
Collapse
Affiliation(s)
- Jin Sun
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Senyan Du
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhihang Zheng
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China,Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xia Jin
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Xia Jin, ;
| |
Collapse
|
30
|
Turner M, Papadimitriou A, Winkle P, Segall N, Levin M, Doust M, Johnson C, Lucksinger G, Fierro C, Pickrell P, Raanan M, Tricou V, Borkowski A, Wallace D. Immunogenicity and safety of lyophilized and liquid dengue tetravalent vaccine candidate formulations in healthy adults: a randomized, phase 2 clinical trial. Hum Vaccin Immunother 2020; 16:2456-2464. [PMID: 32119591 PMCID: PMC7644226 DOI: 10.1080/21645515.2020.1727697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Takeda has developed a live-attenuated dengue tetravalent vaccine candidate (TAK-003) which has been shown to be immunogenic with acceptable reactogenicity in phase 1 trials. In agreement with World Health Organization prequalification requirements for dengue vaccines, Takeda has manufactured a lyophilized formulation of TAK-003 that allows stable storage at +2°C to +8°C. This randomized, double-blind, phase 2 study (NCT02193087) was performed in 1002 healthy dengue-naïve adults, 18–49 years of age, across seven centers in the USA to compare the safety and immunogenicity of one or two doses of a lyophilized TAK-003 formulation with the liquid TAK-003 formulation used in previous phase 1 studies. The primary objective was to show immunologic equivalence in terms of geometric mean titers (GMT) of neutralizing antibodies to the four dengue serotypes one month after one dose of the lyophilized and liquid formulations. Secondary assessments were of safety and seropositivity rates, including after a second dose. The primary endpoint was not met, because immunologic equivalence after one dose was only shown for the DENV-2 serotype. Nonetheless, GMTs and seropositivity rates to all four serotypes were achieved with all formulations after two doses and are in line with what was observed in previous studies. Additionally, in view of the acceptable reactogenicity, with no vaccine-related serious adverse events reported, these data support continuing further clinical development of the lyophilized TAK-003 formulation.
Collapse
Affiliation(s)
- Mark Turner
- Advanced Clinical Research , Meridian, ID, USA
| | | | | | | | - Michael Levin
- Clinical Research Center of Nevada , Las Vegas, NV, USA
| | | | | | | | | | | | | | - Vianney Tricou
- Takeda Pharmaceuticals International AG , Zurich, Switzerland
| | | | | |
Collapse
|
31
|
Tricou V, Low JG, Oh HM, Leo YS, Kalimuddin S, Wijaya L, Pang J, Ling LM, Lee TH, Brose M, Hutagalung Y, Rauscher M, Borkowski A, Wallace D. Safety and immunogenicity of a single dose of a tetravalent dengue vaccine with two different serotype-2 potencies in adults in Singapore: A phase 2, double-blind, randomised, controlled trial. Vaccine 2019; 38:1513-1519. [PMID: 31843269 DOI: 10.1016/j.vaccine.2019.11.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Early formulations of Takeda's tetravalent dengue vaccine candidate (TAK-003) have demonstrated notably higher neutralizing antibody responses against serotype 2 than other serotypes. Here, we assessed the immunogenicity and tolerability in adults living in Singapore of two TAK-003 formulations: an early formulation, referred to as HD-TDV, and a new formulation with 10-fold lower serotype 2 potency, referred to as TDV (NCT02425098). METHODS Subjects aged 21-45 years were stratified by baseline dengue serostatus and randomised 1:1 to receive a single dose of either HD-TDV or TDV. Immunogenicity was evaluated at Days 15, 30, 90, 180, and 365 post-vaccination as geometric mean titres (GMTs) of neutralising antibodies and seropositivity rates. Viremia was assessed per vaccine strain. Solicited and unsolicited adverse events (AEs) were assessed by severity and causality. RESULTS Of 351 subjects randomised, 176 received HD-TDV and 175 received TDV. Peak GMTs against all serotypes were observed at Day 30, with highest GMTs against DENV-2 in both groups. In subjects seronegative at baseline, the response to DENV-2 was less dominant with TDV (Day 30 GMTs: 813 for TDV, 10,966 for HD-TDV). In these subjects, DENV-4 seropositivity rates and GMTs were higher with TDV (Day 30 GMTs: 58 for TDV, 21 for HD-TDV; seropositivity rates: 76% for TDV, 60% for HD-TDV). Viremia mainly occurred for TDV-2 in both vaccine groups, with a lower incidence in TDV recipients, and mostly resolved by Day 30. Both vaccine formulations showed an acceptable safety profile with similar overall rates of solicited and unsolicited AEs across vaccine groups. CONCLUSIONS These results suggest a more balanced immune response with the new formulation TDV compared with the early formulation HD-TDV, particularly in subjects who were seronegative prior to vaccination, and support the choice of the new formulation for the phase 3 efficacy assessment.
Collapse
Affiliation(s)
- Vianney Tricou
- Takeda Pharmaceuticals International AG, Zurich, Switzerland.
| | | | | | - Yee-Sin Leo
- National Centre for Infectious Disease NCID, Singapore; Tan Tock Seng Hospital, Singapore
| | | | | | - Junxiong Pang
- Tan Tock Seng Hospital, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | | | | | - Manja Brose
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Swanstrom JA, Henein S, Plante JA, Yount BL, Widman DG, Gallichotte EN, Dean HJ, Osorio JE, Partidos CD, de Silva AM, Baric RS. Analyzing the Human Serum Antibody Responses to a Live Attenuated Tetravalent Dengue Vaccine Candidate. J Infect Dis 2019; 217:1932-1941. [PMID: 29800370 DOI: 10.1093/infdis/jiy063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Dengue virus serotypes 1-4 (DENV-1-4) are the most common vector-borne viral pathogens of humans and the etiological agents of dengue fever and dengue hemorrhagic syndrome. A live-attenuated tetravalent dengue vaccine (TDV) developed by Takeda Vaccines has recently progressed to phase 3 safety and efficacy evaluation. Methods We analyzed the qualitative features of the neutralizing antibody (nAb) response induced in naive and DENV-immune individuals after TDV administration. Using DENV-specific human monoclonal antibodies (mAbs) and recombinant DENV displaying different serotype-specific Ab epitopes, we mapped the specificity of TDV-induced nAbs against DENV-1-3. Results Nearly all subjects had high levels of DENV-2-specific nAbs directed to epitopes centered on domain III of the envelope protein. In some individuals, the vaccine induced nAbs that tracked with a DENV-1-specific neutralizing epitope centered on domain I of the envelope protein. The vaccine induced binding Abs directed to a DENV-3 type-specific neutralizing epitope, but findings of mapping of DENV-3 type-specific nAbs were inconclusive. Conclusion Here we provide qualitative measures of the magnitude and epitope specificity of the nAb responses to TDV. This information will be useful for understanding the performance of TDV in clinical trials and for identifying correlates of protective immunity.
Collapse
Affiliation(s)
- Jesica A Swanstrom
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill
| | - Sandra Henein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill
| | - Jessica A Plante
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill
| | - Boyd L Yount
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill
| | - Douglas G Widman
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill
| | - Emily N Gallichotte
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill
| | | | | | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill
| | - Ralph S Baric
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill.,Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill
| |
Collapse
|
33
|
Waickman AT, Friberg H, Gargulak M, Kong A, Polhemus M, Endy T, Thomas SJ, Jarman RG, Currier JR. Assessing the Diversity and Stability of Cellular Immunity Generated in Response to the Candidate Live-Attenuated Dengue Virus Vaccine TAK-003. Front Immunol 2019; 10:1778. [PMID: 31417556 PMCID: PMC6684763 DOI: 10.3389/fimmu.2019.01778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
The development of an efficacious DENV vaccine has been a long-standing public health priority. However, this effort has been complicated significantly due to the hazard presented by incomplete humoral immunity in mediating immune enhancement of infection and disease severity. Therefore, there is a significant need for DENV vaccine platforms capable of generating broad immune responses including durable cellular immunity, as well as novel analytical tools to assess the magnitude, diversity, and persistence of vaccine-elicited immunity. In this study, we demonstrate that a single dose of the recombinant, tetravalent, live-attenuated DENV vaccine TAK-003 elicits potent and durable cellular immunity against both the structural and non-structural proteins of all four DENV serotypes, which is maintained for at least 4 months post-immunization. Although not contained within the vaccine formulation, significant reactivity against the non-structural (NS) proteins of DENV-1,-3, and-4 is observed following vaccination, to an extent directly proportional to the magnitude of responses to the corresponding vaccine (DENV-2) components. Distinct, quantifiable, and durable patterns of DENV antigen reactivity can be observed in individuals following vaccination. Detailed epitope mapping of T cell reactivity against the DENV-2 proteome using a matrix of overlapping peptide pools demonstrated that TAK-003 elicits a broad response directed across the DENV-2 proteome, with focused reactivity against NS1 and NS3. We conclude that, as measured by an IFN-γ ELISPOT assay, a single dose of TAK-003 generates potent T cell-mediated immunity which is durable in magnitude and breadth through 4 months post-vaccination.
Collapse
Affiliation(s)
- Adam T Waickman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Morgan Gargulak
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Amanda Kong
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Mark Polhemus
- Department of Medicine, Upstate Medical University of New York, Syracuse, NY, United States
| | - Timothy Endy
- Department of Medicine, Upstate Medical University of New York, Syracuse, NY, United States
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| |
Collapse
|
34
|
Chesnut M, Muñoz LS, Harris G, Freeman D, Gama L, Pardo CA, Pamies D. In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment. Front Cell Infect Microbiol 2019; 9:223. [PMID: 31338335 PMCID: PMC6629778 DOI: 10.3389/fcimb.2019.00223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023] Open
Abstract
Mosquito-borne flaviviruses can cause disease in the nervous system, resulting in a significant burden of morbidity and mortality. Disease models are necessary to understand neuropathogenesis and identify potential therapeutics and vaccines. Non-human primates have been used extensively but present major challenges. Advances have also been made toward the development of humanized mouse models, but these models still do not fully represent human pathophysiology. Recent developments in stem cell technology and cell culture techniques have allowed the development of more physiologically relevant human cell-based models. In silico modeling has also allowed researchers to identify and predict transmission patterns and discover potential vaccine and therapeutic candidates. This review summarizes the research on in vitro and in silico models used to study three mosquito-borne flaviviruses that cause neurological disease in humans: West Nile, Dengue, and Zika. We also propose a roadmap for 21st century research on mosquito-borne flavivirus neuropathogenesis, prevention, and treatment.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura S. Muñoz
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroviruses Emerging in the Americas Study, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georgina Harris
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dana Freeman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Carlos A. Pardo
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroviruses Emerging in the Americas Study, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Hou J, Shrivastava S, Fraser CC, Loo HL, Wong LH, Ho V, Fink K, Ooi EE, Chen J. Dengue Mosaic Vaccines Enhance Cellular Immunity and Expand the Breadth of Neutralizing Antibody Against All Four Serotypes of Dengue Viruses in Mice. Front Immunol 2019; 10:1429. [PMID: 31281322 PMCID: PMC6596366 DOI: 10.3389/fimmu.2019.01429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
An estimated 400 million people in the world are infected with any of the four types of dengue virus (DENV) annually. The only licensed dengue vaccine cannot effectively prevent infection with all of the four DENVs, especially in those immunologically naïve at baseline. In this study, we explored a mosaic vaccine approach, which utilizes an artificial recombinant sequence for each serotype to achieve maximum coverage of variant epitopes in the four DENVs. We determined the immunogenicity and cross-reactivity of DNA plasmids encoding individual mosaic sequences or the natural sequences in mice. We show that the mosaic vaccines, particularly those targeting DENV serotype 1 and 2, improved vaccine immunogenicity by increasing the percentage of antigen-specific IFNγ- or TNFα-secreting CD4 and CD8 T cells, and titers of neutralizing antibodies. The mosaic vaccine diversified and broadened anti-dengue T cell responses and cross-reactive neutralizing antibodies against all four serotypes. The mosaic vaccines also induced higher level of antigen-specific B cell responses. These results suggest that mosaic vaccines comprising of DENV serotype 1 and 2 variant epitopes could stimulate strong and broad immune responses against all four serotypes.
Collapse
Affiliation(s)
- Jue Hou
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Shubham Shrivastava
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Christopher C Fraser
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Hooi Linn Loo
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Lan Hiong Wong
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Victor Ho
- Singapore Immunology Network, AStar, Singapore, Singapore
| | - Katja Fink
- Singapore Immunology Network, AStar, Singapore, Singapore
| | - Eng Eong Ooi
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Koch Institute for Integrative Cancer Research and Departments of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
36
|
Wang R, Zheng X, Sun J, Feng K, Gao N, Fan D, Chen H, Jin X, An J. Vaccination With a Single Consensus Envelope Protein Ectodomain Sequence Administered in a Heterologous Regimen Induces Tetravalent Immune Responses and Protection Against Dengue Viruses in Mice. Front Microbiol 2019; 10:1113. [PMID: 31134046 PMCID: PMC6524413 DOI: 10.3389/fmicb.2019.01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/01/2019] [Indexed: 12/24/2022] Open
Abstract
The development of a safe and effective tetravalent dengue vaccine that elicits protection against all dengue virus (DENV) serotypes is urgently needed. The consensus sequence of the ectodomain of envelope (E) protein of DENV (cE80) has been examined as an immunogen previously. In the current study, a cE80 DNA (D) vaccine was constructed and evaluated in conjunction with the cE80 protein (P) vaccine to examine whether both vaccines used together can further improve the immune responses. The cE80 DNA vaccine was administrated using either a homologous (DNA alone, DDD) or heterologous (DNA prime-protein boost: DDP or DPP) regimen, and evaluated for immunogenicity and protective efficacy in mice. Among the three DNA-based immunization regimens tested, DDP immunization is the optimal immunization regimen that elicited the greatest systemic immune response and conferred protection against all four DENV serotypes. This work provides innovative ideas for the development of consensus E-based dengue vaccines and the testing of optimal immunization regimens.
Collapse
Affiliation(s)
- Ran Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoyan Zheng
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
| | - Jin Sun
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Kaihao Feng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Na Gao
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dongying Fan
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui Chen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xia Jin
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jing An
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
37
|
He D, Zhang X, Chen L, Tang Y, Diao Y. Development of an attenuated live vaccine candidate of duck Tembusu virus strain. Vet Microbiol 2019; 231:218-225. [PMID: 30955813 DOI: 10.1016/j.vetmic.2019.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023]
Abstract
Infection with duck Tembusu virus (DTMUV) can cause large economic losses to the duck-rearing industry in China. In this study, we isolated a virulent strain of DTMUV (SDS) from sparrows near a duck farm and attenuated it via serially passaging (alternately for 100 passages) in specific pathogen-free chicken and duck embryos. We attenuated the virus after the 60th passage (SDS-60), based on the production of embryos that were free of visible lesions and still alive. The 70th adapted strain (SDS-70), obtained with a virus titer of 10-2.46 EID50 was chosen to be the live attenuated vaccine. After immunizing ducklings with the SDS-70 strain, they obtained 100% protection against infection by the SDS-10 virulent strain. Our data demonstrate that the vaccine can protect ducks from becoming infected with TMUV. Our study also shows that this newly developed attenuated vaccine candidate provides excellent immunogenicity, is safe, and has the potential to control DTMUV infections in ducks.
Collapse
Affiliation(s)
- Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Xin Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Lin Chen
- Animal Health Inspection of DaLian Free Trade Zone, Dalian, Liaoning, 116100, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China.
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China.
| |
Collapse
|
38
|
Baldwin WR, Livengood JA, Giebler HA, Stovall JL, Boroughs KL, Sonnberg S, Bohning KJ, Dietrich EA, Ong YT, Danh HK, Patel HK, Huang CYH, Dean HJ. Purified Inactivated Zika Vaccine Candidates Afford Protection against Lethal Challenge in Mice. Sci Rep 2018; 8:16509. [PMID: 30405178 PMCID: PMC6220238 DOI: 10.1038/s41598-018-34735-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/23/2018] [Indexed: 01/07/2023] Open
Abstract
In response to the 2016 global public health emergency of international concern announced by the World Health Organization surrounding Zika virus (ZIKV) outbreaks, we developed a purified inactivated Zika virus vaccine (PIZV) candidate from ZIKV strain PRVABC59, isolated during the outbreak in 2015. The virus isolate was plaque purified, creating six sub-isolated virus stocks, two of which were selected to generate PIZV candidates for preclinical immunogenicity and efficacy evaluation in mice. The alum-adjuvanted PIZV candidates were highly immunogenic in both CD-1 and AG129 mice after a 2-dose immunization. Further, AG129 mice receiving 2 doses of PIZV formulated with alum were fully protected against lethal ZIKV challenge and mouse immune sera elicited by the PIZV candidates were capable of neutralizing ZIKVs of both African and Asian genetic lineages in vitro. Additionally, passive immunization of naïve mice with ZIKV-immune serum showed strong positive correlation between neutralizing ZIKV antibody (NAb) titers and protection against lethal challenge. This study supported advancement of the PIZV candidate toward clinical development.
Collapse
Affiliation(s)
- Whitney R. Baldwin
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA ,0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Jill A. Livengood
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA
| | - Holli A. Giebler
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA ,0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Janae L. Stovall
- 0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Karen L. Boroughs
- 0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | | | - Kelly J. Bohning
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA
| | - Elizabeth A. Dietrich
- 0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Yee Tsuey Ong
- 0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Hoang K. Danh
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA
| | - Hetal K. Patel
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA
| | - Claire Y.-H. Huang
- 0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Hansi J. Dean
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA
| |
Collapse
|
39
|
Jackson LA, Rupp R, Papadimitriou A, Wallace D, Raanan M, Moss KJ. A phase 1 study of safety and immunogenicity following intradermal administration of a tetravalent dengue vaccine candidate. Vaccine 2018; 36:3976-3983. [DOI: 10.1016/j.vaccine.2018.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 11/29/2022]
|
40
|
Wong YH, Kumar A, Liew CW, Tharakaraman K, Srinivasaraghavan K, Sasisekharan R, Verma C, Lescar J. Molecular basis for dengue virus broad cross-neutralization by humanized monoclonal antibody 513. Sci Rep 2018; 8:8449. [PMID: 29855525 PMCID: PMC5981469 DOI: 10.1038/s41598-018-26800-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
Dengue is a widespread viral disease with 3.6 billion people at risk worldwide. Humanized monoclonal antibody (mAb) 513, currently undergoing clinical trials in Singapore, targets an epitope on the envelope protein domain III exposed at the surface of the viral particle. This antibody potently neutralizes all four dengue virus serotypes in a humanized mouse model that recapitulates human dengue infection, without signs of antibody-mediated enhancement of the disease. The crystal structure of single-chain variable fragment (scFv) 513 bound to the envelope protein domain III from dengue virus serotype 4 was used as a template to explore the molecular origins of the broader cross-reactivity and increased in vivo potency of mAb 513, compared to the parent murine mAb 4E11, using molecular dynamics simulations and network analyses. These two methods are a powerful complement to existing structural and binding data and detail specific interactions that underpin the differential binding of the two antibodies. We found that a Glu at position H55 (GluH55) from the second Complementarity Determining Region of the Heavy chain (CDR-H2) which corresponds to Ala in 4E11, is a major contributor to the enhancement in the interactions of mAb 513 compared to 4E11. Importantly, we also validate the importance of GluH55 using site-directed mutagenesis followed by isothermal titration calorimetry measurements.
Collapse
Affiliation(s)
- Yee Hwa Wong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,Nanyang Institute of Structural Biology, Experimental Medicine Building, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Akshita Kumar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,Infectious Diseases Interdisciplinary Research group, Singapore MIT Alliance for Research & Technology, Singapore, Singapore.,Bioinformatics Institute, ASTAR, 30 Biopolis Street, #07-01 Matrix, 138671, Singapore, Singapore
| | - Chong Wai Liew
- Nanyang Institute of Structural Biology, Experimental Medicine Building, 59 Nanyang Drive, Singapore, 636921, Singapore
| | | | - Kannan Srinivasaraghavan
- Bioinformatics Institute, ASTAR, 30 Biopolis Street, #07-01 Matrix, 138671, Singapore, Singapore
| | - Ram Sasisekharan
- Department of Biological engineering MIT, Cambridge, United Kingdom.,Infectious Diseases Interdisciplinary Research group, Singapore MIT Alliance for Research & Technology, Singapore, Singapore
| | - Chandra Verma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. .,Bioinformatics Institute, ASTAR, 30 Biopolis Street, #07-01 Matrix, 138671, Singapore, Singapore.
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. .,Infectious Diseases Interdisciplinary Research group, Singapore MIT Alliance for Research & Technology, Singapore, Singapore. .,Nanyang Institute of Structural Biology, Experimental Medicine Building, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
41
|
Gromowski GD, Henein S, Kannadka CB, Barvir DA, Thomas SJ, de Silva AM, Jarman RG. Delineating the serotype-specific neutralizing antibody response to a live attenuated tetravalent dengue vaccine. Vaccine 2018; 36:2403-2410. [DOI: 10.1016/j.vaccine.2018.03.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/02/2018] [Accepted: 03/21/2018] [Indexed: 11/16/2022]
|
42
|
Sáez-Llorens X, Tricou V, Yu D, Rivera L, Jimeno J, Villarreal AC, Dato E, Mazara S, Vargas M, Brose M, Rauscher M, Tuboi S, Borkowski A, Wallace D. Immunogenicity and safety of one versus two doses of tetravalent dengue vaccine in healthy children aged 2–17 years in Asia and Latin America: 18-month interim data from a phase 2, randomised, placebo-controlled study. THE LANCET. INFECTIOUS DISEASES 2018; 18:162-170. [DOI: 10.1016/s1473-3099(17)30632-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 11/27/2022]
|
43
|
Lam JH, Chua YL, Lee PX, Martínez Gómez JM, Ooi EE, Alonso S. Dengue vaccine-induced CD8+ T cell immunity confers protection in the context of enhancing, interfering maternal antibodies. JCI Insight 2017; 2:94500. [PMID: 29263304 DOI: 10.1172/jci.insight.94500] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/03/2017] [Indexed: 11/17/2022] Open
Abstract
Declining levels of maternal antibodies were shown to sensitize infants born to dengue-immune mothers to severe disease during primary infection, through the process of antibody-dependent enhancement of infection (ADE). With the recent approval for human use of Sanofi-Pasteur's chimeric dengue vaccine CYD-TDV and several vaccine candidates in clinical development, the scenario of infants born to vaccinated mothers has become a reality. This raises 2 questions: will declining levels of maternal vaccine-induced antibodies cause ADE; and, will maternal antibodies interfere with vaccination efficacy in the infant? To address these questions, the above scenario was modeled in mice. Type I IFN-deficient female mice were immunized with live attenuated DENV2 PDK53, the core component of the tetravalent DENVax candidate currently under clinical development. Pups born to PDK53-immunized dams acquired maternal antibodies that strongly neutralized parental strain 16681, but not the heterologous DENV2 strain D2Y98P-PP1, and instead caused ADE during primary infection with this strain. Furthermore, pups failed to seroconvert after PDK53 vaccination, owing to maternal antibody interference. However, a cross-protective multifunctional CD8+ T cell response did develop. Thus, our work advocates for the development of dengue vaccine candidates that induce protective CD8+ T cells despite the presence of enhancing, interfering maternal antibodies.
Collapse
Affiliation(s)
- Jian Hang Lam
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yen Leong Chua
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and
| | - Pei Xuan Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Julia María Martínez Gómez
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Eng Eong Ooi
- Emerging Infectious Disease Program, Duke-NUS, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
44
|
Widman DG, Young E, Nivarthi U, Swanstrom JA, Royal SR, Yount BL, Debbink K, Begley M, Marcet S, Durbin A, de Silva AM, Messer WB, Baric RS. Transplantation of a quaternary structure neutralizing antibody epitope from dengue virus serotype 3 into serotype 4. Sci Rep 2017; 7:17169. [PMID: 29215033 PMCID: PMC5719398 DOI: 10.1038/s41598-017-17355-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 01/04/2023] Open
Abstract
Dengue vaccine trials have revealed deficits in our understanding of the mechanisms of protective immunity, demonstrating a need to measure epitope-specific antibody responses against each DENV serotype. HmAb 5J7 binds to a complex, 3-monomer spanning quaternary epitope in the DENV3 envelope (E) protein, but it is unclear whether all interactions are needed for neutralization. Structure guided design and reverse genetics were used to sequentially transplant larger portions of the DENV3-specific 5J7 mAb epitope into dengue virus serotype 4 (DENV4). We observed complete binding and neutralization only when the entire 3 monomer spanning epitope was transplanted into DENV4, providing empirical proof that cooperative monomer-hmAb 5J7 interactions maximize activity. The rDENV4/3 virus containing the most expanded 5J7 epitope was also significantly more sensitive than WT DENV4 to neutralization by DENV3 primary immune sera. We conclude that the hinge-spanning region of the 5J7 quaternary epitope is a target for serotype-specific neutralizing antibodies after DENV3 infection.
Collapse
Affiliation(s)
- Douglas G Widman
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Usha Nivarthi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jesica A Swanstrom
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Scott R Royal
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kari Debbink
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.,Department of Natural Sciences, Bowie State University, Bowie, MD, USA
| | - Matthew Begley
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Marcet
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Anna Durbin
- Center for Immunization Research, Department for International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - William B Messer
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Ralph S Baric
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Schmidt AC, Lin L, Martinez LJ, Ruck RC, Eckels KH, Collard A, De La Barrera R, Paolino KM, Toussaint JF, Lepine E, Innis BL, Jarman RG, Thomas SJ. Phase 1 Randomized Study of a Tetravalent Dengue Purified Inactivated Vaccine in Healthy Adults in the United States. Am J Trop Med Hyg 2017; 96:1325-1337. [PMID: 28719287 PMCID: PMC5462566 DOI: 10.4269/ajtmh.16-0634] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The safety and immunogenicity of four formulations of an investigational tetravalent dengue purified inactivated vaccine (DPIV), formulated at 1 or 4 μg with aluminum hydroxide (alum) or at 1 μg with an adjuvant system (AS01E or AS03B), were evaluated in a first-time-in-human, placebo-controlled, randomized, observer-blind, phase 1 trial in the continental United States. Two doses of vaccine or placebo were administered intramuscularly 4 weeks apart to 100 healthy adults 18–39 years of age, randomized 1:1:1:1:1 to receive one of four DPIV formulations or saline placebo. The response to a third dose was evaluated in a subset of nine participants remote from primary vaccination. Humoral immunogenicity was assessed using a 50% microneutralization assay. All DPIV formulations were well tolerated. No vaccine-related serious adverse events were observed through 12 months after the second vaccine dose. In all DPIV groups, geometric mean antibody titers peaked at Day 56, waned through 6 months after the second vaccine dose, and then stabilized. In the nine subjects where boosting was evaluated, a strong anamnestic response was observed. These results support continuation of the clinical development of this dengue vaccine candidate (clinicaltrials.gov: NCT01666652).
Collapse
Affiliation(s)
| | - Leyi Lin
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Luis J Martinez
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Richard C Ruck
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dietrich EA, Ong YT, Stovall JL, Dean H, Huang CYH. Limited Transmission Potential of Takeda's Tetravalent Dengue Vaccine Candidate by Aedes albopictus. Am J Trop Med Hyg 2017; 97:1423-1427. [PMID: 28820715 DOI: 10.4269/ajtmh.17-0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recombinant live-attenuated chimeric tetravalent dengue vaccine viruses, TDV-1, -2, -3, and -4, contain the premembrane and envelope genes of dengue virus serotypes 1-4 in the replicative background of the attenuated dengue virus type-2 (DENV-2) PDK-53 vaccine strain. Previous results have shown that these recombinant vaccine viruses demonstrate limited infection and dissemination in Aedes aegypti and are unlikely to be transmitted by the primary mosquito vector of DENVs. In this report, we expand this analysis by assessing vector competence of all four serotypes of the TDV virus in Aedes albopictus, the secondary mosquito vector of DENVs. Our results indicate that these vaccine viruses demonstrate incompetence or defective infection and dissemination in these mosquitoes and will likely not be transmissible.
Collapse
Affiliation(s)
- Elizabeth A Dietrich
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Yee Tsuey Ong
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Janae L Stovall
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Hansi Dean
- Takeda Vaccines, Inc., Cambridge, Massachusetts
| | - Claire Y-H Huang
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
47
|
Guy B, Noriega F, Ochiai RL, L’azou M, Delore V, Skipetrova A, Verdier F, Coudeville L, Savarino S, Jackson N. A recombinant live attenuated tetravalent vaccine for the prevention of dengue. Expert Rev Vaccines 2017; 16:1-13. [DOI: 10.1080/14760584.2017.1335201] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bruno Guy
- Research & Development, Sanofi Pasteur, Lyon, France
| | | | | | - Maïna L’azou
- Global Epidemiology, Sanofi Pasteur, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Moving forward with Takeda's live chimeric tetravalent dengue vaccine. THE LANCET INFECTIOUS DISEASES 2017; 17:566-568. [DOI: 10.1016/s1473-3099(17)30165-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
|
49
|
Whitehead SS, Durbin AP, Pierce KK, Elwood D, McElvany BD, Fraser EA, Carmolli MP, Tibery CM, Hynes NA, Jo M, Lovchik JM, Larsson CJ, Doty EA, Dickson DM, Luke CJ, Subbarao K, Diehl SA, Kirkpatrick BD. In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination. PLoS Negl Trop Dis 2017; 11:e0005584. [PMID: 28481883 PMCID: PMC5436874 DOI: 10.1371/journal.pntd.0005584] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 05/18/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
Infection caused by the four serotypes of dengue virus (DENV-1-4) is a leading cause of mosquito-borne disease. Clinically-severe dengue disease is more common when secondary dengue infection occurs following prior infection with a heterologous dengue serotype. Other flaviviruses such as yellow fever virus, Japanese encephalitis virus, and Zika virus, can also elicit antibodies which are cross-reactive to DENV. As candidate dengue vaccines become available in endemic settings and for individuals who have received other flavivirus vaccines, it is important to examine vaccine safety and immunogenicity in these flavivirus-experienced populations. We performed a randomized, controlled trial of the National Institutes of Health live attenuated tetravalent dengue vaccine candidate (TV003) in fifty-eight individuals with prior exposure to flavivirus infection or vaccine. As in prior studies of this vaccine in flavivirus-naive volunteers, flavivirus-experienced subjects received two doses of vaccine six months apart and were followed closely for clinical events, laboratory changes, viremia, and neutralizing antibody titers. TV003 was well tolerated with few adverse events other than rash, which was predominately mild. Following one dose, 87% of vaccinees had an antibody response to all four serotypes (tetravalent response), suggesting a robust immune response. In addition, 76% of vaccinees were viremic; mean peak titers ranged from 0.68–1.1 log10 PFU/mL and did not differ by serotype. The second dose of TV003 was not associated with viremia, rash, or a sustained boost in antibody titers indicating that a single dose of the vaccine is likely sufficient to prevent viral replication and thus protect against disease. In comparison to the viremia and neutralizing antibody response elicited by TV003 in flavivirus-naïve subjects from prior studies, we found that subjects who were flavivirus-exposed prior to vaccination exhibited slightly higher DENV-3 viremia, higher neutralizing antibody titers to DENV-2, -3, and -4, and a higher tetravalent response frequency after TV003 administration. In summary, we demonstrate that the NIH tetravalent dengue vaccine TV003 is well-tolerated in flavivirus-experienced individuals and elicits robust post-vaccination neutralizing antibody titers. TRIAL REGISTRATION ClinicalTrials.gov NCT01506570.
Collapse
Affiliation(s)
- Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna P. Durbin
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Kristen K. Pierce
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Dan Elwood
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Benjamin D. McElvany
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Ellen A. Fraser
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Marya P. Carmolli
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Cecilia M. Tibery
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Noreen A. Hynes
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Matthew Jo
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Janece M. Lovchik
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Catherine J. Larsson
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Elena A. Doty
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Dorothy M. Dickson
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Catherine J. Luke
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sean A. Diehl
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Beth D. Kirkpatrick
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| |
Collapse
|
50
|
Scherwitzl I, Mongkolsapaja J, Screaton G. Recent advances in human flavivirus vaccines. Curr Opin Virol 2017; 23:95-101. [DOI: 10.1016/j.coviro.2017.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/07/2017] [Indexed: 11/25/2022]
|