1
|
O’Leary ST, Campbell JD, Ardura MI, Bryant KA, Caserta MT, Espinosa C, Frenck RW, Healy CM, John CC, Kourtis AP, Milstone A, Myers A, Pannaraj P, Ratner AJ, Bryant KA, Hofstetter AM, Chaparro JD, Michel JJ, Kimberlin DW, Banerjee R, Barnett ED, Lynfield R, Sawyer MH, Barton-Forbes M, Cardemil CV, Farizo KM, Kafer LM, Moore D, Okeke C, Prestel C, Patel M, Starke JR, Thompson J, Torres JP, Wharton M, Woods CR, Gibbs G. Recommendations for Prevention and Control of Influenza in Children, 2024-2025: Technical Report. Pediatrics 2024; 154:e2024068508. [PMID: 39183667 DOI: 10.1542/peds.2024-068508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
This technical report accompanies the recommendations of the American Academy of Pediatrics for the routine use of influenza vaccine and antiviral medications in the prevention and treatment of influenza in children during the 2024 to 2025 season. The rationale for the American Academy of Pediatrics recommendation for annual influenza vaccination of all children without medical contraindications starting at 6 months of age is provided. Influenza vaccination is an important strategy for protecting children and the broader community against influenza. This technical report summarizes recent influenza seasons, morbidity and mortality in children, vaccine effectiveness, and vaccination coverage and provides detailed guidance on vaccine storage, administration, and implementation. The report also provides a brief background on inactivated (nonlive) and live attenuated influenza vaccines, available vaccines for the 2024-2025 influenza season, vaccination during pregnancy and breastfeeding, diagnostic testing for influenza, and antiviral medications for treatment and chemoprophylaxis. Strategies to promote vaccine uptake are emphasized.
Collapse
|
2
|
Jangra S, Lamoot A, Singh G, Laghlali G, Chen Y, Ye T, García-Sastre A, De Geest BG, Schotsaert M. Lipid nanoparticle composition for adjuvant formulation modulates disease after influenza virus infection in quadrivalent influenza vaccine vaccinated mice. Front Immunol 2024; 15:1370564. [PMID: 38711520 PMCID: PMC11070541 DOI: 10.3389/fimmu.2024.1370564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
There are considerable avenues through which currently licensed influenza vaccines could be optimized. We tested influenza vaccination in a mouse model with two adjuvants: Sendai virus-derived defective interfering (SDI) RNA, a RIG-I agonist; and an amphiphilic imidazoquinoline (IMDQ-PEG-Chol), a TLR7/8 agonist. The negatively charged SDI RNA was formulated into lipid nanoparticles (LNPs) facilitating direct delivery of SDI RNA to the cytosol, where RIG-I sensing induces inflammatory and type I interferon responses. We previously tested SDI RNA and IMDQ-PEG-Chol as standalone and combination adjuvants for influenza and SARS-CoV-2 vaccines. Here, we tested two different ionizable lipids, K-Ac7-Dsa and S-Ac7-Dog, for LNP formulations. The LNPs were incorporated with SDI RNA to determine its potential as a combination adjuvant with IMDQ-PEG-Chol by evaluating the host immune response to vaccination and infection in immunized BALB/c mice. Adjuvanticity of IMDQ-PEG-Chol with and without empty or SDI-loaded LNPs was validated with quadrivalent inactivated influenza vaccine (QIV), showing robust induction of antibody titers and T-cell responses. Depending on the adjuvant combination and LNP formulation, humoral and cellular vaccine responses could be tailored towards type 1 or type 2 host responses with specific cytokine profiles that correlated with the protective responses to viral infection. The extent of protection conferred by different vaccine/LNP/adjuvant combinations was tested by challenging mice with a vaccine-matched strain of influenza A virus A/Singapore/gp1908/2015 IVR-180 (H1N1). Groups that received either LNP formulated with SDI or IMDQ-PEG-Chol, or both, showed very low levels of viral replication in their lungs at 5 days post-infection (DPI). These studies provide evidence that the combination of vaccines with LNPs and/or adjuvants promote antigen-specific cellular responses that can contribute to protection upon infection. Interestingly, we observed differences in humoral and cellular responses to vaccination between different groups receiving K-Ac7-Dsa or S-Ac7-Dog lipids in LNP formulations. The differences were also reflected in inflammatory responses in lungs of vaccinated animals to infection, depending on LNP formulations. Therefore, this study suggests that the composition of the LNPs, particularly the ionizable lipid, plays an important role in inducing inflammatory responses in vivo, which is important for vaccine safety and to prevent adverse effects upon viral exposure.
Collapse
Affiliation(s)
- Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Tingting Ye
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Bi Q, Dickerman BA, Nguyen HQ, Martin ET, Gaglani M, Wernli KJ, Balasubramani G, Flannery B, Lipsitch M, Cobey S. Reduced effectiveness of repeat influenza vaccination: distinguishing among within-season waning, recent clinical infection, and subclinical infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.03.12.23287173. [PMID: 37016669 PMCID: PMC10071822 DOI: 10.1101/2023.03.12.23287173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Studies have reported that prior-season influenza vaccination is associated with higher risk of clinical influenza infection among vaccinees. This effect might arise from incomplete consideration of within-season waning and recent infection. Using data from the US Flu Vaccine Effectiveness (VE) Network (2011-2012 to 2018-2019 seasons), we found that repeat vaccinees were vaccinated earlier in a season by one week. After accounting for waning VE, repeat vaccinees were still more likely to test positive for A(H3N2) (OR=1.11, 95%CI:1.02-1.21) but not for influenza B or A(H1N1). We found that clinical infection influenced individuals' decision to vaccinate in the following season while protecting against clinical infection of the same (sub)type. However, adjusting for recent clinical infections did not strongly influence the estimated effect of prior-season vaccination. In contrast, we found that adjusting for subclinical infection could theoretically attenuate this effect. Additional investigation is needed to determine the impact of subclinical infections on VE.
Collapse
Affiliation(s)
- Qifang Bi
- University of Chicago, Chicago, Illinois, USA
| | | | - Huong Q. Nguyen
- Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Emily T. Martin
- University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Manjusha Gaglani
- Baylor Scott & White Health, Temple, Texas, USA
- Texas A&M University College of Medicine, Temple, Texas, USA
| | - Karen J. Wernli
- Kaiser Permanente Bernard J. Tyson School of Medicine, Seattle, Washington, USA
| | - G.K. Balasubramani
- University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Brendan Flannery
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, US
| | - Marc Lipsitch
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah Cobey
- University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
4
|
Worsham CM, Bray CF, Jena AB. Optimal timing of influenza vaccination in young children: population based cohort study. BMJ 2024; 384:e077076. [PMID: 38383038 PMCID: PMC10879981 DOI: 10.1136/bmj-2023-077076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To assess optimal timing of influenza vaccination in young children. DESIGN Population based cohort study. SETTING United States. PARTICIPANTS Commercially insured children aged 2-5 years who were vaccinated against influenza during 2011-18. MAIN OUTCOME MEASURE Rates of diagnosis of influenza among children who were vaccinated against influenza, by birth month. RESULTS Overall, 819 223 children aged 2-5 received influenza vaccination. Children vaccinated in November and December were least likely to have a diagnosis of influenza, a finding that may be confounded by unmeasured factors that influence the timing of vaccination and risk of influenza. Vaccination commonly occurred on days of preventive care visits and during birth months. Children born in October were disproportionately vaccinated in October and were, on average, vaccinated later than children born in August and earlier than those born in December. Children born in October had the lowest rate of influenza diagnosis (for example, 2.7% (6016/224 540) versus 3.0% (6462/212 622) for those born in August; adjusted odds ratio 0.88, 95% confidence interval 0.85 to 0.92). CONCLUSIONS In a quasi-experimental analysis of young children vaccinated against influenza, birth month was associated with the timing of vaccination through its influence on the timing of preventive care visits. Children born in October were most likely to be vaccinated in October and least likely to have a diagnosis of influenza, consistent with recommendations promoting October vaccination.
Collapse
Affiliation(s)
- Christopher M Worsham
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Charles F Bray
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Anupam B Jena
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- National Bureau of Economic Research, Cambridge, MA, USA
| |
Collapse
|
5
|
Jangra S, Lamoot A, Singh G, Laghlali G, Chen Y, Yz T, García-Sastre A, De Geest BG, Schotsaert M. Lipid nanoparticle composition for adjuvant formulation modulates disease after influenza virus infection in QIV vaccinated mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575599. [PMID: 38293047 PMCID: PMC10827098 DOI: 10.1101/2024.01.14.575599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Adjuvants can enhance vaccine effectiveness of currently licensed influenza vaccines. We tested influenza vaccination in a mouse model with two adjuvants: Sendai virus derived defective interfering (SDI) RNA, a RIG-I agonist, and an amphiphilic imidazoquinoline (IMDQ-PEG-Chol), TLR7/8 adjuvant. The negatively charged SDI RNA was formulated into lipid nanoparticles (LNPs) facilitating the direct delivery of a RIG-I agonist to the cytosol. We have previously tested SDI and IMDQ-PEG-Chol as standalone and combination adjuvants for influenza and SARS-CoV-2 vaccines. Here we tested two different ionizable lipids, K-Ac7-Dsa and S-Ac7-Dog, for LNP formulations. The adjuvanticity of IMDQ-PEG-Chol with and without empty or SDI-loaded LNPs was validated in a licensed vaccine setting (quadrivalent influenza vaccine or QIV) against H1N1 influenza virus, showing robust induction of antibody titres and T cell responses. Depending on the adjuvant combination and LNP lipid composition (K-Ac7-Dsa or S-Ac7-Dog lipids), humoral and cellular vaccine responses could be tailored towards type 1 or type 2 host responses with specific cytokine profiles that correlated with protection during viral infection. The extent of protection conferred by different vaccine/LNP/adjuvant combinations was examined against challenge with the vaccine-matching strain of H1N1 influenza A virus. Groups that received either LNP formulated with SDI, IMDQ-PEG-Chol or both showed very low levels of viral replication in their lungs at five days post virus infection. LNP ionizable lipid composition as well as loading (empty versus SDI) also skewed host responses to infection, as reflected in the cytokine and chemokine levels in lungs of vaccinated animals upon infection. These studies show the potential of LNPs as adjuvant delivery vehicles for licensed vaccines and illustrate the importance of LNP composition for subsequent host responses to infection, an important point of consideration for vaccine safety.
Collapse
Affiliation(s)
- Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Pharmaceutics, Ghent University, Ghent Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent Belgium
| | - Tingting Yz
- Department of Pharmaceutics, Ghent University, Ghent Belgium
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Domnich A, Orsi A, Signori A, Chironna M, Manini I, Napoli C, Rizzo C, Panatto D, Icardi G. Waning intra-season vaccine effectiveness against influenza A(H3N2) underlines the need for more durable protection. Expert Rev Vaccines 2024; 23:380-388. [PMID: 38494919 DOI: 10.1080/14760584.2024.2331073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The question of whether influenza vaccine effectiveness (VE) wanes over the winter season is still open and some contradictory findings have been reported. This study investigated the possible decline in protection provided by the available influenza vaccines. RESEARCH DESIGN AND METHODS An individual-level pooled analysis of six test-negative case-control studies conducted in Italy between the 2018/2019 and 2022/2023 seasons was performed. Multivariable logistic regression analyses were performed to estimate weekly change in the odds of testing positive for influenza 14 days after vaccination. RESULTS Of 6490 patients included, 1633 tested positive for influenza. Each week that had elapsed since vaccination was associated with an increase in the odds of testing positive for any influenza (4.9%; 95% CI: 2.0-8.0%) and for A(H3N2) (6.5%; 95% CI: 2.9-10.3%). This decline in VE was, however, significant only in children and older adults. A similar increase in the odds of testing positive was seen when the dataset was restricted to vaccinees only. Conversely, VE waning was less evident for A(H1N1)pdm09 or B strains. CONCLUSIONS Significant waning of VE, especially against influenza A(H3N2), may be one of the factors associated with suboptimal end-of-season VE. Next-generation vaccines should provide more durable protection against A(H3N2).
Collapse
Affiliation(s)
- Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Andrea Orsi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Centre on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Maria Chironna
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Ilaria Manini
- Interuniversity Research Centre on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Donatella Panatto
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Centre on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| | - Giancarlo Icardi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Centre on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| |
Collapse
|
7
|
O’Leary ST, Campbell JD, Ardura MI, Banerjee R, Bryant KA, Caserta MT, Frenck RW, Gerber JS, John CC, Kourtis AP, Myers A, Pannaraj P, Ratner AJ, Shah SS, Bryant KA, Hofstetter AM, Chaparro JD, Michel JJ, Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, Bernstein HH, Cardemil CV, Farizo KM, Kafer LM, Kim D, López Medina E, Moore D, Panagiotakopoulos L, Romero JR, Sauvé L, Starke JR, Thompson J, Wharton M, Woods CR, Frantz JM, Gibbs G. Recommendations for Prevention and Control of Influenza in Children, 2023-2024. Pediatrics 2023; 152:e2023063773. [PMID: 37641884 DOI: 10.1542/peds.2023-063773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
This technical report accompanies the recommendations of the American Academy of Pediatrics for the routine use of influenza vaccine and antiviral medications in the prevention and treatment of influenza in children during the 2023-2024 season. The rationale for the American Academy of Pediatrics recommendation for annual influenza vaccination of all children without medical contraindications starting at 6 months of age is provided. Influenza vaccination is an important strategy for protecting children and the broader community against influenza. This technical report summarizes recent influenza seasons, morbidity and mortality in children, vaccine effectiveness, and vaccination coverage, and provides detailed guidance on vaccine storage, administration, and implementation. The report also provides a brief background on inactivated and live-attenuated influenza vaccines, available vaccines this season, vaccination during pregnancy and breastfeeding, diagnostic testing for influenza, and antiviral medications for treatment and chemoprophylaxis. Strategies to promote vaccine uptake are emphasized.
Collapse
|
8
|
Martins JP, Santos M, Martins A, Felgueiras M, Santos R. Seasonal Influenza Vaccine Effectiveness in Persons Aged 15-64 Years: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2023; 11:1322. [PMID: 37631889 PMCID: PMC10459161 DOI: 10.3390/vaccines11081322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Influenza is a respiratory disease caused by the influenza virus, which is highly transmissible in humans. This paper presents a systematic review and meta-analysis of randomized controlled trials (RCTs) and test-negative designs (TNDs) to assess the vaccine effectiveness (VE) of seasonal influenza vaccines (SIVs) in humans aged 15 to 64 years. An electronic search to identify all relevant studies was performed. The outcome measure of interest was VE on laboratory-confirmed influenza (any strain). Quality assessment was performed using the Cochrane risk-of-bias tool for RCTs and the ROBINS-I tool for TNDs. The search identified a total of 2993 records, but only 123 studies from 73 papers were included in the meta-analysis. Of these studies, 9 were RCTs and 116 were TNDs. The pooled VE was 48% (95% CI: 42-54) for RCTs, 55.4% (95% CI: 43.2-64.9) when there was a match between the vaccine and most prevalent circulating strains and 39.3% (95% CI: 23.5-51.9) otherwise. The TNDs' adjusted VE was equal to 39.9% (95% CI: 31-48), 45.1 (95% CI: 38.7-50.8) when there was a match and 35.1 (95% CI: 29.0-40.7) otherwise. The match between strains included in the vaccine and strains in circulation is the most important factor in the VE. It increases by more than 25% when there is a match with the most prevalent circulating strains. The laboratorial method for confirmation of influenza is a possible source of bias when estimating VE.
Collapse
Affiliation(s)
- João Paulo Martins
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- CEAUL—Centro de Estatística e Aplicações, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.F.); (R.S.)
| | - Marlene Santos
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Centro de Investigação em Saúde e Ambiente, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - André Martins
- Centro de Investigação em Saúde e Ambiente, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Miguel Felgueiras
- CEAUL—Centro de Estatística e Aplicações, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.F.); (R.S.)
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Campus 2, Morro do Lena—Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Rui Santos
- CEAUL—Centro de Estatística e Aplicações, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.F.); (R.S.)
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Campus 2, Morro do Lena—Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| |
Collapse
|
9
|
Nikas A, Ahmed H, Zarnitsyna VI. Competing Heterogeneities in Vaccine Effectiveness Estimation. Vaccines (Basel) 2023; 11:1312. [PMID: 37631880 PMCID: PMC10458793 DOI: 10.3390/vaccines11081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Understanding the waning of vaccine-induced protection is important for both immunology and public health. Population heterogeneities in underlying (pre-vaccination) susceptibility and vaccine response can cause measured vaccine effectiveness (mVE) to change over time, even in the absence of pathogen evolution and any actual waning of immune responses. We use multi-scale agent-based models parameterized using epidemiological and immunological data, to investigate the effect of these heterogeneities on mVE as measured by the hazard ratio. Based on our previous work, we consider the waning of antibodies according to a power law and link it to protection in two ways: (1) motivated by correlates of risk data and (2) using a within-host model of stochastic viral extinction. The effect of the heterogeneities is given by concise and understandable formulas, one of which is essentially a generalization of Fisher's fundamental theorem of natural selection to include higher derivatives. Heterogeneity in underlying susceptibility accelerates apparent waning, whereas heterogeneity in vaccine response slows down apparent waning. Our models suggest that heterogeneity in underlying susceptibility is likely to dominate. However, heterogeneity in vaccine response offsets <10% to >100% (median of 29%) of this effect in our simulations. Our study suggests heterogeneity is more likely to 'bias' mVE downwards towards the faster waning of immunity but a subtle bias in the opposite direction is also plausible.
Collapse
Affiliation(s)
- Ariel Nikas
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Veronika I. Zarnitsyna
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Wunderlich B, Laskow T, Li H, Zhang L, Abrams E, Tian J, Yu J, Chen Y, Tavenier J, Huang Y, Talaat K, Bream JH, Xue QL, Pawelec G, Leng SX. Interseason waning of vaccine-induced hemagglutination inhibition antibody titers and contributing factors to pre-existing humoral immunity against influenza in community-dwelling older adults 75 years and older. Immun Ageing 2023; 20:38. [PMID: 37525151 PMCID: PMC10388475 DOI: 10.1186/s12979-023-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Seasonal influenza causes significant morbidity and mortality with a disproportionately high disease burden in older adults. Strain-specific hemagglutination-inhibition (HAI) antibody titer is a well-established measure of humoral immunity against influenza and pre-vaccination HAI titer is a valuable indicator of pre-existing humoral immunity at the beginning of each influenza season in highly vaccinated older adults. While vaccine-induced HAI antibody titers are known to wane over time, accurate assessment of their interseason waning has been challenging. This is because pre-vaccination HAI titers are routinely measured using current season vaccine strain antigens instead of the prior season vaccines with which individuals were immunized; as such, they do not accurately represent residual antibody titers from prior season vaccination. This study took advantage of available pre-vaccination HAI titers measured using both current and prior season vaccine strain antigens in a longitudinal influenza immunization study with participants enrolled for multiple consecutive influenza seasons from 2014 through 2017. Influenza A virus (IAV) H3N2 and influenza B virus (IBV) strains in the vaccine formula changed in 2015 and again in 2016 season. IAV H1N1 vaccine strain remained the same from 2014 through 2016 seasons, but changed in 2017. We also investigated factors contributing to pre-existing humoral immunity. RESULTS Interseason waning of HAI titers was evident, but rates of waning varied among vaccine strains and study seasons, from 18% (p = .43) to 61% (p < .01). Rates of waning were noticeably greater when pre-vaccination HAI titers were measured by the routine approach, i.e., using current season vaccine strain antigens, from 33% (p = .12) to 83% (p < .01), adjusting for age at prior study season, sex, race, and education. This was largely because the routinely measured pre-vaccination HAI titers underrepresented residual HAI titers from prior season vaccinations. Moreover, interseason antibody waning and prior season post-vaccination HAI titers had significant and independent associations with pre-vaccination HAI titers. CONCLUSIONS The routinely measured pre-vaccination HAI titer overestimates interseason HAI antibody waning as it underestimates residual antibody titers from prior season vaccination when virus strains in the vaccine formula change. Moreover, interseason antibody waning and prior season post-vaccination HAI titers independently contribute to pre-existing humoral immunity in this highly vaccinated, community-dwelling older adult population.
Collapse
Affiliation(s)
- Bettina Wunderlich
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas Laskow
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins Center On Aging and Immune Remodeling, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, JHAAC Room 1A.38A, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Huifen Li
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins Center On Aging and Immune Remodeling, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, JHAAC Room 1A.38A, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Li Zhang
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, China
| | - Engle Abrams
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins Center On Aging and Immune Remodeling, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, JHAAC Room 1A.38A, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Jing Tian
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Yu
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins Center On Aging and Immune Remodeling, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, JHAAC Room 1A.38A, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Yiyin Chen
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins Center On Aging and Immune Remodeling, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, JHAAC Room 1A.38A, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | | | - Kawsar Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Immunology Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Qian-Li Xue
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins Center On Aging and Immune Remodeling, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, JHAAC Room 1A.38A, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
11
|
Doyon-Plourde P, Przepiorkowski J, Young K, Zhao L, Sinilaite A. Intraseasonal waning immunity of seasonal influenza vaccine - A systematic review and meta-analysis. Vaccine 2023:S0264-410X(23)00713-2. [PMID: 37331840 DOI: 10.1016/j.vaccine.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Recently, studies have suggested that influenza antibody titers decline with time since vaccination. Duration of vaccine protection is an important factor to determine the optimal timing of vaccination. OBJECTIVE We aimed to systematically evaluate the implication of waning immunity on the duration of seasonal influenza vaccine antibody response. METHOD Electronic databases and clinical trial registries were systematically searched to identify phase III/IV randomized clinical trials evaluating the immunogenicity of seasonal influenza vaccines measured by hemagglutination inhibition assay in healthy individuals six months of age and older. Meta-analyses were conducted to compare adjuvanted and standard influenza vaccine responses with time since vaccination. RESULTS 1918 articles were identified, of which ten were included in qualitative synthesis and seven in quantitative analysis (children; n=3, older adults; n=4). All studies were deemed to be at low risk of bias, except one study deemed at high risk of bias due to missing outcome data. The majority of included studies found a rise in antibody titers at one-month followed by a decline at six-month post-vaccination. At six-months post-vaccination overall risk differences in seroprotection were significantly higher for children vaccinated with adjuvanted compared to standard vaccines (0.29; 95 % confidence interval (CI), 0.14-0.44). A small increase in seroprotection levels was observed among older adults vaccinated with an adjuvanted compared to standard vaccines, which remained constant over six-months (pre-vaccination: 0.03; 95 % CI, 0.00-0.09 and one- and six-months post-vaccination: 0.05; 95 % CI, 0.01-0.09). CONCLUSIONS Our results found evidence of persistent antibody responses following influenza vaccination over the course of a typical influenza season. Even if influenza vaccine responses wane over a six-month period, vaccination likely still provides a significant advantage in protection, which may be enhanced with adjuvanted vaccines, particularly in children. Further research is needed to identify the exact timing when the decline in antibody response begins to better inform the optimal timing of influenza vaccination programs. TRIAL REGISTRATION PROSPERO (CRD42019138585).
Collapse
Affiliation(s)
- Pamela Doyon-Plourde
- Centre for Immunization Readiness, Public Health Agency of Canada, Ottawa, Canada; Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, University of Montreal, Canada.
| | | | - Kelsey Young
- Centre for Immunization Readiness, Public Health Agency of Canada, Ottawa, Canada
| | - Linlu Zhao
- Centre for Immunization Readiness, Public Health Agency of Canada, Ottawa, Canada
| | - Angela Sinilaite
- Centre for Immunization Readiness, Public Health Agency of Canada, Ottawa, Canada
| |
Collapse
|
12
|
Nikas A, Ahmed H, Zarnitsyna VI. Estimating Waning of Vaccine Effectiveness: A Simulation Study. Clin Infect Dis 2023; 76:479-486. [PMID: 36056892 PMCID: PMC10169445 DOI: 10.1093/cid/ciac725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Developing accurate and reliable methods to estimate vaccine protection is a key goal in immunology and public health. While several statistical methods have been proposed, their potential inaccuracy in capturing fast intraseasonal waning of vaccine-induced protection needs to be rigorously investigated. METHODS To compare statistical methods for estimating vaccine effectiveness (VE), we generated simulated data using a multiscale, agent-based model of an epidemic with an acute viral infection and differing extents of VE waning. We apply a previously proposed framework for VE measures based on the observational data richness to assess changes of vaccine-induced protection over time. RESULTS While VE measures based on hard-to-collect information (eg, the exact timing of exposures) were accurate, usually VE studies rely on time-to-infection data and the Cox proportional hazards model. We found that its extension using scaled Schoenfeld residuals, previously proposed for capturing VE waning, was unreliable in capturing both the degree of waning and its functional form and identified the mathematical factors contributing to this unreliability. We showed that partitioning time and including a time-vaccine interaction term in the Cox model significantly improved estimation of VE waning, even in the case of dramatic, rapid waning. We also proposed how to optimize the partitioning scheme. CONCLUSIONS While appropriate for rejecting the null hypothesis of no waning, scaled Schoenfeld residuals are unreliable for estimating the degree of waning. We propose a Cox-model-based method with a time-vaccine interaction term and further optimization of partitioning time. These findings may guide future analysis of VE waning data.
Collapse
Affiliation(s)
- Ariel Nikas
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Veronika I Zarnitsyna
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Abstract
This technical report accompanies the recommendations of the American Academy of Pediatrics for the routine use of influenza vaccine and antiviral medications in the prevention and treatment of influenza in children during the 2022 to 2023 season. The American Academy of Pediatrics recommends annual influenza vaccination of all children without medical contraindications starting at 6 months of age. Influenza vaccination is an important strategy for protecting children and the broader community as well as reducing the overall burden of respiratory illnesses when other viruses, including severe acute respiratory syndrome-coronavirus 2, are cocirculating. This technical report summarizes recent influenza seasons, morbidity and mortality in children, vaccine effectiveness, and vaccination coverage, and provides detailed guidance on storage, administration, and implementation. The report also provides a brief background on inactivated and live attenuated influenza vaccine recommendations, vaccination during pregnancy and breastfeeding, diagnostic testing, and antiviral medications for treatment and chemoprophylaxis. Updated information is provided about the 2021 to 2022 influenza season, influenza immunization rates, the effectiveness of influenza vaccination on hospitalization and mortality, available vaccines, guidance for patients with history of severe allergic reactions to prior influenza vaccinations, and strategies to promote vaccine uptake.
Collapse
|
14
|
MADE: A Computational Tool for Predicting Vaccine Effectiveness for the Influenza A(H3N2) Virus Adapted to Embryonated Eggs. Vaccines (Basel) 2022; 10:vaccines10060907. [PMID: 35746515 PMCID: PMC9227319 DOI: 10.3390/vaccines10060907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/29/2023] Open
Abstract
Seasonal Influenza H3N2 virus poses a great threat to public health, but its vaccine efficacy remains suboptimal. One critical step in influenza vaccine production is the viral passage in embryonated eggs. Recently, the strength of egg passage adaptation was found to be rapidly increasing with time driven by convergent evolution at a set of functionally important codons in the hemagglutinin (HA1). In this study, we aim to take advantage of the negative correlation between egg passage adaptation and vaccine effectiveness (VE) and develop a computational tool for selecting the best candidate vaccine virus (CVV) for vaccine production. Using a probabilistic approach known as mutational mapping, we characterized the pattern of sequence evolution driven by egg passage adaptation and developed a new metric known as the adaptive distance (AD) which measures the overall strength of egg passage adaptation. We found that AD is negatively correlated with the influenza H3N2 vaccine effectiveness (VE) and ~75% of the variability in VE can be explained by AD. Based on these findings, we developed a computational package that can Measure the Adaptive Distance and predict vaccine Effectiveness (MADE). MADE provides a powerful tool for the community to calibrate the effect of egg passage adaptation and select more reliable strains with minimum egg-passaged changes as the seasonal A/H3N2 influenza vaccine.
Collapse
|
15
|
Hu W, Sjoberg PA, Fries AC, DeMarcus LS, Robbins AS. Waning Vaccine Protection against Influenza among Department of Defense Adult Beneficiaries in the United States, 2016–2017 through 2019–2020 Influenza Seasons. Vaccines (Basel) 2022; 10:vaccines10060888. [PMID: 35746496 PMCID: PMC9229659 DOI: 10.3390/vaccines10060888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The objective of this study was to assess inactivated influenza vaccine effectiveness (VE) by time since vaccination in adults aged ≥ 18 years using a test-negative design. All data were obtained from the US Department of Defense Global Respiratory Pathogen Surveillance Program over four influenza seasons, from 2016–2017 through 2019–2020. Analyses were performed to estimate VE using a generalized linear mixed model with logit link and binomial distribution. The adjusted overall VE against any medically attended, laboratory-confirmed influenza decreased from 50% (95% confidence interval (CI): 41–58%) in adults vaccinated 14 to 74 days prior to the onset of influenza-like illness (ILI), to 39% (95% CI: 31–47%) in adults vaccinated 75 to 134 days prior to the onset of ILI, then to 17% (95% CI: 0–32%) in adults vaccinated 135 to 194 days prior to the onset of ILI. The pattern and magnitude of VE change with increasing time since vaccination differed by influenza (sub)types. Compared to VE against influenza A(H1N1)pdm09 and influenza B, the decrease of VE against influenza A(H3N2) was more pronounced with increasing time since vaccination. In conclusion, based on the analysis of 2536 influenza-positive cases identified from 7058 adults over multiple influenza seasons, the effectiveness of inactivated influenza vaccine wanes within 180 days after 14 days of influenza vaccination.
Collapse
Affiliation(s)
- Wenping Hu
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (P.A.S.); (L.S.D.); (A.S.R.)
- JYG Innovations, LLC, Dayton, OH 45414, USA
- Correspondence:
| | - Paul A. Sjoberg
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (P.A.S.); (L.S.D.); (A.S.R.)
- JYG Innovations, LLC, Dayton, OH 45414, USA
| | - Anthony C. Fries
- U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Dayton, OH 45433, USA;
| | - Laurie S. DeMarcus
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (P.A.S.); (L.S.D.); (A.S.R.)
- JYG Innovations, LLC, Dayton, OH 45414, USA
| | - Anthony S. Robbins
- The Department of Defense Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (P.A.S.); (L.S.D.); (A.S.R.)
| |
Collapse
|
16
|
Spencer S, Chung JR, Belongia EA, Sundaram M, Meece J, Coleman LA, Zimmerman RK, Nowalk MP, Moehling Geffel K, Ross T, Carter CE, Shay D, Levine M, Liepkalns J, Kim JH, Sambhara S, Thompson MG, Flannery B. Impact of diabetes status on immunogenicity of trivalent inactivated influenza vaccine in older adults. Influenza Other Respir Viruses 2021; 16:562-567. [PMID: 34859584 PMCID: PMC8983908 DOI: 10.1111/irv.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/29/2022] Open
Abstract
Individuals with type 2 diabetes mellitus experience high rates of influenza virus infection and complications. We compared the magnitude and duration of serologic response to trivalent influenza vaccine in adults aged 50–80 with and without type 2 diabetes mellitus. Serologic response to influenza vaccination was similar in both groups: greater fold‐increases in antibody titer occurred among participants with lower pre‐vaccination antibody titers. Waning of antibody titers was not influenced by diabetes status.
Collapse
Affiliation(s)
- Sarah Spencer
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessie R Chung
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Edward A Belongia
- Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Maria Sundaram
- Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Jennifer Meece
- Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Laura A Coleman
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland.,Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Richard K Zimmerman
- Schools of Medicine Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Patricia Nowalk
- Schools of Medicine Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Krissy Moehling Geffel
- Schools of Medicine Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ted Ross
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA.,Schools of Medicine Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chalise E Carter
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA.,Schools of Medicine Department of Family Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Shay
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Min Levine
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Justine Liepkalns
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Department of Biology, University of Washington, Seattle, Washington, USA
| | - Jin Hyang Kim
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Translational Medicine, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Suryaprakash Sambhara
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark G Thompson
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brendan Flannery
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Yildirim I, Kao CM, Tippett A, Suntarattiwong P, Munye M, Yi J, Elmontser M, Quincer E, Focht C, Watson N, Bilen H, Baker JM, Lopman B, Hogenesch E, Rostad CA, Anderson EJ. A Retrospective Test-Negative Case-Control Study to Evaluate Influenza Vaccine Effectiveness in Preventing Hospitalizations in Children. Clin Infect Dis 2021; 73:1759-1767. [PMID: 34410341 PMCID: PMC8599178 DOI: 10.1093/cid/ciab709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Vaccination is the primary strategy to reduce influenza burden. Influenza vaccine effectiveness (VE) can vary annually depending on circulating strains. METHODS We used a test-negative case-control study design to estimate influenza VE against laboratory-confirmed influenza-related hospitalizations among children (aged 6 months-17 years) across 5 influenza seasons in Atlanta, Georgia, from 2012-2013 to 2016-2017. Influenza-positive cases were randomly matched to test-negative controls based on age and influenza season in a 1:1 ratio. We used logistic regression models to compare odds ratios (ORs) of vaccination in cases to controls. We calculated VE as [100% × (1 - adjusted OR)] and computed 95% confidence intervals (CIs) around the estimates. RESULTS We identified 14 596 hospitalizations of children who were tested for influenza using the multiplex respiratory molecular panel; influenza infection was detected in 1017 (7.0%). After exclusions, we included 512 influenza-positive cases and 512 influenza-negative controls. The median age was 5.9 years (interquartile range, 2.7-10.3), 497 (48.5%) were female, 567 (55.4%) were non-Hispanic Black, and 654 (63.9%) children were unvaccinated. Influenza A accounted for 370 (72.3%) of 512 cases and predominated during all 5 seasons. The adjusted VE against influenza-related hospitalizations during 2012-2013 to 2016-2017 was 51.3% (95% CI, 34.8% to 63.6%) and varied by season. Influenza VE was 54.7% (95% CI, 37.4% to 67.3%) for influenza A and 37.1% (95% CI, 2.3% to 59.5%) for influenza B. CONCLUSIONS Influenza vaccination decreased the risk of influenza-related pediatric hospitalizations by >50% across 5 influenza seasons.
Collapse
Affiliation(s)
- Inci Yildirim
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Carol M Kao
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Ashley Tippett
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Piyarat Suntarattiwong
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Mohamed Munye
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jumi Yi
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, University of San Francisco, San Francisco, California, USA
| | - Mohnd Elmontser
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Elizabeth Quincer
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | | | - Hande Bilen
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julia M Baker
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ben Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Elena Hogenesch
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Christina A Rostad
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Evan J Anderson
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Abstract
This technical report accompanies the recommendations of the American Academy of Pediatrics for the routine use of the influenza vaccine and antiviral medications in the prevention and treatment of influenza in children during the 2021-2022 season. Influenza vaccination is an important intervention to protect vulnerable populations and reduce the burden of respiratory illnesses during circulation of severe acute respiratory syndrome coronavirus 2, which is expected to continue during this influenza season. In this technical report, we summarize recent influenza seasons, morbidity and mortality in children, vaccine effectiveness, vaccination coverage, and detailed guidance on storage, administration, and implementation. We also provide background on inactivated and live attenuated influenza vaccine recommendations, vaccination during pregnancy and breastfeeding, diagnostic testing, and antiviral medications for treatment and chemoprophylaxis.
Collapse
MESH Headings
- Antiviral Agents/therapeutic use
- Breast Feeding
- Child
- Contraindications, Drug
- Drug Resistance, Viral
- Drug Storage
- Female
- Hospitalization
- Humans
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza, Human/drug therapy
- Influenza, Human/epidemiology
- Influenza, Human/mortality
- Influenza, Human/prevention & control
- Mass Vaccination
- Risk Factors
- United States/epidemiology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/adverse effects
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
Collapse
|
19
|
Ferdinands JM, Gaglani M, Martin ET, Monto AS, Middleton D, Silveira F, Talbot HK, Zimmerman R, Patel M. Waning Vaccine Effectiveness Against Influenza-Associated Hospitalizations Among Adults, 2015-2016 to 2018-2019, United States Hospitalized Adult Influenza Vaccine Effectiveness Network. Clin Infect Dis 2021; 73:726-729. [PMID: 33462610 PMCID: PMC8499703 DOI: 10.1093/cid/ciab045] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
We observed decreased effectiveness of influenza vaccine with increasing time since vaccination for prevention of influenza A(H3N2), influenza A(H1N1)pdm09, and influenza B/Yamagata-associated hospitalizations among adults. Maximum vaccine effectiveness (VE) was observed shortly after vaccination, followed by an absolute decline in VE of about 8%-9% per month postvaccination.
Collapse
Affiliation(s)
- Jill M Ferdinands
- Influenza Division, Centers for Disease Control and
Prevention, Atlanta, Georgia, USA
| | | | - Emily T Martin
- University of Michigan School of Public
Health, Ann Arbor, Michigan, USA
| | - Arnold S Monto
- University of Michigan School of Public
Health, Ann Arbor, Michigan, USA
| | - Donald Middleton
- University of Pittsburgh and University of Pittsburgh
Medical Center, Pittsburgh, Pennsylvania, USA
| | - Fernanda Silveira
- University of Pittsburgh and University of Pittsburgh
Medical Center, Pittsburgh, Pennsylvania, USA
| | - H Keipp Talbot
- Vanderbilt University Medical Center,
Nashville, Tennessee, USA
| | - Richard Zimmerman
- University of Pittsburgh and University of Pittsburgh
Medical Center, Pittsburgh, Pennsylvania, USA
| | - Manish Patel
- Influenza Division, Centers for Disease Control and
Prevention, Atlanta, Georgia, USA
| |
Collapse
|
20
|
An Antigenic Thrift-Based Approach to Influenza Vaccine Design. Vaccines (Basel) 2021; 9:vaccines9060657. [PMID: 34208489 PMCID: PMC8235769 DOI: 10.3390/vaccines9060657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/19/2022] Open
Abstract
The antigenic drift theory states that influenza evolves via the gradual accumulation of mutations, decreasing a host’s immune protection against previous strains. Influenza vaccines are designed accordingly, under the premise of antigenic drift. However, a paradox exists at the centre of influenza research. If influenza evolved primarily through mutation in multiple epitopes, multiple influenza strains should co-circulate. Such a multitude of strains would render influenza vaccines quickly inefficacious. Instead, a single or limited number of strains dominate circulation each influenza season. Unless additional constraints are placed on the evolution of influenza, antigenic drift does not adequately explain these observations. Here, we explore the constraints placed on antigenic drift and a competing theory of influenza evolution – antigenic thrift. In contrast to antigenic drift, antigenic thrift states that immune selection targets epitopes of limited variability, which constrain the variability of the virus. We explain the implications of antigenic drift and antigenic thrift and explore their current and potential uses in the context of influenza vaccine design.
Collapse
|
21
|
McLean HQ, Belongia EA. Influenza Vaccine Effectiveness: New Insights and Challenges. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038315. [PMID: 31988202 DOI: 10.1101/cshperspect.a038315] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methods for assessing influenza vaccine efficacy and effectiveness have evolved over six decades. Randomized trials remain the gold standard for licensure, but observational studies are needed for annual assessment of vaccine effectiveness (VE). The test-negative design (TND) has become the de facto standard for these field studies. Patients who seek medical care with acute respiratory illness are tested for influenza, and VE is estimated from the odds of vaccination among influenza cases versus test-negative controls. VE varies across seasons, populations, age groups, and products, but VE estimates are consistently higher for A(H1N1)pdm09 and type B compared with A(H3N2). VE studies are increasingly used in combination with molecular epidemiology to understand the viral and immune system factors that drive clinical efficacy and effectiveness. The emerging field of immunoepidemiology offers the potential to understand complex host-virus interactions that affect vaccine protection, and this knowledge will contribute to universal vaccine development.
Collapse
Affiliation(s)
- Huong Q McLean
- Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin 54449, USA
| | - Edward A Belongia
- Center for Clinical Epidemiology & Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin 54449, USA
| |
Collapse
|
22
|
Guthmiller JJ, Utset HA, Wilson PC. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses 2021; 13:965. [PMID: 34067435 PMCID: PMC8224597 DOI: 10.3390/v13060965] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses.
Collapse
Affiliation(s)
- Jenna J. Guthmiller
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
| | - Henry A. Utset
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
| | - Patrick C. Wilson
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Qiu J, Wang H, Hu L, Yang C, Zhang T. Spatial transmission network construction of influenza-like illness using dynamic Bayesian network and vector-autoregressive moving average model. BMC Infect Dis 2021; 21:164. [PMID: 33568082 PMCID: PMC7874476 DOI: 10.1186/s12879-021-05769-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although vaccination is one of the main countermeasures against influenza epidemic, it is highly essential to make informed prevention decisions to guarantee that limited vaccination resources are allocated to the places where they are most needed. Hence, one of the fundamental steps for decision making in influenza prevention is to characterize its spatio-temporal trend, especially on the key problem about how influenza transmits among adjacent places and how much impact the influenza of one place could have on its neighbors. To solve this problem while avoiding too much additional time-consuming work on data collection, this study proposed a new concept of spatio-temporal route as well as its estimation methods to construct the influenza transmission network. METHODS The influenza-like illness (ILI) data of Sichuan province in 21 cities was collected from 2010 to 2016. A joint pattern based on the dynamic Bayesian network (DBN) model and the vector autoregressive moving average (VARMA) model was utilized to estimate the spatio-temporal routes, which were applied to the two stages of learning process respectively, namely structure learning and parameter learning. In structure learning, the first-order conditional dependencies approximation algorithm was used to generate the DBN, which could visualize the spatio-temporal routes of influenza among adjacent cities and infer which cities have impacts on others in influenza transmission. In parameter learning, the VARMA model was adopted to estimate the strength of these impacts. Finally, all the estimated spatio-temporal routes were put together to form the final influenza transmission network. RESULTS The results showed that the period of influenza transmission cycle was longer in Western Sichuan and Chengdu Plain than that in Northeastern Sichuan, and there would be potential spatio-temporal routes of influenza from bordering provinces or municipalities into Sichuan province. Furthermore, this study also pointed out several estimated spatio-temporal routes with relatively high strength of associations, which could serve as clues of hot spot areas detection for influenza surveillance. CONCLUSIONS This study proposed a new framework for exploring the potentially stable spatio-temporal routes between different places and measuring specific the sizes of transmission effects. It could help making timely and reliable prediction of the spatio-temporal trend of infectious diseases, and further determining the possible key areas of the next epidemic by considering their neighbors' incidence and the transmission relationships.
Collapse
Affiliation(s)
- Jianqing Qiu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan China
| | - Huimin Wang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lin Hu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan China
| | - Changhong Yang
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Tao Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
24
|
Liu WC, Nachbagauer R, Stadlbauer D, Strohmeier S, Solórzano A, Berlanda-Scorza F, Innis BL, García-Sastre A, Palese P, Krammer F, Albrecht RA. Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity against Influenza A Viruses in a Preclinical Ferret Model. Vaccines (Basel) 2021; 9:vaccines9010040. [PMID: 33440898 PMCID: PMC7826668 DOI: 10.3390/vaccines9010040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Epidemic or pandemic influenza can annually cause significant morbidity and mortality in humans. We developed novel chimeric hemagglutinin (cHA)-based universal influenza virus vaccines, which contain a conserved HA stalk domain from a 2009 pandemic H1N1 (pH1N1) strain combined with globular head domains from avian influenza A viruses. Our previous reports demonstrated that prime-boost sequential immunizations induced robust antibody responses directed toward the conserved HA stalk domain in ferrets. Herein, we further followed vaccinated animals for one year to compare the efficacy and durability of these vaccines in the preclinical ferret model of influenza. Although all cHA-based immunization regimens induced durable HA stalk-specific and heterosubtypic antibody responses in ferrets, sequential immunization with live-attenuated influenza virus vaccines (LAIV-LAIV) conferred the best protection against upper respiratory tract infection by a pH1N1 influenza A virus. The findings from this study suggest that our sequential immunization strategy for a cHA-based universal influenza virus vaccine provides durable protective humoral and cellular immunity against influenza virus infection.
Collapse
Affiliation(s)
- Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Biomedical Translation Research Center, Academia Sinica, Taipei 11571, Taiwan;
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Moderna Therapeutics, Inc., Cambridge, MA 02141, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | - Alicia Solórzano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | | | - Bruce L. Innis
- Biomedical Translation Research Center, Academia Sinica, Taipei 11571, Taiwan;
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
25
|
Ferdinands JM, Alyanak E, Reed C, Fry AM. Waning of Influenza Vaccine Protection: Exploring the Trade-offs of Changes in Vaccination Timing Among Older Adults. Clin Infect Dis 2021; 70:1550-1559. [PMID: 31257422 DOI: 10.1093/cid/ciz452] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/30/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In recent studies of influenza vaccine effectiveness (VE), lower effectiveness with increasing time since vaccination was observed, raising the question of optimal vaccination timing. We sought to evaluate the estimated number of influenza-associated hospitalizations among older adults due to potential changes in vaccination timing. METHODS Using empirical data and a health state transition model, we estimated change in influenza-associated hospitalizations predicted to occur among the US population aged ≥65 years if vaccination were delayed until October 1. We assumed the vaccination timing, coverage, and effectiveness observed in 2012-2013 as a prototypical influenza season, approximately 7% monthly waning of VE, and that between 0% and 50% of individuals who usually get vaccinated earlier than October failed to get vaccinated. We also assessed change in influenza-associated hospitalizations if vaccination uptake shifted substantially toward August and September. RESULTS In a typical season, delaying vaccination until October increased influenza hospitalizations if more than 14% of older adults usually vaccinated in August and September failed to get vaccinated. The consequences of delayed vaccination depended heavily on influenza season timing, rate of waning, and overall VE. A shift toward vaccination in August and September led to, on average, an increase in influenza-associated hospitalizations, but this result was also sensitive to influenza season timing. CONCLUSIONS Consequences of delayed vaccination varied widely. Uncertainties about vaccine waning and effects of a delay on vaccine coverage suggest it is premature to change current vaccine recommendations, although it may be prudent to prevent a substantial shift toward early vaccination.
Collapse
Affiliation(s)
- Jill M Ferdinands
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia
| | - Elif Alyanak
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia.,ORISE Fellowship Program, Oak Ridge, Tennessee
| | - Carrie Reed
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia
| | - Alicia M Fry
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia
| |
Collapse
|
26
|
Abstract
Influenza vaccine effectiveness (VE) wanes over the course of a temperate climate winter season but little data are available from tropical countries with year-round influenza virus activity. In Singapore, a retrospective cohort study of adults vaccinated from 2013 to 2017 was conducted. Influenza vaccine failure was defined as hospital admission with polymerase chain reaction-confirmed influenza infection 2–49 weeks after vaccination. Relative VE was calculated by splitting the follow-up period into 8-week episodes (Lexis expansion) and the odds of influenza infection in the first 8-week period after vaccination (weeks 2–9) compared with subsequent 8-week periods using multivariable logistic regression adjusting for patient factors and influenza virus activity. Records of 19 298 influenza vaccinations were analysed with 617 (3.2%) influenza infections. Relative VE was stable for the first 26 weeks post-vaccination, but then declined for all three influenza types/subtypes to 69% at weeks 42–49 (95% confidence interval (CI) 52–92%, P = 0.011). VE declined fastest in older adults, in individuals with chronic pulmonary disease and in those who had been previously vaccinated within the last 2 years. Vaccine failure was significantly associated with a change in recommended vaccine strains between vaccination and observation period (adjusted odds ratio 1.26, 95% CI 1.06–1.50, P = 0.010).
Collapse
|
27
|
Hollingsworth R, El Guerche-Séblain C, Tsai T, Vasiliev Y, Lee S, Bright H, Barbosa P. Assessment of the benefits of seasonal influenza vaccination: Elements of a framework to interpret estimates of vaccine effectiveness and support robust decision-making and communication. Influenza Other Respir Viruses 2020; 15:164-174. [PMID: 32885610 PMCID: PMC7767949 DOI: 10.1111/irv.12786] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/03/2022] Open
Abstract
Systematic reviews and meta‐analyses confirm that influenza vaccination reduces the risk of influenza illness by between about 40% and 60% in seasons when circulating influenza stains are well matched to vaccine strains. Influenza vaccine effectiveness (IVE) estimates, however, are often discordant and a source of confusion for decision makers. IVE assessments are increasingly publicized and are often used by policy makers to make decisions about the value of seasonal influenza vaccination. But there is limited guidance on how IVE should be interpreted or used to inform policy. There are several limitations to the use of IVE for decision‐making: (a) IVE studies have methodological issues that often complicate the interpretation of their value; and (b) the full impact of vaccination will almost always be greater than the impact assessed by a point estimate of IVE in specific populations or settings. Understanding the strengths and weaknesses of study methodologies and the fundamental limitations of IVE estimates is important for the accuracy of interpretations and support of policy makers’ decisions. Here, we review a comprehensive set of issues that need to be considered when interpreting IVE and determining the full benefits of influenza vaccination. We propose that published IVE values should be assessed using an evaluative framework that includes influenza‐specific outcomes, types of VE study design, and confounders, among other factors. Better interpretation of IVE will improve the broader assessment of the value of influenza vaccination and ultimately optimize the public health benefits in seasonal influenza vaccination.
Collapse
Affiliation(s)
| | | | | | - Yuri Vasiliev
- St. Petersburg Research Institute of Vaccines and Sera, Krasnoe Selo, Russian Federation
| | - Sam Lee
- Sanofi Pasteur, Swiftwater, PA, USA
| | | | - Paula Barbosa
- International Federation of Pharmaceutical Manufacturers and Associations, Geneva, Switzerland
| |
Collapse
|
28
|
Grohskopf LA, Alyanak E, Broder KR, Blanton LH, Fry AM, Jernigan DB, Atmar RL. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices - United States, 2020-21 Influenza Season. MMWR Recomm Rep 2020; 69:1-24. [PMID: 32820746 PMCID: PMC7439976 DOI: 10.15585/mmwr.rr6908a1] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This report updates the 2019–20 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2019;68[No. RR-3]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. Inactivated influenza vaccines (IIVs), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4) are expected to be available. Most influenza vaccines available for the 2020–21 season will be quadrivalent, with the exception of MF59-adjuvanted IIV, which is expected to be available in both quadrivalent and trivalent formulations. Updates to the recommendations described in this report reflect discussions during public meetings of ACIP held on October 23, 2019; February 26, 2020; and June 24, 2020. Primary updates to this report include the following two items. First, the composition of 2020–21 U.S. influenza vaccines includes updates to the influenza A(H1N1)pdm09, influenza A(H3N2), and influenza B/Victoria lineage components. Second, recent licensures of two new influenza vaccines, Fluzone High-Dose Quadrivalent and Fluad Quadrivalent, are discussed. Both new vaccines are licensed for persons aged ≥65 years. Additional changes include updated discussion of contraindications and precautions to influenza vaccination and the accompanying Table, updated discussion concerning use of LAIV4 in the setting of influenza antiviral medication use, and updated recommendations concerning vaccination of persons with egg allergy who receive either cell culture–based IIV4 (ccIIV4) or RIV4. The 2020–21 influenza season will coincide with the continued or recurrent circulation of SARS-CoV-2 (the novel coronavirus associated with coronavirus disease 2019 [COVID-19]). Influenza vaccination of persons aged ≥6 months to reduce prevalence of illness caused by influenza will reduce symptoms that might be confused with those of COVID-19. Prevention of and reduction in the severity of influenza illness and reduction of outpatient illnesses, hospitalizations, and intensive care unit admissions through influenza vaccination also could alleviate stress on the U.S. health care system. Guidance for vaccine planning during the pandemic is available at https://www.cdc.gov/vaccines/pandemic-guidance/index.html. This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2020–21 season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used within Food and Drug Administration (FDA)–licensed indications. Updates and other information are available from CDC’s influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check this site periodically for additional information.
Collapse
|
29
|
Ray GT, Lewis N, Klein NP, Daley MF, Wang SV, Kulldorff M, Fireman B. Intraseason Waning of Influenza Vaccine Effectiveness. Clin Infect Dis 2020; 68:1623-1630. [PMID: 30204855 DOI: 10.1093/cid/ciy770] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/05/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In the United States, it is recommended that healthcare providers offer influenza vaccination by October, if possible. However, if the vaccine's effectiveness soon begins to wane, the optimal time for vaccination may be somewhat later. We examined whether the effectiveness of influenza vaccine wanes during the influenza season with increasing time since vaccination. METHODS We identified persons who were vaccinated with inactivated influenza vaccine from 1 September 2010 to 31 March 2017 and who were subsequently tested for influenza and respiratory syncytial virus (RSV) by a polymerase chain reaction test. Test-confirmed influenza was the primary outcome and days-since-vaccination was the predictor of interest in conditional logistic regression. Models were adjusted for age and conditioned on calendar day and geographic area. RSV was used as a negative-control outcome. RESULTS Compared with persons vaccinated 14 to 41 days prior to being tested, persons vaccinated 42 to 69 days prior to being tested had 1.32 (95% confidence interval [CI], 1.11 to 1.55) times the odds of testing positive for any influenza. The odds ratio (OR) increased linearly by approximately 16% for each additional 28 days since vaccination. The OR was 2.06 (95% CI, 1.69 to 2.51) for persons vaccinated 154 or more days prior to being tested. No evidence of waning was found for RSV. CONCLUSIONS Our results suggest that effectiveness of inactivated influenza vaccine wanes during the course of a single season. These results may lead to reconsideration of the optimal timing of seasonal influenza vaccination.
Collapse
Affiliation(s)
- G Thomas Ray
- Kaiser Permanente Vaccine Study Center and Division of Research, Kaiser Permanente Medical Care Program, Northern California Region, Oakland, California
| | - Ned Lewis
- Kaiser Permanente Vaccine Study Center and Division of Research, Kaiser Permanente Medical Care Program, Northern California Region, Oakland, California
| | - Nicola P Klein
- Kaiser Permanente Vaccine Study Center and Division of Research, Kaiser Permanente Medical Care Program, Northern California Region, Oakland, California
| | - Matthew F Daley
- Institute for Health Research, Kaiser Permanente Colorado, Denver.,Department of Pediatrics, University of Colorado School of Medicine, Aurora
| | - Shirley V Wang
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin Kulldorff
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bruce Fireman
- Kaiser Permanente Vaccine Study Center and Division of Research, Kaiser Permanente Medical Care Program, Northern California Region, Oakland, California
| |
Collapse
|
30
|
Young BE, Chen M. Influenza in temperate and tropical Asia: a review of epidemiology and vaccinology. Hum Vaccin Immunother 2020; 16:1659-1667. [PMID: 32017650 PMCID: PMC7482764 DOI: 10.1080/21645515.2019.1703455] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022] Open
Abstract
The impact of seasonal influenza has been under-appreciated in Asia and surveillance data lags in most other regions. The variety of influenza circulation patterns in Asia - largely due to the range of climates - has also only recently been recognized and its effect on the burden of disease is not fully understood. Recent reports that clinical protection wanes in the weeks after influenza vaccination emphasize the importance of optimally timing vaccination to local epidemiology. It also raises questions as to whether influenza vaccines should be administered more frequently than annually and what may be the benefits in Asia of access to new vaccines with enhanced immunogenicity and effectiveness. This review will summarize influenza surveillance data from Asian countries over 2011-2018, and consider the implications for vaccination strategies in different parts of Asia.
Collapse
Affiliation(s)
- Barnaby Edward Young
- Department of Infectious Diseases, National Centre for Infectious Diseases, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - M. Chen
- Department of Infectious Diseases, National Centre for Infectious Diseases, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore
| |
Collapse
|
31
|
Eichelberger MC, Monto AS. Neuraminidase, the Forgotten Surface Antigen, Emerges as an Influenza Vaccine Target for Broadened Protection. J Infect Dis 2020; 219:S75-S80. [PMID: 30715357 DOI: 10.1093/infdis/jiz017] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For 50 years it has been known that antibodies to neuraminidase (NA) protect against infection during seasonal and pandemic influenza outbreaks. However, NA is largely ignored in the formulation and standardization of our current influenza vaccines. There are a number of factors that contributed to this antigen being forgotten, including the lack of an easily performed test to measure NA antibody. With the availability of that test, it has been possible to show its independent contribution to protection in various situations. The challenge now is to make it possible to include known amounts of NA in investigational vaccines or to routinely measure NA content in licensed vaccines. Vaccines containing optimal amounts of NA may be particularly useful when there are antigenic changes, either drift or shift, in the hemagglutinin because NA immunity offers broad protection. It is now time to remember the NA as we work toward improved influenza vaccines.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
32
|
Abstract
The adaptive immune response to influenza virus infection is multifaceted and complex, involving antibody and cellular responses at both systemic and mucosal levels. Immune responses to natural infection with influenza virus in humans are relatively broad and long-lived, but influenza viruses can escape from these responses over time owing to their high mutation rates and antigenic flexibility. Vaccines are the best available countermeasure against infection, but vaccine effectiveness is low compared with other viral vaccines, and the induced immune response is narrow and short-lived. Furthermore, inactivated influenza virus vaccines focus on the induction of systemic IgG responses but do not effectively induce mucosal IgA responses. Here, I review the differences between natural infection and vaccination in terms of the antibody responses they induce and how these responses protect against future infection. A better understanding of how natural infection induces broad and long-lived immune responses will be key to developing next-generation influenza virus vaccines.
Collapse
|
33
|
Zelner J, Petrie JG, Trangucci R, Martin ET, Monto AS. Effects of Sequential Influenza A(H1N1)pdm09 Vaccination on Antibody Waning. J Infect Dis 2020; 220:12-19. [PMID: 30722022 DOI: 10.1093/infdis/jiz055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Antibody waning following influenza vaccination has been repeatedly evaluated, but waning has rarely been studied in the context of longitudinal vaccination history. METHODS We developed a Bayesian hierarchical model to assess the effects of sequential influenza A(H1N1)pdm09 vaccination on hemagglutination inhibition antibody boosting and waning in a longitudinal cohort of older children and adults from 2011 to 2016, a period during which the A(H1N1)pdm09 vaccine strain did not change. RESULTS Antibody measurements from 2057 serum specimens longitudinally collected from 388 individuals were included. Average postvaccination antibody titers were similar across successive vaccinations, but the rate of antibody waning increased with each vaccination. The antibody half-life was estimated to decrease from 32 months (95% credible interval [CrI], 22-61 months) following first vaccination to 9 months (95% CrI, 7-15 months) following a seventh vaccination. CONCLUSIONS Although the rate of antibody waning increased with successive vaccination, the estimated antibody half-life was longer than a typical influenza season even among the most highly vaccinated. This supports current recommendations for vaccination at the earliest opportunity. Patterns of boosting and waning might be different with the influenza A(H3N2) subtype, which evolves more rapidly and has been most associated with reduced effectiveness following repeat vaccination.
Collapse
Affiliation(s)
- Jon Zelner
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor.,Department of Center for Social Epidemiology and Population Health, University of Michigan School of Public Health, Ann Arbor
| | - Joshua G Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Rob Trangucci
- Department of Statistics, University of Michigan, Ann Arbor
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
34
|
Chen JR, Liu YM, Tseng YC, Ma C. Better influenza vaccines: an industry perspective. J Biomed Sci 2020; 27:33. [PMID: 32059697 PMCID: PMC7023813 DOI: 10.1186/s12929-020-0626-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/10/2023] Open
Abstract
Vaccination is the most effective measure at preventing influenza virus infections. However, current seasonal influenza vaccines are only protective against closely matched circulating strains. Even with extensive monitoring and annual reformulation our efforts remain one step behind the rapidly evolving virus, often resulting in mismatches and low vaccine effectiveness. Fortunately, many next-generation influenza vaccines are currently in development, utilizing an array of innovative techniques to shorten production time and increase the breadth of protection. This review summarizes the production methods of current vaccines, recent advances that have been made in influenza vaccine research, and highlights potential challenges that are yet to be overcome. Special emphasis is put on the potential role of glycoengineering in influenza vaccine development, and the advantages of removing the glycan shield on influenza surface antigens to increase vaccine immunogenicity. The potential for future development of these novel influenza vaccine candidates is discussed from an industry perspective.
Collapse
Affiliation(s)
| | - Yo-Min Liu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming University, Taipei, 112, Taiwan
| | | | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
35
|
Lee JH, Cho HK, Kim KH, Lee J, Kim YJ, Eun BW, Kim NH, Kim DH, Jo DS, Kim HM, Kim YK. Evaluation of Waning Immunity at 6 Months after Both Trivalent and Quadrivalent Influenza Vaccination in Korean Children Aged 6-35 Months. J Korean Med Sci 2019; 34:e279. [PMID: 31779056 PMCID: PMC6882944 DOI: 10.3346/jkms.2019.34.e279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The titer of influenza vaccine-induced antibodies declines over time, and younger children have lower immunogenicity and shorter duration of immunity. This study aimed to compare persistence of antibody at 6 months after influenza vaccination according to influenza virus strains, vaccine type, antigen dose, and primed status in children aged 6 to 35 months. METHODS A total 124 healthy children aged 6 to 35 months were enrolled from September to December 2016 at 10 hospitals in Korea and randomly assigned to either a full dose of quadrivalent influenza vaccine or a half dose of trivalent influenza vaccine with Victoria B strain group. Hemagglutination inhibition antibody titers (that measure the seroprotection rates) were assessed for the recommended influenza strains at 6 months post vaccination. RESULTS The seroprotection rates at 6 months for strains A (H1N1), A (H3N2), B/Yamagata, and B/Victoria were 88.7%, 97.4%, 36.6%, and 27.6%, respectively. The seroprotection rates for A (H1N1), A (H3N2) and B (Victoria) were 91.4%, 98.7% and 27.5% in a full dose of quadrivalent vaccine vs. 83.7%, 94.6% and 27.9% in a half dose trivalent vaccine, respectively. The seroprotection rate for the B (Yamagata) strain was 23.8% in the quadrivalent group and 14.0% in the trivalent group. CONCLUSION Persistence of antibodies at 6 months was more favorable against the influenza A strains than against the B strains. Persistence of antibodies to additional B strain at 6 months was superior in the quadrivalent vaccine group. The immunity of primed children with different B strains was not superior to that of the unprimed group with another B strain.
Collapse
Affiliation(s)
- Jee Hyun Lee
- Department of Pediatrics, Korea University Ansan Hospital, Ansan, Korea
| | - Hye Kyung Cho
- Department of Pediatrics, Gachon University College of Medicine, Incheon, Korea
| | - Ki Hwan Kim
- Department of Pediatrics, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Jina Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yae Jean Kim
- Department of Pediatrics, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Byung Wook Eun
- Department of Pediatrics, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Nam Hee Kim
- Department of Pediatrics, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Dong Ho Kim
- Department of Pediatrics, Korea Institute of Radiological Medical Sciences, Seoul, Korea
| | - Dae Sun Jo
- Department of Pediatrics, Chonbuk National University Children's Hospital, Jeonju, Korea
| | - Hwang Min Kim
- Department of Pediatrics, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Yun Kyung Kim
- Department of Pediatrics, Korea University Ansan Hospital, Ansan, Korea.
| |
Collapse
|
36
|
Rolfes MA, Flannery B, Chung JR, O’Halloran A, Garg S, Belongia EA, Gaglani M, Zimmerman RK, Jackson ML, Monto AS, Alden NB, Anderson E, Bennett NM, Billing L, Eckel S, Kirley PD, Lynfield R, Monroe ML, Spencer M, Spina N, Talbot HK, Thomas A, Torres SM, Yousey-Hindes K, Singleton JA, Patel M, Reed C, Fry AM. Effects of Influenza Vaccination in the United States During the 2017-2018 Influenza Season. Clin Infect Dis 2019; 69:1845-1853. [PMID: 30715278 PMCID: PMC7188082 DOI: 10.1093/cid/ciz075] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/22/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The severity of the 2017-2018 influenza season in the United States was high, with influenza A(H3N2) viruses predominating. Here, we report influenza vaccine effectiveness (VE) and estimate the number of vaccine-prevented influenza-associated illnesses, medical visits, hospitalizations, and deaths for the 2017-2018 influenza season. METHODS We used national age-specific estimates of 2017-2018 influenza vaccine coverage and disease burden. We estimated VE against medically attended reverse-transcription polymerase chain reaction-confirmed influenza virus infection in the ambulatory setting using a test-negative design. We used a compartmental model to estimate numbers of influenza-associated outcomes prevented by vaccination. RESULTS The VE against outpatient, medically attended, laboratory-confirmed influenza was 38% (95% confidence interval [CI], 31%-43%), including 22% (95% CI, 12%-31%) against influenza A(H3N2), 62% (95% CI, 50%-71%) against influenza A(H1N1)pdm09, and 50% (95% CI, 41%-57%) against influenza B. We estimated that influenza vaccination prevented 7.1 million (95% CrI, 5.4 million-9.3 million) illnesses, 3.7 million (95% CrI, 2.8 million-4.9 million) medical visits, 109 000 (95% CrI, 39 000-231 000) hospitalizations, and 8000 (95% credible interval [CrI], 1100-21 000) deaths. Vaccination prevented 10% of expected hospitalizations overall and 41% among young children (6 months-4 years). CONCLUSIONS Despite 38% VE, influenza vaccination reduced a substantial burden of influenza-associated illness, medical visits, hospitalizations, and deaths in the United States during the 2017-2018 season. Our results demonstrate the benefit of current influenza vaccination and the need for improved vaccines.
Collapse
Affiliation(s)
- Melissa A Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brendan Flannery
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessie R Chung
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alissa O’Halloran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shikha Garg
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Manjusha Gaglani
- Baylor Scott and White Health, Texas A&M University Health Science Center College of Medicine, Temple
| | | | | | - Arnold S Monto
- University of Michigan School of Public Health, Ann Arbor
| | - Nisha B Alden
- Colorado Department of Public Health and Environment, Denver
| | - Evan Anderson
- Georgia Emerging Infections Program, Atlanta VA Medical Center, Emory University, New York
| | - Nancy M Bennett
- University of Rochester School of Medicine and Dentistry, New York
| | | | - Seth Eckel
- Michigan Department of Health and Human Services, Lansing
| | | | | | | | | | - Nancy Spina
- New York State Emerging Infections Program, New York State Department of Health, Albany
| | | | | | | | | | - James A Singleton
- Immunization Services Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Manish Patel
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Carrie Reed
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alicia M Fry
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
37
|
Abstract
This statement updates the recommendations of the American Academy of Pediatrics for the routine use of influenza vaccines and antiviral medications in the prevention and treatment of influenza in children during the 2019-2020 season. The American Academy of Pediatrics continues to recommend routine influenza immunization of all children without medical contraindications, starting at 6 months of age. Any licensed, recommended, age-appropriate vaccine available can be administered, without preference of one product or formulation over another. Antiviral treatment of influenza with any licensed, recommended, age-appropriate influenza antiviral medication continues to be recommended for children with suspected or confirmed influenza, particularly those who are hospitalized, have severe or progressive disease, or have underlying conditions that increase their risk of complications of influenza.
Collapse
MESH Headings
- Adolescent
- Age Factors
- Antiviral Agents/administration & dosage
- Antiviral Agents/adverse effects
- Breast Feeding
- Cause of Death
- Child
- Child, Hospitalized
- Child, Preschool
- Contraindications
- Disease Progression
- Drug Resistance, Viral
- Egg Hypersensitivity
- Female
- Humans
- Immunocompromised Host
- Infant
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza, Human/complications
- Influenza, Human/drug therapy
- Influenza, Human/epidemiology
- Influenza, Human/prevention & control
- Pediatrics
- Pregnancy
- United States/epidemiology
- Vaccines, Inactivated/administration & dosage
Collapse
|
38
|
Costantino V, Trent M, MacIntyre CR. Modelling of optimal timing for influenza vaccination as a function of intraseasonal waning of immunity and vaccine coverage. Vaccine 2019; 37:6768-6775. [PMID: 31521411 DOI: 10.1016/j.vaccine.2019.08.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023]
Abstract
The influenza season in Australia usually peaks in August. Vaccination is recommended beginning in March-April. Recent studies suggest that vaccine effectiveness may wane over a given influenza season, leading to reduced effectiveness at the peak of the season. We aimed to quantify how changes in timing of influenza vaccination and declining vaccine coverage could change the percentages of prevented cases. Results from a systematic review were used to inform calculation of a waning function over time from vaccination. Age specific notification data and vaccine effectiveness and coverage estimates from 2007 to 2016 (2009 influenza pandemic year excluded) were used to model a new notification series where vaccine effectiveness is shifted in time to account for delayed vaccination by month from March to August. A sensitivity analysis was done on possible vaccine coverage changes and considering time gap between vaccine uptake and recommendation. Delaying vaccination from March to end of May prevents more cases over a season, but the variation in cases prevented by month of vaccination is not large. If delaying vaccination results in missed or forgotten vaccination and decrease coverage, delaying vaccination could have a net negative impact. Furthermore, considering a time gap between recommendation and uptake, earlier recommendation is more effective in preventing cases. The results are sensitive to assumptions of intra-seasonal waning of effectiveness. More research is required on intra-seasonal vaccine effectiveness waning and the effect of delayed vaccination on overall uptake to inform any potential changes to current vaccine scheduling recommendations.
Collapse
Affiliation(s)
- Valentina Costantino
- Biosecurity Program, Kirby Institute, Faculty of Medicine, The University of New South Wales, Sydney, Australia.
| | - Mallory Trent
- Biosecurity Program, Kirby Institute, Faculty of Medicine, The University of New South Wales, Sydney, Australia.
| | - C Raina MacIntyre
- Biosecurity Program, Kirby Institute, Faculty of Medicine, The University of New South Wales, Sydney, Australia; College of Public Service and Community Solutions, Arizona State University, Arizona, USA.
| |
Collapse
|
39
|
Grohskopf LA, Alyanak E, Broder KR, Walter EB, Fry AM, Jernigan DB. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices - United States, 2019-20 Influenza Season. MMWR Recomm Rep 2019; 68:1-21. [PMID: 31441906 PMCID: PMC6713402 DOI: 10.15585/mmwr.rr6803a1] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This report updates the 2018-19 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2018;67[No. RR-3]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. A licensed, recommended, and age-appropriate vaccine should be used. Inactivated influenza vaccines (IIVs), recombinant influenza vaccine (RIV), and live attenuated influenza vaccine (LAIV) are expected to be available for the 2019-20 season. Standard-dose, unadjuvanted, inactivated influenza vaccines will be available in quadrivalent formulations (IIV4s). High-dose (HD-IIV3) and adjuvanted (aIIV3) inactivated influenza vaccines will be available in trivalent formulations. Recombinant (RIV4) and live attenuated influenza vaccine (LAIV4) will be available in quadrivalent formulations.Updates to the recommendations described in this report reflect discussions during public meetings of ACIP held on October 25, 2018; February 27, 2019; and June 27, 2019. Primary updates in this report include the following two items. First, 2019-20 U.S. trivalent influenza vaccines will contain hemagglutinin (HA) derived from an A/Brisbane/02/2018 (H1N1)pdm09-like virus, an A/Kansas/14/2017 (H3N2)-like virus, and a B/Colorado/06/2017-like virus (Victoria lineage). Quadrivalent influenza vaccines will contain HA derived from these three viruses, and a B/Phuket/3073/2013-like virus (Yamagata lineage). Second, recent labeling changes for two IIV4s, Afluria Quadrivalent and Fluzone Quadrivalent, are discussed. The age indication for Afluria Quadrivalent has been expanded from ≥5 years to ≥6 months. The dose volume for Afluria Quadrivalent is 0.25 mL for children aged 6 through 35 months and 0.5 mL for all persons aged ≥36 months (≥3 years). The dose volume for Fluzone Quadrivalent for children aged 6 through 35 months, which was previously 0.25 mL, is now either 0.25 mL or 0.5 mL. The dose volume for Fluzone Quadrivalent is 0.5 mL for all persons aged ≥36 months (≥3 years).This report focuses on the recommendations for use of vaccines for the prevention and control of influenza during the 2019-20 season in the United States. A brief summary of these recommendations and a Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used within Food and Drug Administration-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check this site periodically for additional information.
Collapse
|
40
|
Chiu SS, Kwan MYW, Feng S, Wong JSC, Leung CW, Chan ELY, Chan KH, Ng TK, To WK, Cowling BJ, Peiris JSM. Influenza Vaccine Effectiveness Against Influenza A(H3N2) Hospitalizations in Children in Hong Kong in a Prolonged Season, 2016/2017. J Infect Dis 2019; 217:1365-1371. [PMID: 29346614 DOI: 10.1093/infdis/jiy027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022] Open
Abstract
Background Influenza A(H3N2) viruses circulated for 12 consecutive months in Hong Kong in 2016-2017, peaking in late June and July 2017. The objective of our study was to estimate the effectiveness of influenza vaccination in preventing hospitalizations in children in Hong Kong. Methods We conducted a test-negative study between 1 September 2016 and 31 August 2017, enrolling children 6 months to 17 years of age hospitalized for an acute respiratory infection. Influenza was diagnosed by PCR on nasopharyngeal aspirates. Results We enrolled 5514 children, including 3608 children 6 months to 2 years, 1600 children 3-5 years, and 1206 children 6-17 years of age. Influenza-associated hospitalizations occurred throughout the study year but time of vaccination of these children was also wide spread, from September 2016 to May 2017. Influenza vaccine effectiveness (VE) was 39.7% (95% confidence interval [CI], 14.7%-57.3%) against laboratory-confirmed influenza A(H3N2). In analyses stratified by time since vaccination, the VE against influenza A(H3N2) was 52.8% (95% CI, 17.1%-73.2%) within 3 months of vaccination, and 31.2% (95% CI, -6.6% to 55.6%) 4-6 months after vaccination. Conclusions Influenza vaccination was effective in preventing hospitalizations in children in Hong Kong.
Collapse
Affiliation(s)
- Susan S Chiu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital and Li Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Mike Y W Kwan
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital
| | - Shuo Feng
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health
| | - Joshua S C Wong
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital
| | - Chi-Wai Leung
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital
| | - Eunice L Y Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital and Li Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Tak-Keung Ng
- Department of Pathology, Princess Margaret Hospital
| | | | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health
| | - J S Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health.,Center of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
41
|
Ainslie KEC, Haber M, Orenstein WA. Challenges in estimating influenza vaccine effectiveness. Expert Rev Vaccines 2019; 18:615-628. [PMID: 31116070 PMCID: PMC6594904 DOI: 10.1080/14760584.2019.1622419] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022]
Abstract
Introduction: Influenza vaccination is regarded as the most effective way to prevent influenza infection. Due to the rapid genetic changes that influenza viruses undergo, seasonal influenza vaccines must be reformulated and re-administered annually necessitating the evaluation of influenza vaccine effectiveness (VE) each year. The estimation of influenza VE presents numerous challenges. Areas Covered: This review aims to identify, discuss, and, where possible, offer suggestions for dealing with the following challenges in estimating influenza VE: different outcomes of interest against which VE is estimated, study designs used to assess VE, sources of bias and confounding, repeat vaccination, waning immunity, population level effects of vaccination, and VE in at-risk populations. Expert Opinion: The estimation of influenza VE has improved with surveillance networks, better understanding of sources of bias and confounding, and the implementation of advanced statistical methods. Future research should focus on better estimates of the indirect effects of vaccination, the biological effects of vaccination, and how vaccines interact with the immune system. Specifically, little is known about how influenza vaccination impacts an individual's infectiousness, how vaccines wane over time, and the impact of repeated vaccination.
Collapse
Affiliation(s)
- Kylie E. C. Ainslie
- Research Associate in Influenza Disease Dynamics, MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Michael Haber
- Professor, Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Walt A. Orenstein
- Professor, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 1462 Clifton Rd NE, Atlanta, GA 30322, USA
| |
Collapse
|
42
|
Gilbert PB, Fong Y, Juraska M, Carpp LN, Monto AS, Martin ET, Petrie JG. HAI and NAI titer correlates of inactivated and live attenuated influenza vaccine efficacy. BMC Infect Dis 2019; 19:453. [PMID: 31117986 PMCID: PMC6530189 DOI: 10.1186/s12879-019-4049-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High hemagglutination inhibition (HAI) and neuraminidase inhibition (NAI) titers are generally associated with reduced influenza risk. While repeated influenza vaccination reduces seroresponse, vaccine effectiveness is not always reduced. METHODS During the 2007-2008 influenza season, a randomized, placebo-controlled trial (FLUVACS) evaluated the efficacies of live-attenuated (LAIV) and inactivated influenza vaccines (IIV) among healthy adults aged 18-49 in Michigan; IIV vaccine efficacy (VE) and LAIV VE against influenza disease were estimated at 68% and 36%. Using the principal stratification/VE moderation framework, we analyzed data from this trial to assess how each VE varied by HAI or NAI responses to vaccination observed for vaccinated individuals and predicted counterfactually for placebo recipients. We also assessed how each VE varied with pre-vaccination/baseline variables including HAI titer, NAI titer, and vaccination history. RESULTS IIV VE appeared to increase with Day 30 post-vaccination HAI titer, albeit not significantly (p=0.20 and estimated VE 14.4%, 70.5%, and 85.5% at titer below the assay lower quantification limit, 512, and 4096 (maximum)). Moreover, IIV VE increased significantly with Day 30 post-vaccination NAI titer (p=0.040), with estimated VE zero at titer 10 and 92.2% at highest titer 640. There was no evidence that fold-change in post-vaccination HAI or NAI titer associated with IIV VE (p=0.76, 0.38). For LAIV, there was no evidence that VE associated with post-vaccination or fold-rise HAI or NAI titers (p-values >0.40). For IIV, VE increased with increasing baseline NAI titer in those previously vaccinated, but VE decreased with increasing baseline NAI titer in those previously unvaccinated. In contrast, for LAIV, VE did not depend on previous vaccination or baseline HAI or NAI titer. CONCLUSIONS Future efficacy trials should measure baseline and post-vaccination antibody titers in both vaccine and control/placebo recipients, enabling analyses to better elucidate correlates of vaccine- and natural-protection. TRIAL REGISTRATION ClinicalTrials.gov NCT00538512. October 1, 2007.
Collapse
Affiliation(s)
- Peter B Gilbert
- Department of Biostatistics, Bioinformatics, and Epidemiology, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, 98109, USA. .,Department of Biostatistics, University of Washington, 1705 NE Pacific St., Seattle, 98195, USA.
| | - Youyi Fong
- Department of Biostatistics, Bioinformatics, and Epidemiology, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, 98109, USA.,Department of Biostatistics, University of Washington, 1705 NE Pacific St., Seattle, 98195, USA
| | - Michal Juraska
- Department of Biostatistics, Bioinformatics, and Epidemiology, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, 98109, USA
| | - Lindsay N Carpp
- Department of Biostatistics, Bioinformatics, and Epidemiology, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, 98109, USA
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, 48109, USA
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, 48109, USA
| | - Joshua G Petrie
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, 48109, USA
| |
Collapse
|
43
|
Young B, Sadarangani S, Jiang L, Wilder-Smith A, Chen MIC. Duration of Influenza Vaccine Effectiveness: A Systematic Review, Meta-analysis, and Meta-regression of Test-Negative Design Case-Control Studies. J Infect Dis 2019; 217:731-741. [PMID: 29220496 DOI: 10.1093/infdis/jix632] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/01/2017] [Indexed: 02/03/2023] Open
Abstract
Background Whether influenza vaccination offers protection for the duration of an influenza season was called into question recently after analysis of data from test-negative design (TND) case-control studies. Method The published literature was systematically reviewed to identify TND studies that estimated the change in vaccine effectiveness (VE) with respect to time since vaccination. Results Fourteen studies were identified through the literature search as meeting eligibility criteria. Meta-analyses were performed to compare VE 15-90 days after vaccination to VE 91-180 days after vaccination. A significant decline in VE was observed for influenza virus subtype A/H3 (change in VE, -33; 95% confidence interval [CI], -57 to -12) and type B (change in VE, -19; 95% CI, -33 to -6). VE declined for influenza virus subtype A/H1, but this difference was not statistically significant (change in VE -8; 95% CI, -27 to 21). A multivariable mixed-effects meta-regression model indicated that the change VE was associated with the proportion of study participants who were cases and the proportion who were vaccinated controls (P < .05). This could reflect biological effects such as (1) mismatch between the vaccine received and the circulating strains (among cases), (2) herd immunity (among controls), or (3) the reduced power of individual TND studies in the later parts of an influenza outbreak. Conclusions Exploration of new influenza vaccination strategies must be a priority for influenza control, particularly in tropical countries with year-round influenza virus activity.
Collapse
Affiliation(s)
- Barnaby Young
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Sapna Sadarangani
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lili Jiang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Annelies Wilder-Smith
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Institute of Public Health, University of Heidelberg, Germany
| | - Mark I-Cheng Chen
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
44
|
Compressed Influenza Vaccination in U.S. Older Adults: A Decision Analysis. Am J Prev Med 2019; 56:e135-e141. [PMID: 30772149 PMCID: PMC6469716 DOI: 10.1016/j.amepre.2018.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Tradeoffs exist between efforts to increase influenza vaccine uptake, including early season vaccination, and potential decreased vaccine effectiveness if protection wanes during influenza season. U.S. older adults increasingly receive vaccination before October. Influenza illness peaks vary from December to April. METHODS A Markov model compared influenza likelihood in older adults with (1) status quo vaccination (August-May) to maximize vaccine uptake or (2) vaccination compressed to October-May (to decrease waning vaccine effectiveness impact). The Centers for Disease Control and Prevention data were used for influenza incidence and vaccination parameters. Prior analyses showed that absolute vaccine effectiveness decreased by 6%-11% per month, favoring later season vaccination. However, compressed vaccination could decrease overall vaccine uptake. Influenza incidence was based on average monthly incidence with earlier and later peaks also examined. Influenza strain distributions from two seasons were modeled in separate scenarios. Sensitivity analyses were performed to test result robustness. Data were collected and analyzed in 2018. RESULTS Compressed vaccination would avert ≥11,400 influenza cases in older adults during a typical season if it does not decrease vaccine uptake. However, if compressed vaccination decreases vaccine uptake or there is an early season influenza peak, more influenza can result. In probabilistic sensitivity analyses, compressed vaccination was never favored if it decreased absolute vaccine uptake by >5.5% in any scenario; when influenza peaked early, status quo vaccination was favored. CONCLUSIONS Compressed vaccination could decrease waning vaccine effectiveness and decrease influenza cases in older adults. However, this positive effect is negated when early season influenza peaks occur and diminished by decreased vaccine uptake that could occur with shortening the vaccination season.
Collapse
|
45
|
Petrie JG, Monto AS. Untangling the Effects of Prior Vaccination on Subsequent Influenza Vaccine Effectiveness. J Infect Dis 2019; 215:841-843. [PMID: 28453852 DOI: 10.1093/infdis/jix056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Joshua G Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
46
|
Liu Y, Tan HX, Koutsakos M, Jegaskanda S, Esterbauer R, Tilmanis D, Aban M, Kedzierska K, Hurt AC, Kent SJ, Wheatley AK. Cross-lineage protection by human antibodies binding the influenza B hemagglutinin. Nat Commun 2019; 10:324. [PMID: 30659197 PMCID: PMC6338745 DOI: 10.1038/s41467-018-08165-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
Influenza B viruses (IBV) drive a significant proportion of influenza-related hospitalisations yet are understudied compared to influenza A. Current vaccines target the head of the viral hemagglutinin (HA) which undergoes rapid mutation, significantly reducing vaccine effectiveness. Improved vaccines to control IBV are needed. Here we developed novel IBV HA probes to interrogate humoral responses to IBV in humans. A significant proportion of IBV HA-specific B cells recognise both B/Victoria/2/87-like and B/Yamagata/16/88-like lineages in a distinct pattern of cross-reactivity. Monoclonal antibodies (mAbs) were reconstituted from IBV HA-specific B cells, including mAbs providing broad protection in murine models of lethal IBV infection. Protection was mediated by neutralising antibodies targeting the receptor binding domain, or via Fc-mediated functions of non-neutralising antibodies binding alternative epitopes including the IBV HA stem. This work defines antigenic cross-recognition between IBV lineages and provides guidance for the rational design of improved IBV vaccines for broad and durable protection. Immune recognition of Influenza B virus (IBV) is poorly understood. Here, Liu et al. use flow cytometry to characterize IBV-specific memory B cell responses following seasonal vaccination and show that elicited cross-reactive antibodies can protect against infection, providing a platform for vaccine design.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Danielle Tilmanis
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Malet Aban
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Aeron C Hurt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia. .,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia. .,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
47
|
Ferdinands JM, Patel MM, Foppa IM, Fry AM. Influenza Vaccine Effectiveness. Clin Infect Dis 2018; 69:190-191. [DOI: 10.1093/cid/ciy1084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jill M Ferdinands
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Manish M Patel
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ivo M Foppa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alicia M Fry
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
48
|
Grohskopf LA, Sokolow LZ, Broder KR, Walter EB, Fry AM, Jernigan DB. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices-United States, 2018-19 Influenza Season. MMWR Recomm Rep 2018; 67:1-20. [PMID: 30141464 PMCID: PMC6107316 DOI: 10.15585/mmwr.rr6703a1] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This report updates the 2017-18 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2017;66[No. RR-2]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. A licensed, recommended, and age-appropriate vaccine should be used. Inactivated influenza vaccines (IIVs), recombinant influenza vaccine (RIV), and live attenuated influenza vaccine (LAIV) are expected to be available for the 2018-19 season. Standard-dose, unadjuvanted, inactivated influenza vaccines will be available in quadrivalent (IIV4) and trivalent (IIV3) formulations. Recombinant influenza vaccine (RIV4) and live attenuated influenza vaccine (LAIV4) will be available in quadrivalent formulations. High-dose inactivated influenza vaccine (HD-IIV3) and adjuvanted inactivated influenza vaccine (aIIV3) will be available in trivalent formulations.Updates to the recommendations described in this report reflect discussions during public meetings of ACIP held on October 25, 2017; February 21, 2018; and June 20, 2018. New and updated information in this report includes the following four items. First, vaccine viruses included in the 2018-19 U.S. trivalent influenza vaccines will be an A/Michigan/45/2015 (H1N1)pdm09-like virus, an A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus, and a B/Colorado/06/2017-like virus (Victoria lineage). Quadrivalent influenza vaccines will contain these three viruses and an additional influenza B vaccine virus, a B/Phuket/3073/2013-like virus (Yamagata lineage). Second, recommendations for the use of LAIV4 (FluMist Quadrivalent) have been updated. Following two seasons (2016-17 and 2017-18) during which ACIP recommended that LAIV4 not be used, for the 2018-19 season, vaccination providers may choose to administer any licensed, age-appropriate influenza vaccine (IIV, RIV4, or LAIV4). LAIV4 is an option for those for whom it is appropriate. Third, persons with a history of egg allergy of any severity may receive any licensed, recommended, and age-appropriate influenza vaccine (IIV, RIV4, or LAIV4). Additional recommendations concerning vaccination of egg-allergic persons are discussed. Finally, information on recent licensures and labeling changes is discussed, including expansion of the age indication for Afluria Quadrivalent (IIV4) from ≥18 years to ≥5 years and expansion of the age indication for Fluarix Quadrivalent (IIV4), previously licensed for ≥3 years, to ≥6 months.This report focuses on the recommendations for use of vaccines for the prevention and control of influenza during the 2018-19 season in the United States. A Background Document containing further information and a brief summary of these recommendations are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html.These recommendations apply to U.S.-licensed influenza vaccines used within Food and Drug Administration-licensed indications. Updates and other information are available at CDC's influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check CDC's influenza website periodically for additional information.
Collapse
Affiliation(s)
- Lisa A. Grohskopf
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC
| | - Leslie Z. Sokolow
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC
- Battelle Memorial Institute, Atlanta, Georgia
| | - Karen R. Broder
- Immunization Safety Office, National Center for Emerging and Zoonotic Infectious Diseases, CDC
| | | | - Alicia M. Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC
| | - Daniel B. Jernigan
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC
| |
Collapse
|
49
|
Valkenburg SA, Leung NHL, Bull MB, Yan LM, Li APY, Poon LLM, Cowling BJ. The Hurdles From Bench to Bedside in the Realization and Implementation of a Universal Influenza Vaccine. Front Immunol 2018; 9:1479. [PMID: 30013557 PMCID: PMC6036122 DOI: 10.3389/fimmu.2018.01479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
Influenza viruses circulate worldwide causing annual epidemics that have a substantial impact on public health. This is despite vaccines being in use for over 70 years and currently being administered to around 500 million people each year. Improvements in vaccine design are needed to increase the strength, breadth, and duration of immunity against diverse strains that circulate during regular epidemics, occasional pandemics, and from animal reservoirs. Universal vaccine strategies that target more conserved regions of the virus, such as the hemagglutinin (HA)-stalk, or recruit other cellular responses, such as T cells and NK cells, have the potential to provide broader immunity. Many pre-pandemic vaccines in clinical development do not utilize new vaccine platforms but use "tried and true" recombinant HA protein or inactivated virus strategies despite substantial leaps in fundamental research on universal vaccines. Significant hurdles exist for universal vaccine development from bench to bedside, so that promising preclinical data is not yet translating to human clinical trials. Few studies have assessed immune correlates derived from asymptomatic influenza virus infections, due to the scale of a study required to identity these cases. The realization and implementation of a universal influenza vaccine requires identification and standardization of set points of protective immune correlates, and consideration of dosage schedule to maximize vaccine uptake.
Collapse
Affiliation(s)
- Sophie A. Valkenburg
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nancy H. L. Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maireid B. Bull
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Li-meng Yan
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Athena P. Y. Li
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Leo L. M. Poon
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
50
|
Shibata N, Kimura S, Hoshino T, Takeuchi M, Urushihara H. Effectiveness of influenza vaccination for children in Japan: Four-year observational study using a large-scale claims database. Vaccine 2018; 36:2809-2815. [DOI: 10.1016/j.vaccine.2018.03.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/26/2018] [Accepted: 03/29/2018] [Indexed: 12/25/2022]
|