1
|
Vythilingam I, Jeyaprakasam NK. Deforestation and non-human primate malarias will be a threat to malaria elimination in the future: Insights from Southeast Asia. Acta Trop 2024; 257:107280. [PMID: 38908421 DOI: 10.1016/j.actatropica.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
Malaria continues to be a global public health problem although it has been eliminated from many countries. Sri Lanka and China are two countries that recently achieved malaria elimination status, and many countries in Southeast Asia are currently in the pipeline for achieving the same goal by 2030. However, Plasmodium knowlesi, a non-human primate malaria parasite continues to pose a threat to public health in this region, infecting many humans in all countries in Southeast Asia except for Timor-Leste. Besides, other non-human primate malaria parasite such as Plasmodium cynomolgi and Plasmodium inui are infecting humans in the region. The non-human primates, the long-tailed and pig-tailed macaques which harbour these parasites are now increasingly prevalent in farms and forest fringes close by to the villages. Additionally, the Anopheles mosquitoes belonging to the Lecuosphyrus Group are also present in these areas which makes them ideal for transmitting the non-human primate malaria parasites. With changing landscape and deforestation, non-human primate malaria parasites will affect more humans in the coming years with the elimination of human malaria. Perhaps due to loss of immunity, more humans will be infected as currently being demonstrated in Malaysia. Thus, control measures need to be instituted rapidly to achieve the malaria elimination status by 2030. However, the zoonotic origin of the parasite and the changes of the vectors behaviour to early biting seems to be the stumbling block to the malaria elimination efforts in this region. In this review, we discuss the challenges faced in malaria elimination due to deforestation and the serious threat posed by non-human primate malaria parasites.
Collapse
Affiliation(s)
- Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Nantha Kumar Jeyaprakasam
- Biomedical Science Program, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Muh F, Erwina A, Fitriana F, Syahada JH, Cahya AD, Choe S, Jun H, Garjito TA, Siregar JE, Han JH. Plasmodium cynomolgi: What Should We Know? Microorganisms 2024; 12:1607. [PMID: 39203449 PMCID: PMC11356028 DOI: 10.3390/microorganisms12081607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Even though malaria has markedly reduced its global burden, it remains a serious threat to people living in or visiting malaria-endemic areas. The six Plasmodium species (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale curtisi, Plasmodium ovale wallikeri and Plasmodium knowlesi) are known to associate with human malaria by the Anopheles mosquito. Highlighting the dynamic nature of malaria transmission, the simian malaria parasite Plasmodium cynomolgi has recently been transferred to humans. The first human natural infection case of P. cynomolgi was confirmed in 2011, and the number of cases is gradually increasing. It is assumed that it was probably misdiagnosed as P. vivax in the past due to its similar morphological features and genome sequences. Comprehensive perspectives that encompass the relationships within the natural environment, including parasites, vectors, humans, and reservoir hosts (macaques), are required to understand this zoonotic malaria and prevent potential unknown risks to human health.
Collapse
Affiliation(s)
- Fauzi Muh
- Department of Epidemiology and Tropical Diseases, Faculty of Public Health, Universitas Diponegoro, Semarang 50275, Indonesia; (F.M.); (A.E.); (F.F.); (J.H.S.)
| | - Ariesta Erwina
- Department of Epidemiology and Tropical Diseases, Faculty of Public Health, Universitas Diponegoro, Semarang 50275, Indonesia; (F.M.); (A.E.); (F.F.); (J.H.S.)
| | - Fadhila Fitriana
- Department of Epidemiology and Tropical Diseases, Faculty of Public Health, Universitas Diponegoro, Semarang 50275, Indonesia; (F.M.); (A.E.); (F.F.); (J.H.S.)
| | - Jadidan Hada Syahada
- Department of Epidemiology and Tropical Diseases, Faculty of Public Health, Universitas Diponegoro, Semarang 50275, Indonesia; (F.M.); (A.E.); (F.F.); (J.H.S.)
| | - Angga Dwi Cahya
- Department of Environmental Health, Faculty of Public Health, Universitas Diponegoro, Semarang 50275, Indonesia;
| | - Seongjun Choe
- Department of Parasitology, School of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Hojong Jun
- Department of Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Triwibowo Ambar Garjito
- Vector-Borne and Zoonotic Research Group, Research Center for Public Health and Nutrition, National Research and Innovation Agency Indonesia, Salatiga 50721, Indonesia;
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia;
| | - Jin-Hee Han
- Department of Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| |
Collapse
|
3
|
Araki T, Koyama A, Yoshimura H, Arai A, Kawai S, Sekizawa S, Umeki Y, Saito-Nakano Y, Imai T, Okamoto M, Sato M, Thabthimthong W, Kemthong T, Hisaeda H, Malaivijitnond S, Annoura T. Ultrasensitive malaria detection system for Anopheles mosquito field surveillance using droplet digital PCR. Parasitol Int 2024; 101:102891. [PMID: 38537686 DOI: 10.1016/j.parint.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 05/26/2024]
Abstract
Malaria remains a significant global public health concern, with a recent increase in the number of zoonotic malaria cases in Southeast Asian countries. However, limited reports on the vector for zoonotic malaria exist owing to difficulties in detecting parasite DNA in Anopheles mosquito vectors. Herein, we demonstrate for the first time that several Anopheles mosquitoes contain simian malaria parasite DNA using droplet digital PCR (ddPCR), a highly sensitive PCR method. An entomological survey was conducted to identify simian malaria vector species at Phra Phothisat Temple (PPT), central Thailand, recognized for a high prevalence of simian malaria in wild cynomolgus macaques. A total of 152 mosquitoes from six anopheline species were collected and first analyzed by a standard 18S rRNA nested-PCR analysis for malaria parasite which yielded negative results in all collected mosquitoes. Later, ddPCR was used and could detect simian malaria parasite DNA, i.e. Plasmodium cynomolgi, in 25 collected mosquitoes. And this is the first report of simian malaria parasite DNA detection in Anopheles sawadwongporni. This finding proves that ddPCR is a powerful tool for detecting simian malarial parasite DNA in Anopheles mosquitoes and can expand our understanding of the zoonotic potential of malaria transmission between monkeys and humans.
Collapse
Affiliation(s)
- Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Akihide Koyama
- Department of Legal Medicine, Graduate School of Medical and Dental Science, Niigata University, Asahimachi, Chuo-ku, Niigata, Japan
| | - Hiro Yoshimura
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ayako Arai
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Satoru Kawai
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Shuto Sekizawa
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yuko Umeki
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takashi Imai
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Munehiro Okamoto
- Section of Molecular Biology, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Wipaporn Thabthimthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, Thailand
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, Thailand; Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
4
|
Lai MY, Abdullah ML, Lau YL. Real-time fluorescence loop-mediated isothermal amplification assays for detection of zoonotic malaria Plasmodium parasites. Acta Trop 2024; 255:107249. [PMID: 38740319 DOI: 10.1016/j.actatropica.2024.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Natural human infections by Plasmodium cynomolgi and P. inui have been reported recently and gain the substantial attention from Southeast Asian countries. Zoonotic transmission of non-human malaria parasites to humans from macaque monkeys occurred through the bites of the infected mosquitoes. The objective of this study is to establish real-time fluorescence loop-mediated isothermal amplification (LAMP) assays for the detection of zoonotic malaria parasites by combining real-time fluorescent technology with the isothermal amplification technique. METHODS By using 18S rRNA as the target gene, the primers for P. cynomolgi, P. coatneyi and P. inui were newly designed in the present study. Four novel real-time fluorescence LAMP assays were developed for the detection of P. cynomolgi, P. coatneyi, P. inui and P. knowlesi. The entire amplification process was completed in 60 min, with the assays performed at 65 °C. By using SYTO-9 as the nucleic acid intercalating dye, the reaction was monitored via real-time fluorescence signal. RESULTS There was no observed cross-reactivity among the primers from different species. All 70 field-collected monkey samples were successfully amplified by real-time fluorescence LAMP assays. The detection limit for P. cynomolgi, P. coatneyi and P. knowlesi was 5 × 109 copies/µL. Meanwhile, the detection limit of P. inui was 5 × 1010 copies/µL. CONCLUSION This is the first report of the detection of four zoonotic malaria parasites by real-time fluorescence LAMP approaches. It is an effective, rapid and simple-to-use technique. This presented platform exhibits considerable potential as an alternative detection for zoonotic malaria parasites.
Collapse
Affiliation(s)
- Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Lutfi Abdullah
- National Wildlife Forensic Laboratory, Ex-Situ Conservation Division Department of Wildlife and National Parks Peninsular Malaysia, Jalan Cheras, 56100 Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Karnchaisri K, Day NPJ, Dondorp AM, Malaivijitnond S, Imwong M. Prevalence and genetic diversity of simian malaria in wild macaque populations across Thailand: Implications for human health. Acta Trop 2024; 254:107187. [PMID: 38518834 DOI: 10.1016/j.actatropica.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Over the past year, P. falciparum infections have declined in Thailand, yet nonhuman primate malaria infections have correspondingly increased, including Plasmodium knowlesi and P. cynomolgi. Nevertheless, little is known about simian malaria in its natural macaque hosts, Macaca mulatta and Macaca fascicularis. This study aims to address several research questions, including the prevalence and distribution of simian malaria in these two Thai wild macaque species, variations in infection between different macaque species and between M. fascicularis subspecies, and the genetic composition of these pathogens. Blood samples were collected from 82 M. mulatta and 690 M. fascicularis across 15 locations in Thailand, as well as two locations in Vietnam and Myanmar. We employed quantitative real-time PCR targeting the Plasmodium genus-specific 18S ribosomal RNA (rRNA) gene to detect malaria infection, with a limit of detection set at 1,215.98 parasites per mL. We genotyped eight microsatellite markers, and the P. cynomolgi dihydrofolate reductase gene (DHFR) was sequenced (N = 29). In total, 100 of 772 samples (13 %) tested positive for malaria, including 45 (13 %) for P. cynomolgi, 37 (13 %) for P. inui, 16 (5 %) for P. coatneyi, and 2 (0.25 %) for Hepatocystis sp. in Saraburi, central and Ranong, southern Thailand. Notably, simian malaria infection was observed exclusively in M. fascicularis and not in M. mulatta (P = 0.0002). Particularly, P. cynomolgi was detected in 21.7 % (45/207) of M. f. fascicularis living in Wat Tham Phrapothisat, Saraburi Province. The infection with simian malaria was statistically different between M. fascicularis and M. mulatta (P = 0.0002) but not within M. fascicularis subspecies (P = 0.78). A haplotype network analysis revealed that P. cynomolgi shares a lineage with reference strains obtained from macaques. No mutation in the predicted binding pocket of PcyDHFR to pyrimethamine was observed. This study reveals a significant prevalence of simian malaria infection in M. fascicularis. The clonal genotypes of P. cynomolgi suggest in-reservoir breeding. These findings raise concerns about the potential spread of nonhuman primate malaria to humans and underscore the need for preventive measures.
Collapse
Affiliation(s)
- Kriangkrai Karnchaisri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Ferreira FHDC, Pinto LR, Oliveira BA, Daniel LV, Navarro M, Delgado GYS. Analysis of the interaction of antimalarial agents with Plasmodium falciparum glutathione reductase through molecular mechanical calculations. J Mol Model 2024; 30:181. [PMID: 38780838 DOI: 10.1007/s00894-024-05968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT Malaria remains a significant global health challenge with emerging resistance to current treatments. Plasmodium falciparum glutathione reductase (PfGR) plays a critical role in the defense mechanisms of malaria parasites against oxidative stress. In this study, we investigate the potential of targeting PfGR with conventional antimalarials and dual drugs combining aminoquinoline derivatives with GR inhibitors, which reveal promising interactions between PfGR and studied drugs. The naphthoquinone Atovaquone demonstrated particularly high affinity and potential dual-mode binding with the enzyme active site and cavity. Furthermore, dual drugs exhibit enhanced binding affinity, suggesting their efficacy in inhibiting PfGR, where the aliphatic ester bond (linker) is essential for effective binding with the enzyme's active site. Overall, this research provides important insights into the interactions between antimalarial agents and PfGR and encourages further exploration of its role in the mechanisms of action of antimalarials, including dual drugs, to enhance antiparasitic efficacy. METHODS The drugs were tested as PfGR potential inhibitors via molecular docking on AutoDock 4, which was performed based on the preoptimized structures in HF/3-21G-PCM level of theory on ORCA 5. Drug-receptor systems with the most promising binding affinities were then studied with a molecular dynamic's simulation on AMBER 16. The molecular dynamics simulations were performed with a 100 ns NPT ensemble employing GAFF2 forcefield in the temperature of 310 K, integration time step of 2 fs, and non-bond cutoff distance of 6.0 Å.
Collapse
Affiliation(s)
- Frederico Henrique do C Ferreira
- NEQC: Núcleo de Estudos em Química Computacional, Departament of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - L R Pinto
- NEQC: Núcleo de Estudos em Química Computacional, Departament of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - B A Oliveira
- SINTBIOMOL: Tecnologia em Fármacos: Síntese de Biomoléculas, Avaliação Biológica e Repercussões Ambientais, Departament of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - L V Daniel
- LaQBIC: Laboratório de Química Bioinorgânica e Catálise, Departament of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - M Navarro
- LaQBIC: Laboratório de Química Bioinorgânica e Catálise, Departament of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - G Y Sánchez Delgado
- LaQBIC: Laboratório de Química Bioinorgânica e Catálise, Departament of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil.
| |
Collapse
|
7
|
Braima KA, Piera KA, Lubis IND, Noviyanti R, Rajahram GS, Kariodimedjo P, Nainggolan IRA, Permatasari R, Trianty L, Amalia R, Sakam SSB, Tan AF, William T, Westaway JAF, Lee P, Daim S, Surendra H, Christy N, Letizia AG, Peatey CL, Moideen MA, Barber BE, Sutherland CJ, Anstey NM, Grigg MJ. Improved limit of detection for zoonotic Plasmodium knowlesi and P. cynomolgi surveillance using reverse transcription for total nucleic acid preserved samples or dried blood spots. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.04.24305339. [PMID: 38633782 PMCID: PMC11023669 DOI: 10.1101/2024.04.04.24305339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Background Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methods An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls. Results The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/μL for P. knowlesi and 0.002 parasites/μL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/μL); Divis et al. real-time 18S rRNA (0.0002 parasites/μL); Lubis et al. hemi-nested SICAvar (1.1 parasites/μL) and Lee et al. nested 18S rRNA (11 parasites/μL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/μL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusion Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.
Collapse
Affiliation(s)
- Kamil A Braima
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Inke ND Lubis
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | | | - Giri S Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre-Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
- School of Medicine and Health Sciences, Monash University Malaysia, Kuala Lumpur, Malaysia
| | | | - Irbah RA Nainggolan
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Ranti Permatasari
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Leily Trianty
- Eijkman Research Center for Molecular Biology, BRIN, Indonesia
| | | | - Sitti Saimah binti Sakam
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Angelica F Tan
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre-Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Jacob AF Westaway
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
| | - PingChin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah Malaysia
| | - Sylvia Daim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Henry Surendra
- Monash University Indonesia, Tangerang, Indonesia
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | | | - Christopher L Peatey
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Mohd Arshil Moideen
- Malaysian Armed Forces and Faculty of Medicine & Defence Health, National Defence University of Malaysia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Colin J Sutherland
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
8
|
Shahari S, Bin Abdullah ML, Binti Isman Rohimly AA, Binti Ashrat N, Amir A, Atroosh WMM, Fong MY, Lau YL. The prevalence of simian malaria in wild long-tailed macaques throughout Peninsular Malaysia. Sci Rep 2024; 14:6023. [PMID: 38472278 PMCID: PMC10933401 DOI: 10.1038/s41598-024-54981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The parasite Plasmodium knowlesi has been the sole cause of malaria in Malaysia from 2018 to 2022. The persistence of this zoonotic species has hampered Malaysia's progress towards achieving the malaria-free status awarded by the World Health Organisation (WHO). Due to the zoonotic nature of P. knowlesi infections, it is important to study the prevalence of the parasite in the macaque host, the long-tailed macaque (Macaca fascicularis). Apart from P. knowlesi, the long-tailed macaque is also able to harbour Plasmodium cynomolgi, Plasmodium inui, Plasmodium caotneyi and Plasmodium fieldi. Here we report the prevalence of the 5 simian malaria parasites in the wild long-tailed macaque population in 12 out of the 13 states in Peninsular Malaysia using a nested PCR approach targeting the 18s ribosomal RNA (18s rRNA) gene. It was found that all five Plasmodium species were widely distributed throughout Peninsular Malaysia except for states with major cities such as Kuala Lumpur and Putrajaya. Of note, Pahang reported a malaria prevalence of 100% in the long-tailed macaque population, identifying it as a potential hotspot for zoonotic transmission. Overall, this study shows the distribution of the 5 simian malaria parasite species throughout Peninsular Malaysia, the data of which could be used to guide future malaria control interventions to target zoonotic malaria.
Collapse
Affiliation(s)
- Shahhaziq Shahari
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Lutfi Bin Abdullah
- National Wildlife Forensic Laboratory, Ex-Situ Conservation Division, Department of Wildlife and National Parks Peninsular Malaysia, 56100, Kuala Lumpur, Malaysia
| | - Anis Adlina Binti Isman Rohimly
- National Wildlife Forensic Laboratory, Ex-Situ Conservation Division, Department of Wildlife and National Parks Peninsular Malaysia, 56100, Kuala Lumpur, Malaysia
| | - Norsharina Binti Ashrat
- National Wildlife Forensic Laboratory, Ex-Situ Conservation Division, Department of Wildlife and National Parks Peninsular Malaysia, 56100, Kuala Lumpur, Malaysia
| | - Amirah Amir
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Kandalgaonkar MR, Yeoh BS, Joe B, Schmidt NW, Vijay-Kumar M, Saha P. Hypertension Increases Susceptibility to Experimental Malaria in Mice. FUNCTION 2024; 5:zqae009. [PMID: 38706961 PMCID: PMC11065114 DOI: 10.1093/function/zqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 05/07/2024] Open
Abstract
Global prevalence of hypertension is on the rise, burdening healthcare, especially in developing countries where infectious diseases, such as malaria, are also rampant. Whether hypertension could predispose or increase susceptibility to malaria, however, has not been extensively explored. Previously, we reported that hypertension is associated with abnormal red blood cell (RBC) physiology and anemia. Since RBC are target host cells for malarial parasite, Plasmodium, we hypothesized that hypertensive patients with abnormal RBC physiology are at greater risk or susceptibility to Plasmodium infection. To test this hypothesis, normotensive (BPN/3J) and hypertensive (BPH/2J) mice were characterized for their RBC physiology and subsequently infected with Plasmodium yoelii (P. yoelii), a murine-specific non-lethal strain. When compared to BPN mice, BPH mice displayed microcytic anemia with RBC highly resistant to osmotic hemolysis. Further, BPH RBC exhibited greater membrane rigidity and an altered lipid composition, as evidenced by higher levels of phospholipids and saturated fatty acid, such as stearate (C18:0), along with lower levels of polyunsaturated fatty acid like arachidonate (C20:4). Moreover, BPH mice had significantly greater circulating Ter119+ CD71+ reticulocytes, or immature RBC, prone to P. yoelii infection. Upon infection with P. yoelii, BPH mice experienced significant body weight loss accompanied by sustained parasitemia, indices of anemia, and substantial increase in systemic pro-inflammatory mediators, compared to BPN mice, indicating that BPH mice were incompetent to clear P. yoelii infection. Collectively, these data demonstrate that aberrant RBC physiology observed in hypertensive BPH mice contributes to an increased susceptibility to P. yoelii infection and malaria-associated pathology.
Collapse
Affiliation(s)
- Mrunmayee R Kandalgaonkar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Nathan W Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matam Vijay-Kumar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
10
|
Segbefia SP, Asandem DA, Amoah LE, Kusi KA. Cytokine gene polymorphisms implicated in the pathogenesis of Plasmodium falciparum infection outcome. Front Immunol 2024; 15:1285411. [PMID: 38404582 PMCID: PMC10884311 DOI: 10.3389/fimmu.2024.1285411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play a critical role in the immune mechanisms involved in fighting infections including malaria. Polymorphisms in cytokine genes may affect immune responses during an infection with Plasmodium parasites and immunization outcomes during routine administration of malaria vaccines. These polymorphisms can increase or reduce susceptibility to this deadly infection, and this may affect the physiologically needed balance between anti-inflammatory and pro-inflammatory cytokines. The purpose of this review is to present an overview of the effect of selected cytokine gene polymorphisms on immune responses against malaria.
Collapse
Affiliation(s)
- Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Diana Asema Asandem
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
11
|
Calderaro A, Piccolo G, Chezzi C. The Laboratory Diagnosis of Malaria: A Focus on the Diagnostic Assays in Non-Endemic Areas. Int J Mol Sci 2024; 25:695. [PMID: 38255768 PMCID: PMC10815132 DOI: 10.3390/ijms25020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Even if malaria is rare in Europe, it is a medical emergency and programs for its control should ensure both an early diagnosis and a prompt treatment within 24-48 h from the onset of the symptoms. The increasing number of imported malaria cases as well as the risk of the reintroduction of autochthonous cases encouraged laboratories in non-endemic countries to adopt diagnostic methods/algorithms. Microscopy remains the gold standard, but with limitations. Rapid diagnostic tests have greatly expanded the ability to diagnose malaria for rapid results due to simplicity and low cost, but they lack sensitivity and specificity. PCR-based assays provide more relevant information but need well-trained technicians. As reported in the World Health Organization Global Technical Strategy for Malaria 2016-2030, the development of point-of-care testing is important for the improvement of diagnosis with beneficial consequences for prompt/accurate treatment and for preventing the spread of the disease. Despite their limitations, diagnostic methods contribute to the decline of malaria mortality. Recently, evidence suggested that artificial intelligence could be utilized for assisting pathologists in malaria diagnosis.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (G.P.); (C.C.)
| | | | | |
Collapse
|
12
|
Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, Rajahram GS, Grigg MJ, Flegg JA, Price DJ, Shearer FM. Updating estimates of Plasmodium knowlesi malaria risk in response to changing land use patterns across Southeast Asia. PLoS Negl Trop Dis 2024; 18:e0011570. [PMID: 38252650 PMCID: PMC10833542 DOI: 10.1371/journal.pntd.0011570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/01/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection. METHODS & RESULTS We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission. DISCUSSION Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.
Collapse
Affiliation(s)
- Ruarai J. Tobin
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Lucinda E. Harrison
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Meg K. Tully
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Inke N. D. Lubis
- Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rintis Noviyanti
- Eijkman Research Center for Molecular Biology, BRIN, Jakarta, Indonesia
| | - Nicholas M. Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Giri S. Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah, Menzies School of Health Research, Clinical Research Unit, Hospital Queen Elizabeth II, and Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Malaysia
| | - Matthew J. Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - David J. Price
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Melbourne, Australia
| | - Freya M. Shearer
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Infectious Disease Ecology and Modelling Group, Telethon Kids Institute, Perth, Australia
| |
Collapse
|
13
|
Fornace KM, Zorello Laporta G, Vythilingham I, Chua TH, Ahmed K, Jeyaprakasam NK, de Castro Duarte AMR, Amir A, Phang WK, Drakeley C, Sallum MAM, Lau YL. Simian malaria: a narrative review on emergence, epidemiology and threat to global malaria elimination. THE LANCET. INFECTIOUS DISEASES 2023; 23:e520-e532. [PMID: 37454671 DOI: 10.1016/s1473-3099(23)00298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023]
Abstract
Simian malaria from wild non-human primate populations is increasingly recognised as a public health threat and is now the main cause of human malaria in Malaysia and some regions of Brazil. In 2022, Malaysia became the first country not to achieve malaria elimination due to zoonotic simian malaria. We review the global distribution and drivers of simian malaria and identify priorities for diagnosis, treatment, surveillance, and control. Environmental change is driving closer interactions between humans and wildlife, with malaria parasites from non-human primates spilling over into human populations and human malaria parasites spilling back into wild non-human primate populations. These complex transmission cycles require new molecular and epidemiological approaches to track parasite spread. Current methods of malaria control are ineffective, with wildlife reservoirs and primarily outdoor-biting mosquito vectors urgently requiring the development of novel control strategies. Without these, simian malaria has the potential to undermine malaria elimination globally.
Collapse
Affiliation(s)
- Kimberly M Fornace
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Gabriel Zorello Laporta
- Graduate Research and Innovation Program, Centro Universitario FMABC, Santo André, São Paulo, Brazil
| | | | | | - Kamruddin Ahmed
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia; Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nantha K Jeyaprakasam
- Biomedical Science Programme, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ana Maria Ribeiro de Castro Duarte
- Laboratory of Protozoology, Institute of Tropical Medicine of São Paulo, Universidade de São Paulo, São Paulo, Brazil; Instituto Pasteur, Secretaria de Estado da Saude de São Paulo, São Paulo, Brazil
| | - Amirah Amir
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wei Kit Phang
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Maria Anice M Sallum
- Departamento de Epidemiologia, Faculdade de Saude Publica, Universidade de São Paulo, São Paulo, Brazil
| | - Yee Ling Lau
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Sangsri R, Choowongkomon K, Tuntipaiboontana R, Sugaram R, Boondej P, Sudathip P, Dondorp AM, Imwong M. Limited Polymorphism in the Dihydrofolate Reductase (dhfr) and dihydropteroate synthase genes (dhps) of Plasmodium knowlesi isolate from Thailand. Acta Trop 2023; 248:107016. [PMID: 37683820 PMCID: PMC10632683 DOI: 10.1016/j.actatropica.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND The 2022 malaria WHO reported around 4000 P. knowlesi infections in the South-East Asia region. In the same period, 72 positive cases were reported by the Department of Disease Control in Thailand, suggesting a persistent infection. Little is known about dihydrofolate reductase (pkdhfr) and dihydropteroate synthase (pkdhps), putative antimalarial resistance markers for P. knowlesi. The relevant amplification and sequencing protocol are presently unavailable. In this study, we developed a protocol for amplifying and evaluating pkdhps mutations. The haplotype pattern of pkdhfr-pkdhps in Thai isolates was analyzed, and the effects of these pkdhps mutations were predicted by using a computer program. METHODS Pkdhps were amplified and sequenced from 28 P. knowlesi samples collected in 2008 and 2020 from nine provinces across Thailand. Combining pkdhfr sequencing data from previous work with pkdhps data to analyze polymorphisms of pkdhfr and pkdhps haplotype. Protein modeling and molecular docking were constructed using two inhibitors, sulfadoxine and sulfamethoxazole, and further details were obtained through analyses of protein-ligand interactions by using the Genetic Optimisation for Ligand Docking program. A phylogenetic tree cluster analysis was reconstructed to compare the P. knowlesi Malaysia isolates. RESULTS Five nonsynonymous mutations in the pkdhps were detected outside the equivalence of the binding pocket sites to sulfadoxine and sulfamethoxazole, which are at N391S, E421G, I425R, A449S, and N517S. Based on the modeling and molecular docking analyses, the N391S and N517S mutations located close to the enzyme-binding pocket demonstrated a different docking score and protein-ligand interaction in loop 2 of the enzyme. These findings indicated that it was less likely to induce drug resistance. Of the four haplotypes of pkdhfr-pkdhps, the most common one is the R34L pkdhfr mutation and the pkdhps quadruple mutation (GRSS) at E421G, I425R, A449S, and N517S, which were observed in P. knowlesi in southern Thailand (53.57%). Based on the results of neighbor-joining analysis for pkdhfr and pkdhps, the samples isolated from eastern Thailand displayed a close relationship with Cambodia isolates, while southern Thailand isolates showed a long branch separated from the Malaysian isolates. CONCLUSIONS A new PCR protocol amplification and evaluation of dihydropteroate synthase mutations in Knowlesi (pkdhps) has been developed. The most prevalent pkdhfr-pkdhps haplotypes (53.57%) in southern Thailand are R34L pkdhfr mutation and pkdhps quadruple mutation. Further investigation requires additional phenotypic data from clinical isolates, transgenic lines expressing mutant alleles, or recombinant proteins.
Collapse
Affiliation(s)
- Raweewan Sangsri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand
| | - Runch Tuntipaiboontana
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Rungniran Sugaram
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Patcharida Boondej
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Prayuth Sudathip
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
15
|
Narapakdeesakul D, Pengsakul T, Kaewparuehaschai M, Thongsahuan S, Moonmake S, Lekcharoen P, Thanee S, Pattaradilokrat S, Kaewthamasorn M. Zoonotic simian malaria parasites in free-ranging Macaca fascicularis macaques and human malaria patients in Thailand, with a note on genetic characterization of recent isolates. Acta Trop 2023; 248:107030. [PMID: 37742788 DOI: 10.1016/j.actatropica.2023.107030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Despite the natural occurrences of human infections by Plasmodium knowlesi, P. cynomolgi, P. inui, and P. fieldi in Thailand, investigating the prevalence and genetic diversity of the zoonotic simian malaria parasites in macaque populations has been limited to certain areas. To address this gap, a total of 560 long-tailed macaques (Macaca fascicularis) and 20 southern pig-tailed macaques (M. nemestrina) were captured from 15 locations across 10 provinces throughout Thailand between 2018 and 2021 for investigation of malaria, as were 15 human samples residing in two simian-malaria endemic provinces, namely Songkhla and Satun, who exhibited malaria-like symptoms. Using PCR techniques targeting the mitochondrial cytb and cox1 genes coupled with DNA sequencing, 40 long-tailed macaques inhabiting five locations had mono-infections with one of the three simian malaria species. Most of the positive cases of macaque were infected with P. inui (32/40), while infections with P. cynomolgi (6/40) and P. knowlesi (2/40) were less common and confined to specific macaque populations. Interestingly, all 15 human cases were mono-infected with P. knowlesi, with one of them residing in an area with two P. knowlesi-infected macaques. Nucleotide sequence analysis showed a high level of genetic diversity in P. inui, while P. cynomolgi and P. knowlesi displayed limited genetic diversity. Phylogenetic and haplotype network analyses revealed that P. inui in this study was closely related to simian and Anopheles isolates from Peninsular Malaysia, while P. cynomolgi clustered with simian and human isolates from Asian countries. P. knowlesi, which was found in both macaques and humans in this study, was closely related to isolates from macaques, humans, and An. hackeri in Peninsular Malaysia, suggesting a sylvatic transmission cycle extending across these endemic regions. This study highlights the current hotspots for zoonotic simian malaria and sheds light on the genetic characteristics of recent isolates in both macaques and human residents in Thailand.
Collapse
Affiliation(s)
- Duriyang Narapakdeesakul
- Veterinary Pathobiology Graduate Program, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Theerakamol Pengsakul
- Health and Environmental Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mutchamon Kaewparuehaschai
- Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok 10900, Thailand
| | - Salintorn Thongsahuan
- Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok 10900, Thailand
| | - Sopavadee Moonmake
- The Office of Disease Prevention and Control Region 12 Songkhla, Department of Disease Control, Ministry of Public Health, Songkhla 90000, Thailand
| | - Paisin Lekcharoen
- Veterinary Public Health Graduate Program, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suchansa Thanee
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
16
|
Chaturvedi R, Biswas S, Bisht K, Sharma A. The threat of increased transmission of non- knowlesi zoonotic malaria in humans: a systematic review. Parasitology 2023; 150:1167-1177. [PMID: 37929579 PMCID: PMC10801384 DOI: 10.1017/s003118202300077x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 11/07/2023]
Abstract
Of the 5 human malarial parasites, Plasmodium falciparum and Plasmodium vivax are the most prevalent species globally, while Plasmodium malariae, Plasmodium ovale curtisi and Plasmodium ovale wallikeri are less prevalent and typically occur as mixed-infections. Plasmodium knowlesi, previously considered a non-human primate (NHP) infecting species, is now a cause of human malaria in Malaysia. The other NHP Plasmodium species, Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium inui, Plasmodium simium, Plasmodium coatneyi and Plasmodium fieldi cause malaria in primates, which are mainly reported in southeast Asia and South America. The non-knowlesi NHP Plasmodium species also emerged and were found to cross-transmit from their natural hosts (NHP) – to human hosts in natural settings. Here we have reviewed and collated data from the literature on the NHPs-to-human-transmitting non-knowlesi Plasmodium species. It was observed that the natural transmission of these NHP parasites to humans had been reported from 2010 onwards. This study shows that: (1) the majority of the non-knowlesi NHP Plasmodium mixed species infecting human cases were from Yala province of Thailand; (2) mono/mixed P. cynomolgi infections with other human-infecting Plasmodium species were prevalent in Malaysia and Thailand and (3) P. brasilianum and P. simium were found in Central and South America.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Shibani Biswas
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
- Host–Parasite Biology, ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanika Bisht
- Host–Parasite Biology, ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Ruengket P, Roytrakul S, Tongthainan D, Taruyanon K, Sangkharak B, Limudomporn P, Pongsuchart M, Udom C, Fungfuang W. Serum proteomic profile of wild stump-tailed macaques (Macaca arctoides) infected with malaria parasites in Thailand. PLoS One 2023; 18:e0293579. [PMID: 37910477 PMCID: PMC10619813 DOI: 10.1371/journal.pone.0293579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The number of patients infected with simian malaria is gradually increasing in many countries of Southeast Asia and South America. The most important risk factor for a zoonotic spillover event of malarial infection is mostly influenced by the interaction between humans, monkeys, and vectors. In this study, we determine the protein expression profile of a wild stump-tailed macaque (Macaca arctoides) from a total of 32 blood samples collected from Prachuap Kiri Khan Province, Thailand. The malarial parasite was analyzed using nested polymerase chain reaction (PCR) assays by dividing the samples into three groups: non-infected, mono-infected, and multiple-infected. The identification and differential proteomic expression profiles were determined using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and bioinformatics tools. A total of 9,532 proteins (total proteins) were identified with the filter-based selection methods analysis, and a subset of 440 proteins were found to be different between each group. Within these proteins, the GhostKOALA functional enrichment analysis indicated that 142 important proteins were associated with either of the organismal system (28.87%), genetic information processing (23.24%), environmental information processing (16.20%), metabolism (13.38%), cellular processes (11.97%), or causing human disease (6.34%). Additionally, using interaction network analysis, nine potential reporter proteins were identified. Here, we report the first study on the protein profiles differentially expressed in the serum of wild stump-tailed macaques between non, mono, and multiple malarial infected living in a natural transmission environment. Our findings demonstrate that differentially expressed proteins implicated in host defense through lipid metabolism, involved with TGF pathway were suppressed, while those with the apoptosis pathway, such as cytokines and proinflammation signals were increased. Including the parasite's response via induced hemolysis and disruption of myeloid cells. A greater understanding of the fundamental processes involved in a malarial infection and host response can be crucial for developing diagnostic tools, medication development, and therapies to improve the health of those affected by the disease.
Collapse
Affiliation(s)
- Pakorn Ruengket
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Rajamongala University of Technology Tawan-ok, Chonburi, Thailand
| | - Kanokwan Taruyanon
- Department of National Parks, Wildlife Conservation Division Protected Areas Regional Office, Wildlife and Plant Conservation, Ratchaburi, Thailand
| | - Bencharong Sangkharak
- Department of National Parks, Wildlife Conservation Division, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Paviga Limudomporn
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Mongkol Pongsuchart
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Chanya Udom
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Wirasak Fungfuang
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
18
|
Kranjc A, Narwani TJ, Abby SS, de Brevern AG. Structural Space of the Duffy Antigen/Receptor for Chemokines' Intrinsically Disordered Ectodomain 1 Explored by Temperature Replica-Exchange Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:13280. [PMID: 37686086 PMCID: PMC10488288 DOI: 10.3390/ijms241713280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Plasmodium vivax malaria affects 14 million people each year. Its invasion requires interactions between the parasitic Duffy-binding protein (PvDBP) and the N-terminal extracellular domain (ECD1) of the host's Duffy antigen/receptor for chemokines (DARC). ECD1 is highly flexible and intrinsically disordered, therefore it can adopt different conformations. We computationally modeled the challenging ECD1 local structure. With T-REMD simulations, we sampled its dynamic behavior and collected its most representative conformations. Our results suggest that most of the DARC ECD1 domain remains in a disordered state during the simulated time. Globular local conformations are found in the analyzed local free-energy minima. These globular conformations share an α-helix spanning residues Ser18 to Ser29 and in many cases they comprise an antiparallel β-sheet, whose β-strands are formed around residues Leu10 and Ala49. The formation of a parallel β-sheet is almost negligible. So far, progress in understanding the mechanisms forming the basis of the P. vivax malaria infection of reticulocytes has been hampered by experimental difficulties, along with a lack of DARC structural information. Our collection of the most probable ECD1 structural conformations will help to advance modeling of the DARC structure and to explore DARC-ECD1 interactions with a range of physiological and pathological ligands.
Collapse
Affiliation(s)
- Agata Kranjc
- Université Paris Cité and Université des Antilles and Université de la Réunion, BIGR, UMR_S1134, DSIMB Team, Inserm, F-75014 Paris, France;
- Institut National de la Transfusion Sanguine (INTS), F-75015 Paris, France
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Tarun Jairaj Narwani
- Université Paris Cité and Université des Antilles and Université de la Réunion, BIGR, UMR_S1134, DSIMB Team, Inserm, F-75014 Paris, France;
- Institut National de la Transfusion Sanguine (INTS), F-75015 Paris, France
| | - Sophie S. Abby
- University Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, F-38000 Grenoble, France;
| | - Alexandre G. de Brevern
- Université Paris Cité and Université des Antilles and Université de la Réunion, BIGR, UMR_S1134, DSIMB Team, Inserm, F-75014 Paris, France;
- Institut National de la Transfusion Sanguine (INTS), F-75015 Paris, France
| |
Collapse
|
19
|
Rattaprasert P, Chavananikul C, Fungfuang W, Chavalitshewinkoon-Petmitr P, Limudomporn P. Combining isothermal recombinase polymerase amplification with lateral flow assay for diagnosis of P. cynomolgi malaria infection. PLoS Negl Trop Dis 2023; 17:e0011470. [PMID: 37405994 DOI: 10.1371/journal.pntd.0011470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Plasmodium cynomolgi is a nonhuman primate parasite that causes malaria in humans and is transmitted by the Anopheles mosquito. Macaques, the natural hosts of P. cynomolgi, are widely distributed in Asia, especially in Southeast Asia. Anthropogenic land-use changes and wildlife habitat reduction due to local environmental changes, deforestation, urban expansion, and construction increased the frequency of human-macaque-vector interactions and facilitated the emergence of zoonotic malaria, causing an exponential increase in the infection rates in this area. Although microscopic tools are the gold standard for malaria diagnosis, they have very low sensitivity. Therefore, disease control and prevention require rapid, sensitive and accurate diagnostic tests. METHODOLOGY/PRINCIPLE FINDINGS This study aims to develop a diagnostic method using a recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip method to specifically diagnose P. cynomolgi. Laboratory validation determined the method's sensitivity and specificity compared to the nested PCR method. The lower limit of detection was 22.14 copies/μl of recombinant plasmid per reaction. The combination method represented 81.82% sensitivity and 94.74% specificity compared to the nested PCR. CONCLUSIONS/SIGNIFICANCE The diagnostic testing developed in this study combines a recombinase polymerase amplification (RPA) and a lateral flow (LF) strip, offering rapid high sensitivity and specificity. Further development of this technique could make it a promising method for detecting P. cynomolgi.
Collapse
Affiliation(s)
- Pongruj Rattaprasert
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok, Thailand
| | - Chutima Chavananikul
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Paviga Limudomporn
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, Thailand
| |
Collapse
|
20
|
Mewara A, Sreenivasan P, Khurana S. Primate malaria of human importance. Trop Parasitol 2023; 13:73-83. [PMID: 37860614 PMCID: PMC10583777 DOI: 10.4103/tp.tp_79_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/10/2023] [Indexed: 10/21/2023] Open
Abstract
Nonhuman primate (NHP) malaria poses a major threat to the malaria control programs. The last two decades have witnessed a paradigm shift in our understanding of the malaria caused by species other than the traditionally known human Plasmodium species - Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale. The emergence of the malaria parasite of long-tailed macaque monkeys, Plasmodium knowlesi, as the fifth malaria species of humans has made the scientific community consider the risk of other zoonotic malaria, such as Plasmodium cynomolgi, Plasmodium simium, Plasmodium inui, and others, to humans. The development of knowledge about P. knowlesi as a pathogen which was earlier only known to experimentally cause malaria in humans and rarely cause natural infection, toward its acknowledgment as a significant cause of human malaria and a threat of malaria control programs has been made possible by the use of advanced molecular techniques such as polymerase chain reaction and gene sequencing. This review explores the various aspects of NHP malaria, and the association of various factors with their emergence and potential to cause human malaria which are important to understand to be able to control these emerging infections.
Collapse
Affiliation(s)
- Abhishek Mewara
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Priya Sreenivasan
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sumeeta Khurana
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
Jeyaprakasam NK, Low VL, Pramasivan S, Liew JWK, Wan-Sulaiman WY, Vythilingam I. High transmission efficiency of the simian malaria vectors and population expansion of their parasites Plasmodium cynomolgi and Plasmodium inui. PLoS Negl Trop Dis 2023; 17:e0011438. [PMID: 37384790 DOI: 10.1371/journal.pntd.0011438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The elimination of malaria in Southeast Asia has become more challenging as a result of rising knowlesi malaria cases. In addition, naturally occurring human infections with other zoonotic simian malaria caused by Plasmodium cynomolgi and Plasmodium inui adds another level of complexity in malaria elimination in this region. Unfortunately, data on vectors which are responsible for transmitting this zoonotic disease is very limited. METHODOLOGY/PRINCIPAL FINDINGS We conducted longitudinal studies to investigate the entomological parameters of the simian malaria vectors and to examine the genetic diversity and evolutionary pattern of their simian Plasmodium. All the captured Anopheles mosquitoes were dissected to examine for the presence of oocysts, sporozoites and to determine the parous rate. Our study revealed that the Anopheles Leucosphyrus Group mosquitoes are highly potential competent vectors, as evidenced by their high rate of parity, survival and sporozoite infections in these mosquitoes. Thus, these mosquitoes represent a risk of human infection with zoonotic simian malaria in this region. Haplotype analysis on P. cynomolgi and P. inui, found in high prevalence in the Anopheles mosquitoes from this study, had shown close relationship between simian Plasmodium from the Anopheles mosquitoes with its vertebrate hosts. This directly signifies the ongoing transmission between the vector, macaques, and humans. Furthermore, population genetic analysis showed significant negative values which suggest that both Plasmodium species are undergoing population expansion. CONCLUSIONS/SIGNIFICANCE With constant microevolutionary processes, there are potential for both P. inui and P. cynomolgi to emerge and spread as a major public health problem, following the similar trend of P. knowlesi. Therefore, concerted vector studies in other parts of Southeast Asia are warranted to better comprehend the transmission dynamics of this zoonotic simian malaria which eventually would aid in the implementation of effective control measures in a rapidly changing environment.
Collapse
Affiliation(s)
- Nantha Kumar Jeyaprakasam
- Faculty of Medicine, Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
- Faculty of Health Sciences, Biomedical Science Program, Center for Toxicology and Health Risk Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Van Lun Low
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sandthya Pramasivan
- Faculty of Medicine, Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Faculty of Medicine, Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | | | - Indra Vythilingam
- Faculty of Medicine, Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Pramasivan S, Low VL, Jeyaprakasam NK, Liew JWK, Ngui R, Vythilingam I. Cryptic Diversity and Demographic Expansion of Plasmodium knowlesi Malaria Vectors in Malaysia. Genes (Basel) 2023; 14:1369. [PMID: 37510274 PMCID: PMC10378955 DOI: 10.3390/genes14071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Although Malaysia is considered free of human malaria, there has been a growing number of Plasmodium knowlesi cases. This alarming trend highlighted the need for our understanding of this parasite and its associated vectors, especially considering the role of genetic diversity in the adaptation and evolution among vectors in endemic areas, which is currently a significant knowledge gap in their fundamental biology. Thus, this study aimed to investigate the genetic diversity of Anopheles balabacensis, Anopheles cracens, Anopheles introlatus, and Anopheles latens-the vectors for P. knowlesi malaria in Malaysia. Based on cytochrome c oxidase 1 (CO1) and internal transcribed spacer 2 (ITS2) markers, the genealogic networks of An. latens showed a separation of the haplotypes between Peninsular Malaysia and Malaysia Borneo, forming two distinct clusters. Additionally, the genetic distances between these clusters were high (2.3-5.2% for CO1) and (2.3-4.7% for ITS2), indicating the likely presence of two distinct species or cryptic species within An. latens. In contrast, no distinct clusters were observed in An. cracens, An. balabacensis, or An. introlatus, implying a lack of pronounced genetic differentiation among their populations. It is worth noting that there were varying levels of polymorphism observed across the different subpopulations, highlighting some levels of genetic variation within these mosquito species. Nevertheless, further analyses revealed that all four species have undergone demographic expansion, suggesting population growth and potential range expansion for these vectors in this region.
Collapse
Affiliation(s)
- Sandthya Pramasivan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Van Lun Low
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nantha Kumar Jeyaprakasam
- Biomedical Science Program, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Jonathan Wee Kent Liew
- Environmental Health Institute, National Environment Agency, Singapore 569874, Singapore
| | - Romano Ngui
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
23
|
Kotepui M, Kotepui KU, Masangkay FR, Mahittikorn A, Wilairatana P. Prevalence and proportion estimate of asymptomatic Plasmodium infection in Asia: a systematic review and meta-analysis. Sci Rep 2023; 13:10379. [PMID: 37369862 DOI: 10.1038/s41598-023-37439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
Asymptomatic Plasmodium infection raises a problem for the persistent transmission of malaria in low-endemic areas such as Asia. This systematic review was undertaken to estimate the prevalence and proportion of asymptomatic Plasmodium infection in Asia. The systematic review was registered at PROSPERO (ID: CRD42022373664). The research followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. A comprehensive search of five databases, Ovid, Scopus, MEDLINE, PubMed, and Embase, was conducted to identify studies of asymptomatic Plasmodium infection in Asian countries. The pooled prevalence of asymptomatic Plasmodium infection, the pooled proportion of asymptomatic Plasmodium infection among all parasitised individuals, and the associated 95% confidence intervals were estimated using a random-effects model. A total of 916 articles were retrieved, and 87 articles that met the criteria were included in the systematic review. The pooled prevalence of asymptomatic Plasmodium infection among enrolled participants in Southeast Asia, South Asia, and Western Asia was 5.8%, 9.4%, and 8.4%, respectively. The pooled proportion of asymptomatic Plasmodium infection among all parasitised individuals in Southeast Asia, South Asia, and Western Asia was 89.3%, 87.2%, and 64.8%, respectively. There was a low prevalence of asymptomatic Plasmodium infection, but there was a high proportion of asymptomatic Plasmodium infection per all parasitised individuals in different parts of Asia. These results may support and facilitate elimination and control programs for asymptomatic Plasmodium infection in Asia.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | | | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Doum D, Mclver DJ, Hustedt J, Hii J, Sovannaroth S, Lek D, Richardson JH, Tatarsky A, Lobo NF. An active and targeted survey reveals asymptomatic malaria infections among high-risk populations in Mondulkiri, Cambodia. Malar J 2023; 22:193. [PMID: 37353790 DOI: 10.1186/s12936-023-04630-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Malaria is a mosquito-borne disease that is one of the most serious public health issues globally and a leading cause of mortality in many developing countries worldwide. Knowing the prevalence of both symptomatic and asymptomatic malaria on a subnational scale allows for the estimation of the burden of parasitaemia present in the transmission system, enabling targeting and tailoring of resources towards greater impact and better use of available capacity. This study aimed to determine the PCR-based point prevalence of malaria infection, by parasite species, among three high-risk populations in Mondulkiri province, Cambodia: forest rangers, forest dwellers, and forest goers. METHODS A cross-sectional survey was performed during the transmission season in November and December 2021. Blood samples collected on filter paper from participants (n = 1301) from all target groups were screened for Plasmodium spp using PCR. RESULTS Malaria prevalence among all study participants was 6.7% for any Plasmodium species. Malaria prevalence in the forest ranger group was 8.1%, was 6.8% in forest goers, and 6.4% in forest dwellers; all infections were asymptomatic. Plasmodium vivax was detected in all participant groups, while the few Plasmodium falciparum infections were found in goers and dwellers. 81% of all infections were due to P. vivax, 9% were due to P. falciparum, 3% due to Plasmodium cynomolgi, and the rest (7%) remained undefined. Gender was associated with malaria infection prevalence, with male participants having higher odds of malaria infection than female participants (OR = 1.69, 95% CI 1.08-2.64). Passively collected malaria incidence data from the Cambodian government were also investigated. Health facility-reported malaria cases, based on rapid diagnostic tests, for the period Jan-Dec 2021 were 521 Plasmodium vivax (0.89% prevalence), 34 P. falciparum (0.06%) and four P. falciparum + mixed (0.01%)-a total of 559 cases (0.95%) for all of Mondulkiri. CONCLUSION This reservoir of asymptomatic parasitaemia may be perpetuating low levels of transmission, and thus, new strategies are required to realize the goal of eliminating malaria in Cambodia by 2025.
Collapse
Affiliation(s)
- Dyna Doum
- Health Forefront Organization, Phnom Penh, Cambodia
| | - David J Mclver
- Malaria Elimination Initiative, University of California, San Francisco, CA, USA.
| | - John Hustedt
- Health Forefront Organization, Phnom Penh, Cambodia
| | - Jeffrey Hii
- Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Siv Sovannaroth
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | - Allison Tatarsky
- Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Neil F Lobo
- Malaria Elimination Initiative, University of California, San Francisco, CA, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
| |
Collapse
|
25
|
Noordin NR, Lau YL, Cheong FW, Fong MY. Inter-Population Genetic Diversity and Clustering of Merozoite Surface Protein-1 (pkmsp-1) of Plasmodium knowlesi Isolates from Malaysia and Thailand. Trop Med Infect Dis 2023; 8:tropicalmed8050285. [PMID: 37235333 DOI: 10.3390/tropicalmed8050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The genetic diversity of pkmsp-1 of Malaysian Plasmodium knowlesi isolates was studied recently. However, the study only included three relatively older strains from Peninsular Malaysia and focused mainly on the conserved blocks of this gene. In this study, the full-length pkmsp-1 sequence of recent P. knowlesi isolates from Peninsular Malaysia was characterized, along with Malaysian Borneo and Thailand pkmsp-1 sequences that were retrieved from GenBank. Genomic DNA of P. knowlesi was extracted from human blood specimens and the pkmsp-1 gene was PCR-amplified, cloned, and sequenced. The sequences were analysed for genetic diversity, departure from neutrality, and geographical clustering. The pkmsp-1 gene was found to be under purifying/negative selection and grouped into three clusters via a neighbour-joining tree and neighbour net inferences. Of the four polymorphic blocks in pkmsp-1, block IV, was most polymorphic, with the highest insertion-deletion (indel) sites. Two allelic families were identified in block IV, thereby highlighting the importance of this block as a promising genotyping marker for the multiplicity of infection study of P. knowlesi malaria. A single locus marker may provide an alternate, simpler method to type P. knowlesi in a population.
Collapse
Affiliation(s)
- Naqib Rafieqin Noordin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
26
|
Potential Mammalian Vector-Borne Diseases in Live and Wet Markets in Indonesia and Myanmar. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vector-borne diseases spread from wild animals and their associated ectoparasites to humans and domesticated animals. Wildlife markets are recognized as important areas where this transfer can take place. We assessed the potential for spreading vector-borne diseases in two live and wet markets in Myanmar (Mong La, on the Myanmar-China border) and Indonesia (Sukahaji in Bandung on the island of Java) by making an inventory of all live and freshly killed wild mammals for sale. For eight mammal families, we quantified the number of animals on offer, and we used a heatmap cluster analysis to map vector-borne diseases that these families may carry. In Myanmar, we observed large numbers of wild pigs and deer (potentially carrying West Nile and various encephalitis viruses) whereas in Indonesia we observed Old World fruit bats (potentially carrying Chikungunya and encephalitis viruses) and squirrels (potentially carrying West Nile and encephalitis viruses). The trade in Indonesia was dominated by live mammals offered for sale as pets, and only Old World fruit bats and squirrels traded for traditional Asian medicine were killed in the markets. The trade in Myanmar was more geared towards wild meat (e.g., wild pigs, deer, primates) and traditional Asian medicine (squirrels). The combined risks of vector-borne diseases spreading from traded animals to human health highlight the need for an integrated approach protecting public health, economic interests and biodiversity.
Collapse
|
27
|
Farinella DN, Kaur S, Tran V, Cabrera-Mora M, Joyner CJ, Lapp SA, Pakala SB, Nural MV, DeBarry JD, Kissinger JC, Jones DP, Moreno A, Galinski MR, Cordy RJ. Malaria disrupts the rhesus macaque gut microbiome. Front Cell Infect Microbiol 2023; 12:1058926. [PMID: 36710962 PMCID: PMC9880479 DOI: 10.3389/fcimb.2022.1058926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Previous studies have suggested that a relationship exists between severity and transmissibility of malaria and variations in the gut microbiome, yet only limited information exists on the temporal dynamics of the gut microbial community during a malarial infection. Here, using a rhesus macaque model of relapsing malaria, we investigate how malaria affects the gut microbiome. In this study, we performed 16S sequencing on DNA isolated from rectal swabs of rhesus macaques over the course of an experimental malarial infection with Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across primary and relapsing infections. We also performed metabolomics on blood plasma from the animals at the same timepoints and investigated changes in metabolic pathways over time. Members of Proteobacteria (family Helicobacteraceae) increased dramatically in relative abundance in the animal's gut microbiome during peak infection while Firmicutes (family Lactobacillaceae and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes amongst others decreased compared to baseline levels. Alpha diversity metrics indicated decreased microbiome diversity at the peak of parasitemia, followed by restoration of diversity post-treatment. Comparison with healthy subjects suggested that the rectal microbiome during acute malaria is enriched with commensal bacteria typically found in the healthy animal's mucosa. Significant changes in the tryptophan-kynurenine immunomodulatory pathway were detected at peak infection with P. cynomolgi, a finding that has been described previously in the context of P. vivax infections in humans. During relapses, which have been shown to be associated with less inflammation and clinical severity, we observed minimal disruption to the gut microbiome, despite parasites being present. Altogether, these data suggest that the metabolic shift occurring during acute infection is associated with a concomitant shift in the gut microbiome, which is reversed post-treatment.
Collapse
Affiliation(s)
| | - Sukhpreet Kaur
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Chester J. Joyner
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Stacey A. Lapp
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Suman B. Pakala
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Mustafa V. Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Jeremy D. DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jessica C. Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States,Department of Genetics, University of Georgia, Athens, GA, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Alberto Moreno
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,*Correspondence: Regina Joice Cordy,
| |
Collapse
|
28
|
Naserrudin NA, Hassan MR, Jeffree MS, Culleton R, Hod R, Ahmed K. A systematic review of asymptomatic Plasmodium knowlesi infection: an emerging challenge involving an emerging infectious disease. Malar J 2022; 21:373. [PMID: 36474243 PMCID: PMC9724390 DOI: 10.1186/s12936-022-04339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the last decade Plasmodium knowlesi has been detected in humans throughout South East Asia. The highest risk groups for this infection are males, adults and those performing forest-related work. Furthermore, asymptomatic cases of P. knowlesi malaria have been reported including among women and children. METHODS Pubmed, Scopus and the Web of Science databases for literature describing asymptomatic P. knowlesi malaria published between 2010 and 2020 were searched. A systematic literature review was conducted to identify studies reporting the prevalence and incidence of laboratory confirmed asymptomatic P. knowlesi cases in humans, their clinical and demographic characteristics, and methods used to diagnose these cases. RESULTS By analysing over 102 papers, thirteen were eligible for this review. Asymptomatic P. knowlesi infections have been detected in 0.03%-4.0% of the population depending on region, and infections have been described in children as young as 2 years old. Various different diagnostic methods were used to detect P. knowlesi cases and there were differing definitions of asymptomatic cases in these studies. The literature indicates that regionally-differing immune-related mechanisms may play a part on the prevalence of asymptomatic P. knowlesi. CONCLUSION Differing epidemiological characteristics of asymptomatic P. knowlesi malaria in different regions reinforces the need to further investigate disease transmission mechanics. Effective public health responses to changes in P. knowlesi epidemiology require proactive intervention and multisectoral collaboration.
Collapse
Affiliation(s)
- Nurul Athirah Naserrudin
- grid.412113.40000 0004 1937 1557Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia ,grid.265727.30000 0001 0417 0814Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, Kota Kinabalu, Malaysia ,grid.415759.b0000 0001 0690 5255Sabah State Health Department, Ministry of Health, Kota Kinabalu, Malaysia
| | - Mohd Rohaizat Hassan
- grid.412113.40000 0004 1937 1557Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia ,grid.265727.30000 0001 0417 0814Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, Kota Kinabalu, Malaysia
| | - Mohammad Saffree Jeffree
- grid.265727.30000 0001 0417 0814Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, Kota Kinabalu, Malaysia ,grid.265727.30000 0001 0417 0814Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Richard Culleton
- grid.255464.40000 0001 1011 3808Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Rozita Hod
- grid.412113.40000 0004 1937 1557Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kamruddin Ahmed
- grid.265727.30000 0001 0417 0814Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, Kota Kinabalu, Malaysia ,grid.265727.30000 0001 0417 0814Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
29
|
Plasmodium cynomolgi in humans: current knowledge and future directions of an emerging zoonotic malaria parasite. Infection 2022; 51:623-640. [PMID: 36401673 PMCID: PMC9676733 DOI: 10.1007/s15010-022-01952-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Plasmodium cynomolgi (Pcy), a simian malaria parasite, is a recent perfect example of emerging zoonotic transfer in human. This review summarizes the current knowledge on the epidemiology of natural Pcy infections in humans, mosquitoes and monkeys, along with its biological, clinical and drug sensitivity patterns. Knowledge gaps and further studies on Pcy in humans are also discussed. This parasite currently seems to be geographically limited in South-East Asia (SEA) with a global prevalence in human ranging from 0 to 1.4%. The Pcy infections were reported in local SEA populations and European travelers, and range from asymptomatic carriage to mild/moderate attacks with no evidence of pathognomonic clinical and laboratory patterns but with Pcy strain-shaped clinical differences. Geographical distribution and competence of suitable mosquito vectors and non-primate hosts, globalization, climate change, and increased intrusion of humans into the habitat of monkeys are key determinants to emergence of Pcy parasites in humans, along with its expansion outside SEA. Sensitization/information campaigns coupled with training and assessment sessions of microscopists and clinicians on Pcy are greatly needed to improve data on the epidemiology and management of human Pcy infection. There is a need for development of sensitive and specific molecular tools for individual diagnosis and epidemiological studies. The development of safe and efficient anti-hypnozoite drugs is the main therapeutic challenge for controlling human relapsing malaria parasites. Experience gained from P. knowlesi malaria, development of integrated measures and strategies—ideally with components related to human, monkeys, mosquito vectors, and environment—could be very helpful to prevent emergence of Pcy malaria in humans through disruption of transmission chain from monkeys to humans and ultimately contain its expansion in SEA and potential outbreaks in a context of malaria elimination.
Collapse
|
30
|
Analogues of Oxamate, Pyruvate, and Lactate as Potential Inhibitors of Plasmodium knowlesi Lactate Dehydrogenase Identified Using Virtual Screening and Verified via Inhibition Assays. Processes (Basel) 2022. [DOI: 10.3390/pr10112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Malaria management remains a challenge, due to the resistance of malaria parasites to current antimalarial agents. This resistance consequently delays the global elimination of malaria throughout the world. Hence, the demand is increasing for new and effective antimalarial drugs. The identification of potential drugs that target Pk-LDH can be obtained through virtual screening analyses, as this has been previously applied to discover Pf-LDH inhibitors. In this study, the selected candidates from our virtual screening analyses were subsequently tested against purified Pk-LDH, and verified through an inhibition of Pk-LDH via enzymatic activity assays. Virtual screening analysis from this study showed that 3,3-Difluoropyrrolidine hydrochloride and 3-hydroxytetrahydrofuran exhibited binding affinity values of −3.25 kcal/mol and −3.74, respectively. These compounds were selected for evaluation towards inhibitory activity against Pk-LDH assays, including two compounds from a previous study which are oxalic acid and glycolamide. The earlier compounds were structurally similar to lactate and pyruvate, and the latter two compounds were structurally similar to a known LDH inhibitor, oxamate. Among all of the compounds tested, oxalic acid showed the highest inhibition activity at 54.12%; interestingly, this correlated well with the virtual screening analyses, which showed that this compound was the best among the oxamate analogues, with a binding affinity value of −2.59 kcal/mol. Hence, further exploration and development of this compound may result in a promising antimalarial drug for malaria treatment, especially for infection involving P. knowlesi.
Collapse
|
31
|
Nainggolan IRA, Syafutri RD, Sinambela MN, Devina C, Handayani, Hasibuan BS, Chuangchaiya S, Divis PCS, Idris ZM, Permatasari R, Lubis IND. The presence of Plasmodium malariae and Plasmodium knowlesi in near malaria elimination setting in western Indonesia. Malar J 2022; 21:316. [PMCID: PMC9636705 DOI: 10.1186/s12936-022-04335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background Indonesia is progressing towards malaria elimination. To achieve this goal, intervention measures must be addressed to cover all Plasmodium species. Comprehensive control measures and surveillance programmes must be intensified. This study aims to determine the prevalence of microscopic and submicroscopic malaria in Langkat district, North Sumatera Province, Indonesia. Methods A cross-sectional survey was conducted in six villages in Langkat district, North Sumatera Province in June 2019. Data were recorded using a standardized questionnaire. Finger pricked blood samples were obtained for malaria examination using rapid diagnostic test, thick and thin blood smears, and polymerase chain reaction. Results A total of 342 individuals were included in the study. Of them, one (0.3%) had a microscopic Plasmodium malariae infection, no positive RDT examination, and three (0.9%) were positive for P. malariae (n = 1) and Plasmodium knowlesi (n = 2). The distribution of bed net ownership was owned by 40% of the study participants. The participants had a house within a radius of 100–500 m from the forest (86.3%) and had the housing material of cement floor (56.1%), a tin roof (82.2%), wooden wall (35.7%), bamboo wall (28.1%), and brick wall (21.6%). Conclusion Malaria incidence has substantially decreased in Langkat, North Sumatera, Indonesia. However, submicroscopic infection remains in the population and may contribute to further transmission. Surveillance should include the detection of microscopic undetected parasites, to enable the achievement of malaria elimination.
Collapse
Affiliation(s)
| | - Rycha Dwi Syafutri
- grid.413127.20000 0001 0657 4011Faculty of Medicine, Universitas Sumatera Utara, Medan, 20155 Indonesia
| | - Monica Nadya Sinambela
- grid.413127.20000 0001 0657 4011Faculty of Medicine, Universitas Sumatera Utara, Medan, 20155 Indonesia
| | - Clara Devina
- grid.413127.20000 0001 0657 4011Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, 20155 Indonesia
| | - Handayani
- grid.413127.20000 0001 0657 4011Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, 20155 Indonesia
| | - Beby Syofiani Hasibuan
- grid.413127.20000 0001 0657 4011Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, 20155 Indonesia
| | - Sriwipa Chuangchaiya
- grid.9723.f0000 0001 0944 049XDepartment of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, 47000 Sakon Nakhon, Thailand
| | - Paul C. S. Divis
- grid.412253.30000 0000 9534 9846Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak Malaysia
| | - Zulkarnain Md Idris
- grid.412113.40000 0004 1937 1557Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Ranti Permatasari
- grid.413127.20000 0001 0657 4011Department of Clinical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan, 20155 Indonesia
| | - Inke Nadia Diniyanti Lubis
- grid.413127.20000 0001 0657 4011Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, 20155 Indonesia
| |
Collapse
|
32
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
33
|
Cui L, Sattabongkot J, Aung PL, Brashear A, Cao Y, Kaewkungwal J, Khamsiriwatchara A, Kyaw MP, Lawpoolsri S, Menezes L, Miao J, Nguitragool W, Parker D, Phuanukoonnon S, Roobsoong W, Siddiqui F, Soe MT, Sriwichai P, Yang Z, Zhao Y, Zhong D. Multidisciplinary Investigations of Sustained Malaria Transmission in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:138-151. [PMID: 36228909 DOI: 10.4269/ajtmh.21-1267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | | | | | | | | | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | | | | | - Faiza Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, China Medical University, Shenyang, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|
34
|
Adukpo S, Adedoja A, Esen M, Theisen M, Ntoumi F, Ojurongbe O. Humoral antimalaria immune response in Nigerian children exposed to helminth and malaria parasites. Front Immunol 2022; 13:979727. [PMID: 36159869 PMCID: PMC9494551 DOI: 10.3389/fimmu.2022.979727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
Background Malaria and helminthic parasites are endemic in tropical countries, and co-infections might influence host-parasite interactions. In this community-based cross-sectional study, the effect that the presence of soil-transmitted helminths (STH) (Hookworm, Hymenolepis nana) and Schistosoma haematobium infections could have on the immunoglobulin (Ig) candidate protein of the malaria vaccine GMZ2 levels was evaluated. Methods Blood, stool, and urine samples were collected from 5-15-year-old children to diagnose P. falciparum (Pf), STH, and Schistosoma haematobium, respectively. Identification and quantification of the parasite load of STH and S. haematobium were achieved by light microscopy. A polymerase chain reaction was carried out to detect submicroscopic infections of P. falciparum. Plasma levels of GMZ2 specific IgG and its subclasses were quantified by ELISA. Results The median level of total IgG in individuals with co-infection with Pf/H. nana was significantly lower in the mono-infected group with Pf (p = 0.0121) or study participants without infection (p=0.0217). Similarly, the median level of IgG1 was statistically lower in Pf/H. nana group compared to Pf-group (p=0.0137). Equally, the Pf/H. nana infected individuals posted a lower level of IgG1 compared to Pf-group (p=0.0137) and IgG4 compared to the Pf-group (p=0.0144). Spearman rank correlation analyses indicated positive relationships between the densities of H. nana (ρ=0.25, p=0.015) and S. haematobium (ρ=0.36, p<0.0001). Conclusions Hookworm and H. nana infections are associated with reduced GMZ2 specific IgG levels. This study shows the possible manipulation of immune responses by helminths for their survival and transmission, which may have serious implications for vaccine development and deployment in helminth-endemic regions.
Collapse
Affiliation(s)
- Selorme Adukpo
- Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Accra, Ghana
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Ayodele Adedoja
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
- Department of Medical Microbiology and Parasitology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at the Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Infectious Disease Department, Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
| | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
- Centre for Emerging and Re-emerging Infectious Disease, Humboldt-Bayer Foundations Research Hub, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- *Correspondence: Olusola Ojurongbe,
| |
Collapse
|
35
|
Valenciano AL, Gomez-Lorenzo MG, Vega-Rodríguez J, Adams JH, Roth A. In vitro models for human malaria: targeting the liver stage. Trends Parasitol 2022; 38:758-774. [PMID: 35780012 PMCID: PMC9378454 DOI: 10.1016/j.pt.2022.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
The Plasmodium liver stage represents a vulnerable therapeutic target to prevent disease progression as the parasite resides in the liver before clinical representation caused by intraerythrocytic development. However, most antimalarial drugs target the blood stage of the parasite's life cycle, and the few drugs that target the liver stage are lethal to patients with a glucose-6-phosphate dehydrogenase deficiency. Furthermore, implementation of in vitro liver models to study and develop novel therapeutics against the liver stage of human Plasmodium species remains challenging. In this review, we focus on the progression of in vitro liver models developed for human Plasmodium spp. parasites, provide a brief review on important assay requirements, and lastly present recommendations to improve models to enhance the discovery process of novel preclinical therapeutics.
Collapse
Affiliation(s)
- Ana Lisa Valenciano
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Maria G Gomez-Lorenzo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
36
|
Narrative Review of the Control and Prevention of Knowlesi Malaria. Trop Med Infect Dis 2022; 7:tropicalmed7080178. [PMID: 36006270 PMCID: PMC9414718 DOI: 10.3390/tropicalmed7080178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the reduction in the number of cases of human malaria throughout the world, the incidence rate of knowlesi malaria is continuing to rise, especially in Southeast Asia. The conventional strategies for the prevention and control of human malaria can provide some protection against knowlesi malaria. Despite the numerous studies on the risk factors and the innovative methods that may be used to prevent and control the vectors of Plasmodium knowlesi, the incidence rate remains high. An integrated approach that includes environmental intervention should be adopted in order to ensure the successful control of zoonotic malaria. A combination of personal-level protection, vector control and environmental control may mitigate the risk of Plasmodium knowlesi transmission from macaques to humans and, ultimately, reduce the incidence rate of knowlesi malaria.
Collapse
|
37
|
Yek C, Lay S, Bohl JA, Man S, Chea S, Lon C, Ahyong V, Tato CM, DeRisi JL, Sovannaroth S, Manning JE. Case Report: Cambodian National Malaria Surveillance Program Detection of Plasmodium knowlesi. Am J Trop Med Hyg 2022; 107:151-153. [PMID: 35895370 PMCID: PMC9294667 DOI: 10.4269/ajtmh.22-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/05/2022] [Indexed: 11/07/2022] Open
Abstract
Despite recent success in reducing the regional incidence of Plasmodium falciparum malaria, cases of zoonotic malaria are on the rise in Southeast Asia. The Cambodian National Malaria Surveillance Program has previously relied on rapid diagnostic tests and blood smear microscopy with confirmatory polymerase chain reaction (PCR) testing in a subset of cases to further distinguish P. falciparum, P. malariae, P. ovale, and P. vivax species. Here, metagenomic next-generation sequencing identified P. knowlesi mono-infection in six Cambodian patients initially diagnosed with P. malariae by blood smear microscopy in February–May 2020. These findings of recent human infections with P. knowlesi in Cambodia led to the incorporation of P. knowlesi–specific PCR diagnostics to national malaria surveillance efforts.
Collapse
Affiliation(s)
- Christina Yek
- Department of Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Sreyngim Lay
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Jennifer A. Bohl
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Somnang Man
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Chanthap Lon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, California
| | | | | | - Siv Sovannaroth
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| |
Collapse
|
38
|
Non-Human Primate Malaria Infections: A Review on the Epidemiology in Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137888. [PMID: 35805545 PMCID: PMC9265734 DOI: 10.3390/ijerph19137888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023]
Abstract
Malaria remains a public health problem in many parts of the world, including Malaysia. Although Malaysia has been recognized as one of the countries free from indigenous human malaria since 2018, the rising trend of zoonotic malaria, particularly Plasmodium knowlesi cases, poses a threat to public health and is of great concern to the country’s healthcare system. We reviewed previously scattered information on zoonotic malaria infections in both Peninsular Malaysia and Malaysian Borneo to determine the epidemiology and distribution of emerging zoonotic malaria infections. Given the high prevalence of zoonotic malaria in Malaysia, efforts should be made to detect zoonotic malaria in humans, mosquito vectors, and natural hosts to ensure the success of the National Malaria Elimination Strategic Plan.
Collapse
|
39
|
Peterson MS, Joyner CJ, Lapp SA, Brady JA, Wood JS, Cabrera-Mora M, Saney CL, Fonseca LL, Cheng WT, Jiang J, Soderberg SR, Nural MV, Hankus A, Machiah D, Karpuzoglu E, DeBarry JD, Tirouvanziam R, Kissinger JC, Moreno A, Gumber S, Voit EO, Gutierrez JB, Cordy RJ, Galinski MR. Plasmodium knowlesi Cytoadhesion Involves SICA Variant Proteins. Front Cell Infect Microbiol 2022; 12:888496. [PMID: 35811680 PMCID: PMC9260704 DOI: 10.3389/fcimb.2022.888496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium knowlesi poses a health threat throughout Southeast Asian communities and currently causes most cases of malaria in Malaysia. This zoonotic parasite species has been studied in Macaca mulatta (rhesus monkeys) as a model for severe malarial infections, chronicity, and antigenic variation. The phenomenon of Plasmodium antigenic variation was first recognized during rhesus monkey infections. Plasmodium-encoded variant proteins were first discovered in this species and found to be expressed at the surface of infected erythrocytes, and then named the Schizont-Infected Cell Agglutination (SICA) antigens. SICA expression was shown to be spleen dependent, as SICA expression is lost after P. knowlesi is passaged in splenectomized rhesus. Here we present data from longitudinal P. knowlesi infections in rhesus with the most comprehensive analysis to date of clinical parameters and infected red blood cell sequestration in the vasculature of tissues from 22 organs. Based on the histopathological analysis of 22 tissue types from 11 rhesus monkeys, we show a comparative distribution of parasitized erythrocytes and the degree of margination of the infected erythrocytes with the endothelium. Interestingly, there was a significantly higher burden of parasites in the gastrointestinal tissues, and extensive margination of the parasites along the endothelium, which may help explain gastrointestinal symptoms frequently reported by patients with P. knowlesi malarial infections. Moreover, this margination was not observed in splenectomized rhesus that were infected with parasites not expressing the SICA proteins. This work provides data that directly supports the view that a subpopulation of P. knowlesi parasites cytoadheres and sequesters, likely via SICA variant antigens acting as ligands. This process is akin to the cytoadhesive function of the related variant antigen proteins, namely Erythrocyte Membrane Protein-1, expressed by Plasmodium falciparum.
Collapse
Affiliation(s)
- Mariko S. Peterson
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Chester J. Joyner
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Stacey A. Lapp
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jessica A. Brady
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, United States
| | - Jennifer S. Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Celia L. Saney
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Luis L. Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Wayne T. Cheng
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Jianlin Jiang
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Stephanie R. Soderberg
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Mustafa V. Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Allison Hankus
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Ebru Karpuzoglu
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jeremy D. DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Alberto Moreno
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Juan B. Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, United States
| | - Regina Joice Cordy
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
40
|
Nada-Raja T, Kadir KA, Divis PCS, Mohamad DSA, Matusop A, Singh B. Macaca fascicularis and Macaca nemestrina infected with zoonotic malaria parasites are widely distributed in Sarawak, Malaysian Borneo. Sci Rep 2022; 12:10476. [PMID: 35729212 PMCID: PMC9213397 DOI: 10.1038/s41598-022-14560-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
Human infections with Plasmodium knowlesi, a malaria parasite of Macaca fascicularis and Macaca nemestrina (long-tailed and pig-tailed macaques respectively), occur throughout Southeast Asia, especially Malaysian Borneo. Other naturally-acquired human infections with malaria parasites from macaques in Southeast Asia are P. cynomolgi, P. inui-like, P. coatneyi and P. simiovale. In Sarawak, Malaysian Borneo, M. fascicularis and M. nemestrina from only the Kapit Division have been examined previously for malaria parasites. In order to determine the distribution of P. knowlesi and other zoonotic malaria parasites, 73 macaque blood samples derived from 7 other administrative divisions in Sarawak were studied. Of 45 blood samples from M. fascicularis and 28 from M. nemestrina tested by nested PCR assays, 23 (51.1%) M. fascicularis and 15 (53.6%) M. nemestrina samples were positive for Plasmodium DNA. Thirty-two of these macaques from 7 divisions sampled, harboured either single (n = 12), double (n = 9), triple (n = 7) or quadruple (n = 4) infections of P. knowlesi, P. inui, P. cynomolgi and P. coatneyi, while the infecting species of Plasmodium could not be identified for 6 samples. P. knowlesi was detected in 15.5% (7/45) M. fascicularis and in 7.1% (2/28) M. nemestrina sampled. Despite the small number of samples analysed from each administrative division, the current study indicates that macaques infected with the zoonotic malaria parasites P. knowlesi, P. cynomolgi, P. inui and P. coatneyi are widely distributed throughout Sarawak, Malaysian Borneo. Travelers to forested areas in Sarawak should be made aware of the potential risk of acquiring zoonotic malaria.
Collapse
Affiliation(s)
- Thamayanthi Nada-Raja
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Khamisah A Kadir
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Paul C S Divis
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Dayang S A Mohamad
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Asmad Matusop
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.,Sarawak State Health Department, 93050, Kuching, Sarawak, Malaysia
| | - Balbir Singh
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| |
Collapse
|
41
|
Yusuf NM, Zulkefli J, Jiram AI, Vythilingam I, Hisam S, Devi R, Salehhuddin A, Ali NM, Isa M, Alias N, Ogu salim N, Aziz AA, Sulaiman LH. Plasmodium spp. in macaques, Macaca fascicularis, in Malaysia, and their potential role in zoonotic malaria transmission. Parasite 2022; 29:32. [PMID: 35674419 PMCID: PMC9175634 DOI: 10.1051/parasite/2022032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/22/2022] [Indexed: 11/14/2022] Open
Abstract
Macaques, Macaca fascicularis, are a known reservoir of Plasmodium knowlesi, the agent of simian malaria which is the predominant zoonotic species affecting humans in Malaysia and other Southeast Asian countries. Recently, a naturally acquired human infection of another simian malaria parasite, P. cynomolgi has been reported. Thus, it is crucial to study the distribution of simian Plasmodium infections with particular attention to the macaques. Four hundred and nineteen (419) long-tailed macaques (Macaca fascicularis) were trapped in selected areas where human cases of P. knowlesi and P. cynomolgi have been reported. Nested polymerase chain reaction (PCR) was conducted to identify the Plasmodium spp., and circumsporozoite protein (CSP) genes of P. knowlesi samples were sequenced. Plasmodium cynomolgi infection was shown to be the most prevalent among the macaque population (68.4%). Although 50.6% of analyzed samples contained single infections either with P. knowlesi, P. cynomolgi, P. inui, P. coatneyi, or P. fieldi, mixed infections with double, triple, quadruple, and all 5 species were also detected. Infection with P. cynomolgi and P. knowlesi were the highest among Malaysian macaques in areas where humans and macaques are in close contact. The risk of zoonotic infection in these areas needs to be addressed since the number of zoonotic malaria cases is on the rise. With the elimination of human malaria, the risk of humans being infected with simian malaria is very high and steps should be taken to mitigate this issue.
Collapse
Affiliation(s)
- Noorazian Md Yusuf
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
- Corresponding author: ,
| | - Jannah Zulkefli
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
| | - Adela Ida Jiram
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
| | - Indra Vythilingam
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
- Department of Parasitology, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Shamilah Hisam
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
| | - Renuka Devi
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
| | - Afiqah Salehhuddin
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
| | - Nurulshuhada Md Ali
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
| | - Maccallyster Isa
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
| | - Norwahida Alias
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
| | - Nurhainis Ogu salim
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
| | - Adli Abd Aziz
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan Kampus Kuala Pilah, Pekan Parit Tinggi 72000 Kuala Pilah Negeri Sembilan Malaysia
| | - Lokman Hakim Sulaiman
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Block C3 & C7, Level 2, National Institutes of Health (NIH), Ministry of Health Malaysia No. 1 Jalan Setia Murni U13/52, Seksyen U13, Bandar Setia Alam 40170 Shah Alam Selangor Malaysia
- Centre for Environmental and Population Health, Institute for Research, Development, and Innovation, and Department of Community Medicine, School of Medicine, International Medical University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| |
Collapse
|
42
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
43
|
Ahmed MA, Lu F, Cheng Y, Han JH. Editorial: Identification and Characterization of Novel Antigens of Malarial Parasites. Front Cell Infect Microbiol 2022; 12:921027. [PMID: 35651752 PMCID: PMC9149416 DOI: 10.3389/fcimb.2022.921027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Md Atique Ahmed
- Malaria Division, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Dibrugarh, Assam, India
| | - Feng Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Yang Cheng
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Jin-Hee Han,
| |
Collapse
|
44
|
Case series of three malaria patients from Thailand infected with the simian parasite, Plasmodium cynomolgi. Malar J 2022; 21:142. [PMID: 35524255 PMCID: PMC9074209 DOI: 10.1186/s12936-022-04167-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While human cases of Plasmodium knowlesi are now regularly recognized in Southeast Asia, infections with other simian malaria species, such as Plasmodium cynomolgi, are still rare. There has been a handful of clinical cases described, all from Malaysia, and retrospective studies of archived blood samples in Thailand and Cambodia have discovered the presence P. cynomolgi in isolates using polymerase chain reaction (PCR) assays. CASE PRESENTATION In Thailand, an ongoing malaria surveillance study enrolled two patients from Yala Province diagnosed with Plasmodium vivax by blood smear, but who were subsequently found to be negative by PCR. Expanded PCR testing of these isolates detected mono-infection with P. cynomolgi, the first time this has been reported in Thailand. Upon re-testing of 60 isolates collected from Yala, one other case was identified, a co-infection of P. cynomolgi and P. vivax. The clinical course for all three was relatively mild, with symptoms commonly seen in malaria: fever, chills and headaches. All infections were cured with a course of chloroquine and primaquine. CONCLUSION In malaria-endemic areas with macaque populations, cases of simian malaria in humans are being reported at an increasing rate, although still comprise a very small percentage of total cases. Plasmodium cynomolgi and P. vivax are challenging to distinguish by blood smear; therefore, PCR can be employed when infections are suspected or as part of systematic malaria surveillance. As Thai MoPH policy schedules regular follow-up visits after each malaria infection, identifying those with P. cynomolgi will allow for monitoring of treatment efficacy, although at this time P. cynomolgi appears to have an uncomplicated clinical course and good response to commonly used anti-malarials.
Collapse
|
45
|
Escalante AA, Cepeda AS, Pacheco MA. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar J 2022; 21:139. [PMID: 35505356 PMCID: PMC9066883 DOI: 10.1186/s12936-022-04130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
The global malaria burden sometimes obscures that the genus Plasmodium comprises diverse clades with lineages that independently gave origin to the extant human parasites. Indeed, the differences between the human malaria parasites were highlighted in the classical taxonomy by dividing them into two subgenera, the subgenus Plasmodium, which included all the human parasites but Plasmodium falciparum that was placed in its separate subgenus, Laverania. Here, the evolution of Plasmodium in primates will be discussed in terms of their species diversity and some of their distinct phenotypes, putative molecular adaptations, and host–parasite biocenosis. Thus, in addition to a current phylogeny using genome-level data, some specific molecular features will be discussed as examples of how these parasites have diverged. The two subgenera of malaria parasites found in primates, Plasmodium and Laverania, reflect extant monophyletic groups that originated in Africa. However, the subgenus Plasmodium involves species in Southeast Asia that were likely the result of adaptive radiation. Such events led to the Plasmodium vivax lineage. Although the Laverania species, including P. falciparum, has been considered to share “avian characteristics,” molecular traits that were likely in the common ancestor of primate and avian parasites are sometimes kept in the Plasmodium subgenus while being lost in Laverania. Assessing how molecular traits in the primate malaria clades originated is a fundamental science problem that will likely provide new targets for interventions. However, given that the genus Plasmodium is paraphyletic (some descendant groups are in other genera), understanding the evolution of malaria parasites will benefit from studying “non-Plasmodium” Haemosporida.
Collapse
Affiliation(s)
- Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA.
| | - Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| |
Collapse
|
46
|
Naserrudin NA, Monroe A, Culleton R, Hod R, Jeffree MS, Ahmed K, Hassan MR. Reimagining zoonotic malaria control in communities exposed to Plasmodium knowlesi infection. J Physiol Anthropol 2022; 41:14. [PMID: 35413881 PMCID: PMC9004057 DOI: 10.1186/s40101-022-00288-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
Plasmodium knowlesi malaria infection in humans has been reported throughout southeast Asia. The communities at risk are those living in areas where Macaque monkeys and Anopheles mosquito are present. Zoonotic malaria control is challenging due to the presence of the reservoir host and the possibility of human-vector-human transmission. Current control measures, including insecticide-treated nets (ITNs) and indoor residual spraying (IRS), are insufficient to address this threat due to gaps in protection associated with outdoor and early evening vector biting and social and economic activities, such as agricultural and forest work. Understanding the challenges faced by affected communities in preventing mosquito bites is important for reducing disease transmission. This opinion paper discusses opportunities to improve P. knowlesi malaria control through understanding the challenges faced by communities at risk and increasing community engagement and ownership of control measures. The paper highlights this issue by describing how the concept of reimagining malaria can be adapted to zoonotic malaria control measures including identifying current gaps in vector control, understanding interactions between environmental, economic, and human behavioral factors, and increasing community participation in and ownership of control measures.
Collapse
Affiliation(s)
- Nurul Athirah Naserrudin
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.,Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Kota Kinabalu, Sabah, Malaysia.,Sabah State Health Department, Ministry of Health, Kota Kinabalu, Malaysia
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Richard Culleton
- Department of Molecular Parasitology, Proteo-Science Centre, Ehime University, Matsuyama, Japan
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Saffree Jeffree
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Kota Kinabalu, Sabah, Malaysia.,Department of Public Health, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Kota Kinabalu, Sabah, Malaysia.,Department of Public Health, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Mohd Rohaizat Hassan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
47
|
Lempang MEP, Dewayanti FK, Syahrani L, Permana DH, Malaka R, Asih PBS, Syafruddin D. Primate malaria: An emerging challenge of zoonotic malaria in Indonesia. One Health 2022; 14:100389. [PMID: 35686151 PMCID: PMC9171520 DOI: 10.1016/j.onehlt.2022.100389] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/23/2022] Open
Abstract
The emergence of zoonotic malaria in different parts of the world, including Indonesia poses a challenge to the current malaria control and elimination program that target global malaria elimination at 2030. The reported cases in human include Plasmodium knowlesi, P. cynomolgi and P. inui, in South and Southeast Asian region and P. brazilianum and P. simium in Latin America. All are naturally found in the Old and New-world monkeys, macaques spp. This review focuses on the currently available data that may represent primate malaria as an emerging challenge of zoonotic malaria in Indonesia, the distribution of non-human primates and the malaria parasites it carries, changes in land use and deforestation that impact the habitat and intensifies interaction between the non-human primate and the human which facilitate spill-over of the pathogens. Although available data in Indonesia is very limited, a growing body of evidence indicate that the challenge of zoonotic malaria is immense and alerts to the need to conduct mitigation efforts through multidisciplinary approach involving environmental management, non-human primates conservation, disease management and vector control.
Collapse
Affiliation(s)
| | - Farahana Kresno Dewayanti
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Lepa Syahrani
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Dendi Hadi Permana
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Ratmawati Malaka
- Faculty of Animal Husbandry, Hasanuddin University, Makassar, Indonesia
| | - Puji Budi Setia Asih
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Corresponding author at: Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia.
| |
Collapse
|
48
|
van de Straat B, Sebayang B, Grigg MJ, Staunton K, Garjito TA, Vythilingam I, Russell TL, Burkot TR. Zoonotic malaria transmission and land use change in Southeast Asia: what is known about the vectors. Malar J 2022; 21:109. [PMID: 35361218 PMCID: PMC8974233 DOI: 10.1186/s12936-022-04129-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
Zoonotic Plasmodium infections in humans in many Southeast Asian countries have been increasing, including in countries approaching elimination of human-only malaria transmission. Most simian malarias in humans are caused by Plasmodium knowlesi, but recent research shows that humans are at risk of many different simian Plasmodium species. In Southeast Asia, simian Plasmodium species are mainly transmitted by mosquitoes in the Anopheles leucosphyrus and Anopheles dirus complexes. Although there is some evidence of species outside the Leucosphyrus Group transmitting simian Plasmodium species, these await confirmation of transmission to humans. The vectors of monkey malarias are mostly found in forests and forest fringes, where they readily bite long-tailed and pig-tailed macaques (the natural reservoir hosts) and humans. How changing land-uses influence zoonotic malaria vectors is still poorly understood. Fragmentation of forests from logging, agriculture and other human activities is associated with increased zoonotic Plasmodium vector exposure. This is thought to occur through altered macaque and mosquito distributions and behaviours, and importantly, increased proximity of humans, macaques, and mosquito vectors. Underlying the increase in vector densities is the issue that the land-use change and human activities create more oviposition sites and, in correlation, increases availably of human blood hosts. The current understanding of zoonotic malaria vector species is largely based on a small number of studies in geographically restricted areas. What is known about the vectors is limited: the data is strongest for distribution and density with only weak evidence for a limited number of species in the Leucosphyrus Group for resting habits, insecticide resistance, blood feeding habits and larval habitats. More data are needed on vector diversity and bionomics in additional geographic areas to understand both the impacts on transmission of anthropogenic land-use change and how this significant disease in humans might be controlled.
Collapse
Affiliation(s)
- Bram van de Straat
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Boni Sebayang
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Matthew J Grigg
- Menzies School of Health Research & Charles Darwin University, Casuarina, Australia
| | - Kyran Staunton
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Triwibowo Ambar Garjito
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development (NIHRD), The Ministry of Health of Indonesia, Jakarta, Indonesia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tanya L Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
49
|
The Role of Human Behavior in Plasmodium knowlesi Malaria Infection: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063675. [PMID: 35329359 PMCID: PMC8953169 DOI: 10.3390/ijerph19063675] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Objectives: Plasmodium knowlesi is a non-human parasite that causes zoonotic disease in humans. This systematic review aims to highlight and summarize studies describing human behaviors and activities that expose humans to mosquito bites. Design: English entries in PubMed, Web of Science, and Science Direct from 2010 to 2020 were systematically perused, and the results were synthesized. Methodological quality was assessed using the Joanna Briggs Institute quality appraisal checklists. Setting: Studies that described malaria preventive measures were included. Laboratory, in vivo, in vitro, and animal studies were excluded. Primary and secondary outcome measures: The main outcome of the review was findings from studies describing the behavior that exposed a person or a group to P. knowlesi infection. Results: Twelve eligible studies were of good or medium quality. Attitude, disease misconceptions, perceived threat of disease, lack of motivation, and supernatural or traditional beliefs causing individuals to seek treatment from traditional healers influenced the exposure of individuals or communities to P. knowlesi malaria. Other factors were forestry activities (2.48, 1.45–4.23,95% CI, p = 0.0010) and sleeping outdoors (3.611, 1.48–8.85, 95% CI, p = 0.0049). Conclusions: Future studies must consider the importance of human behavior and community perspective on the infection to provide novel information to improve the current zoonotic malaria programs. Policymakers should concentrate on understanding human behavior and activities that expose individuals or communities to mosquito bites, in order to better design socially feasible interventions.
Collapse
|
50
|
Sharma D, Priest H, Wilcox A. Pseudoreticulocytosis by the ADVIA 2120 Hematology Analyzer and Other Hematologic Changes in a Cynomolgus Macaque ( Macaca fascicularis) With Malaria. Toxicol Pathol 2022; 50:684-692. [DOI: 10.1177/01926233221083217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Important hematologic changes can be observed in nonhuman primates with malaria, including inaccurate reticulocyte counts by the ADVIA 2120 hematology analyzer. A 5-year-old male purpose-bred cynomolgus macaque ( Macaca fascicularis) imported from a commercial source in Cambodia was enrolled in a nonclinical toxicity study investigating the effects of an immunomodulatory pharmaceutical agent. On study day 22, an increase in large unstained cells (LUCs), due to increased monocytes (2.20 × 103/µl, reference interval: 0.17-0.76 × 103/µl), was reported by the analyzer during a scheduled hematologic evaluation, which prompted blood smear review and revealed that the macaque had a high burden of Plasmodium spp.. The macaque did not have clinical signs for the infection at this time point. Progressively higher parasite burdens and persistently increased monocytes (markedly increased by study day 56, 10.38 × 103/µl) were observed at subsequent hematologic evaluations. New Methylene Blue stain manual reticulocyte counts were performed on study day 43 and at later time points, and showed that the analyzer reported erroneous higher reticulocyte counts (study day 43: +6.7%, +266.2 × 109/L; study day 50: +18.9%, +409.8 × 109/L) compared with the manual reticulocyte counts (pseudoreticulocytosis). The magnitude of regenerative response was considered inadequate for the severity of anemia at these time points. Atypical reticulocyte scatter plot distributions from the analyzer were also observed at time points with high parasite burdens, and combined with increased LUCs, may suggest high burden parasitemia. Verification of automated reticulocyte counts is important in cases with high malarial parasite burdens and the recognition of pseudoreticulocytosis is prudent in assessing appropriateness of the regenerative response. Increases in monocytes correlated with higher parasite burdens and marked increases may be an indicator of advanced disease.
Collapse
Affiliation(s)
- Diya Sharma
- Charles River Laboratories, Reno, Nevada, USA
| | | | | |
Collapse
|