1
|
Elattar S, Estaphan S, Mohamed EA, Elzainy A, Naguib M. The protective effect of 1alpha, 25-dihydroxyvitamin d3 and metformin on liver in type 2 diabetic rats. J Steroid Biochem Mol Biol 2017; 173:235-244. [PMID: 27876536 DOI: 10.1016/j.jsbmb.2016.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023]
Abstract
There is an accumulating evidence suggesting an immunomodulatory role of 1α,25(OH)2D3. Altered 1α,25(OH)2D3 level may play a role in the development of T2DM and contribute to the pathogenesis of liver diseases. Our study was designed to study and compare the effect of metformin and 1α,25(OH)2D3 supplementation on liver injury in type 2 diabetic rat. Sixty male Albino rats were divided into 5 groups; group 1: control rats. the remaining rats were fed high fat diet for 2 weeks and injected with streptozotocin (35mg/kg BW, i.p.) to induce T2DM and were divided into: group 2: untreated diabetic rats, group 3: diabetic rats treated by metformin (100mg/kgBW/d, orally), group 4: diabetic rats supplemented by 1α,25(OH)2D3 (0.5μg/kg BW, i.p.) 3 times weekly and group 5: supplemented by both 1α,25(OH)2D3 and metformin. Eight weeks later, serum glucose and insulin levels were measured, HOMA IR was calculated, lipid profile, Ca2+, ALT and AST were estimated. Liver specimens were taken to investigate PPAR-α (regulator of lipid metabolism), NF-κB p65, caspase 3 and PCNA (proliferating cell nuclear antigen) and for histological examination. The liver enzymes were elevated in the diabetic rats and the histological results revealed an injurious effect of diabetes on the liver. 1α,25(OH)2D3, metformin and both drugs treatment significantly improved liver enzymes as compared to the untreated rats. The improvement was associated with a significant improvement in the glycemic control, lipid profile and serum Ca2+ with a significant reduction in NF-κB p65 and caspase 3 and increased PPAR-α, and PCNA expression as compared to the untreated group. 1α,25(OH)2D3 induced a slightly better effect as compared to metformin. Both agents together had a synergistic action and almost completely protected the liver. Histological results confirmed the biochemical findings. Our results showed a protective effect of 1α,25(OH)2D3 and metformin on liver in diabetic rats as indicated by an improvement of the level of the liver enzymes, decreased apoptosis and increased proliferation and this was confirmed histologically, with modulating NFkB and PPAR-α. Both agents together had a synergistic effect.
Collapse
Affiliation(s)
- Samah Elattar
- Physiology Department, Faculty of Medicine Cairo University, Egypt
| | - Suzanne Estaphan
- Physiology Department, Faculty of Medicine Cairo University, Egypt.
| | - Enas A Mohamed
- Anatomy Department, Faculty of Medicine Cairo University, Egypt
| | - Ahmed Elzainy
- Anatomy Department, Faculty of Medicine Cairo University, Egypt
| | - Mary Naguib
- Clinical Pathology Department, National Liver Institute, Menoufia University, Egypt
| |
Collapse
|
2
|
Sims EK, Lakhter AJ, Anderson-Baucum E, Kono T, Tong X, Evans-Molina C. MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabetologia 2017; 60:1057-1065. [PMID: 28280903 PMCID: PMC5425307 DOI: 10.1007/s00125-017-4237-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/03/2017] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS The role of beta cell microRNA (miR)-21 in the pathophysiology of type 1 diabetes has been controversial. Here, we sought to define the context of beta cell miR-21 upregulation in type 1 diabetes and the phenotype of beta cell miR-21 overexpression through target identification. METHODS Islets were isolated from NOD mice and mice treated with multiple low doses of streptozotocin, as a mouse model of diabetes. INS-1 832/13 beta cells and human islets were treated with IL-1β, IFN-γ and TNF-α to mimic the milieu of early type 1 diabetes. Cells and islets were transfected with miR-21 mimics or inhibitors. Luciferase assays and polyribosomal profiling (PRP) were performed to define miR-21-target interactions. RESULTS Beta cell miR-21 was increased in in vivo models of type 1 diabetes and cytokine-treated cells/islets. miR-21 overexpression decreased cell count and viability, and increased cleaved caspase 3 levels, suggesting increased cell death. In silico prediction tools identified the antiapoptotic mRNA BCL2 as a conserved miR-21 target. Consistent with this, miR-21 overexpression decreased BCL2 transcript and B cell lymphoma 2 (BCL2) protein production, while miR-21 inhibition increased BCL2 protein levels and reduced cleaved caspase 3 levels after cytokine treatment. miR-21-mediated cell death was abrogated in 828/33 cells, which constitutively overexpress Bcl2. Luciferase assays suggested a direct interaction between miR-21 and the BCL2 3' untranslated region. With miR-21 overexpression, PRP revealed a shift of the Bcl2 message towards monosome-associated fractions, indicating inhibition of Bcl2 translation. Finally, overexpression in dispersed human islets confirmed a reduction in BCL2 transcripts and increased cleaved caspase 3 production. CONCLUSIONS/INTERPRETATION In contrast to the pro-survival role reported in other systems, our results demonstrate that miR-21 increases beta cell death via BCL2 transcript degradation and inhibition of BCL2 translation.
Collapse
Affiliation(s)
- Emily K Sims
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Alexander J Lakhter
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily Anderson-Baucum
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatsuyoshi Kono
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xin Tong
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
3
|
Mellado-Gil JM, Jiménez-Moreno CM, Martin-Montalvo A, Alvarez-Mercado AI, Fuente-Martin E, Cobo-Vuilleumier N, Lorenzo PI, Bru-Tari E, Herrera-Gómez IDG, López-Noriega L, Pérez-Florido J, Santoyo-López J, Spyrantis A, Meda P, Boehm BO, Quesada I, Gauthier BR. PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus. Diabetologia 2016; 59:755-65. [PMID: 26813254 PMCID: PMC4779135 DOI: 10.1007/s00125-016-3864-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. METHODS Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. RESULTS PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. CONCLUSIONS/INTERPRETATION The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.
Collapse
Affiliation(s)
- José Manuel Mellado-Gil
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Carmen María Jiménez-Moreno
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Alejandro Martin-Montalvo
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Ana Isabel Alvarez-Mercado
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Esther Fuente-Martin
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Petra Isabel Lorenzo
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Eva Bru-Tari
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
| | - Irene de Gracia Herrera-Gómez
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Livia López-Noriega
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Javier Pérez-Florido
- Medical Genome Project, Genomics & Bioinformatics Platform of Andalusia, Seville, Spain
| | - Javier Santoyo-López
- Medical Genome Project, Genomics & Bioinformatics Platform of Andalusia, Seville, Spain
- Edinburgh Genomics, University of Edinburgh, Edinburgh, UK
| | - Andreas Spyrantis
- Department of Internal Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Bernhard O Boehm
- Department of Internal Medicine, Ulm University Medical Centre, Ulm, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Imperial College, London, UK
| | - Ivan Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain.
| |
Collapse
|
4
|
Ning C, Liu L, Lv G, Yang Y, Zhang Y, Yu R, Wang Y, Zhu J. Lipid metabolism and inflammation modulated by Vitamin D in liver of diabetic rats. Lipids Health Dis 2015; 14:31. [PMID: 25899686 PMCID: PMC4406219 DOI: 10.1186/s12944-015-0030-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Background In recent years, much evidence suggested that vitamin D plays an important role in decreasing the risk of type 2 diabetes. The purpose of this study was to investigate whether 1, 25 (OH) 2D3 can modulate inflammation and lipid metabolism in type 2 diabetic rat liver. Methods Type 2 diabetes was induced in SD rat with high-fat and high-sugar diets and multiple low-dose streptozotocin. The levels of serum calcium, phosphorus, glucose, TC, TG, AST, ALT and hepatic TG were determined. H & E staining were performed to assess the effects of vitamin D treatment on pathological changes in the liver tissues. Immunohistology, real-time PCR and Western blot were used to evaluate the expressions of NF-κ B, MCP-1, ICAM-1, TGF-β1, PPAR-α and CPT-1. Results The administration of 1, 25 (OH) 2D3 reduced liver weight. Compared to DM rats, 1, 25 (OH) 2D3-treated DM rats had lower liver weight. Moreover, compared to healthy or 1, 25 (OH) 2D3-treated DM rats, DM rats had increased hepatic transcription factors (NF-κ B), monocyte chemoattractant protein −1 (MCP-1), intercellular adhesion molecule −1 (ICAM-1), transforming growth factor-β1 (TGF-β1) expressions, but had fewer hepatic PPAR- α and CPT-1 expressions. Conclusions 1, 25 (OH) 2D3 significantly modulated the liver inflammation and lipid metabolism in diabetic rat models, which may be caused by its regulations on hepatic signaling NF-κ B pathway and PPAR- α.
Collapse
Affiliation(s)
- Conghua Ning
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Lina Liu
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Guodong Lv
- Institute of Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| | - Ye Yang
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Yuanyuan Zhang
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Rui Yu
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Yongtao Wang
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Jun Zhu
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
5
|
|
6
|
Patel D, Ythier D, Brozzi F, Eizirik DL, Thorens B. Clic4, a novel protein that sensitizes β-cells to apoptosis. Mol Metab 2015; 4:253-64. [PMID: 25830089 PMCID: PMC4354924 DOI: 10.1016/j.molmet.2015.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 01/09/2023] Open
Abstract
Objectives Chloride intracellular channel protein 4 (Clic4) is a ubiquitously expressed protein involved in multiple cellular processes including cell-cycle control, cell differentiation, and apoptosis. Here, we investigated the role of Clic4 in pancreatic β-cell apoptosis. Methods We used βTC-tet cells and islets from β-cell specific Clic4 knockout mice (βClic4KO) and assessed cytokine-induced apoptosis, Bcl2 family protein expression and stability, and identified Clic4-interacting proteins by co-immunoprecipitation and mass spectrometry analysis. Results We show that cytokines increased Clic4 expression in βTC-tet cells and in mouse islets and siRNA-mediated silencing of Clic4 expression in βTC-tet cells or its genetic inactivation in islets β-cells, reduced cytokine-induced apoptosis. This was associated with increased expression of Bcl-2 and increased expression and phosphorylation of Bad. Measurement of Bcl-2 and Bad half-lives in βTC-tet cells showed that Clic4 silencing increased the stability of these proteins. In primary islets β-cells, absence of Clic4 expression increased Bcl-2 and Bcl-xL expression as well as expression and phosphorylation of Bad. Mass-spectrometry analysis of proteins co-immunoprecipitated with Clic4 from βTC-tet cells showed no association of Clic4 with Bcl-2 family proteins. However, Clic4 co-purified with proteins from the proteasome suggesting a possible role for Clic4 in regulating protein degradation. Conclusions Collectively, our data show that Clic4 is a cytokine-induced gene that sensitizes β-cells to apoptosis by reducing the steady state levels of Bcl-2, Bad and phosphorylated Bad.
Collapse
Affiliation(s)
- Dhaval Patel
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| | - Damien Ythier
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| | - Flora Brozzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Zhao Y, Scott NA, Fynch S, Elkerbout L, Wong WWL, Mason KD, Strasser A, Huang DC, Kay TWH, Thomas HE. Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes. Diabetologia 2015; 58:140-8. [PMID: 25301392 DOI: 10.1007/s00125-014-3407-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes results from T cell-mediated destruction of pancreatic beta cells. The mechanisms of beta cell destruction in vivo, however, remain unclear. We aimed to test the relative roles of the main cell death pathways: apoptosis, necrosis and necroptosis, in beta cell death in the development of CD4(+) T cell-mediated autoimmune diabetes. METHODS We altered expression levels of critical cell death proteins in mouse islets and tested their ability to survive CD4(+) T cell-mediated attack using an in vivo graft model. RESULTS Loss of the B cell leukaemia/lymphoma 2 (BCL-2) homology domain 3-only proteins BIM, PUMA or BID did not protect beta cells from this death. Overexpression of the anti-apoptotic protein BCL-2 or combined deficiency of the pro-apoptotic multi-BCL2 homology domain proteins BAX and BAK also failed to prevent beta cell destruction. Furthermore, loss of function of the death receptor Fas or its essential downstream signalling molecule Fas-associated death domain (FADD) in islets was also not protective. Using electron microscopy we observed that dying beta cells showed features of necrosis. However, islets deficient in receptor-interacting serine/threonine protein kinase 3 (RIPK3), a critical initiator of necroptosis, were still normally susceptible to CD4(+) T cell-mediated destruction. Remarkably, simultaneous inhibition of apoptosis and necroptosis by combining loss of RIPK3 and overexpression of BCL-2 in islets did not protect them against immune attack either. CONCLUSIONS/INTERPRETATION Collectively, our data indicate that beta cells die by necrosis in autoimmune diabetes and that the programmed cell death pathways apoptosis and necroptosis are both dispensable for this process.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/physiology
- Autoimmunity/physiology
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Graft Rejection/genetics
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Islets of Langerhans Transplantation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Necrosis/genetics
- Necrosis/immunology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/physiology
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Receptor-Interacting Protein Serine-Threonine Kinases/physiology
- Receptors, Death Domain/genetics
- Receptors, Death Domain/physiology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Yuxing Zhao
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Litwak SA, Wali JA, Pappas EG, Saadi H, Stanley WJ, Varanasi LC, Kay TWH, Thomas HE, Gurzov EN. Lipotoxic Stress Induces Pancreatic β-Cell Apoptosis through Modulation of Bcl-2 Proteins by the Ubiquitin-Proteasome System. J Diabetes Res 2015; 2015:280615. [PMID: 26064977 PMCID: PMC4438180 DOI: 10.1155/2015/280615] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
Pancreatic β-cell loss induced by saturated free fatty acids (FFAs) is believed to contribute to type 2 diabetes. Previous studies have shown induction of endoplasmic reticulum (ER) stress, increased ubiquitinated proteins, and deregulation of the Bcl-2 family in the pancreas of type 2 diabetic patients. However, the precise mechanism of β-cell death remains unknown. In the present study we demonstrate that the FFA palmitate blocks the ubiquitin-proteasome system (UPS) and causes apoptosis through induction of ER stress and deregulation of Bcl-2 proteins. We found that palmitate and the proteasome inhibitor MG132 induced ER stress in β-cells, resulting in decreased expression of the prosurvival proteins Bcl-2, Mcl-1, and Bcl-XL, and upregulation of the prodeath BH3-only protein PUMA. On the other hand, pharmacological activation of the UPS by sulforaphane ameliorated ER stress, upregulated prosurvival Bcl-2 proteins, and protected β-cells from FFA-induced cell death. Furthermore, transgenic overexpression of Bcl-2 protected islets from FFA-induced cell death in vitro and improved glucose-induced insulin secretion in vivo. Together our results suggest that targeting the UPS and Bcl-2 protein expression may be a valuable strategy to prevent β-cell demise in type 2 diabetes.
Collapse
Affiliation(s)
- Sara A. Litwak
- St Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
| | - Jibran A. Wali
- St Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC 3065, Australia
| | - Evan G. Pappas
- St Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC 3065, Australia
| | - Hamdi Saadi
- St Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC 3065, Australia
| | - William J. Stanley
- St Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC 3065, Australia
| | - L. Chitra Varanasi
- St Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC 3065, Australia
| | - Thomas W. H. Kay
- St Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC 3065, Australia
| | - Helen E. Thomas
- St Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC 3065, Australia
| | - Esteban N. Gurzov
- St Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC 3065, Australia
- *Esteban N. Gurzov:
| |
Collapse
|
9
|
Abstract
Autoimmune diabetes is characterized by the selective destruction of insulin-secreting β-cells that occurs during an inflammatory reaction in and around pancreatic islets of Langerhans. Cytokines such as interleukin-1, released by activated immune cells, have been shown to inhibit insulin secretion from pancreatic β-cells and cause islet destruction. In response to cytokines, β-cells express inducible nitric oxide synthase and produce micromolar levels of the free radical nitric oxide. Nitric oxide inhibits the mitochondrial oxidation of glucose resulting in an impairment of insulin secretion. Nitric oxide is also responsible for cytokine-mediated DNA damage in β-cells. While nitric oxide mediates the inhibitory and toxic effects of cytokines, it also activates protective pathways that allow β-cells to recover from this damage. This review will focus on the dual role of nitric oxide as a mediator of cytokine-induced damage and the activator of repair mechanisms that protect β-cells from cytokine-mediated injury.
Collapse
Affiliation(s)
| | - Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
10
|
Porcu S, Lapolla A, Biasutto L, Zoratti M, Piarulli F, Eliana G, Basso D, Roverso M, Seraglia R. A preliminary fastview of mitochondrial protein profile from healthy and type 2 diabetic subjects. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:307-315. [PMID: 25420343 DOI: 10.1255/ejms.1285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Type 2 diabetes results from the development of insulin resistance and a concomitant impairment of insulin secretion. Mitochondrial dysfunctions are thought to be the major contributor to the development of various pathologies, including type 1 and type 2 diabetes mellitus. Mitochondrial oxidative stress has been reported in models of both type 1 and type 2 diabetes mellitus and may play a central role in mitochondrial dysfunction. In the present study, we investigated the occurrence of protein alterations, due to the presence of type 2 diabetes, in mitochondria isolated from human peripheral blood mononuclear cells (PBMCs] by matrix-assisted laser desorp- tion/ionization mass spectrometry (MALDI-MS]. PBMCs may be suitable for this investigation because they have insulin receptors that quickly respond to changes in insulin concentration, and in the presence of insulin rapidly increase their rates of glucose utiliza- tion. In the presence of insulin-resistance conditions, such as type 2 diabetes mellitus, this mechanism is altered and the glycation of cytoplasmic as well as mitochondrial proteins may plausibly appear. Therefore, PBMCs may be useful tools to verify modifications or altered expression of mitochondrial proteins. Human mitochondria were obtained from 32 subjects, 16 healthy controls and 16 type 2 diabetic patients. Two different methods for mitochondria isolation and purification were employed and compared. Some proteins have been found to be differently expressed in the two groups of subjects under investigation and can be classified into two sets: i.e. proteins related to ATP synthase [e.g. 6.8kDa mitochondrial proteolipid [MLQ]; ATP-CF6 [m/z 12,597)] and proteins related to cell proliferation and apoptosis [e.g. TIMM9 [m/z 10,378); Bcl-2-like protein 2 (m/z20,742)].
Collapse
|
11
|
Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 2013; 12:98. [PMID: 23835113 PMCID: PMC3716967 DOI: 10.1186/1476-511x-12-98] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with multiple complications that causes serious diseases over the years. The condition leads to severe economic consequences and is reaching pandemic level globally. Much research is being carried out to address this disease and its underlying molecular mechanism. This review focuses on the diverse role and mechanism of ceramide, a prime sphingolipid signaling molecule, in the pathogenesis of type 1 and type 2 diabetes and its complications. Studies using cultured cells, animal models, and human subjects demonstrate that ceramide is a key player in the induction of β-cell apoptosis, insulin resistance, and reduction of insulin gene expression. Ceramide induces β-cell apoptosis by multiple mechanisms namely; activation of extrinsic apoptotic pathway, increasing cytochrome c release, free radical generation, induction of endoplasmic reticulum stress and inhibition of Akt. Ceramide also modulates many of the insulin signaling intermediates such as insulin receptor substrate, Akt, Glut-4, and it causes insulin resistance. Ceramide reduces the synthesis of insulin hormone by attenuation of insulin gene expression. Better understanding of this area will increase our understanding of the contribution of ceramide to the pathogenesis of diabetes, and further help in identifying potential therapeutic targets for the management of diabetes mellitus and its complications.
Collapse
|
12
|
Soria B, Gauthier BR. Dual Trade of Bcl-2 and Bcl-xL in islet physiology: balancing life and death with metabolism secretion coupling. Diabetes 2013; 62:18-21. [PMID: 23258905 PMCID: PMC3526041 DOI: 10.2337/db12-1023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bernat Soria
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Benoit R. Gauthier
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
- Corresponding author: Benoit R. Gauthier,
| |
Collapse
|
13
|
Martin D, Allagnat F, Gesina E, Caille D, Gjinovci A, Waeber G, Meda P, Haefliger JA. Specific silencing of the REST target genes in insulin-secreting cells uncovers their participation in beta cell survival. PLoS One 2012; 7:e45844. [PMID: 23029270 PMCID: PMC3447792 DOI: 10.1371/journal.pone.0045844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022] Open
Abstract
The absence of the transcriptional repressor RE-1 Silencing Transcription Factor (REST) in insulin-secreting beta cells is a major cue for the specific expression of a large number of genes. These REST target genes were largely ascribed to a function of neurotransmission in a neuronal context, whereas their role in pancreatic beta cells has been poorly explored. To identify their functional significance, we have generated transgenic mice expressing REST in beta cells (RIP-REST mice), and previously discovered that REST target genes are essential to insulin exocytosis. Herein we characterized a novel line of RIP-REST mice featuring diabetes. In diabetic RIP-REST mice, high levels of REST were associated with postnatal beta cell apoptosis, which resulted in gradual beta cell loss and sustained hyperglycemia in adults. Moreover, adenoviral REST transduction in INS-1E cells led to increased cell death under control conditions, and sensitized cells to death induced by cytokines. Screening for REST target genes identified several anti-apoptotic genes bearing the binding motif RE-1 that were downregulated upon REST expression in INS-1E cells, including Gjd2, Mapk8ip1, Irs2, Ptprn, and Cdk5r2. Decreased levels of Cdk5r2 in beta cells of RIP-REST mice further confirmed that it is controlled by REST, in vivo. Using siRNA-mediated knock-down in INS-1E cells, we showed that Cdk5r2 protects beta cells against cytokines and palmitate-induced apoptosis. Together, these data document that a set of REST target genes, including Cdk5r2, is important for beta cell survival.
Collapse
Affiliation(s)
- David Martin
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Florent Allagnat
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Emilie Gesina
- Ecole Polytechnique Fédérale de Lausanne, Faculté des Sciences de la Vie, Lausanne, Switzerland
| | - Dorothee Caille
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Asllan Gjinovci
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Gerard Waeber
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | | |
Collapse
|
14
|
Evaluation of Effects of Chinese Prescription Kangen-karyu on Diabetes-Induced Alterations such as Oxidative Stress and Apoptosis in the Liver of Type 2 Diabetic db/db Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:143489. [PMID: 22969821 PMCID: PMC3437317 DOI: 10.1155/2012/143489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 11/23/2022]
Abstract
The present study was conducted to examine whether Kangen-karyu has an ameliorative effect on diabetes-induced alterations such as oxidative stress and apoptosis in the liver of type 2 diabetic db/db mice. Kangen-karyu (100 or 200 mg/kg body weight/day, p.o.) was administered every day for 18 weeks to db/db mice and its effect was compared with vehicle-treated db/db and m/m mice. The administration of Kangen-karyu decreased the elevated serum glucose and leptin concentrations in db/db mice, and reduced the increased oxidative biomarkers including the generation of reactive oxygen species and lipid peroxidation in the liver. The db/db mice exhibited the upregulation of nicotinamide adenine dinucleotide phosphate oxidase subunits, NF-E2-related factor 2, heme oxygenase-1, nuclear factor-kappa B, cyclooxygenase-2, and inducible nitric oxide synthase levels in the liver; however, Kangen-karyu treatment significantly reduced those expressions. Moreover, the augmented expressions of apoptosis-related proteins, Bax, cytochrome c, c-Jun N-terminal kinase (JNK), phosphor-JNK, AP-1, and caspase-3, were downregulated by Kangen-karyu administration. Hematoxylin-eosin staining showed that the increased hepatocellular damage in the liver of db/db mice improved by Kangen-karyu administration. Our findings support the therapeutic evidence for Kangen-karyu ameliorating the development of diabetic hepatic complications via regulating oxidative stress and apoptosis.
Collapse
|
15
|
Vanzela EC, Cardozo AK. Is ARE/poly(U)-binding factor 1 (AUF1) a new player in cytokine-mediated beta cell apoptosis? Diabetologia 2012; 55:1572-6. [PMID: 22526614 DOI: 10.1007/s00125-012-2552-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/27/2012] [Indexed: 01/20/2023]
Abstract
Type 1 diabetes is a chronic autoimmune disease involving the progressive loss of beta cell mass. Cytokines released by immune cells are early contributors to beta cell apoptosis. Thus, an understanding of the signal transduction mechanisms induced by cytokines in beta cells is necessary for the rational design of novel therapies to prevent or to cure this disease. Cytokine-mediated beta cell apoptosis is a complex phenomenon that includes activation of the transcription factors signal transducer and activator of transcription 1 and nuclear factor κB (NFκB), c-Jun N-terminal kinase, endoplasmic reticulum (ER) stress and the intrinsic mitochondrial apoptotic pathway. NFκB has both a pro-inflammatory and a pro-apoptotic role in beta cells. One of the mechanisms by which NFκB contributes to beta cell apoptosis is via activation of ER stress. The role for ER stress in beta cell apoptosis is not completely clarified but involves production of C/EBP homologous protein and activation of the intrinsic mitochondrial apoptotic pathway. In this issue of Diabetologia, Roggli et al (DOI 10.1007/s00125-011-2399-7) report on a new player in this elaborate response, the RNA-binding protein ARE/poly(U)-binding factor 1. This commentary discusses these findings and their relevance to the field.
Collapse
Affiliation(s)
- E C Vanzela
- Faculty of Medicine, Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik 808, Building G-E 5th floor, CP 618, 1070 Brussels, Belgium
| | | |
Collapse
|
16
|
Johnson JD, Bround MJ, White SA, Luciani DS. Nanospaces between endoplasmic reticulum and mitochondria as control centres of pancreatic β-cell metabolism and survival. PROTOPLASMA 2012; 249 Suppl 1:S49-S58. [PMID: 22105567 DOI: 10.1007/s00709-011-0349-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
Nanometre-scale spaces between organelles represent focused nodes for signal transduction and the control of cellular decisions. The endoplasmic reticulum (ER) and the mitochondria form dynamic quasi-synaptic interaction nanodomains in all cell types examined, but the functional role of these junctions in cellular metabolism and cell survival remains to be fully understood. In this paper, we review recent evidence that ER Ca(2+) channels, such as the RyR and IP(3)R, can signal specifically across this nanodomain to the adjacent mitochondria to pace basal metabolism, with focus on the pancreatic β-cell. Blocking these signals in the basal state leads to a form of programmed cell death associated with reduced ATP and the induction of calpain-10 and hypoxia-inducible factors. On the other hand, the hyperactivity of this signalling domain plays a deleterious role during classical forms of apoptosis. Thus, the nanospace between ER and mitochondria represents a critical rheostat controlling both metabolism and programmed cell death. Many aspects of the mechanisms underlying this control system remain to be uncovered, and new nanotechnologies are required understand these domains at a molecular level.
Collapse
Affiliation(s)
- James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
17
|
Park CH, Tanaka T, Kim JH, Cho EJ, Park JC, Shibahara N, Yokozawa T. Hepato-protective effects of loganin, iridoid glycoside from Corni Fructus, against hyperglycemia-activated signaling pathway in liver of type 2 diabetic db/db mice. Toxicology 2011; 290:14-21. [DOI: 10.1016/j.tox.2011.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/04/2011] [Accepted: 08/06/2011] [Indexed: 01/11/2023]
|
18
|
Collier JJ, Burke SJ, Eisenhauer ME, Lu D, Sapp RC, Frydman CJ, Campagna SR. Pancreatic β-cell death in response to pro-inflammatory cytokines is distinct from genuine apoptosis. PLoS One 2011; 6:e22485. [PMID: 21829464 PMCID: PMC3146470 DOI: 10.1371/journal.pone.0022485] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/22/2011] [Indexed: 11/18/2022] Open
Abstract
A reduction in functional β-cell mass leads to both major forms of diabetes; pro-inflammatory cytokines, such as interleukin-1beta (IL-1β) and gamma-interferon (γ-IFN), activate signaling pathways that direct pancreatic β-cell death and dysfunction. However, the molecular mechanism of β-cell death in this context is not well understood. In this report, we tested the hypothesis that individual cellular death pathways display characteristic phenotypes that allow them to be distinguished by the precise biochemical and metabolic responses that occur during stimulus-specific initiation. Using 832/13 and INS-1E rat insulinoma cells and isolated rat islets, we provide evidence that apoptosis is unlikely to be the primary pathway underlying β-cell death in response to IL-1β+γ-IFN. This conclusion was reached via the experimental results of several different interdisciplinary strategies, which included: 1) tandem mass spectrometry to delineate the metabolic differences between IL-1β+γ-IFN exposure versus apoptotic induction by camptothecin and 2) pharmacological and molecular interference with either NF-κB activity or apoptosome formation. These approaches provided clear distinctions in cell death pathways initiated by pro-inflammatory cytokines and bona fide inducers of apoptosis. Collectively, the results reported herein demonstrate that pancreatic β-cells undergo apoptosis in response to camptothecin or staurosporine, but not pro-inflammatory cytokines.
Collapse
Affiliation(s)
- J Jason Collier
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, United States of America.
| | | | | | | | | | | | | |
Collapse
|
19
|
Bulat N, Jaccard E, Peltzer N, Khalil H, Yang JY, Dubuis G, Widmann C. RasGAP-derived fragment N increases the resistance of beta cells towards apoptosis in NOD mice and delays the progression from mild to overt diabetes. PLoS One 2011; 6:e22609. [PMID: 21799917 PMCID: PMC3143162 DOI: 10.1371/journal.pone.0022609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 07/01/2011] [Indexed: 12/31/2022] Open
Abstract
The caspase-3-generated RasGAP N-terminal fragment (fragment N) inhibits apoptosis in a Ras-PI3K-Akt-dependent manner. Fragment N protects various cell types, including insulin-secreting cells, against different types of stresses. Whether fragment N exerts a protective role during the development of type 1 diabetes is however not known. Non-obese diabetic (NOD) mice represent a well-known model for spontaneous development of type 1 diabetes that shares similarities with the diseases encountered in humans. To assess the role of fragment N in type 1 diabetes development, a transgene encoding fragment N under the control of the rat insulin promoter (RIP) was back-crossed into the NOD background creating the NOD-RIPN strain. Despite a mosaic expression of fragment N in the beta cell population of NOD-RIPN mice, islets isolated from these mice were more resistant to apoptosis than control NOD islets. Islet lymphocytic infiltration and occurrence of a mild increase in glycemia developed with the same kinetics in both strains. However, the period of time separating the mild increase in glycemia and overt diabetes was significantly longer in NOD-RIPN mice compared to the control NOD mice. There was also a significant decrease in the number of apoptotic beta cells in situ at 16 weeks of age in the NOD-RIPN mice. Fragment N exerts therefore a protective effect on beta cells within the pro-diabetogenic NOD background and this prevents a fast progression from mild to overt diabetes.
Collapse
Affiliation(s)
- Natasa Bulat
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Lausanne, Switzerland
| | - Evrim Jaccard
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Lausanne, Switzerland
| | - Nieves Peltzer
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Lausanne, Switzerland
| | - Hadi Khalil
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Lausanne, Switzerland
| | - Jiang-Yan Yang
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Lausanne, Switzerland
| | - Gilles Dubuis
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Luo JZ, Luo L. American ginseng stimulates insulin production and prevents apoptosis through regulation of uncoupling protein-2 in cultured beta cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 3:365-72. [PMID: 16951721 PMCID: PMC1513144 DOI: 10.1093/ecam/nel026] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
American ginseng root displays the ability to achieve glucose homeostasis both experimentally and clinically but the unknown mechanism used by ginseng to achieve its therapeutic effects on diabetes limits its application. Disruption in the insulin secretion of pancreatic β cells is considered the major cause of diabetes. A mitochondrial protein, uncoupling protein-2 (UCP-2) has been found to play a critical role in insulin synthesis and β cell survival. Our preliminary studies found that the extracts of American ginseng inhibit UCP-2 expression which may contribute to the ability of ginseng protecting β cell death and improving insulin synthesis. Therefore, we hypothesized that ginseng extracts suppress UCP-2 in the mitochondria of pancreatic β cells, promoting insulin synthesis and anti-apoptosis (a programmed cell-death mechanism). To test the hypothesis, the serum-deprived quiescent β cells were cultured with or without interleukin-1β (IL-1β), (200 pg ml−1, a cytokine to induce β cell apoptosis) and water extracts of American ginseng (25 μg per 5 μl administered to wells of 0.5 ml culture) for 24 h. We evaluated effects of ginseng on UCP-2 expression, insulin production, anti-/pro-apoptotic factors Bcl-2/caspase-9 expression and cellular ATP levels. We found that ginseng suppresses UCP-2, down-regulates caspase-9 while increasing ATP and insulin production/secretion and up-regulates Bcl-2, reducing apoptosis. These findings suggest that stimulation of insulin production and prevention of β cell loss by American ginseng extracts can occur via the inhibition of mitochondrial UCP-2, resulting in increase in the ATP level and the anti-apoptotic factor Bcl-2, while down-regulation of pro-apoptotic factor caspase-9 occurs, lowering the occurrence of apoptosis, which support the hypothesis.
Collapse
Affiliation(s)
- John Zeqi Luo
- PLME Department of Medicine, Brown UniversityProvidence, RI 02912, USA
| | - Luguang Luo
- The Center for Stem Cell Biology, Department of Research, Roger Williams HospitalProvidence, RI 02908, USA
| |
Collapse
|
21
|
Carrington EM, Kos C, Zhan Y, Krishnamurthy B, Allison J. Reducing or increasing β-cell apoptosis without inflammation does not affect diabetes initiation in neonatal NOD mice. Eur J Immunol 2011; 41:2238-47. [PMID: 21674480 DOI: 10.1002/eji.201141476] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/04/2011] [Accepted: 05/17/2011] [Indexed: 11/07/2022]
Abstract
The presentation of islet antigens in the pancreatic LNs (PLNs) of mice is a developmentally regulated process. It has been hypothesized that, during physiological tissue remodeling, a wave of neonatal β-cell apoptosis may initiate diabetes in autoimmune-prone strains of mice. If true, increasing or decreasing physiological β-cell apoptosis in neonatal NOD mice should alter the time-course of antigen presentation in the PLNs. We used transgenic over-expression of either an anti-apoptotic protein (Bcl-2) or a toxic transgene (rat insulin promoter-Kb) in mouse β cells to reduce or increase neonatal β-cell apoptosis, respectively. Neither intervention affected the timing of antigen presentation in the PLNs or the initiation of islet infiltration. This suggests that under physiological conditions and in the absence of inflammation, neonatal β-cell apoptosis in NOD mice is not the trigger for antigen presentation in the draining LNs.
Collapse
Affiliation(s)
- Emma M Carrington
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | |
Collapse
|
22
|
Campbell PD, Weinberg A, Chee J, Mariana L, Ayala R, Hawthorne WJ, O'Connell PJ, Loudovaris T, Cowley MJ, Kay TW, Grey ST, Thomas HE. Expression of pro- and antiapoptotic molecules of the Bcl-2 family in human islets postisolation. Cell Transplant 2011; 21:49-60. [PMID: 21535910 DOI: 10.3727/096368911x566262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human islets are subjected to a number of stresses before and during their isolation that may influence their survival and engraftment after transplantation. Apoptosis is likely to be activated in response to these stresses. Apoptosis due to intrinsic stresses is regulated by pro- and antiapoptotic members of the Bcl-2 family. While the role of the Bcl-2 family in apoptosis of rodent islets is becoming increasingly understood, little is known about which of these molecules are expressed or required for apoptosis of human islets. This study investigated the expression of the Bcl-2 family of molecules in isolated human islets. RNA and protein lysates were extracted from human islets immediately postisolation. At the same time, standard quality control assays including viability staining and β-cell content were performed on each islet preparation. Microarrays, RT-PCR, and Western blotting were performed on islet RNA and protein. The prosurvival molecules Bcl-xl and Mcl-1, but not Bcl-2, were highly expressed. The multidomain proapoptotic effector molecule Bax was expressed at higher levels than Bak. Proapoptotic BH3-only molecules were expressed at low levels, with Bid being the most abundant. The proapoptotic molecules BNIP3, BNIP3L, and Beclin-1 were all highly expressed, indicating exposure of islets to oxygen and nutrient deprivation during isolation. Our data provide a comprehensive analysis of expression levels of pro- and antiapoptotic Bcl-2 family members in isolated human islets. Knowledge of which molecules are expressed will guide future research to understand the apoptotic pathways activated during isolation or after transplantation. This is crucial for the design of methods to achieve improved transplantation outcomes.
Collapse
|
23
|
CHOP deletion does not impact the development of diabetes but suppresses the early production of insulin autoantibody in the NOD mouse. Apoptosis 2011; 16:438-48. [DOI: 10.1007/s10495-011-0576-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Mai J, Wang H, Yang XF. Th 17 cells interplay with Foxp3+ Tregs in regulation of inflammation and autoimmunity. Front Biosci (Landmark Ed) 2010; 15:986-1006. [PMID: 20515737 DOI: 10.2741/3657] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T helper 17 cells (Th17) are a new CD4+ T helper subset that has been implicated in inflammatory and autoimmune diseases. Th17, along with CD4(+)CD25(high) Foxp3(+) regulatory T cells (Tregs) and other new T helper subsets, have expanded the Th1-Th2 paradigm. Although this new eight-subset paradigm significantly improved our understanding on the differentiation and regulation of CD4+ T helper subsets, many questions remain to be answered. Here we will briefly review the following issues: a) Old Th1-Th2 paradigm versus new multi-subset paradigm; b) Structural features of IL-17 family cytokines; c) Th17 cells; d) Effects of IL-17 on various cell types and tissues; e) IL-17 receptor and signaling pathways; f) Th17-mediated inflammations; and g) Protective mechanisms of IL-17 in infections. Lastly, we will examine the interactions of Th17 and Treg in autoimmune diseases and inflammation: Th17 cells interplay with Tregs. Regulation of autoimmunity and inflammation lies in the interplays of the different T helper subsets, therefore, better understanding of these subsets' interactions would greatly improve our approaches in developing therapy to combat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jietang Mai
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
25
|
Abstract
Cellular apoptosis induced by T cells is mainly mediated by two pathways. One, granule exocytosis utilizes perforin/granzymes. The other involves signaling through death receptors of the TNF-alpha R super-family, especially FasL. Perforin plays a central role in apoptosis induced by granzymes. However, the mechanisms of perforin-mediated cytotoxicity are still not elucidated completely. Perforin is not only a pore-forming protein, but also performs multiple biological functions or perforin performs one biological function (cytolysis), but has multiple biological implications in the cellular immune responses, including regulation of proliferation of CD8+ CTLs.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Neurology, 300 Jefferson Hospital for Neurosciences Building, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA. [corrected]
| |
Collapse
|
26
|
McKenzie MD, Jamieson E, Jansen ES, Scott CL, Huang DC, Bouillet P, Allison J, Kay TW, Strasser A, Thomas HE. Glucose induces pancreatic islet cell apoptosis that requires the BH3-only proteins Bim and Puma and multi-BH domain protein Bax. Diabetes 2010; 59:644-52. [PMID: 19959756 PMCID: PMC2828664 DOI: 10.2337/db09-1151] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE High concentrations of circulating glucose are believed to contribute to defective insulin secretion and beta-cell function in diabetes and at least some of this effect appears to be caused by glucose-induced beta-cell apoptosis. In mammalian cells, apoptotic cell death is controlled by the interplay of proapoptotic and antiapoptotic members of the Bcl-2 family. We investigated the apoptotic pathway induced in mouse pancreatic islet cells after exposure to high concentrations of the reducing sugars ribose and glucose as a model of beta-cell death due to long-term metabolic stress. RESEARCH DESIGN AND METHODS Islets isolated from mice lacking molecules implicated in cell death pathways were exposed to high concentrations of glucose or ribose. Apoptosis was measured by analysis of DNA fragmentation and release of mitochondrial cytochrome c. RESULTS Deficiency of interleukin-1 receptors or Fas did not diminish apoptosis, making involvement of inflammatory cytokine receptor or death receptor signaling in glucose-induced apoptosis unlikely. In contrast, overexpression of the prosurvival protein Bcl-2 or deficiency of the apoptosis initiating BH3-only proteins Bim or Puma, or the downstream apoptosis effector Bax, markedly reduced glucose- or ribose-induced killing of islets. Loss of other BH3-only proteins Bid or Noxa, or the Bax-related effector Bak, had no impact on glucose-induced apoptosis. CONCLUSIONS These results implicate the Bcl-2 regulated apoptotic pathway in glucose-induced islet cell killing and indicate points in the pathway at which interventional strategies can be designed.
Collapse
Affiliation(s)
- Mark D. McKenzie
- St. Vincent's Institute, Melbourne, Australia
- The University of Melbourne Department of Medicine, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | | | - Elisa S. Jansen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - Thomas W.H. Kay
- St. Vincent's Institute, Melbourne, Australia
- The University of Melbourne Department of Medicine, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Helen E. Thomas
- St. Vincent's Institute, Melbourne, Australia
- The University of Melbourne Department of Medicine, St. Vincent's Hospital, Melbourne, Victoria, Australia
- Corresponding author: Helen E. Thomas,
| |
Collapse
|
27
|
Abstract
Apoptosis of beta cells is a feature of both type 1 and type 2 diabetes as well as loss of islets after transplantation. In type 1 diabetes, beta cells are destroyed by immunological mechanisms. In type 2 diabetes abnormal levels of metabolic factors contribute to beta cell failure and subsequent apoptosis. Loss of beta cells after islet transplantation is due to many factors including the stress associated with islet isolation, primary graft non-function and allogeneic graft rejection. Irrespective of the exact mediators, highly conserved intracellular pathways of apoptosis are triggered. This review will outline the molecular mediators of beta cell apoptosis and the intracellular pathways activated.
Collapse
Affiliation(s)
- Helen E Thomas
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, VIC 3065, Australia.
| | | | | | | | | |
Collapse
|
28
|
Carrington EM, McKenzie MD, Jansen E, Myers M, Fynch S, Kos C, Strasser A, Kay TW, Scott CL, Allison J. Islet beta-cells deficient in Bcl-xL develop but are abnormally sensitive to apoptotic stimuli. Diabetes 2009; 58:2316-23. [PMID: 19581414 PMCID: PMC2750233 DOI: 10.2337/db08-1602] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Bcl-xL is an antiapoptotic member of the Bcl-2 family of proteins and a potent regulator of cell death. We investigated the importance of Bcl-xL for beta-cells by deleting the Bcl-x gene specifically in beta-cells and analyzing their survival in vivo and in culture. RESEARCH DESIGN AND METHODS Islets with beta-cells lacking the Bcl-x gene were assessed in vivo by histology and by treatment of mice with low-dose streptozotocin (STZ). Islets were isolated by collagenase digestion and treated in culture with the apoptosis inducers staurosporine, thapsigargin, gamma-irradiation, proinflammatory cytokines, or Fas ligand. Cell death was assessed by flow cytometric analysis of subgenomic DNA. RESULTS Bcl-xL-deficient beta-cells developed but were abnormally sensitive to apoptosis induced in vivo by low-dose STZ. Although a small proportion of beta-cells still expressed Bcl-xL, these did not have a survival advantage over their Bcl-xL-deficient neighbors. Islets appeared normal after collagenase isolation and whole-islet culture. They were, however, abnormally sensitive in culture to a number of different apoptotic stimuli including cytotoxic drugs, proinflammatory cytokines, and Fas ligand. CONCLUSIONS Bcl-xL expression in beta-cells is dispensible during islet development in the mouse. Bcl-xL is, however, an important regulator of beta-cell death under conditions of synchronous stress. Bcl-xL expression at physiological levels may partially protect beta-cells from apoptotic stimuli, including apoptosis because of mediators implicated in type 1 diabetes and death or degeneration of transplanted islets.
Collapse
Affiliation(s)
- Emma M. Carrington
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | | | - Elisa Jansen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Michelle Myers
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Stacey Fynch
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Cameron Kos
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Thomas W. Kay
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Janette Allison
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Corresponding author: Janette Allison,
| |
Collapse
|
29
|
McKenzie MD, Carrington EM, Kaufmann T, Strasser A, Huang DCS, Kay TWH, Allison J, Thomas HE. Proapoptotic BH3-only protein Bid is essential for death receptor-induced apoptosis of pancreatic beta-cells. Diabetes 2008; 57:1284-92. [PMID: 18252892 DOI: 10.2337/db07-1692] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Apoptosis of pancreatic beta-cells is critical in both diabetes development and failure of islet transplantation. The role in these processes of pro- and antiapoptotic Bcl-2 family proteins, which regulate apoptosis by controlling mitochondrial integrity, remains poorly understood. We investigated the role of the BH3-only protein Bid and the multi-BH domain proapoptotic Bax and Bak, as well as prosurvival Bcl-2, in beta-cell apoptosis. RESEARCH DESIGN AND METHODS We isolated islets from mice lacking Bid, Bax, or Bak and those overexpressing Bcl-2 and exposed them to Fas ligand, tumor necrosis factor (TNF)-alpha, and proinflammatory cytokines or cytotoxic stimuli that activate the mitochondrial apoptotic pathway (staurosporine, etoposide, gamma-radiation, tunicamycin, and thapsigargin). Nuclear fragmentation was measured by flow cytometry. RESULTS Development and function of islets were not affected by loss of Bid, and Bid-deficient islets were as susceptible as wild-type islets to cytotoxic stimuli that cause apoptosis via the mitochondrial pathway. In contrast, Bid-deficient islets and those overexpressing antiapoptotic Bcl-2 were protected from Fas ligand-induced apoptosis. Bid-deficient islets were also resistant to apoptosis induced by TNF-alpha plus cycloheximide and were partially resistant to proinflammatory cytokine-induced death. Loss of the multi-BH domain proapoptotic Bax or Bak protected islets partially from death receptor-induced apoptosis. CONCLUSIONS These results demonstrate that Bid is essential for death receptor-induced apoptosis of islets, similar to its demonstrated role in hepatocytes. This indicates that blocking Bid activity may be useful for protection of islets from immune-mediated attack and possibly also in other pathological states in which beta-cells are destroyed.
Collapse
Affiliation(s)
- Mark D McKenzie
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria, 3065, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Emamaullee JA, Shapiro AMJ. Interventional strategies to prevent beta-cell apoptosis in islet transplantation. Diabetes 2006; 55:1907-14. [PMID: 16804057 DOI: 10.2337/db05-1254] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A substantial proportion of the transplanted islet mass fails to engraft due to death by apoptosis, and a number of strategies have been explored to inhibit beta-cell loss. Inhibition of extrinsic signals of apoptosis (i.e., cFLIP or A20) have been explored in experimental islet transplantation but have only shown limited impact. Similarly, strategies targeted at intrinsic signal inhibition (i.e., BCL-2) have not yet provided substantial improvement in islet engraftment. Recently, investigation of downstream apoptosis inhibitors that block the final common pathway (i.e., X-linked inhibitor of apoptosis protein [XIAP]) have demonstrated promise in both human and rodent models of engraftment. In addition, XIAP has enhanced long-term murine islet allograft survival. The complexities of both intrinsic and extrinsic apoptotic pathway inhibition are discussed in depth.
Collapse
Affiliation(s)
- Juliet A Emamaullee
- Surgical Medical Research Institute, University of Alberta, Edmonton, AB T6G 2N8.
| | | |
Collapse
|
31
|
Collier JJ, Fueger PT, Hohmeier HE, Newgard CB. Pro- and antiapoptotic proteins regulate apoptosis but do not protect against cytokine-mediated cytotoxicity in rat islets and beta-cell lines. Diabetes 2006; 55:1398-406. [PMID: 16644697 DOI: 10.2337/db05-1000] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes results from islet beta-cell death and dysfunction induced by an autoimmune mechanism. Proinflammatory cytokines such as interleukin-1beta and gamma-interferon are mediators of this beta-cell cytotoxicity, but the mechanism by which damage occurs is not well understood. In the current study, we present multiple lines of evidence supporting the conclusion that cytokine-induced killing of rat beta-cells occurs predominantly by a nonapoptotic mechanism, including the following: 1) A rat beta-cell line selected for resistance to cytokine-induced cytotoxicity (833/15) is equally sensitive to killing by the apoptosis-inducing agents camptothecin and etoposide as a cytokine-sensitive cell line (832/13). 2) Overexpression of a constitutively active form of the antiapoptotic protein kinase Akt1 in 832/13 cells provides significant protection against cell killing induced by camptothecin and etoposide but no protection against cytokine-mediated damage. 3) Small interfering RNA-mediated suppression of the proapoptotic protein Bax enhances viability of 832/13 cells upon exposure to the known apoptosis-inducing drugs but not the inflammatory cytokines. 4) Exposure of primary rat islets or 832/13 cells to the inflammatory cytokines causes cell death as evidenced by the release of adenylate kinase activity into the cell medium, with no attendant increase in caspase 3 activation or annexin V staining. In contrast, camptothecin- and etoposide-induced killing is associated with robust increases in caspase 3 activation and annexin V staining. 5) Camptothecin increases cellular ATP levels, whereas inflammatory cytokines lower ATP levels in both beta-cell lines and primary islets. We conclude that proinflammatory cytokines cause beta-cell cytotoxicity primarily through a nonapoptotic mechanism linked to a decline in ATP levels.
Collapse
Affiliation(s)
- J Jason Collier
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Duke Independence Park Facility, 4321 Medical Park Drive, Suite 200, Durham, NC 27704, USA
| | | | | | | |
Collapse
|
32
|
Sutton VR, Estella E, Li C, Chen M, Thomas HE, Kay TW, Trapani JA. A critical role for granzyme B, in addition to perforin and TNFalpha, in alloreactive CTL-induced mouse pancreatic beta cell death. Transplantation 2006; 81:146-54. [PMID: 16436955 DOI: 10.1097/01.tp.0000191939.68451.d9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND The precise effector mechanisms and molecular mediators used by alloreactive cytotoxic T lymphocytes to kill transplanted pancreatic beta cells are poorly defined. We have used mouse (H2b-anti-d) CTLs raised in strains deficient in various key cytotoxic effector molecules to assess the importance of the various signaling pathways mobilized to kill primary mouse pancreatic islet cells, the beta cell line NIT-1, and NIT-1 cells overexpressing dominant-negative FADD and Bcl-2. METHODS Death of target cells was assessed using 51Cr release assays. RESULTS In short-term assays (<5 hours) beta cell death did not require a functional FasL/Fas pathway, and was not inhibited by Bcl-2. However, the absence of either perforin or granzyme B resulted in cell survival. By contrast, a crucial role for granzyme B was not seen when hematopoietic P815 cells were used as targets, indicating differential regulation of apoptosis. Interestingly, coincubation with CTL for 24 hours revealed an additional but less potent "late phase" of beta cell death that did not require perforin. This delayed death was blocked by dominant-negative FADD, but not by Bcl-2, and was likely to be due to TNFalpha secretion. CONCLUSIONS This study suggests that strategies to protect beta cells from allogeneic CTL attack will need to inhibit the perforin/granzyme and probably also the TNFalpha pathway. As there are no known pharmacological approaches to blocking perforin, therapeutic approaches based on overexpressing both dominant negative FADD and an inhibitor of granzyme B may hold promise in prolonging beta cell survival in the allogeneic setting.
Collapse
Affiliation(s)
- Vivien R Sutton
- Cancer Immunology Program, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005; 54 Suppl 2:S97-107. [PMID: 16306347 DOI: 10.2337/diabetes.54.suppl_2.s97] [Citation(s) in RCA: 1109] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 and type 2 diabetes are characterized by progressive beta-cell failure. Apoptosis is probably the main form of beta-cell death in both forms of the disease. It has been suggested that the mechanisms leading to nutrient- and cytokine-induced beta-cell death in type 2 and type 1 diabetes, respectively, share the activation of a final common pathway involving interleukin (IL)-1beta, nuclear factor (NF)-kappaB, and Fas. We review herein the similarities and differences between the mechanisms of beta-cell death in type 1 and type 2 diabetes. In the insulitis lesion in type 1 diabetes, invading immune cells produce cytokines, such as IL-1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma. IL-1beta and/or TNF-alpha plus IFN-gamma induce beta-cell apoptosis via the activation of beta-cell gene networks under the control of the transcription factors NF-kappaB and STAT-1. NF-kappaB activation leads to production of nitric oxide (NO) and chemokines and depletion of endoplasmic reticulum (ER) calcium. The execution of beta-cell death occurs through activation of mitogen-activated protein kinases, via triggering of ER stress and by the release of mitochondrial death signals. Chronic exposure to elevated levels of glucose and free fatty acids (FFAs) causes beta-cell dysfunction and may induce beta-cell apoptosis in type 2 diabetes. Exposure to high glucose has dual effects, triggering initially "glucose hypersensitization" and later apoptosis, via different mechanisms. High glucose, however, does not induce or activate IL-1beta, NF-kappaB, or inducible nitric oxide synthase in rat or human beta-cells in vitro or in vivo in Psammomys obesus. FFAs may cause beta-cell apoptosis via ER stress, which is NF-kappaB and NO independent. Thus, cytokines and nutrients trigger beta-cell death by fundamentally different mechanisms, namely an NF-kappaB-dependent mechanism that culminates in caspase-3 activation for cytokines and an NF-kappaB-independent mechanism for nutrients. This argues against a unifying hypothesis for the mechanisms of beta-cell death in type 1 and type 2 diabetes and suggests that different approaches will be required to prevent beta-cell death in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Miriam Cnop
- Laboratory of Experimental Medicine, Faculty of Medicine, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, CP-618, 1070 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
34
|
Huber C, Bobek N, Kuball J, Thaler S, Hoffarth S, Huber C, Theobald M, Schuler M. Inhibitors of apoptosis confer resistance to tumour suppression by adoptively transplanted cytotoxic T-lymphocytes in vitro and in vivo. Cell Death Differ 2005; 12:317-25. [PMID: 15678149 DOI: 10.1038/sj.cdd.4401563] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Deregulation of apoptosis signalling is commonly found in cancer and results in resistance to cytotoxic therapies. Immunotherapy is a promising strategy to eliminate resistant cancer cells. The transfer of T-lymphocytes during allogeneic stem cell transplantation is clinically explored to induce a 'graft-versus-tumor' effect (GvT). Cytotoxic T-lymphocytes (CTL), which are major effectors of GvT, eliminate cancer cells by inducing apoptosis via multiple parallel pathways. Here, we study in vitro and in vivo the susceptibility of murine cancer cells engineered to express single antiapoptotic genes to CTL-mediated cytotoxicity. Interestingly, we find that single inhibitors of caspase activation, such as BCL-XL or dominant-negative mutants of FADD and caspase-9, protect cancer cells against antigen-specific CTL in vitro. Moreover, expression of BCL-XL impairs the growth suppression by adoptively transplanted CTL of established tumours in vivo. Hence, apoptosis defects that provide protection to cytotoxic cancer therapies can confer crossresistance to immunotherapy by tumour-reactive CTL.
Collapse
Affiliation(s)
- C Huber
- Gene Therapy Laboratory, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Allison J, Thomas HE, Catterall T, Kay TWH, Strasser A. Transgenic expression of dominant-negative Fas-associated death domain protein in beta cells protects against Fas ligand-induced apoptosis and reduces spontaneous diabetes in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:293-301. [PMID: 15972661 DOI: 10.4049/jimmunol.175.1.293] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In type 1 diabetes, many effector mechanisms damage the beta cell, a key one being perforin/granzyme B production by CD8(+) T cells. The death receptor pathway has also been implicated in beta cell death, and we have therefore generated NOD mice that express a dominant-negative form of the Fas-associated death domain protein (FADD) adaptor to block death receptor signaling in beta cells. Islets developed normally in these animals, indicating that FADD is not necessary for beta cell development as it is for vasculogenesis. beta cells from the transgenic mice were resistant to killing via the Fas pathway in vitro. In vivo, a reduced incidence of diabetes was found in mice with higher levels of dominant-negative FADD expression. This molecule also blocked signals from the IL-1R in culture, protecting isolated islets from the toxic effects of cytokines and also marginally reducing the levels of Fas up-regulation. These data support a role for death receptors in beta cell destruction in NOD mice, but blocking the perforin/granzyme pathway would also be necessary for dominant-negative FADD to have a beneficial clinical effect.
Collapse
Affiliation(s)
- Janette Allison
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia.
| | | | | | | | | |
Collapse
|
36
|
Ou D, Wang X, Metzger DL, James RFL, Pozzilli P, Plesner A, Korneluk RG, Verchere CB, Tingle AJ. Synergistic inhibition of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human pancreatic β cells by Bcl-2 and X-linked inhibitor of apoptosis. Hum Immunol 2005; 66:274-84. [PMID: 15784465 DOI: 10.1016/j.humimm.2004.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 11/29/2004] [Accepted: 12/01/2004] [Indexed: 11/24/2022]
Abstract
To better understand the cytokine death-signal transduction pathways in human beta cells, we investigated the inhibitory effects of Bcl-2 (protooncogene bcl-2) and X-linked inhibitor of apoptosis (XIAP) on TRAIL (TNF-related apoptosis-inducing ligand)-induced human beta-cell destruction. A panel of Bcl-2-overexpressing transfectants of the human beta-cell lines NES2Y and CM was developed by transfection with a pEFpGKpuro vector containing Bcl-2 or an empty vector as a control. TRAIL-induced cytotoxicity and apoptosis of Bcl-2-overexpressing beta cells were clearly decreased, in comparison with wild-type cells and the empty vector transfectants. XIAP-overexpressing CM, NES2Y, and primary islet cells were generated by exposing cells to recombinant adenovirus-expressing XIAP (AdXIAP) or AdLacz as a control. TRAIL-induced cytotoxicity and apoptosis of CM, NES2Y, and primary islet cells infected with AdXIAP were clearly reduced compared with controls. Interestingly, cytotoxicity induced by TRAIL in human beta cells transfected with both Bcl-2 and AdXIAP was much less than that observed in human beta cells transfected with either Bcl-2 or XIAP alone (p < 0.005 in CM and p < 0.03 in NES2Y). Overexpression of both Bcl-2 and XIAP inhibited TRAIL-induced activation of caspases as well as TRAIL-mediated damage of mitochondrial function in cells, suggesting possible regulatory mechanisms. These results indicate that Bcl-2 and XIAP synergistically inhibit TRAIL-mediated death pathways in human beta cells.
Collapse
Affiliation(s)
- Dawei Ou
- Department of Pediatrics, University of British Columbia, British Columbia, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Klein D, Ribeiro MM, Mendoza V, Jayaraman S, Kenyon NS, Pileggi A, Molano RD, Inverardi L, Ricordi C, Pastori RL. Delivery of Bcl-XL or its BH4 domain by protein transduction inhibits apoptosis in human islets. Biochem Biophys Res Commun 2004; 323:473-8. [PMID: 15369775 DOI: 10.1016/j.bbrc.2004.08.116] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Indexed: 11/16/2022]
Abstract
Viability of isolated islets is one of the main obstacles limiting islet transplantation success. It has been reported that overexpression of Bcl-2/Bcl-XL proteins enhances islet viability. To avoid potential complications associated with long-term expression of anti-apoptotic proteins, we investigated the possibility of delivering Bcl-XL or its anti-apoptotic domain BH4 to islets by protein transduction. Bcl-XL and BH4 molecules were fused to TAT/PTD, the 11-aa cell penetrating peptide from HIV-1 transactivating protein, generating TAT-Bcl-XL and TAT-BH4, respectively. Transduction efficiency was assessed by laser scanning confocal microscopy of live islets. Biological activity was tested as the ability to protect NIT-1 insulinoma cell line from death induced by staurosporine or serum deprivation. Spontaneous caspase activation in human islets and cytotoxicity caused by IL-1beta were significantly reduced in the presence of TAT-Bcl-XL and TAT-BH4. We conclude that both TAT proteins are biologically active after transduction and could be an asset in the improvement of islet viability.
Collapse
Affiliation(s)
- Dagmar Klein
- Diabetes Research Institute, University of Miami School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hui H, Dotta F, Di Mario U, Perfetti R. Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J Cell Physiol 2004; 200:177-200. [PMID: 15174089 DOI: 10.1002/jcp.20021] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The homeostatic control of beta-cell mass in normal and pathological conditions is based on the balance of proliferation, differentiation, and death of the insulin-secreting cells. A considerable body of evidence, accumulated during the last decade, has emphasized the significance of the disregulation of the mechanisms regulating the apoptosis of beta-cells in the sequence of events that lead to the development of diabetes. The identification of agents capable of interfering with this process needs to be based on a better understanding of the beta-cell specific pathways that are activated during apoptosis. The aim of this article is fivefold: (1) a review of the evidence for beta-cell apoptosis in Type I diabetes, Type II diabetes, and islet transplantation, (2) to review the common stimuli and their mechanisms in pancreatic beta-cell apoptosis, (3) to review the role of caspases and their activation pathway in beta-cell apoptosis, (4) to review the caspase cascade and morphological cellular changes in apoptotic beta-cells, and (5) to highlight the putative strategies for preventing pancreatic beta-cells from apoptosis.
Collapse
Affiliation(s)
- Hongxiang Hui
- Division of Diabetes, Endocrinology and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | |
Collapse
|
39
|
Sutherland RM, Allison J, Thomas HE, Brady JL, Kay TWH, Lew AM. Bcl-2 PROTECTION OF ISLET ALLOGRAFTS IS UNMASKED BY COSTIMULATION BLOCKADE. Transplantation 2004; 77:1610-3. [PMID: 15239630 DOI: 10.1097/01.tp.0000132283.95107.9c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One major limitation in pancreatic islet transplantation is availability of donor tissue. Donor shortage is exacerbated by islet apoptosis from the stresses of islet isolation and transplantation. Furthermore, the side effects of immunosuppressive drugs preclude transplants into patients whose diabetes is controlled by parenteral insulin. We hypothesised that over-expressing anti-apoptotic Bcl-2 or secretion of immunomodulatory CTLA4Ig molecules in islet beta cells would enhance survival of transplanted islets while minimizing systemic side effects. Over-expression of Bcl-2 neither significantly increased preservation of islet cell mass after transplantation into immunocompromised recipients nor decreased cytokine-mediated apoptosis in vitro. Although Bcl-2 over-expression alone was insufficient in protecting islet allografts from rejection, its beneficence was shown by the enhancement of protection when the adaptive immune response was inhibited by locally produced CTLA4Ig. Thus, the combination of anti-apoptotic and immunosuppressive intervention has additive or synergistic efficacy and may reduce the level of systemic immunosuppression or quantity of donor tissue required.
Collapse
Affiliation(s)
- Robyn M Sutherland
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Hickman MJ, Samson LD. Apoptotic signaling in response to a single type of DNA lesion, O(6)-methylguanine. Mol Cell 2004; 14:105-16. [PMID: 15068807 DOI: 10.1016/s1097-2765(04)00162-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/16/2004] [Accepted: 02/23/2004] [Indexed: 11/30/2022]
Abstract
Until now, it has been difficult to establish exactly how a specific DNA lesion signals apoptosis because each DNA damaging agent produces a collection of distinct DNA lesions and produces damage in RNA, protein, and lipids. We have developed a system in human cells that focuses on the response to a single type of DNA lesion, namely O(6)-methylguanine (O(6)MeG). We dissect the signaling pathways involved in O(6)MeG-induced apoptosis, a response dependent on the MutSalpha heterodimer that is normally involved in DNA mismatch repair. O(6)MeG triggers robust activation of caspases associated with both death receptor- and mitochondrial-mediated apoptosis. Despite this, O(6)MeG/MutSalpha-triggered apoptosis is only partly dependent on caspase activation; moreover, it is mediated solely by mitochondrial signaling and not at all by death receptor signaling. Finally, while Bcl-2 and Bcl-x(L), negative regulators of mitochondrial-regulated apoptosis, could effectively block O(6)MeG/MutSalpha-dependent apoptosis, they were unable to prevent the cells from ultimately dying.
Collapse
Affiliation(s)
- Mark J Hickman
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
41
|
Chen W, Salojin KV, Mi QS, Grattan M, Meagher TC, Zucker P, Delovitch TL. Insulin-like growth factor (IGF)-I/IGF-binding protein-3 complex: therapeutic efficacy and mechanism of protection against type 1 diabetes. Endocrinology 2004; 145:627-38. [PMID: 14617576 DOI: 10.1210/en.2003-1274] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IGF-I regulates islet beta-cell growth, survival, and metabolism and protects against type 1 diabetes (T1D). However, the therapeutic efficacy of free IGF-I may be limited by its biological half-life in vivo. We investigated whether prolongation of its half-life as an IGF-I/IGF binding protein (IGFBP)-3 complex affords increased protection against T1D and whether this occurs by influencing T cell function and/or islet beta-cell growth and survival. Administration of IGF-I either alone or as an IGF-I/IGFBP-3 complex reduced the severity of insulitis and delayed the onset of T1D in nonobese diabetic mice, but IGF-I/IGFBP-3 was significantly more effective. Protection from T1D elicited by IGF-I/IGFBP-3 was mediated by up-regulated CCL4 and down-regulated CCL3 gene expression in pancreatic draining lymph nodes, activation of the phosphatidylinositol 3-kinase and Akt/protein kinase B signaling pathway of beta-cells, reduced beta-cell apoptosis, and stimulation of beta-cell replication. Reduced beta-cell apoptosis resulted from elevated Bcl-2 and Bcl-X(L) activity and diminished caspase-9 activity, indicating a novel role for a mitochondrial-dependent pathway of beta-cell death. Thus, IGF-I/IGFBP-3 affords more efficient protection from insulitis, beta-cell destruction, and T1D than IGF-I, and this complex may represent an efficacious therapeutic treatment for the prevention of T1D.
Collapse
Affiliation(s)
- Wei Chen
- Autoimmunity/Diabetes Group, Robarts Research Institute, 1400 Western Road, London, Ontario N6G 2V4, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Grey ST, Longo C, Shukri T, Patel VI, Csizmadia E, Daniel S, Arvelo MB, Tchipashvili V, Ferran C. Genetic engineering of a suboptimal islet graft with A20 preserves beta cell mass and function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6250-6. [PMID: 12794157 DOI: 10.4049/jimmunol.170.12.6250] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transplantation of an excessive number of islets of Langerhans (two to four pancreata per recipient) into patients with type I diabetes is required to restore euglycemia. Hypoxia, nutrient deprivation, local inflammation, and the beta cell inflammatory response (up-regulation of NF-kappaB-dependent genes such as inos) result in beta cell destruction in the early post-transplantation period. Genetic engineering of islets with anti-inflammatory and antiapoptotic genes may prevent beta cell loss and primary nonfunction. We have shown in vitro that A20 inhibits NF-kappaB activation in islets and protects from cytokine- and death receptor-mediated apoptosis. In vivo, protection of newly transplanted islets would reduce the number of islets required for successful transplantation. Transplantation of 500 B6/AF(1) mouse islets into syngeneic, diabetic recipients resulted in a cure rate of 100% within 5 days. Transplantation of 250 islets resulted in a cure rate of only 20%. Transplantation of 250 islets overexpressing A20 resulted in a cure rate of 75% with a mean time to cure of 5.2 days, comparable to that achieved with 500 islets. A20-expressing islets preserve functional beta cell mass and are protected from cell death. These data demonstrate that A20 is an ideal cytoprotective gene therapy candidate for islet transplantation.
Collapse
Affiliation(s)
- Shane T Grey
- Immunobiology Research Center, Department of Surgery and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cattan P, Rottembourg D, Cottet S, Tardivel I, Dupraz P, Thorens B, Boitard C, Carel JC. Destruction of conditional insulinoma cell lines in NOD mice: a role for autoimmunity. Diabetologia 2003; 46:504-10. [PMID: 12739022 DOI: 10.1007/s00125-003-1062-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Revised: 12/04/2002] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS betaTC-tet (H2(k)) is a conditional insulinoma cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Transgenic expression of several proteins implicated in the apoptotic pathways increase the resistance of betaTC-tet cells in vitro. We tested in vivo the sensitivity of the cells to rejection and the protective effect of genetic alterations in NOD mice. METHODS betaTC-tet cells and genetically engineered lines expressing Bcl-2 (CDM3D), a dominant negative mutant of MyD88 or SOCS-1 were transplanted in diabetic female NOD mice or in male NOD mice with diabetes induced by high-dose streptozotocin. Survival of functional cell grafts in NOD-scid mice was also analyzed after transfer of splenocytes from diabetic NOD mice. Autoreactive T-cell hybridomas and splenocytes from diabetic NOD mice were stimulated by betaTC-tet cells. RESULTS betaTC-tet cells and genetically engineered cell lines were all similarly rejected in diabetic NOD mice and in NOD-scid mice after splenocyte transfer. In 3- to 6-week-old male NOD mice treated with high-dose streptozotocin, the cells temporarily survived, in contrast with C57BL/6 mice treated with high-dose streptozotocin (indefinite survival) and untreated 3- to 6-week-old male NOD mice (rejection). The protective effect of high-dose streptozotocin was lost in older male NOD mice. betaTC-tet cells did not stimulate autoreactive T-cell hybridomas, but induced IL-2 secretion by splenocytes from diabetic NOD mice. CONCLUSION/INTERPRETATION The autoimmune process seems to play an important role in the destruction of betaTC-tet cells in NOD mice. Genetic manipulations intended at increasing the resistance of beta cells were inefficient. Similar approaches should be tested in vivo as well as in vitro. High dose streptozotocin influences immune rejection and should be used with caution.
Collapse
Affiliation(s)
- P Cattan
- INSERM U561, Groupe hospitalier Cochin-Saint Vincent de Paul, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Efrat S. Preventing type 1 diabetes mellitus: the promise of gene therapy. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 2:129-34. [PMID: 12083947 DOI: 10.2165/00129785-200202020-00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type 1 (insulin-dependent) diabetes mellitus is an autoimmune disease that has no cure. Closed-loop insulin administration strategies and approaches for replacement of the insulin-producing beta cells may offer improved treatments, which could delay or prevent diabetes complications. In the long run, however, prevention of type 1 diabetes in susceptible individuals represents the best chance for reducing the toll of the disease. Prevention of type 1 diabetes will require reliable methods for early diagnosis of predisposition to the disease, using improved genetic and serological screening on a wide scale. Identification of the primary antigenic target(s) for autoimmunity will allow intervention in prediabetes stages aimed at the induction of antigen-specific tolerance. In addition to manipulation of the immune system, the susceptibility of beta cells to autoimmunity could be reduced. A number of genes have been shown to increase beta-cell resistance to immune effector molecules in animal models and cultured beta-cell lines. These genes could be used for preventive gene therapy of type 1 diabetes mellitus if expressed in beta cells prior to the onset of autoimmune destruction. This prospect depends on the development of safe and efficient vectors, and approaches for cell-specific targeting of these vectors to beta cells in vivo.
Collapse
Affiliation(s)
- Shimon Efrat
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
Adenoviral-Induced Islet Cell Cytotoxicity Is Not Counteracted by Bcl-2 Overexpression. Mol Med 2002. [DOI: 10.1007/bf03402037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2:735-47. [PMID: 12360212 DOI: 10.1038/nri911] [Citation(s) in RCA: 840] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Perforin/granzyme-induced apoptosis is the main pathway used by cytotoxic lymphocytes to eliminate virus-infected or transformed cells. Studies in gene-disrupted mice indicate that perforin is vital for cytotoxic effector function; it has an indispensable, but undefined, role in granzyme-mediated apoptosis. Despite its vital importance, the molecular and cellular functions of perforin and the basis of perforin and granzyme synergy remain poorly understood. The purpose of this review is to evaluate critically recent findings on cytotoxic granule-mediated cell death and to assess the functional significance of postulated cell-death pathways in appropriate pathophysiological contexts, including virus infection and susceptibility to experimental or spontaneous tumorigenesis.
Collapse
Affiliation(s)
- Joseph A Trapani
- Cancer Immunology Laboratory, Trescowthick Research Laboratories, Research Division, Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett Street, Melbourne 8006, Australia.
| | | |
Collapse
|
47
|
Cebrian A, García-Ocaña A, Takane KK, Sipula D, Stewart AF, Vasavada RC. Overexpression of parathyroid hormone-related protein inhibits pancreatic beta-cell death in vivo and in vitro. Diabetes 2002; 51:3003-13. [PMID: 12351440 DOI: 10.2337/diabetes.51.10.3003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreatic beta-cell survival is critical in the setting of diabetes as well as in islet transplantation. Transgenic mice overexpressing parathyroid hormone-related protein (PTHrP) targeted to beta-cells using the rat insulin II promoter (RIP) display hyperinsulinemia, hypoglycemia, and islet hyperplasia, without a concomitant increase in beta-cell proliferation rate or enlargement of individual beta-cell size. Thus, the mechanism for increased beta-cell mass is unknown. In this study, we demonstrated that beta-cells of transgenic mice are resistant to the cytotoxic effects of streptozotocin (STZ) in vivo, as documented by a sixfold reduction in the rate of STZ-induced beta-cell death in RIP-PTHrP mice relative to their normal siblings. The reduced cell death in transgenic mice is due neither to their increased islet mass nor to a decrease in their sensing of STZ, but rather results from PTHrP-induced resistance to beta-cell death. This is also demonstrated in vitro by markedly reduced cell death rates observed in beta-cells of transgenic mice compared with normal mice when cultured in the absence of serum and glucose or in the presence of STZ. Finally, we demonstrated that NH(2)-terminal PTHrP inhibits beta-cell death. These findings support the concept that PTHrP overexpression increases islet mass in transgenic mice through inhibition of beta-cell death.
Collapse
Affiliation(s)
- Ana Cebrian
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The hallmark of type 1 diabetes is specific destruction of pancreatic islet beta-cells. Apoptosis of beta-cells may be crucial at several points during disease progression, initiating leukocyte invasion of the islets and terminating the production of insulin in islet cells. beta-Cell apoptosis may also be involved in the occasional evolution of type 2 into type 1 diabetes.
Collapse
Affiliation(s)
- D Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Centre, One Joslin Place, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
49
|
Song E, Chen J, Antus B, Su F, Wang M, Exton MS. Adenovirus-mediated Bcl-2 gene transfer inhibits apoptosis and promotes survival of allogeneic transplanted hepatocytes. Surgery 2001; 130:502-11. [PMID: 11562676 DOI: 10.1067/msy.2001.116027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Donor hepatocyte apoptosis that is induced by host cytotoxic T lymphocytes (CTLs) limits the application of hepatocyte transplantation. Hepatocytes from Bcl-2 transgenic mice can resist the lethal effect of anti-Fas antibody. However, the anti-apoptotic effect of Bcl-2 expression on allogeneic transplanted hepatocytes remains elusive. This study tested the feasibility of Bcl-2 gene transfer as an approach to inhibit CTL-mediated apoptosis in allogeneic transplanted hepatocytes. METHODS An adenovirus vector that encoded human Bcl-2 gene (AdCMVhBcl-2) was used to transfect cultured rat hepatocytes, which were then transplanted into allogeneic spleens. DNA fragmentation and caspase-3 activation were examined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling assay and immunohistochemistry for active caspase-3, respectively. Cocultivation of hepatocytes and allogeneic CD8(+) T lymphocytes was performed, and cytotoxicity on hepatocytes was examined by alanine transaminase release. RESULTS Bcl-2 gene transfer inhibited apoptosis and increased liver-associated enzyme activities in allogeneic transplanted hepatocytes, which were associated with inhibition of caspase-3 activation. Alanine transaminase release in hBcl-2 modified hepatocytes was lower compared with controls, which could not be further decreased by inhibition of Fas ligand and granzyme B. CONCLUSIONS Adenovirus-mediated Bcl-2 gene transfer blocks CTL-mediated apoptosis in allogeneic hepatocytes by inhibition of caspase-3 activation. Bcl-2 gene transfer could be used to promote survival of transplanted hepatocytes.
Collapse
Affiliation(s)
- E Song
- Department of Hepatobiliary Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University of Medical Science, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Embury J, Klein D, Pileggi A, Ribeiro M, Jayaraman S, Molano RD, Fraker C, Kenyon N, Ricordi C, Inverardi L, Pastori RL. Proteins linked to a protein transduction domain efficiently transduce pancreatic islets. Diabetes 2001; 50:1706-13. [PMID: 11473028 DOI: 10.2337/diabetes.50.8.1706] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The resounding success of a new immunosuppressive regimen known as the Edmonton protocol demonstrates that islet cell transplantation is becoming a therapeutic reality for diabetes. However, under the Edmonton protocol, a single donor does not provide enough islets to attain the insulin independence of a transplant recipient. This limitation is mainly caused by islet apoptosis triggered during isolation. In this study, we describe a highly efficient system of transiently transferring anti-apoptotic proteins into pancreatic islets, thus opening an exciting new therapeutic opportunity to improve the viability of transplantable islets. We fused beta-galactosidase to the 11-amino acid residues that constitute the protein transduction domain (PTD) of the HIV/TAT protein and transduced pancreatic islets ex vivo with this fusion protein in a dose-dependent manner with >80% efficiency. We observed that transduction of the anti-apoptotic proteins Bcl-X(L) and PEA-15 fused to TAT/PTD prevented apoptosis induced by tumor necrosis factor-alpha in a pancreatic beta-cell line, indicating that TAT/PTD anti-apoptotic proteins retained their biological activity. Finally, we demonstrated that TAT-fusion proteins did not affect the insulin secretion capability of islets, as determined by glucose static incubation and by reversion of hyperglycemia in diabetic immunodeficient mice.
Collapse
Affiliation(s)
- J Embury
- Diabetes Research Institute, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|