1
|
Khoo YK, Wulandari S, Getchell M, Moe L, Kumar SS, Liu EJ, Sun Y, Pang J, Mishra S, Clapham H, Marais B, Sintchenko V, de Alwis R, Hipgrave D, Pronyk PM. National investment case development for pathogen genomics. CELL GENOMICS 2025; 5:100781. [PMID: 40020687 PMCID: PMC11960516 DOI: 10.1016/j.xgen.2025.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/29/2024] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Sustaining and expanding genomic surveillance capacity requires broader investment in genomics that target both novel and pandemic pathogens. Currently, there is no standardized methodology to evaluate the cost and benefit of a multi-pathogen surveillance system. We propose a framework for pathogen genomic surveillance that links public health and systems considerations to a stepwise approach.
Collapse
Affiliation(s)
- Yoong Khean Khoo
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore; SingHealth Duke-NUS Global Health Institute, Duke-NUS Medical School, Singapore, Singapore; Centre of Regulatory Excellence, Duke-NUS Medical School, Singapore, Singapore.
| | - Suci Wulandari
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore; SingHealth Duke-NUS Global Health Institute, Duke-NUS Medical School, Singapore, Singapore
| | - Marya Getchell
- Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - La Moe
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore; Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | | | - Elyssa Jiawen Liu
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
| | - Yimei Sun
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
| | - Junxiong Pang
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore; SingHealth Duke-NUS Global Health Institute, Duke-NUS Medical School, Singapore, Singapore
| | - Swapnil Mishra
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Ben Marais
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Vitali Sintchenko
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Ruklanthi de Alwis
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore; SingHealth Duke-NUS Global Health Institute, Duke-NUS Medical School, Singapore, Singapore; Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - David Hipgrave
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore; SingHealth Duke-NUS Global Health Institute, Duke-NUS Medical School, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Paul Michael Pronyk
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore; SingHealth Duke-NUS Global Health Institute, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Brandolini M, De Pascali AM, Zaghi I, Dirani G, Zannoli S, Ingletto L, Lavazza A, Lelli D, Dottori M, Calzolari M, Guerra M, Biagetti C, Cristini F, Bassi P, Biguzzi R, Cricca M, Scagliarini A, Sambri V. Advancing West Nile virus monitoring through whole genome sequencing: Insights from a One Health genomic surveillance study in Romagna (Italy). One Health 2024; 19:100937. [PMID: 39650147 PMCID: PMC11621796 DOI: 10.1016/j.onehlt.2024.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
In the last 6 years, Italy accounted for 36 % of the total autochthonous European West Nile virus (WNV) cases reported to ECDC. Since 2001, the country put in place a multi-species national surveillance plan. The plan was enhanced in 2020 by adopting a fully integrated "One Health" approach, including human, wild bird, equine, and mosquito surveillance for the early detection of WNV. In this context, the systematic acquisition of whole viral genetic information from human patients and animals is fundamental to obtain an in-depth knowledge on the patterns of virus evolution and transmission and to gain insights on the role virus genetics in morbidity and mortality, The purpose of this pilot study was thus to design a One-Health surveillance framework based on the genomic surveillance of WNV circulating at the vector-human-animal interface, in the endemic territory of Romagna (North-Eastern Italy) during the 2023 transmission season. Whole genome sequencing (WGS) analyses confirmed the circulation of WNV lineage 2 showing high nucleotide and amino acid identity of 99.82 % and 99.92 % respectively among viral sequences from human patients, vectors and birds. All the sequences clustered with other Italian strains in the Central and Southern European clade with robust bootstrap support and BLASTn identity exceeding 99.7 %. The highest nucleotide identity was observed with sequences from Emilia-Romagna and Veneto regions (Italy), confirming a local virus circulation and overwintering of WNV lineage 2 with a confined virus spread and no (or limited) external introduction of viral strains. Our results, support the adoption of a One Health approach to WNV surveillance, based on WGS and integrating the clinical diagnosis, epidemiology, and genomic characterisation, to create a suitable operational process for the characterisation of autochthonous and imported Arboviruses circulating in Romagna to effectively integrate the already established surveillance plan.
Collapse
Affiliation(s)
- Martina Brandolini
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Alessandra Mistral De Pascali
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Irene Zaghi
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
| | - Giorgio Dirani
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
| | - Silvia Zannoli
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
| | - Ludovica Ingletto
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Massimiliano Guerra
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
| | - Carlo Biagetti
- Unit of Infectious Diseases, Infermi Hospital, Viale Luigi Settembrini 2, 47923 Rimini, Italy
| | - Francesco Cristini
- Unit of Infectious Diseases, Morgagni-Pierantoni Hospital, Via Carlo Forlanini 34, 47121 Forlì, Italy
| | - Paolo Bassi
- Unit of Infectious Diseases, Santa Maria delle Croci Hospital, Viale Vincenzo Randi 5, 48121 Ravenna, Italy
| | - Rino Biguzzi
- Unit of Transfusion Medicine, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Alessandra Scagliarini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, Piazza della Liberazione 60, 47522 Cesena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
3
|
Vieira CJSP, Onn MB, Shivas MA, Shearman D, Darbro JM, Graham M, Freitas L, van den Hurk AF, Frentiu FD, Wallau GL, Devine GJ. Long-term co-circulation of multiple arboviruses in southeast Australia revealed by xeno-monitoring and viral whole-genome sequencing. Virus Evol 2024; 10:0. [PMID: 39678352 PMCID: PMC11646120 DOI: 10.1093/ve/veae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Arbovirus surveillance of wild-caught mosquitoes is an affordable and sensitive means of monitoring virus transmission dynamics at various spatial-temporal scales, and emergence and re-emergence during epidemic and interepidemic periods. A variety of molecular diagnostics for arbovirus screening of mosquitoes (known as xeno-monitoring) are available, but most provide limited information about virus diversity. Polymerase chain reaction (PCR)-based screening coupled with RNA sequencing is an increasingly affordable and sensitive pipeline for integrating complete viral genome sequencing into surveillance programs. This enables large-scale, high-throughput arbovirus screening from diverse samples. We collected mosquitoes in CO2-baited light traps from five urban parks in Brisbane from March 2021 to May 2022. Mosquito pools of ≤200 specimens were screened for alphaviruses and flaviviruses using virus genus-specific primers and reverse transcription quantitative PCR (qRT-PCR). A subset of virus-positive samples was then processed using a mosquito-specific ribosomal RNA depletion method and then sequenced on the Illumina NextSeq. Overall, 54,670 mosquitoes representing 26 species were screened in 382 pools. Thirty detections of arboviruses were made in 28 pools. Twenty of these positive pools were further characterized using RNA sequencing generating 18 full-length genomes. These full-length sequences belonged to four medically relevant arboviruses: Barmah Forest, Ross River, Sindbis-like, and Stratford viruses. Phylogenetic and evolutionary analyses revealed the evolutionary progression of arbovirus lineages over the last 100 years, demonstrating that different epidemiological, immunological, and evolutionary processes may actively shape the evolution of Australian arboviruses. These results underscore the need for more genomic surveillance data to explore the complex evolutionary pressures acting on arboviruses. Overall, our findings highlight the effectiveness of our methodology, which can be applied broadly to enhance arbovirus surveillance in various ecological contexts and improve understanding of transmission dynamics.
Collapse
Affiliation(s)
- Carla Julia S. P Vieira
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia
| | - Michael B Onn
- Entomology Laboratory, Public Space Operations, Brisbane City Council, 20 Tradecoast Dr, Eagle Farm, QLD 4009, Australia
| | - Martin A Shivas
- Entomology Laboratory, Public Space Operations, Brisbane City Council, 20 Tradecoast Dr, Eagle Farm, QLD 4009, Australia
| | - Damien Shearman
- Metro North Public Health Unit, Queensland Health, Briden Street, Windsor, QLD 4030, Australia
| | - Jonathan M Darbro
- Metro North Public Health Unit, Queensland Health, Briden Street, Windsor, QLD 4030, Australia
| | - Melissa Graham
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, QLD 4051, Australia
| | - Lucas Freitas
- Global Data Science Initiative (GISAID) at, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Andrew F van den Hurk
- Department of Health, Public Health Virology, Forensic and Scientific Services, Queensland Government, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Francesca D Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia
| | - Gabriel L Wallau
- Department of Entomology and Bioinformatic Core, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Professor Moraes Rego, Recife, PE 50740-465, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Bernhard-Nocht-Street 74, Hamburg 20359, Germany
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| |
Collapse
|
4
|
Getchell M, Wulandari S, de Alwis R, Agoramurthy S, Khoo YK, Mak TM, Moe L, Stona AC, Pang J, Momin MHFHA, Amir A, Andalucia LR, Azzam G, Chin S, Chookajorn T, Arunkumar G, Hung DT, Ikram A, Jha R, Karlsson EA, Le Thi MQ, Mahasirimongkol S, Malavige GN, Manning JE, Munira SL, Trung NV, Nisar I, Qadri F, Qamar FN, Robinson MT, Saloma CP, Setk S, Shirin T, Tan LV, Dizon TJR, Thayan R, Thu HM, Tissera H, Xangsayarath P, Zaini Z, Lim JCW, Maurer-Stroh S, Smith GJD, Wang LF, Pronyk P. Pathogen genomic surveillance status among lower resource settings in Asia. Nat Microbiol 2024; 9:2738-2747. [PMID: 39317773 PMCID: PMC11445059 DOI: 10.1038/s41564-024-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Asia remains vulnerable to new and emerging infectious diseases. Understanding how to improve next generation sequencing (NGS) use in pathogen surveillance is an urgent priority for regional health security. Here we developed a pathogen genomic surveillance assessment framework to assess capacity in low-resource settings in South and Southeast Asia. Data collected between June 2022 and March 2023 from 42 institutions in 13 countries showed pathogen genomics capacity exists, but use is limited and under-resourced. All countries had NGS capacity and seven countries had strategic plans integrating pathogen genomics into wider surveillance efforts. Several pathogens were prioritized for human surveillance, but NGS application to environmental and human-animal interface surveillance was limited. Barriers to NGS implementation include reliance on external funding, supply chain challenges, trained personnel shortages and limited quality assurance mechanisms. Coordinated efforts are required to support national planning, address capacity gaps, enhance quality assurance and facilitate data sharing for decision making.
Collapse
Affiliation(s)
- Marya Getchell
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Suci Wulandari
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
| | - Ruklanthi de Alwis
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore.
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Shreya Agoramurthy
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
| | - Yoong Khean Khoo
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- Centre of Regulatory Excellence, Duke-NUS Medical School, Singapore, Singapore
| | - Tze-Minn Mak
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - La Moe
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Anne-Claire Stona
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- Centre of Regulatory Excellence, Duke-NUS Medical School, Singapore, Singapore
| | - Junxiong Pang
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | | | | | | | - Ghows Azzam
- Malaysia Genome and Vaccine Institute (MGVI), Selangor, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Savuth Chin
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Thanat Chookajorn
- Mahidol University, Nakhon Pathom, Thailand
- Umeå University, Umeå, Sweden
| | | | | | - Aamer Ikram
- National Institute of Health (NIH), Islamabad, Pakistan
| | - Runa Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | | | - Mai Quynh Le Thi
- National Institute of Hygien and Epidemiology (NIHE), Nha Trang, Vietnam
| | | | | | - Jessica E Manning
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | | | | | | | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka, Bangladesh
| | | | - Matthew T Robinson
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Quai Fa Ngum, Vientiane, Laos
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Cynthia P Saloma
- Philippine Genome Center, University of the Philippines, Luzon, Philippines
| | - Swe Setk
- National Health Laboratory, Department of Medical Service, Ministry of Health, Yangon, Myanmar
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Le Van Tan
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | | | | | - Hlaing Myat Thu
- Department of Medical Research, Ministry of Health, Yangon, Myanmar
| | | | | | - Zainun Zaini
- Department of Laboratory Services, Ministry of Health, Bandar Seri Begawan, Brunei
| | - John C W Lim
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
- Centre of Regulatory Excellence, Duke-NUS Medical School, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine and Department of Biology, National University of Singapore, Singapore, Singapore
| | - Gavin J D Smith
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Paul Pronyk
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
5
|
Chem YK, Yenamandra SP, Chong CK, Mudin RN, Wan MK, Tajudin N, Abu Bakar RS, Yamin MA, Yahya R, Chang CC, Koo C, Ng LC, Hapuarachchi HC. Molecular epidemiology of dengue in Malaysia: 2015-2021. Front Genet 2024; 15:1368843. [PMID: 38863443 PMCID: PMC11165242 DOI: 10.3389/fgene.2024.1368843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 06/13/2024] Open
Abstract
Dengue has been one of the major public health problems in Malaysia for decades. Over 600,000 dengue cases and 1,200 associated fatalities have been reported in Malaysia from 2015 to 2021, which was 100% increase from the cumulative total of dengue cases reported during the preceding 07-year period from 2008 to 2014. However, studies that describe the molecular epidemiology of dengue in Malaysia in recent years are limited. In the present study, we describe the genetic composition and dispersal patterns of Dengue virus (DENV) by using 4,004 complete envelope gene sequences of all four serotypes (DENV-1 = 1,567, DENV-2 = 1,417, DENV-3 = 762 and DENV-4 = 258) collected across Malaysia from 2015 to 2021. The findings revealed that DENV populations in Malaysia were highly diverse, and the overall heterogeneity was maintained through repetitive turnover of genotypes. Phylogeography analyses suggested that DENV dispersal occurred through an extensive network, mainly among countries in South and East Asia and Malaysian states, as well as among different states, especially within Peninsular Malaysia. The results further suggested Selangor and Johor as major hubs of DENV emergence and spread in Malaysia.
Collapse
Affiliation(s)
- Yu Kie Chem
- National Public Health Laboratory, Ministry of Health, Sungai Buloh, Malaysia
| | | | - Chee Keong Chong
- Disease Control Division, Ministry of Health, Putrajaya, Malaysia
| | - Rose Nani Mudin
- Disease Control Division, Ministry of Health, Putrajaya, Malaysia
| | - Ming Keong Wan
- Disease Control Division, Ministry of Health, Putrajaya, Malaysia
| | - Norazimah Tajudin
- National Public Health Laboratory, Ministry of Health, Sungai Buloh, Malaysia
| | | | - Mohd Asri Yamin
- National Public Health Laboratory, Ministry of Health, Sungai Buloh, Malaysia
| | - Rokiah Yahya
- National Public Health Laboratory, Ministry of Health, Sungai Buloh, Malaysia
| | - Chia-Chen Chang
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
- School of Biological Sciences, Nangyang Technological University, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
6
|
Hollingsworth BD, Grubaugh ND, Lazzaro BP, Murdock CC. Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics. PLoS Pathog 2023; 19:e1011588. [PMID: 37651317 PMCID: PMC10470969 DOI: 10.1371/journal.ppat.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.
Collapse
Affiliation(s)
- Brandon D Hollingsworth
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Nathan D Grubaugh
- Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale University, New Haven, Connecticut, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Courtney C Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
- Northeast Regional Center for Excellence in Vector-borne Diseases, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
7
|
Gomes EO, Sacchetto L, Teixeira M, Chaves BA, Hendy A, Mendonça C, Guimarães I, Linhares R, Brito D, Valério D, Cordeiro JSM, Neto AVS, Sampaio VS, Scarpassa VM, Buenemann M, Vasilakis N, Baia-da-Silva DC, Nogueira ML, Mourão MPG, Lacerda MVG. Detection of Zika Virus in Aedes aegypti and Aedes albopictus Mosquitoes Collected in Urban Forest Fragments in the Brazilian Amazon. Viruses 2023; 15:1356. [PMID: 37376655 DOI: 10.3390/v15061356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Zika virus (ZIKV) is an RNA flavivirus (Flaviviridae family) endemic in tropical and subtropical regions that is transmitted to humans by Aedes (Stegomyia) species mosquitoes. The two main urban vectors of ZIKV are Aedes aegypti and Aedes albopictus, which can be found throughout Brazil. This study investigated ZIKV infection in mosquito species sampled from urban forest fragments in Manaus (Brazilian Amazon). A total of 905 non-engorged female Ae. aegypti (22 specimens) and Ae. albopictus (883 specimens) were collected using BG-Sentinel traps, entomological hand nets, and Prokopack aspirators during the rainy and dry seasons between 2018 and 2021. All pools were macerated and used to inoculate C6/36 culture cells. Overall, 3/20 (15%) Ae. aegypti and 5/241 (2%) Ae. albopictus pools screened using RT-qPCR were positive for ZIKV. No supernatants from Ae. aegypti were positive for ZIKV (0%), and 15 out of 241 (6.2%) Ae. albopictus pools were positive. In this study, we provide the first-ever evidence of Ae. albopictus naturally infected with ZIKV in the Amazon region.
Collapse
Affiliation(s)
- Erika Oliveira Gomes
- Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69067-375, AM, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Maurício Teixeira
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Bárbara Aparecida Chaves
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Adam Hendy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Claudia Mendonça
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Izabele Guimarães
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Ramon Linhares
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Daniela Brito
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Danielle Valério
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Jady Shayenne Mota Cordeiro
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Alexandre Vilhena Silva Neto
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Vanderson Souza Sampaio
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
- Instituto Todos pela Saúde (ITpS), São Paulo 01310-942, SP, Brazil
| | - Vera Margarete Scarpassa
- Laboratório de Genética Populacional e Evolução de Mosquitos Vetores da Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69067-375, AM, Brazil
| | - Michaela Buenemann
- Department of Geography, New Mexico State University, Las Cruces, NM 88003, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Djane Clarys Baia-da-Silva
- Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
- Instituto Leônidas & Maria Deane, ILMD/FIOCRUZ Amazonia, Manaus 69057-070, AM, Brazil
- Programa de Pós-Graduação em Assistência Farmacêutica, Universidade Federal do Amazonas (UFAM), Manaus 69080-900, AM, Brazil
- Departamento de Ensino e Pesquisa, Universidade Nilton Lins, Manaus 69058-030, AM, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria Paula Gomes Mourão
- Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, PPGMT, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, AM, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Instituto Leônidas & Maria Deane, ILMD/FIOCRUZ Amazonia, Manaus 69057-070, AM, Brazil
| |
Collapse
|
8
|
Batovska J, Mee PT, Sawbridge TI, Rodoni BC, Lynch SE. Enhanced Arbovirus Surveillance with High-Throughput Metatranscriptomic Processing of Field-Collected Mosquitoes. Viruses 2022; 14:v14122759. [PMID: 36560765 PMCID: PMC9782886 DOI: 10.3390/v14122759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
9
|
Li L, Guo X, Zhang X, Zhao L, Li L, Wang Y, Xie T, Yin Q, Jing Q, Hu T, Li Z, Wu R, Zhao W, Xin SX, Shi B, Liu J, Xia S, Peng Z, Yang Z, Zhang F, Chen XG, Zhou X. A unified global genotyping framework of dengue virus serotype-1 for a stratified coordinated surveillance strategy of dengue epidemics. Infect Dis Poverty 2022; 11:107. [PMID: 36224651 PMCID: PMC9556283 DOI: 10.1186/s40249-022-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Dengue is the fastest spreading arboviral disease, posing great challenges on global public health. A reproduceable and comparable global genotyping framework for contextualizing spatiotemporal epidemiological data of dengue virus (DENV) is essential for research studies and collaborative surveillance. METHODS Targeting DENV-1 spreading prominently in recent decades, by reconciling all qualified complete E gene sequences of 5003 DENV-1 strains with epidemiological information from 78 epidemic countries/areas ranging from 1944 to 2018, we established and characterized a unified global high-resolution genotyping framework using phylogenetics, population genetics, phylogeography, and phylodynamics. RESULTS The defined framework was discriminated with three hierarchical layers of genotype, subgenotype and clade with respective mean pairwise distances 2-6%, 0.8-2%, and ≤ 0.8%. The global epidemic patterns of DENV-1 showed strong geographic constraints representing stratified spatial-genetic epidemic pairs of Continent-Genotype, Region-Subgenotype and Nation-Clade, thereby identifying 12 epidemic regions which prospectively facilitates the region-based coordination. The increasing cross-transmission trends were also demonstrated. The traditional endemic countries such as Thailand, Vietnam and Indonesia displayed as persisting dominant source centers, while the emerging epidemic countries such as China, Australia, and the USA, where dengue outbreaks were frequently triggered by importation, showed a growing trend of DENV-1 diffusion. The probably hidden epidemics were found especially in Africa and India. Then, our framework can be utilized in an accurate stratified coordinated surveillance based on the defined viral population compositions. Thereby it is prospectively valuable for further hampering the ongoing transition process of epidemic to endemic, addressing the issue of inadequate monitoring, and warning us to be concerned about the cross-national, cross-regional, and cross-continental diffusions of dengue, which can potentially trigger large epidemics. CONCLUSIONS The framework and its utilization in quantitatively assessing DENV-1 epidemics has laid a foundation and re-unveiled the urgency for establishing a stratified coordinated surveillance platform for blocking global spreading of dengue. This framework is also expected to bridge classical DENV-1 genotyping with genomic epidemiology and risk modeling. We will promote it to the public and update it periodically.
Collapse
Affiliation(s)
- Liqiang Li
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Guo
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoqing Zhang
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lingzhai Zhao
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, Guangdong, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuji Wang
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Tian Xie
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qingqing Yin
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qinlong Jing
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Tian Hu
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ziyao Li
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Rangke Wu
- School of Foreign Studies, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Sherman Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Benyun Shi
- School of Computer Science and Technology, Nanjing Tech University, Nanjing, 211816, China
| | - Jiming Liu
- Department of Computer Science, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China
| | - Shang Xia
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiqiang Peng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Fuchun Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, Guangdong, China.
| | - Xiao-Guang Chen
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohong Zhou
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
The human "contaminome": bacterial, viral, and computational contamination in whole genome sequences from 1000 families. Sci Rep 2022; 12:9863. [PMID: 35701436 PMCID: PMC9198055 DOI: 10.1038/s41598-022-13269-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/18/2022] [Indexed: 01/11/2023] Open
Abstract
The unmapped readspace of whole genome sequencing data tends to be large but is often ignored. We posit that it contains valuable signals of both human infection and contamination. Using unmapped and poorly aligned reads from whole genome sequences (WGS) of over 1000 families and nearly 5000 individuals, we present insights into common viral, bacterial, and computational contamination that plague whole genome sequencing studies. We present several notable results: (1) In addition to known contaminants such as Epstein-Barr virus and phiX, sequences from whole blood and lymphocyte cell lines contain many other contaminants, likely originating from storage, prep, and sequencing pipelines. (2) Sequencing plate and biological sample source of a sample strongly influence contamination profile. And, (3) Y-chromosome fragments not on the human reference genome commonly mismap to bacterial reference genomes. Both experiment-derived and computational contamination is prominent in next-generation sequencing data. Such contamination can compromise results from WGS as well as metagenomics studies, and standard protocols for identifying and removing contamination should be developed to ensure the fidelity of sequencing-based studies.
Collapse
|
11
|
Fung CK, Li T, Pollett S, Alera MT, Yoon IK, Hang J, Macareo L, Srikiatkhachorn A, Ellison D, Rothman AL, Fernandez S, Jarman RG, Maljkovic Berry I. Effect of low-passage number on dengue consensus genomes and intra-host variant frequencies. J Gen Virol 2021; 102:001553. [PMID: 33591246 PMCID: PMC8515859 DOI: 10.1099/jgv.0.001553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Intra-host single nucleotide variants (iSNVs) have been increasingly used in genomic epidemiology to increase phylogenetic resolution and reconstruct fine-scale outbreak dynamics. These analyses are preferably done on sequence data from direct clinical samples, but in many cases due to low viral loads, there might not be enough genetic material for deep sequencing and iSNV determination. Isolation of the virus from clinical samples with low-passage number increases viral load, but few studies have investigated how dengue virus (DENV) culture isolation from a clinical sample impacts the consensus sequence and the intra-host virus population frequencies. In this study, we investigate consensus and iSNV frequency differences between DENV sequenced directly from clinical samples and their corresponding low-passage isolates. Twenty five DENV1 and DENV2 positive sera and their corresponding viral isolates (T. splendens inoculation and C6/36 passage) were obtained from a prospective cohort study in the Philippines. These were sequenced on MiSeq with minimum nucleotide depth of coverage of 500×, and iSNVs were detected using LoFreq. For both DENV1 and DENV2, we found a maximum of one consensus nucleotide difference between clinical sample and isolate. Interestingly, we found that iSNVs with frequencies ≥5 % were often preserved between the samples, and that the number of iSNV positions, and sample diversity, at this frequency cutoff did not differ significantly between the sample pairs (clinical sample and isolate) in either DENV1 or DENV2 data. Our results show that low-passage DENV isolate consensus genomes are largely representative of their direct sample parental viruses, and that low-passage isolates often mirror high frequency within-host variants from direct samples.
Collapse
Affiliation(s)
| | - Tao Li
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Simon Pollett
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - In-Kyu Yoon
- Coalition for Epidemic Preparedness Innovations, Washington, DC, USA
| | - Jun Hang
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Louis Macareo
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Anon Srikiatkhachorn
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- University of Rhode Island, Kingston, RI, USA
| | - Damon Ellison
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | |
Collapse
|
12
|
Moreno GK, Braun KM, Riemersma KK, Martin MA, Halfmann PJ, Crooks CM, Prall T, Baker D, Baczenas JJ, Heffron AS, Ramuta M, Khubbar M, Weiler AM, Accola MA, Rehrauer WM, O'Connor SL, Safdar N, Pepperell CS, Dasu T, Bhattacharyya S, Kawaoka Y, Koelle K, O'Connor DH, Friedrich TC. Revealing fine-scale spatiotemporal differences in SARS-CoV-2 introduction and spread. Nat Commun 2020; 11:5558. [PMID: 33144575 PMCID: PMC7609670 DOI: 10.1038/s41467-020-19346-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022] Open
Abstract
Evidence-based public health approaches that minimize the introduction and spread of new SARS-CoV-2 transmission clusters are urgently needed in the United States and other countries struggling with expanding epidemics. Here we analyze 247 full-genome SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction of SARS-CoV-2 in the United States, but this did not lead to descendant community spread. Instead, the Dane County outbreak was seeded by multiple later introductions, followed by limited community spread. In contrast, relatively few introductions in Milwaukee County led to extensive community spread. We present evidence for reduced viral spread in both counties following the statewide "Safer at Home" order, which went into effect 25 March 2020. Our results suggest patterns of SARS-CoV-2 transmission may vary substantially even in nearby communities. Understanding these local patterns will enable better targeting of public health interventions.
Collapse
Affiliation(s)
- Gage K Moreno
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Katarina M Braun
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kasen K Riemersma
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael A Martin
- Population Biology, Ecology, and Evolution Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chelsea M Crooks
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Trent Prall
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - John J Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna S Heffron
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mitchell Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Manjeet Khubbar
- City of Milwaukee Health Department Laboratory, Milwaukee, WI, USA
| | - Andrea M Weiler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Molly A Accola
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - William M Rehrauer
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nasia Safdar
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Caitlin S Pepperell
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Trivikram Dasu
- City of Milwaukee Health Department Laboratory, Milwaukee, WI, USA
| | | | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Katia Koelle
- Population Biology, Ecology, and Evolution Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Álvarez-Díaz DA, Laiton-Donato K, Franco-Muñoz C, Mercado-Reyes M. SARS-CoV-2 sequencing: The technological initiative to strengthen early warning systems for public health emergencies in Latin America and the Caribbean. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2020; 40:188-197. [PMID: 33152203 PMCID: PMC7676827 DOI: 10.7705/biomedica.5841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is a public health problem on a scale unprecedented in the last 100 years, as has been the response focused on the rapid genomic characterization of SARS-CoV-2 in virtually all regions of the planet. This pandemic emerged during the era of genomic epidemiology, a science fueled by continued advances in next-generation sequencing. Since its recent appearance, genomic epidemiology included the precise identification of new lineages or species of pathogens and the reconstruction of their genetic variability in real time, evidenced in past outbreaks of influenza H1N1, MERS, and SARS. However, the global and uncontrolled scale of this pandemic created a scenario where genomic epidemiology was put into practice en masse, from the rapid identification of SARS-CoV-2 to the registration of new lineages and their active surveillance throughout the world. Prior to the COVID-19 pandemic, the availability of genomic data on circulating pathogens in several Latin America and the Caribbean countries was scarce or nil. With the arrival of SARS-CoV-2, this scenario changed significantly, although the amount of available information remains scarce and, in countries such as Colombia, Brazil, Argentina, and Chile, the genomic information of SARS-CoV-2 was obtained mainly by research groups in genomic epidemiology rather than the product of a public health surveillance policy or program. This indicates the need to establish public health policies aimed at implementing genomic epidemiology as a tool to strengthen surveillance and early warning systems against threats to public health in the region.
Collapse
Affiliation(s)
- Diego A Álvarez-Díaz
- Unidad de Secuenciación y Genómica, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia; Grupo de Salud Materna y Perinatal, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| | - Katherine Laiton-Donato
- Unidad de Secuenciación y Genómica, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D. C., Colombia.
| | - Carlos Franco-Muñoz
- Grupo de Parasitología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D. C., Colombia.
| | - Marcela Mercado-Reyes
- Grupo de Salud Materna y Perinatal, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia; Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| |
Collapse
|
14
|
Maljkovic Berry I, Rutvisuttinunt W, Voegtly LJ, Prieto K, Pollett S, Cer RZ, Kugelman JR, Bishop-Lilly KA, Morton L, Waitumbi J, Jarman RG. A Department of Defense Laboratory Consortium Approach to Next Generation Sequencing and Bioinformatics Training for Infectious Disease Surveillance in Kenya. Front Genet 2020; 11:577563. [PMID: 33101395 PMCID: PMC7546821 DOI: 10.3389/fgene.2020.577563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
Epidemics of emerging and re-emerging infectious diseases are a danger to civilian and military populations worldwide. Health security and mitigation of infectious disease threats is a priority of the United States Government and the Department of Defense (DoD). Next generation sequencing (NGS) and Bioinformatics (BI) enhances traditional biosurveillance by providing additional data to understand transmission, identify resistance and virulence factors, make predictions, and update risk assessments. As more and more laboratories adopt NGS and BI technologies they encounter challenges in building local capacity. In addition to choosing the right sequencing platform and approach, considerations must also be made for the complexity of bioinformatics analyses, data storage, as well as personnel and computational requirements. To address these needs, a comprehensive training program was developed covering wet lab and bioinformatics approaches to NGS. The program is meant to be modular and adaptive to meet both common and individualized needs of medical research and public health laboratories across the DoD. The training program was first deployed internationally to the Basic Science Laboratory of the US Army Medical Research Directorate-Africa in Kisumu, Kenya, which is an overseas Lab of the Walter Reed Army Institute of Research (WRAIR). A week-long workshop with intensive focus on targeted sequencing and the bioinformatics of genome assembly (n = 24 participants) was held. Post-workshop self-assessment (completed by 21 participants) noted significant median gains in knowledge domains related to NGS targeted sequencing, bioinformatics for genome assembly, and sequence quality assessment. The participants also reported that the information on study design, sample preparation, sequencing quality control, data quality assessment, reporting, and basic and advanced bioinformatics analysis were the most useful information presented in the training. While longer-term evaluations are planned, the training resulted in significant short-term improvement of a laboratory’s self-reported wet lab and bioinformatics capabilities. This framework can be used for future DoD laboratory development in the area of NGS and BI for infectious disease surveillance, ultimately enhancing this global DoD capability.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Office of Genomics and Advanced Technologies National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Logan J Voegtly
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States.,Leidos, Reston, VA, United States
| | - Karla Prieto
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States.,Center for Genomic Studies, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, United States
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Regina Z Cer
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States.,Leidos, Reston, VA, United States
| | - Jeffrey R Kugelman
- Center for Genomic Studies, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, United States
| | - Kimberly A Bishop-Lilly
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States
| | - Lindsay Morton
- Global Emerging Infections Surveillance, Armed Forces Health Surveillance Branch, Silver Spring, MD, United States
| | - John Waitumbi
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
15
|
Smith RC. Highlights in Medical Entomology, 2019: Familiar Foes and New Frontiers. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1349-1353. [PMID: 32667035 PMCID: PMC7716807 DOI: 10.1093/jme/tjaa120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The 2019 Entomological Society of America annual meeting was held in St. Louis, Missouri, just blocks away from the iconic Gateway Arch. Representing a 'gateway to the West', this inspired the theme of the Highlights in Medical Entomology to reflect on the accomplishments of the past year as we move into a 'new frontier' of vector biology research. Papers were selected broadly across arthropods that influence public health, focusing on topics ranging from West Nile virus transmission, ticks and tick-borne disease, to advances in genetics and 'big data' studies. This included current perspectives on West Nile virus ecology and epidemiology, which has now been endemic in the United States for 20 yr. Additional topics such as the advantages of citizen science and the importance of scientific communication were also discussed. Together, these papers demonstrate the achievements of the vector community while emphasizing the challenges that we collectively face to reduce the burden of vector-borne disease.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA
| |
Collapse
|
16
|
Moreno GK, Braun KM, Riemersma KK, Martin MA, Halfmann PJ, Crooks CM, Prall T, Baker D, Baczenas JJ, Heffron AS, Ramuta M, Khubbar M, Weiler AM, Accola MA, Rehrauer WM, O'Connor SL, Safdar N, Pepperell CS, Dasu T, Bhattacharyya S, Kawaoka Y, Koelle K, O'Connor DH, Friedrich TC. Distinct patterns of SARS-CoV-2 transmission in two nearby communities in Wisconsin, USA. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.09.20149104. [PMID: 32676620 PMCID: PMC7359545 DOI: 10.1101/2020.07.09.20149104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Evidence-based public health approaches that minimize the introduction and spread of new SARS-CoV-2 transmission clusters are urgently needed in the United States and other countries struggling with expanding epidemics. Here we analyze 247 full-genome SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction of SARS-CoV-2 in the United States, but this did not lead to descendant community spread. Instead, the Dane County outbreak was seeded by multiple later introductions, followed by limited community spread. In contrast, relatively few introductions in Milwaukee County led to extensive community spread. We present evidence for reduced viral spread in both counties, and limited viral transmission between counties, following the statewide Safer-at-Home public health order, which went into effect 25 March 2020. Our results suggest that early containment efforts suppressed the spread of SARS-CoV-2 within Wisconsin.
Collapse
Affiliation(s)
- Gage K Moreno
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Katarina M Braun
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Kasen K Riemersma
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Michael A Martin
- Population Biology, Ecology, and Evolution Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, United States of America
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Chelsea M Crooks
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Trent Prall
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - David Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - John J Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Anna S Heffron
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Mitchell Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Manjeet Khubbar
- City of Milwaukee Health Department Laboratory, Milwaukee, WI, United States of America
| | - Andrea M Weiler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Molly A Accola
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of 26 America and the William S. Middleton Memorial Veterans Hospital
| | - William M Rehrauer
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of 26 America and the William S. Middleton Memorial Veterans Hospital
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Nasia Safdar
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin School of 28 Medicine and Public Health, Madison, WI
| | - Caitlin S Pepperell
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin School of 28 Medicine and Public Health, Madison, WI
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 30 Madison, WI, United States of America
| | - Trivikram Dasu
- City of Milwaukee Health Department Laboratory, Milwaukee, WI, United States of America
| | - Sanjib Bhattacharyya
- City of Milwaukee Health Department Laboratory, Milwaukee, WI, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Influenza Research Institute, School of Veterinary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Katia Koelle
- Population Biology, Ecology, and Evolution Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, United States of America
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
17
|
Villabona-Arenas CJ, Hanage WP, Tully DC. Phylogenetic interpretation during outbreaks requires caution. Nat Microbiol 2020; 5:876-877. [PMID: 32427978 PMCID: PMC8168400 DOI: 10.1038/s41564-020-0738-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How viruses are related, and how they have evolved and spread over time, can be investigated using phylogenetics. Here, we set out how genomic analyses should be used during an epidemic and propose that phylogenetic insights from the early stages of an outbreak should heed all of the available epidemiological information.
Collapse
Affiliation(s)
- Ch Julián Villabona-Arenas
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Damien C Tully
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|