1
|
Staller E, Carrique L, Swann OC, Fan H, Keown JR, Sheppard CM, Barclay WS, Grimes JM, Fodor E. Structures of H5N1 influenza polymerase with ANP32B reveal mechanisms of genome replication and host adaptation. Nat Commun 2024; 15:4123. [PMID: 38750014 PMCID: PMC11096171 DOI: 10.1038/s41467-024-48470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Avian influenza A viruses (IAVs) pose a public health threat, as they are capable of triggering pandemics by crossing species barriers. Replication of avian IAVs in mammalian cells is hindered by species-specific variation in acidic nuclear phosphoprotein 32 (ANP32) proteins, which are essential for viral RNA genome replication. Adaptive mutations enable the IAV RNA polymerase (FluPolA) to surmount this barrier. Here, we present cryo-electron microscopy structures of monomeric and dimeric avian H5N1 FluPolA with human ANP32B. ANP32B interacts with the PA subunit of FluPolA in the monomeric form, at the site used for its docking onto the C-terminal domain of host RNA polymerase II during viral transcription. ANP32B acts as a chaperone, guiding FluPolA towards a ribonucleoprotein-associated FluPolA to form an asymmetric dimer-the replication platform for the viral genome. These findings offer insights into the molecular mechanisms governing IAV genome replication, while enhancing our understanding of the molecular processes underpinning mammalian adaptations in avian-origin FluPolA.
Collapse
Affiliation(s)
- Ecco Staller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Loïc Carrique
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Olivia C Swann
- Section of Molecular Virology, Imperial College London, London, UK
| | - Haitian Fan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- School of Basic Medical Sciences, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jeremy R Keown
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Carol M Sheppard
- Section of Molecular Virology, Imperial College London, London, UK
| | - Wendy S Barclay
- Section of Molecular Virology, Imperial College London, London, UK
| | - Jonathan M Grimes
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Liao X, Shih Y, Jia C, Gao T. Complete Mitochondrial Genome of Four Peristediidae Fish Species: Genome Characterization and Phylogenetic Analysis. Genes (Basel) 2024; 15:557. [PMID: 38790187 PMCID: PMC11121196 DOI: 10.3390/genes15050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The systematic revision of the family Peristediidae remains an unresolved issue due to their diverse and unique morphology. Despite the popularity of using mitochondrial genome research to comprehensively understand phylogenetic relationships in fish, genetic data for peristediid fish need to be included. Therefore, this study aims to investigate the mitochondrial genomic characteristics and intra-family phylogenetic relationships of Peristediidae by utilizing mitochondrial genome analysis. Therefore, this study aims to investigate the phylogenetic relationship of Peristediidae by utilizing mitochondrial genome analysis. The mitochondrial genome of four species of Peristediidae (Peristedion liorhynchus, Satyrichthys welchi, Satyrichthys rieffeli, and Scalicus amiscus) collected in the East China Sea was studied. The mitochondrial gene sequence lengths of four fish species were 16,533 bp, 16,526 bp, 16,527 bp, and 16,526 bp, respectively. They had the same mitochondrial structure and were all composed of 37 genes and one control region. Most PCGs used ATG as the start codon, and a few used GTG as the start codon. An incomplete stop codon (TA/T) occurred. The AT-skew and GC-skew values of 13 PCGs from four species were negative, and the GC-skew amplitude was greater than that of AT-skew. All cases of D-arm were found in tRNA-Ser (GCT). The Ka/Ks ratio analysis indicated that 13 PCGs were suffering purifying selection. Based on 12 PCGs (excluding ND6) sequences, a phylogenetic tree was constructed using Bayesian inference (BI) and maximum likelihood (ML) methods, providing a further supplement to the scientific classification of Peristediidae fish. According to the results of divergence time, the four species of fish had apparent divergence in the Early Cenozoic, which indicates that the geological events at that time caused the climax of species divergence and evolution.
Collapse
Affiliation(s)
- Xianhui Liao
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Yijia Shih
- Fisheries College, Jimei University, Xiamen 361021, China;
| | - Chenghao Jia
- School of Ecology and Environment, Hainan University, Haikou 570228, China;
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China;
| |
Collapse
|
3
|
Sheppard CM, Goldhill DH, Swann OC, Staller E, Penn R, Platt OK, Sukhova K, Baillon L, Frise R, Peacock TP, Fodor E, Barclay WS. An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization. Nat Commun 2023; 14:6135. [PMID: 37816726 PMCID: PMC10564888 DOI: 10.1038/s41467-023-41308-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/09/2023] [Indexed: 10/12/2023] Open
Abstract
Human ANP32A and ANP32B are essential but redundant host factors for influenza virus genome replication. While most influenza viruses cannot replicate in edited human cells lacking both ANP32A and ANP32B, some strains exhibit limited growth. Here, we experimentally evolve such an influenza A virus in these edited cells and unexpectedly, after 2 passages, we observe robust viral growth. We find two mutations in different subunits of the influenza polymerase that enable the mutant virus to use a novel host factor, ANP32E, an alternative family member, which is unable to support the wild type polymerase. Both mutations reside in the symmetric dimer interface between two polymerase complexes and reduce polymerase dimerization. These mutations have previously been identified as adapting influenza viruses to mice. Indeed, the evolved virus gains the ability to use suboptimal mouse ANP32 proteins and becomes more virulent in mice. We identify further mutations in the symmetric dimer interface which we predict allow influenza to adapt to use suboptimal ANP32 proteins through a similar mechanism. Overall, our results suggest a balance between asymmetric and symmetric dimers of influenza virus polymerase that is influenced by the interaction between polymerase and ANP32 host proteins.
Collapse
Affiliation(s)
- Carol M Sheppard
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Olivia C Swann
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ecco Staller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rebecca Penn
- Department of Infectious Disease, Imperial College London, London, UK
| | - Olivia K Platt
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
4
|
Fu M, Eimes JA, Kong S, Lamichhaney S, Waldman B. Identification of major histocompatibility complex genotypes associated with resistance to an amphibian emerging infectious disease. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105470. [PMID: 37336279 DOI: 10.1016/j.meegid.2023.105470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), emerged from Asia and spread globally. By comparing functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) with those of an Australasian Bd-susceptible species (Litoria caerulea), we identified MHC genotypes associated with Bd resistance. These alleles encode a glycine deletion (G90β1) and adjacent motifs in the deepest pathogen-derived peptide-binding groove. Every Bd-resistant individual, but no susceptible individuals, possessed at least one allele encoding the variant. We detected trans-species polymorphism at the end of the MHC IIβ1 sequences. The G90β1 deletion was encoded by different alleles in the two species, suggesting it may have evolved independently in each species rather than having been derived from a common ancestor. These results are consistent with a scenario by which MHC adaptations that confer resistance to the pathogen have evolved by convergent evolution. Immunogenetic studies such as this are critical to ongoing conservation efforts.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| | - John A Eimes
- University College, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44243, USA
| | - Bruce Waldman
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
5
|
Cao Y, Jian F, Wang J, Yu Y, Song W, Yisimayi A, Wang J, An R, Chen X, Zhang N, Wang Y, Wang P, Zhao L, Sun H, Yu L, Yang S, Niu X, Xiao T, Gu Q, Shao F, Hao X, Xu Y, Jin R, Shen Z, Wang Y, Xie XS. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature 2023; 614:521-529. [PMID: 36535326 PMCID: PMC9931576 DOI: 10.1038/s41586-022-05644-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 199.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.
Collapse
Affiliation(s)
- Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P.R. China
| | - Jing Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- School of Life Sciences, Peking University, Beijing, P. R. China
| | | | - Weiliang Song
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- School of Life Sciences, Peking University, Beijing, P. R. China
| | - Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- School of Life Sciences, Peking University, Beijing, P. R. China
| | - Jing Wang
- Changping Laboratory, Beijing, P. R. China
| | - Ran An
- Changping Laboratory, Beijing, P. R. China
| | - Xiaosu Chen
- Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Na Zhang
- Changping Laboratory, Beijing, P. R. China
| | - Yao Wang
- Changping Laboratory, Beijing, P. R. China
| | - Peng Wang
- Changping Laboratory, Beijing, P. R. China
| | | | - Haiyan Sun
- Changping Laboratory, Beijing, P. R. China
| | | | - Sijie Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P. R. China
| | - Xiao Niu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P.R. China
| | - Tianhe Xiao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | | | - Fei Shao
- Changping Laboratory, Beijing, P. R. China
| | - Xiaohua Hao
- Beijing Ditan Hospital, Capital Medical University, Beijing, P. R. China
| | - Yanli Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing, P. R. China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, P. R. China
| | - Zhongyang Shen
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, P. R. China
| | - Youchun Wang
- Changping Laboratory, Beijing, P. R. China.
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, P. R. China.
| | - Xiaoliang Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| |
Collapse
|
6
|
Desheva Y, Losev I, Petkova N, Kudar P, Donina S, Mamontov A, Tsai CH, Chao YC. Antigenic Characterization of Neuraminidase of Influenza A/H7N9 Viruses Isolated in Different Years. Pharmaceuticals (Basel) 2022; 15:ph15091127. [PMID: 36145348 PMCID: PMC9503534 DOI: 10.3390/ph15091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza outbreaks caused by A/H7N9 viruses have occurred since 2013. After 2016, A/H7N9 influenza viruses underwent evolutionary changes. In this study, we examined the antigenic properties of influenza neuraminidase (NA) of A/H7N9 viruses as part of a live influenza vaccine (LAIV). It was shown that neuraminidase inhibiting (NI) antibodies obtained after A/Anhui/1/2013(H7N9)-based LAIV vaccination did not inhibit A/Hong Kong/125/2017(H7N9) NA and vice versa. The A/Hong Kong/125/2017(H7N9)-based LAIV elicited higher levels of NI antibodies compared to the A/Anhui/1/2013(H7N9)-based LAIV after two doses. Thelow degree of coincidence of the antibody response to hemagglutinin (HA) and NA after LAIV vaccination allows us to consider an enzyme-linked lectin assay (ELLA) as an additional measure for assessing the immunogenicity of influenza vaccines. In mice, N9-reactive monoclonal antibodies (mABs) for the A/environment/Shanghai/RL01/2013(H7N9) influenza virus partially protected against lung infection from the A/Guangdong/17SF003/2016 IDCDC-RG56N(H7N9) virus, thus showing the cross-protective properties of monoclonal antibodies against the drift variant.
Collapse
Affiliation(s)
- Yulia Desheva
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-812-234-42-92
| | - Igor Losev
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Nadezhda Petkova
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Polina Kudar
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Svetlana Donina
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Andrey Mamontov
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
7
|
He D, Gu M, Wang X, Wang X, Li G, Yan Y, Gu J, Zhan T, Wu H, Hao X, Wang G, Hu J, Hu S, Liu X, Su S, Ding C, Liu X. Spatiotemporal Associations and Molecular Evolution of Highly Pathogenic Avian Influenza A H7N9 Virus in China from 2017 to 2021. Viruses 2021; 13:2524. [PMID: 34960793 PMCID: PMC8705967 DOI: 10.3390/v13122524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Highly pathogenic (HP) H7N9 avian influenza virus (AIV) emerged in China in 2016. HP H7N9 AIV caused at least 33 human infections and has been circulating in poultry farms continuously since wave 5. The genetic divergence, geographic patterns, and hemagglutinin adaptive and parallel molecular evolution of HP H7N9 AIV in China since 2017 are still unclear. Here, 10 new strains of HP H7N9 AIVs from October 2019 to April 2021 were sequenced. We found that HP H7N9 was primarily circulating in Northern China, particularly in the provinces surrounding the Bohai Sea (Liaoning, Hebei, and Shandong) since wave 6. Of note, HP H7N9 AIV phylogenies exhibit a geographical structure compatible with high levels of local transmission after unidirectional rapid geographical expansion towards the north of China in 2017. In addition, we showed that two major subclades were continually expanding with the viral population size undergoing a sharp increase after 2018 with an obvious seasonal tendency. Notably, the hemagglutinin gene showed signs of parallel evolution and positive selection. Our research sheds light on the current epidemiology, evolution, and diversity of HP H7N9 AIV that can help prevent and control the spreading of HP H7N9 AIV.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Gairu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jinyuan Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Guoqing Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chan Ding
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Bartáková V, Bryjová A, Nicolas V, Lavrenchenko LA, Bryja J. Mitogenomics of the endemic Ethiopian rats: looking for footprints of adaptive evolution in sky islands. Mitochondrion 2021; 57:182-191. [PMID: 33412336 DOI: 10.1016/j.mito.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 12/09/2022]
Abstract
Organisms living in high altitude must adapt to environmental conditions with hypoxia and low temperature, e.g. by changes in the structure and function of proteins associated with oxidative phosphorylation in mitochondria. Here we analysed the signs of adaptive evolution in 27 mitogenomes of endemic Ethiopian rats (Stenocephalemys), where individual species adapted to different elevation. Significant signals of positive selection were detected in 10 of the 13 mitochondrial protein-coding genes, with a majority of functional substitutions in the NADH dehydrogenase complex. Higher frequency of positively selected sites was found in phylogenetic lineages corresponding to Afroalpine specialists.
Collapse
Affiliation(s)
- Veronika Bartáková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51 Paris, France
| | - Leonid A Lavrenchenko
- A. N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Schreiber SJ, Ke R, Loverdo C, Park M, Ahsan P, Lloyd-Smith JO. Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evol 2021; 7:veaa105. [PMID: 35186322 PMCID: PMC8087961 DOI: 10.1093/ve/veaa105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
When emerging pathogens encounter new host species for which they are poorly adapted, they must evolve to escape extinction. Pathogens experience selection on traits at multiple scales, including replication rates within host individuals and transmissibility between hosts. We analyze a stochastic model linking pathogen growth and competition within individuals to transmission between individuals. Our analysis reveals a new factor, the cross-scale reproductive number of a mutant virion, that quantifies how quickly mutant strains increase in frequency when they initially appear in the infected host population. This cross-scale reproductive number combines with viral mutation rates, single-strain reproductive numbers, and transmission bottleneck width to determine the likelihood of evolutionary emergence, and whether evolution occurs swiftly or gradually within chains of transmission. We find that wider transmission bottlenecks facilitate emergence of pathogens with short-term infections, but hinder emergence of pathogens exhibiting cross-scale selective conflict and long-term infections. Our results provide a framework to advance the integration of laboratory, clinical, and field data in the context of evolutionary theory, laying the foundation for a new generation of evidence-based risk assessment of emergence threats.
Collapse
Affiliation(s)
| | - Ruian Ke
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Claude Loverdo
- Laboratoire Jean Perrin, Sorbonne Université, CNRS, Paris 75005, France
| | - Miran Park
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| | - Prianna Ahsan
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| | - James O Lloyd-Smith
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Jia C, Zhang X, Xu S, Yang T, Yanagimoto T, Gao T. Comparative analysis of the complete mitochondrial genomes of three rockfishes (Scorpaeniformes, Sebastiscus) and insights into the phylogenetic relationships of Sebastidae. Biosci Rep 2020; 40:BSR20203379. [PMID: 33245090 PMCID: PMC7736627 DOI: 10.1042/bsr20203379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial genome is a powerful molecule marker to provide information for phylogenetic relationships and revealing molecular evolution in ichthyological studies. Sebastiscus species, a marine rockfish, are of essential economic value. However, the taxonomic status and phylogenetic relationships of Sebastidae have been controversial so far. Here, the mitochondrial genomes (mitogenomes) of three species, S. tertius, S. albofasciatus, and S. marmoratus, were systemically investigated. The lengths of the mitogenomes' sequences of S. tertius, S. albofasciatus, and S. marmoratus were 16910, 17056, and 17580 bp, respectively. It contained 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNA (tRNA) genes, and one identical control region (D-loop) among the three species. The genetic distance and Ka/Ks ratio analyses indicated 13 PCGs were suffering purifying selection and the selection pressures were different from certain deep-sea fishes, which were most likely due to the difference in their living environment. The phylogenetic tree was constructed by Bayesian Inference (BI) and Maximum Likelihood (ML). Most interestingly, the results indicated that Sebastidae and Scorpaenidae were grouped into a separate branch, so the taxonomic status of Sebastidae should be classified into subfamily Sebastinae. Our results may lead to a taxonomic revision of Scorpaenoidei.
Collapse
Affiliation(s)
- Chenghao Jia
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xiumei Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
- Function Laboratory for Marine, Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Shengyong Xu
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Tianyan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Takashi Yanagimoto
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
11
|
Wu XX, Zhao LZ, Tang SJ, Weng TH, Wu WG, Yao SH, Wu HB, Cheng LF, Wang J, Hu FY, Wu NP, Yao HP, Zhang FC, Li LJ. Novel pathogenic characteristics of highly pathogenic avian influenza virus H7N9: viraemia and extrapulmonary infection. Emerg Microbes Infect 2020; 9:962-975. [PMID: 32267217 PMCID: PMC7301721 DOI: 10.1080/22221751.2020.1754135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The H7N9 virus mutated in 2017, resulting in new cases of highly pathogenic avian influenza (HPAI) H7N9 virus infection. H7N9 was found in a viraemic patient in Guangdong province, China. The present study aimed to clarify the pathogenic characteristics of HPAI H7N9. Virus was isolated from the plasma and sputum of the patient with HPAI H7N9. Liquid phase chip technology was used to detect the plasma cytokines from the infected patient and healthy controls. Mice were infected with strains A/Guangdong/GZ8H002/2017(H7N9) and A/Zhejiang/DTID-ZJU01/2013(H7N9) to observe the virus’s pathogenic characteristics. Serum and brain tissue were collected at 2, 4, and 6 days after infection. The viruses in serum and brain tissue were detected and isolated. The two strains were infected into A549 cells, exosomes were extracted, and virus genes in the exosomes were assessed. Live virus was isolated from the patient’s plasma. An acute cytokine storm was detected during the whole course of the disease. In animal experiments, A/Guangdong/GZ8H002/2017(H7N9) was more pathogenic than A/Zhejiang /DTID-ZJU01/2013(H7N9) and resulted in the death of mice. Live virus was isolated from infected mouse serum. Virus infection was also detected in the brain of mice. Under viral stress, A549 cells secreted exosomes containing the entire viral genome. The viraemic patient was confirmed to have an HPAI H7N9 infection. A/Guangdong/GZ8H002/2017(H7N9) showed significantly enhanced toxicity. Patient deaths might result from cytokine storms and brain infections. Extrapulmonary tissue infection might occur via the exosome pathway. The determined pathogenic characteristics of HPAI H7N9 will contribute to its future treatment.
Collapse
Affiliation(s)
- Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ling-Zhai Zhao
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Song-Jia Tang
- Plastic and Aesthetic Surgery Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei-Gen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shu-Hao Yao
- Department of Stormotologry, Wenzhou Medical University Renji College, Wenzhou, People's Republic of China
| | - Hai-Bo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lin-Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jian Wang
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Feng-Yu Hu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Fu-Chun Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Mohammad S, Bouchama A, Mohammad Alharbi B, Rashid M, Saleem Khatlani T, Gaber NS, Malik SS. SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence. Pathogens 2020; 9:E677. [PMID: 32825438 PMCID: PMC7558349 DOI: 10.3390/pathogens9090677] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
The COVID-19 pandemic, in the first seven months, has led to more than 15 million confirmed infected cases and 600,000 deaths. SARS-CoV-2, the causative agent for COVID-19, has proved to be a great challenge for its ability to spread in asymptomatic stages and the diverse disease spectrum it has generated. This has created a challenge of unimaginable magnitude, not only affecting human health and life but also potentially generating a long-lasting socioeconomic impact. Both medical sciences and biomedical research have also been challenged, consequently leading to a large number of clinical trials and vaccine initiatives. While known proteins of pathobiological importance are targets for these therapeutic approaches, it is imperative to explore other factors of viral significance. Accessory proteins are one such trait that have diverse roles in coronavirus pathobiology. Here, we analyze certain genomic characteristics of SARS-CoV-2 accessory protein ORF8 and predict its protein features. We have further reviewed current available literature regarding its function and comparatively evaluated these and other features of ORF8 and ORF8ab, its homolog from SARS-CoV. Because coronaviruses have been infecting humans repeatedly and might continue to do so, we therefore expect this study to aid in the development of holistic understanding of these proteins. Despite low nucleotide and protein identity and differentiating genome level characteristics, there appears to be significant structural integrity and functional proximity between these proteins pointing towards their high significance. There is further need for comprehensive genomics and structural-functional studies to lead towards definitive conclusions regarding their criticality and that can eventually define their relevance to therapeutics development.
Collapse
Affiliation(s)
- Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia; (S.M.); (A.B.); (B.M.A.); (N.S.G.)
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia; (S.M.); (A.B.); (B.M.A.); (N.S.G.)
| | - Bothina Mohammad Alharbi
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia; (S.M.); (A.B.); (B.M.A.); (N.S.G.)
| | - Mamoon Rashid
- Bioinformatics and Biostatistics Department, King Abdullah International Medical Research Center, King~Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia;
| | - Tanveer Saleem Khatlani
- Stem Cells Unit, Department of Cellular Therapy, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia;
| | - Nusaibah S. Gaber
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia; (S.M.); (A.B.); (B.M.A.); (N.S.G.)
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia; (S.M.); (A.B.); (B.M.A.); (N.S.G.)
| |
Collapse
|
13
|
Chaw SM, Tai JH, Chen SL, Hsieh CH, Chang SY, Yeh SH, Yang WS, Chen PJ, Wang HY. The origin and underlying driving forces of the SARS-CoV-2 outbreak. J Biomed Sci 2020; 27:73. [PMID: 32507105 PMCID: PMC7276232 DOI: 10.1186/s12929-020-00665-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND SARS-CoV-2 began spreading in December 2019 and has since become a pandemic that has impacted many aspects of human society. Several issues concerning the origin, time of introduction to humans, evolutionary patterns, and underlying force driving the SARS-CoV-2 outbreak remain unclear. METHOD Genetic variation in 137 SARS-CoV-2 genomes and related coronaviruses as of 2/23/2020 was analyzed. RESULT After correcting for mutational bias, the excess of low frequency mutations on both synonymous and nonsynonymous sites was revealed which is consistent with the recent outbreak of the virus. In contrast to adaptive evolution previously reported for SARS-CoV during its brief epidemic in 2003, our analysis of SARS-CoV-2 genomes shows signs of relaxation. The sequence similarity in the spike receptor binding domain between SARS-CoV-2 and a sequence from pangolin is probably due to an ancient intergenomic introgression that occurred approximately 40 years ago. The current outbreak of SARS-CoV-2 was estimated to have originated on 12/11/2019 (95% HPD 11/13/2019-12/23/2019). The effective population size of the virus showed an approximately 20-fold increase from the onset of the outbreak to the lockdown of Wuhan (1/23/2020) and ceased to increase afterwards, demonstrating the effectiveness of social distancing in preventing its spread. Two mutations, 84S in orf8 protein and 251 V in orf3 protein, occurred coincidentally with human intervention. The former first appeared on 1/5/2020 and plateaued around 1/23/2020. The latter rapidly increased in frequency after 1/23/2020. Thus, the roles of these mutations on infectivity need to be elucidated. Genetic diversity of SARS-CoV-2 collected from China is two times higher than those derived from the rest of the world. A network analysis found that haplotypes collected from Wuhan were interior and had more mutational connections, both of which are consistent with the observation that the SARS-CoV-2 outbreak originated in China. CONCLUSION SARS-CoV-2 might have cryptically circulated within humans for years before being discovered. Data from the early outbreak and hospital archives are needed to trace its evolutionary path and determine the critical steps required for effective spreading.
Collapse
Affiliation(s)
- Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Hung Tai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shi-Lun Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Hung Hsieh
- Department of Forestry and Nature Conservation, Chinese Culture University, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
H7N9 influenza split vaccine with SWE oil-in-water adjuvant greatly enhances cross-reactive humoral immunity and protection against severe pneumonia in ferrets. NPJ Vaccines 2020; 5:38. [PMID: 32411401 PMCID: PMC7214439 DOI: 10.1038/s41541-020-0187-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
Until universal influenza vaccines become available, pandemic preparedness should include developing classical vaccines against potential pandemic influenza subtypes. We here show that addition of SWE adjuvant, a squalene-in-water emulsion, to H7N9 split influenza vaccine clearly enhanced functional antibody responses in ferrets. These were cross-reactive against H7N9 strains from different lineages and newly emerged H7N9 variants. Both vaccine formulations protected in almost all cases against severe pneumonia induced by intratracheal infection of ferrets with H7N9 influenza; however, the SWE adjuvant enhanced protection against virus replication and disease. Correlation analysis and curve fitting showed that both VN- and NI-titers were better predictors for protection than HI-titers. Moreover, we show that novel algorithms can assist in better interpretation of large data sets generated in preclinical studies. Cluster analysis showed that the adjuvanted vaccine results in robust immunity and protection, whereas the response to the non-adjuvanted vaccine is heterogeneous, such that the protection balance may be more easily tipped toward severe disease. Finally, cluster analysis indicated that the dose-sparing capacity of the adjuvant is at least a factor six, which greatly increases vaccine availability in a pandemic situation.
Collapse
|
15
|
Comparative Analysis of Complete Mitochondrial Genomes of Three Gerres Fishes (Perciformes: Gerreidae) and Primary Exploration of Their Evolution History. Int J Mol Sci 2020; 21:ijms21051874. [PMID: 32182936 PMCID: PMC7084342 DOI: 10.3390/ijms21051874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial genome is a powerful molecule marker to explore phylogenetic relationships and reveal molecular evolution in ichthyological studies. Gerres species play significant roles in marine fishery, but its evolution has received little attention. To date, only two Gerres mitochondrial genomes were reported. In the present study, three mitogenomes of Gerres (Gerres filamentosus, Gerres erythrourus, and Gerres decacanthus) were systemically investigated. The lengths of the mitogenome sequences were 16,673, 16,728, and 16,871 bp for G. filamentosus, G. erythrourus, and G. decacanthus, respectively. Most protein-coding genes (PCGs) were initiated with the typical ATG codon and terminated with the TAA codon, and the incomplete termination codon T/TA could be detected in the three species. The majority of AT-skew and GC-skew values of the 13 PCGs among the three species were negative, and the amplitude of the GC-skew was larger than the AT-skew. The genetic distance and Ka/Ks ratio analyses indicated 13 PCGs were suffering purifying selection and the selection pressures were different from certain deep-sea fishes, were which most likely due to the difference in their living environment. The phylogenetic tree was constructed by molecular method (Bayesian Inference (BI) and maximum Likelihood (ML)), providing further supplement to the scientific classification of fish. Three Gerres species were differentiated in late Cretaceous and early Paleogene, and their evolution might link with the geological events that could change their survival environment.
Collapse
|
16
|
Guo S, Bao L, Li C, Sun J, Zhao R, Cui X. Antiviral activity of iridoid glycosides extracted from Fructus Gardeniae against influenza A virus by PACT-dependent suppression of viral RNA replication. Sci Rep 2020; 10:1897. [PMID: 32024921 PMCID: PMC7002373 DOI: 10.1038/s41598-020-58443-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/15/2020] [Indexed: 11/08/2022] Open
Abstract
Epidemic and pandemic influenza A virus (IAV) poses a significant threat to human populations worldwide. Iridoid glycosides are principal bioactive components from the Gardenia jasminoides J. Ellis fruit that exhibit antiviral activity against several strains of IAV. In the present study, we evaluated the protective effect of Fructus Gardeniae iridoid glycoside extracts (IGEs) against IAV by cytopathogenic effect(CPE), MTT and a plaque formation assay in vitro and examined the reduction in the pulmonary index (PI), restoration of body weight, reduction in mortality and increases in survival time in vivo. As a host factor, PACT provides protection against the pathogenic influenza A virus by interacting with IAV polymerase and activating the IFN-I response. To verify the whether IGEs suppress IAV replication in a PACT-dependent manner, IAV RNA replication, expression of PACT and the phosphorylation of eIF2α in A549 cells were detected; the levels of IFNβ, PACT and PKR in mouse lung tissues were determined; and the activity of IAV polymerase was evaluated in PACT-compromised cells. The results indicated that IGEs sufficiently alleviated cell damage and suppressed IAV replication in vitro, protecting mice from IAV-induced injury and lethal IAV infection. These anti-IAV effects might be related to disrupted interplay between IVA polymerase and PACT and/or prevention of a PACT-dependent overactivated IFN-I antiviral response. Taken together, our findings reveal a new facet of the mechanisms by which IGEs fight the influenza A virus in a PACT-dependent manner.
Collapse
Affiliation(s)
- Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
17
|
He WT, Wang L, Zhao Y, Wang N, Li G, Veit M, Bi Y, Gao GF, Su S. Adaption and parallel evolution of human-isolated H5 avian influenza viruses. J Infect 2020; 80:630-638. [PMID: 32007525 DOI: 10.1016/j.jinf.2020.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Avian-to-human transmission of highly pathogenic avian influenza viruses (HPAIV) and their subsequent adaptation to humans are of great concern to public health. Surveillance and early warning of AIVs with the potential to infect humans and pandemic potential is crucial. In this study, we determined whether adaptive evolution occurred in human-isolated H5 viruses. We evaluated all available genomes of H5N1 and H5N6 avian influenza A virus. Firstly, we systematically identified several new mutations in H5 AIV that might be associated with human adaptation using a combination of novel comparative phylogenetic methods and structural analysis. Some changes are the result of parallel evolution, further demonstrating their importance. In total, we identified 102 adaptive evolution sites in eight genes. Some residues had been previously identified, such as 227 in HA and 627 in PB2, while others have not been reported so far. Ten sites from four genes evolved in parallel but no obvious positive selection was detected. Our study suggests that during infection of humans, H5 viruses evolved to adapt to their new host environment and that the sites of adaptive/parallel evolution might play a role in crossing the species barrier and are the response to new selection pressure. The results provide insight to implement early detection systems for transitional stages in H5 AIV evolution before its potential adaptation for humans. Author summary line The prerequisite of surveillance and early warning of avian influenza viruses with the potential to infect humans depends on the identification of human-adaptation related mutations. In this study, we used a novel approach combining both phylogenetic and structural analysis to identify possible human-adaptation related mutations in H5 AIVs. Previous studies reported human-adaptation related mutations and some novel mutations exhibiting parallel evolution. Our result provides new insights into how AIVs adapt to humans by point mutations.
Collapse
Affiliation(s)
- Wan-Ting He
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ningning Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gairu Li
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-OstertagStraβe 7-13, Berlin, Germany
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
18
|
Luo W, Tian L, Gan Y, Chen E, Shen X, Pan J, Irwin DM, Chen RA, Shen Y. The fit of codon usage of human-isolated avian influenza A viruses to human. INFECTION GENETICS AND EVOLUTION 2020; 81:104181. [PMID: 31918040 DOI: 10.1016/j.meegid.2020.104181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/14/2019] [Accepted: 01/05/2020] [Indexed: 01/06/2023]
Abstract
Avian influenza A viruses (AIVs) classify into 18 hemagglutinin (HA) and 11 neuraminidase (NA) subtypes. Even though H1N1 and H3N2 subtypes usually circulate among humans leading to infection, occasionally, H5, H6, H7, H9, and H10 that circulate in poultry also infect humans, and especially H5N1 and H7N9. Efficient virus replication is a critical factor that influences infection. Codon usage of a virus must coevolve with its host for efficient viral replication, therefore, we conduct a comprehensive analysis of codon usage bias in human-isolated AIVs to test their adaptation to host expression system. The relative synonymous codon usage (RSCU) pattern, and the codon adaptation index (CAI) are calculated for this purpose. We find that all human-isolated AIVs tend to eliminate GC and CpG compositions, which may prevent activation of the host innate immune system. Although codon usage differs between AIV subtypes, our data support the conclusion that natural selection has played a major role and mutation pressure a minor role in shaping codon usage bias in all AIVs. Our efforts discover that codon usage of genes encoding surface proteins of H5N1, and the polymerase genes of H7N9 has better fit to the human expression system. This may associate with their better replication and infection in human.
Collapse
Affiliation(s)
- Wen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lin Tian
- Guangdong Provincial Hospital of Chinese Medicine, Zhuhai 519015, China
| | - Yingde Gan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Enlong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto M5S 1A8, Canada
| | - Rui-Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Institute of Biotechnology, Zhaoqing 526238, China.
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Institute of Biotechnology, Zhaoqing 526238, China.
| |
Collapse
|
19
|
Xiong J, Zhao P, Yang P, Yan Q, Jiang L. Evolutionary dynamics of the H7N9 avian influenza virus based on large-scale sequence analysis. PLoS One 2019; 14:e0220249. [PMID: 31404069 PMCID: PMC6690514 DOI: 10.1371/journal.pone.0220249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022] Open
Abstract
Since 2013, epidemics caused by novel H7N9 avian influenza A viruses (AIVs) have become a considerable public health issue. This study investigated the evolution of these viruses at the population level. Compared to H7 and N9 before 2013, there were 18 and 24 substitutions in the majority of novel H7N9 AIVs, respectively. Nine of these in HA and six in NA were rare before 2013, and four of these in HA and two in NA displayed host tropism. S136(128)N and A143(135)V are located on the receptor binding sites of the HA1 subunit and might be important factors in determining the host species of novel H7N9 AIV. On an overall scale, the evolution of H7 and N9, both in terms of time distribution and host species, is under negative selection. However, both in HA and NA, several sites were under positive selection. In both the overall epidemics and the human-derived H7N9 AIVs, eight positive selection sites were identified in HA1, with some located within the known antigen epitopes or the receptor binding site(RBS) domain. This may induce variations in H7N9 AIV with positive selection. It is necessary to strengthen the surveillance of novel H7N9 AIVs, both in human and bird population to determine whether a new virus has emerged through selection pressure and to prevent future epidemics from occurring.
Collapse
Affiliation(s)
- Jiasheng Xiong
- College of Marine Science, Shandong University (Weihai), Weihai, People’s Republic of China
| | - Ping Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People’s Republic of China
| | - Pengfei Yang
- Huai’an Center for Disease Control and Prevention, Huai’an, People’s Republic of China
| | - Qingli Yan
- Huai’an Center for Disease Control and Prevention, Huai’an, People’s Republic of China
| | - Lufang Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
20
|
Yu Y, Tazeem, Xu Z, Du L, Jin M, Dong C, Zhou HB, Wu S. Design and synthesis of heteroaromatic-based benzenesulfonamide derivatives as potent inhibitors of H5N1 influenza A virus. MEDCHEMCOMM 2019; 10:89-100. [PMID: 31559005 PMCID: PMC6735340 DOI: 10.1039/c8md00474a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023]
Abstract
Influenza A virus is an enveloped negative single-stranded RNA virus that causes febrile respiratory infection and represents a clinically challenging threat to human health and even lives worldwide. Even more alarming is the emergence of highly pathogenic avian influenza (HPAI) strains such as H5N1, which possess much higher mortality rate (60%) than seasonal influenza strains in human infection. In this study, a novel series of heteroaromatic-based benzenesulfonamide derivatives were identified as M2 proton channel inhibitors. A systematic investigation of the structure-activity relationships and a molecular docking study demonstrated that the sulfonamide moiety and 2,5-dimethyl-substituted thiophene as the core structure played significant roles in the anti-influenza activity. Among the derivatives, compound 11k exhibited excellent antiviral activity against H5N1 virus with an EC50 value of 0.47 μM and selectivity index of 119.9, which are comparable to those of the reference drug amantadine.
Collapse
Affiliation(s)
- Yongshi Yu
- State Key Laboratory of Virology , College of Life Sciences , Wuhan University , Wuhan 430072 , China .
- Hubei Province Key Laboratory of Allergy and Immunology , Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Tazeem
- Hubei Province Key Laboratory of Allergy and Immunology , Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
- Department of Chemistry , Shia P. G. College (University of Lucknow) , Lucknow , Uttar Pradesh 226020 , India
| | - Zhichao Xu
- Hubei Province Key Laboratory of Allergy and Immunology , Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Liaoqi Du
- State Key Laboratory of Virology , College of Life Sciences , Wuhan University , Wuhan 430072 , China .
| | - Mengyu Jin
- Hubei Province Key Laboratory of Allergy and Immunology , Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Chune Dong
- Hubei Province Key Laboratory of Allergy and Immunology , Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Hai-Bing Zhou
- Hubei Province Key Laboratory of Allergy and Immunology , Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China .
| | - Shuwen Wu
- State Key Laboratory of Virology , College of Life Sciences , Wuhan University , Wuhan 430072 , China .
| |
Collapse
|
21
|
Guo F, Li Y, Yu S, Liu L, Luo T, Pu Z, Xiang D, Shen X, Irwin DM, Liao M, Shen Y. Adaptive Evolution of Human-Isolated H5Nx Avian Influenza A Viruses. Front Microbiol 2019; 10:1328. [PMID: 31249566 PMCID: PMC6582624 DOI: 10.3389/fmicb.2019.01328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/28/2019] [Indexed: 02/05/2023] Open
Abstract
Avian influenza A viruses (AIVs) H5N1, first identified in 1996, are highly pathogenic in domestic poultry and continue to occasionally infect humans. In this study, we sought to identify genetic changes that occurred during their multiple invasions to humans. We evaluated all available H5Nx AIV genomes. Significant signals of positive selection were detected in 29 host-shift branches. 126 parallel evolution sites were detected on these branches, including 17 well-known sites (such as T271A, A274T, T339M, Q591K, E627K, and D701N in PB2; A134V, D154N, S223N, and R497K in HA) that play roles in allowing AIVs to cross species barriers. Our study suggests that during human infections, H5Nx viruses have experienced adaptive evolution (positive selection and convergent evolution) that allowed them to adapt to their new host environments. Analyses of adaptive evolution should be useful in identifying candidate sites that play roles in human infections, which can be tested by functional experiments.
Collapse
Affiliation(s)
- Fucheng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shu Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lu Liu
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Tingting Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiqing Pu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dan Xiang
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Yongyi Shen,
| |
Collapse
|
22
|
Shen X, Pu Z, Chen X, Murphy RW, Shen Y. Convergent Evolution of Mitochondrial Genes in Deep-Sea Fishes. Front Genet 2019; 10:925. [PMID: 31632444 PMCID: PMC6785628 DOI: 10.3389/fgene.2019.00925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/04/2019] [Indexed: 02/05/2023] Open
Abstract
Deep seas have extremely harsh conditions including high hydrostatic pressure, total darkness, cold, and little food and oxygen. The adaptations of fishes to deep-sea environment apparently have occurred independently many times. The genetic basis of adaptation for obtaining their energy remains unknown. Mitochondria play a central role in aerobic respiration. Analyses of the available 2,161 complete mitochondrial genomes of 1,042 fishes, including 115 deep-sea species, detect signals of positive selection in mitochondrial genes in nine branches of deep-sea fishes. Aerobic metabolism yields much more energy per unit of source material than anaerobic metabolism. The adaptive evolution of the mtDNA may reflect that aerobic metabolism plays a more important role than anaerobic metabolism in deep-sea fishes, whose energy sources (food) are extremely limited. This strategy maximizes the usage of energy sources. Eleven mitochondrial genes have convergent/parallel amino acid changes between branches of deep-sea fishes. Thus, these amino acid sites may be functionally important in the acquisition of energy, and reflect convergent evolution during their independent invasion of the harsh deep-sea ecological niche.
Collapse
Affiliation(s)
- Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiqing Pu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Robert W. Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, China
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
- *Correspondence: Yongyi Shen,
| |
Collapse
|
23
|
Gonzales JL, Roberts H, Smietanka K, Baldinelli F, Ortiz-Pelaez A, Verdonck F. Assessment of low pathogenic avian influenza virus transmission via raw poultry meat and raw table eggs. EFSA J 2018; 16:e05431. [PMID: 32625713 PMCID: PMC7009628 DOI: 10.2903/j.efsa.2018.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A rapid qualitative assessment has been done by performing a theoretical analysis on the transmission of low pathogenic avian influenza (LPAI) via fresh meat from poultry reared or kept in captivity for the production of meat (raw poultry meat) or raw table eggs. A predetermined transmission pathway followed a number of steps from a commercial or non-commercial poultry establishment within the EU exposed to LPAI virus (LPAIV) to the onward virus transmission to animals and humans. The combined probability of exposure and subsequent LPAIV infection via raw poultry meat containing LPAIV is negligible for commercial poultry and humans exposed via consumption whereas it is very unlikely for non-commercial poultry, wild birds and humans exposed via handling and manipulation. The probability of LPAIV transmission from an individual infected via raw poultry meat containing LPAIV is negligible for commercial poultry and humans, whereas it is very unlikely for non-commercial poultry and wild birds. The combined probability of exposure and subsequent LPAIV infection via raw table eggs containing LPAIV is negligible for commercial poultry and humans and extremely unlikely to negligible for non-commercial poultry and wild birds. The probability of LPAIV transmission from an individual infected via raw table eggs containing LPAIV is negligible for commercial poultry and humans and very unlikely to negligible for non-commercial poultry and wild birds. Although the presence of LPAIV in raw poultry meat and table eggs is very unlikely to negligible, there is in general a high level of uncertainty on the estimation of the subsequent probabilities of key steps of the transmission pathways for poultry and wild birds, mainly due to the limited number of studies available, for instance on the viral load required to infect a bird via raw poultry meat or raw table eggs containing LPAIV.
Collapse
|
24
|
Pu Z, Xiang D, Li X, Luo T, Shen X, Murphy RW, Liao M, Shen Y. Potential Pandemic of H7N9 Avian Influenza A Virus in Human. Front Cell Infect Microbiol 2018; 8:414. [PMID: 30533399 PMCID: PMC6265602 DOI: 10.3389/fcimb.2018.00414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Since 2013, the H7N9 avian influenza A virus (AIV) has caused human infections and to the extent of now surpassing H5N1. This raises an alarm about the potential of H7N9 to become a pandemic problem. Our compilation of the amino acid changes required for AIVs to cross the species-barrier discovers 58 that have very high proportions in both the human- and avian-isolated H7N9 viruses. These changes correspond with sporadic human infections that continue to occur in regions of avian infections. Among the six internal viral genes, amino acid changes do not differ significantly between H9N2 and H7N9, except for V100A in PA, and K526R, D627K, and D701N in PB2. H9N2 AIVs provide internal genes to H7N9. Most of the amino acid changes in H7N9 appear to come directly from H9N2. Seventeen amino acid substitutions appear to have fixed quickly by the 5th wave. Among these, six amino acid sites in HA1 are receptor binding sites, and PB2-A588V was shown to promote the adaptation of AIVs to mammals. The accelerated fixation of mutations may promote the adaptation of H7N9 to human, but need further functional evidence. Although H7N9 AIVs still cannot efficiently transmit between humans, they have the genetic makeup associated with human infections. These viruses must be controlled in poultry to remove the threat of it becoming a human pandemic event.
Collapse
Affiliation(s)
- Zhiqing Pu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dan Xiang
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Xiaobing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tingting Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Robert W. Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Yongyi Shen
| |
Collapse
|