1
|
Fan H, Shen R, Yan J, Bai Y, Fu Q, Shi X, Du G, Wang D. Pyroptosis the Emerging Link Between Gut Microbiota and Multiple Sclerosis. Drug Des Devel Ther 2024; 18:6145-6164. [PMID: 39717200 PMCID: PMC11665440 DOI: 10.2147/dddt.s489454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
This review elucidates the pivotal role of pyroptosis, triggered by gut microbiota, in the development of multiple sclerosis (MS), emphasizing its significance within the gut-brain axis. Our comprehensive analysis of recent literature reveals how dysbiosis in the gut microbiota of MS patients-characterized by reduced microbial diversity and shifts in bacterial populations-profoundly impacts immune regulation and the integrity of the central nervous system (CNS). Pyroptosis, an inflammatory form of programmed cell death, significantly exacerbates MS by promoting the release of inflammatory cytokines and causing substantial damage to CNS tissues. The gut microbiota facilitates this detrimental process through metabolites such as short-chain fatty acids and neuroactive compounds, or self-structural products like lipopolysaccharides (LPS), which modulate immune responses and influence neuronal survival. This review highlights the potential of modulating gut microbiota to regulate pyroptosis, thereby suggesting that targeting this pathway could be a promising therapeutic strategy to mitigate inflammatory responses and preserve neuronal integrity in patients with MS.
Collapse
Affiliation(s)
- Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Ruile Shen
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Junqiang Yan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Yongjie Bai
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Qizhi Fu
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Xiaofei Shi
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Ganqin Du
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Dongmei Wang
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| |
Collapse
|
2
|
Li J, Ma S, Pei H, Jiang J, Zou Q, Lv Z. Review of T cell proliferation regulatory factors in treatment and prognostic prediction for solid tumors. Heliyon 2023; 9:e21329. [PMID: 37954355 PMCID: PMC10637962 DOI: 10.1016/j.heliyon.2023.e21329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
T cell proliferation regulators (Tcprs), which are positive regulators that promote T cell function, have made great contributions to the development of therapies to improve T cell function. CAR (chimeric antigen receptor) -T cell therapy, a type of adoptive cell transfer therapy that targets tumor cells and enhances immune lethality, has led to significant progress in the treatment of hematologic tumors. However, the applications of CAR-T in solid tumor treatment remain limited. Therefore, in this review, we focus on the development of Tcprs for solid tumor therapy and prognostic prediction. We summarize potential strategies for targeting different Tcprs to enhance T cell proliferation and activation and inhibition of cancer progression, thereby improving the antitumor activity and persistence of CAR-T. In summary, we propose means of enhancing CAR-T cells by expressing different Tcprs, which may lead to the development of a new generation of cell therapies.
Collapse
Affiliation(s)
- Jiayu Li
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- College of Life Science, Sichuan University, Chengdu 610065, China
| | - Shuhan Ma
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongdi Pei
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jici Jiang
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Zhibin Lv
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Mohammadi-Kordkhayli M, Sahraian MA, Ghorbani S, Mansouri F, Talebi F, Noorbakhsh F, Saboor-Yaraghi AA. Vitamins A and D Enhance the Expression of Ror-γ-Targeting miRNAs in a Mouse Model of Multiple Sclerosis. Mol Neurobiol 2023; 60:5853-5865. [PMID: 37353624 DOI: 10.1007/s12035-023-03427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Autoreactive T cells, particularly those characterized by a Th17 phenotype, exert significant influence on the pathogenesis of multiple sclerosis (MS). The present study aimed to elucidate the impact of individual and combined administration of vitamin A and D on neuroinflammation, and microRNAs (miRNAs) involved in T helper (Th)17 development, utilizing a murine model of experimental autoimmune encephalomyelitis (EAE). EAE was induced in C57BL/6 mice, and 3 days prior to immunization, intraperitoneal injections of vitamins A and D or their combination were administered. Th17 cell percentages were determined in splenocytes utilizing intracellular staining and flow cytometry. Furthermore, the expression of Ror γ-t, miR-98-5p and Let-7a-5p, was measured in both splenocytes and spinal cord tissues using RT-PCR. Treatment with vitamin A and D resulted in a reduction in both disease severity in EAE mice. Treated mice showed a decreased frequency of Th17 cells and lower expression levels of IL17 and Ror γ-t in splenocytes and spinal cord. The spinal cord tissues and splenocytes of mice treated with vitamins A, D, and combined A+D showed a significant upregulation of miR-98-5p and Let-7a-5p compared to the EAE group. Statistical analysis indicated a strong negative correlation between miR-98-5p and Let-7a-5p levels in splenocytes and Ror-t expression. Our findings indicate that the administration of vitamins A and D exerts a suppressive effect on neuroinflammation in EAE that is associated with a reduction in the differentiation of T cells into the Th17 phenotype and is mediated by the upregulation of miR-98-5p and Let-7a-5p, which target the Ror γ-t.
Collapse
Affiliation(s)
- Marziyeh Mohammadi-Kordkhayli
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Mohammad Ali Sahraian
- Sina MS Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Fatemeh Mansouri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Talebi
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Akbar Saboor-Yaraghi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Steinman L, Patarca R, Haseltine W. Experimental encephalomyelitis at age 90, still relevant and elucidating how viruses trigger disease. J Exp Med 2023; 220:213807. [PMID: 36652203 PMCID: PMC9880878 DOI: 10.1084/jem.20221322] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
20 yr ago, a tribute appeared in this journal on the 70th anniversary of an animal model of disseminated encephalomyelitis, abbreviated EAE for experimental autoimmune encephalomyelitis. "Observations on Attempts to Produce Disseminated Encephalomyelitis in Monkeys" appeared in the Journal of Experimental Medicine on February 21, 1933. Rivers and colleagues were trying to understand what caused neurological reactions to viral infections like smallpox, vaccinia, and measles, and what triggered rare instances of encephalomyelitis to smallpox vaccines. The animal model known as EAE continues to display its remarkable utility. Recent research, since the 70th-anniversary tribute, helps explain how Epstein-Barr virus triggers multiple sclerosis via molecular mimicry to a protein known as GlialCAM. Proteins with multiple domains similar to GlialCAM, tenascin, neuregulin, contactin, and protease kinase C inhibitors are present in the poxvirus family. These observations take us a full circle back to Rivers' first paper on EAE, 90 yr ago.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences and Pediatrics, Stanford University, Stanford, CA, USA,Correspondence to Lawrence Steinman:
| | | | | |
Collapse
|
5
|
Malireddi RS, Bynigeri RR, Kancharana B, Sharma BR, Burton AR, Pelletier S, Kanneganti TD. Determining distinct roles of IL-1α through generation of an IL-1α knockout mouse with no defect in IL-1β expression. Front Immunol 2022; 13:1068230. [PMID: 36505497 PMCID: PMC9729281 DOI: 10.3389/fimmu.2022.1068230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Interleukin 1α (IL-1α) and IL-1β are the founding members of the IL-1 cytokine family, and these innate immune inflammatory mediators are critically important in health and disease. Early studies on these molecules suggested that their expression was interdependent, with an initial genetic model of IL-1α depletion, the IL-1α KO mouse (Il1a-KOline1), showing reduced IL-1β expression. However, studies using this line in models of infection and inflammation resulted in contrasting observations. To overcome the limitations of this genetic model, we have generated and characterized a new line of IL-1α KO mice (Il1a-KOline2) using CRISPR-Cas9 technology. In contrast to cells from Il1a-KOline1, where IL-1β expression was drastically reduced, bone marrow-derived macrophages (BMDMs) from Il1a-KOline2 mice showed normal induction and activation of IL-1β. Additionally, Il1a-KOline2 BMDMs showed normal inflammasome activation and IL-1β expression in response to multiple innate immune triggers, including both pathogen-associated molecular patterns and pathogens. Moreover, using Il1a-KOline2 cells, we confirmed that IL-1α, independent of IL-1β, is critical for the expression of the neutrophil chemoattractant KC/CXCL1. Overall, we report the generation of a new line of IL-1α KO mice and confirm functions for IL-1α independent of IL-1β. Future studies on the unique functions of IL-1α and IL-1β using these mice will be critical to identify new roles for these molecules in health and disease and develop therapeutic strategies.
Collapse
|
6
|
Myeloid caspase-8 restricts RIPK3-dependent proinflammatory IL-1β production and CD4 T cell activation in autoimmune demyelination. Proc Natl Acad Sci U S A 2022; 119:e2117636119. [PMID: 35671429 PMCID: PMC9214530 DOI: 10.1073/pnas.2117636119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Caspase-8 functions at the crossroad of programmed cell death and inflammation. Here, using genetic approaches and the experimental autoimmune encephalomyelitis model of inflammatory demyelination, we identified a negative regulatory pathway for caspase-8 in infiltrated macrophages whereby it functions to restrain interleukin (IL)-1β-driven autoimmune inflammation. Caspase-8 is partially activated in macrophages/microglia in active lesions of multiple sclerosis. Selective ablation of Casp8 in myeloid cells, but not microglia, exacerbated autoimmune demyelination. Heightened IL-1β production by caspase-8-deficient macrophages underlies exacerbated activation of encephalitogenic T cells and production of GM-CSF and interferon-γ. Mechanistically, IL-1β overproduction by primed caspase-8-deficient macrophages was mediated by RIPK1/RIPK3 through the engagement of NLRP3 inflammasome and was independent of cell death. When instructed by autoreactive CD4 T cells in the presence of antigen, caspase-8-deficient macrophages, but not their wild-type counterparts, released significant amount of IL-1β that in turn acted through IL-1R to amplify T cell activation. Moreover, the worsened experimental autoimmune encephalomyelitis progression in myeloid Casp8 mutant mice was completely reversed when Ripk3 was simultaneously deleted. Together, these data reveal a functional link between T cell-driven autoimmunity and inflammatory IL-1β that is negatively regulated by caspase-8, and suggest that dysregulation of the pathway may contribute to inflammatory autoimmune diseases, such as multiple sclerosis.
Collapse
|
7
|
Perez Gomez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Genetic and immunological contributors to virus-induced paralysis. Brain Behav Immun Health 2021; 18:100395. [PMID: 34917987 PMCID: PMC8645428 DOI: 10.1016/j.bbih.2021.100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Infection by a single virus can evoke diverse immune responses, resulting in different neurological outcomes, depending on the host's genetic background. To study heterogenous viral response, we use Theiler's Murine Encephalomyelitis Virus (TMEV) to model virally induced neurological phenotypes and immune responses in Collaborative Cross (CC) mice. The CC resource consists of genetically distinct and reproducible mouse lines, thus providing a population model with genetic heterogeneity similar to humans. We examined different CC strains for the effect of chronic stage TMEV-induced immune responses on neurological outcomes throughout 90 days post infection (dpi), with a particular focus on limb paralysis, by measuring serum levels of 23 different cytokines and chemokines. Each CC strain demonstrated a unique set of immune responses, regardless of presence or absence of TMEV RNA. Using stepwise regression, significant associations were identified between IL-1α, RANTES, and paralysis frequency scores. To better understand these interactions, we evaluated multiple aspects of the different CC genetic backgrounds, including haplotypes of genomic regions previously linked with TMEV pathogenesis and viral clearance or persistence, individual cytokine levels, and TMEV-relevant gene expression. These results demonstrate how loci previously associated with TMEV outcomes provide incomplete information regarding TMEV-induced paralysis in the CC strains. Overall, these findings provide insight into the complex roles of immune response in the pathogenesis of virus-associated neurological diseases influenced by host genetic background.
Collapse
Key Words
- Amyotrophic Lateral Sclerosis, (ALS)
- Chromosome, (Chr)
- Chronic infection
- Collaborative Cross, (CC)
- Collaborative cross
- Cytokine
- Epstein-Barr Virus, (EBV)
- Host response
- IL-1 α
- Multiple Sclerosis, (MS)
- Paralysis
- Parkinson's disease, (PD)
- RANTES
- TMEV
- Theiler's murine encephalomyelitis virus, (TMEV)
- Viral infection
- blood brain barrier, (BBB)
- central nervous system, (CNS)
- days post infection, (dpi)
- experimental autoimmune encephalitis, (EAE)
- intraperitoneal, (IP)
- phosphate buffered saline, (PBS)
- plaque-forming units, (PFU)
- receptor for IL-1 α, (Il1r1)
Collapse
Affiliation(s)
- Aracely A. Perez Gomez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Corresponding author. Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Liu Q, Hua M, Zhang C, Wang R, Liu J, Yang X, Han F, Hou M, Ma D. NLRP3-activated bone marrow dendritic cells play antileukemic roles via IL-1β/Th1/IFN-γ in acute myeloid leukemia. Cancer Lett 2021; 520:109-120. [PMID: 34237408 DOI: 10.1016/j.canlet.2021.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
The bone marrow microenvironment of acute myeloid leukemia (AML) characterized by immunosuppressive features fosters leukemia immune escape. Elucidating the immunosuppressive mechanism and developing effective immunotherapeutic strategies are necessary. Here, we found that the Th1% and IFN-γ level were downregulated in bone marrow of AML and NLRP3-activated BMDCs promoted CD4+ T cell differentiation into Th1 cells via IL-1β secretion. However, IFN-γ-producing Th1 cells were not induced by NLRP3-activated BMDCs in the presence of the NLRP3 inflammasome inhibitor MCC950 or anti-IL-1β antibody in vitro unless exogenous IL-1β was replenished. This inhibitory effect on Th1 differentiation was also observed in Nlrp3-/- mice or anti-IL-1β antibody-treated mice. Notably, elevated Th1 cell levels promoted apoptosis and inhibited proliferation in leukemia cells via IFN-γ secretion in vitro and in vivo. Thus, NLRP3-activated BMDCs promote the proliferation of IFN-γ-producing Th1 cells with antileukemic effects and may provide insight into the basis for leukemia immunotherapy in patients with AML.
Collapse
Affiliation(s)
- Qinqin Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China; Department of Hematology, Taian Central Hospital, Taian, Shandong, 271000, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China; Department of Hematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
9
|
Psenicka MW, Smith BC, Tinkey RA, Williams JL. Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Front Cell Neurosci 2021; 15:654284. [PMID: 34234647 PMCID: PMC8255483 DOI: 10.3389/fncel.2021.654284] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The pathology in neurodegenerative diseases is often accompanied by inflammation. It is well-known that many cells within the central nervous system (CNS) also contribute to ongoing neuroinflammation, which can promote neurodegeneration. Multiple sclerosis (MS) is both an inflammatory and neurodegenerative disease in which there is a complex interplay between resident CNS cells to mediate myelin and axonal damage, and this communication network can vary depending on the subtype and chronicity of disease. Oligodendrocytes, the myelinating cell of the CNS, and their precursors, oligodendrocyte precursor cells (OPCs), are often thought of as the targets of autoimmune pathology during MS and in several animal models of MS; however, there is emerging evidence that OPCs actively contribute to inflammation that directly and indirectly contributes to neurodegeneration. Here we discuss several contributors to MS disease progression starting with lesion pathology and murine models amenable to studying particular aspects of disease. We then review how OPCs themselves can play an active role in promoting neuroinflammation and neurodegeneration, and how other resident CNS cells including microglia, astrocytes, and neurons can impact OPC function. Further, we outline the very complex and pleiotropic role(s) of several inflammatory cytokines and other secreted factors classically described as solely deleterious during MS and its animal models, but in fact, have many neuroprotective functions and promote a return to homeostasis, in part via modulation of OPC function. Finally, since MS affects patients from the onset of disease throughout their lifespan, we discuss the impact of aging on OPC function and CNS recovery. It is becoming clear that OPCs are not simply a bystander during MS progression and uncovering the active roles they play during different stages of disease will help uncover potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan W. Psenicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brandon C. Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
10
|
Liu B, Yu J. Anti-NLRP3 Inflammasome Natural Compounds: An Update. Biomedicines 2021; 9:136. [PMID: 33535473 PMCID: PMC7912743 DOI: 10.3390/biomedicines9020136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex that recognizes various danger or stress signals from pathogens, the host, and the environment, leading to activation of caspase-1 and inducing inflammatory responses. This pro-inflammatory protein complex plays critical roles in pathogenesis of a wide range of diseases including neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Therefore, intensive efforts have been devoted to understanding its activation mechanisms and to searching for its specific inhibitors. Approximately forty natural compounds with anti-NLRP3 inflammasome properties have been identified. Here, we provide an update about new natural compounds that have been identified within the last three years to inhibit the NLRP3 inflammasome and offer an overview of the underlying molecular mechanisms of their anti-NLRP3 inflammasome activities.
Collapse
Affiliation(s)
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
11
|
Pyrillou K, Burzynski LC, Clarke MCH. Alternative Pathways of IL-1 Activation, and Its Role in Health and Disease. Front Immunol 2020; 11:613170. [PMID: 33391283 PMCID: PMC7775495 DOI: 10.3389/fimmu.2020.613170] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokines activate or inhibit immune cell behavior and are thus integral to all immune responses. IL-1α and IL-1β are powerful apical cytokines that instigate multiple downstream processes to affect both innate and adaptive immunity. Multiple studies show that IL-1β is typically activated in macrophages after inflammasome sensing of infection or danger, leading to caspase-1 processing of IL-1β and its release. However, many alternative mechanisms activate IL-1α and IL-1β in atypical cell types, and IL-1 function is also important for homeostatic processes that maintain a physiological state. This review focuses on the less studied, yet arguably more interesting biology of IL-1. We detail the production by, and effects of IL-1 on specific innate and adaptive immune cells, report how IL-1 is required for barrier function at multiple sites, and discuss how perturbation of IL-1 pathways can drive disease. Thus, although IL-1 is primarily studied for driving inflammation after release from macrophages, it is clear that it has a multifaceted role that extends far beyond this, with various unconventional effects of IL-1 vital for health. However, much is still unknown, and a detailed understanding of cell-type and context-dependent actions of IL-1 is required to truly understand this enigmatic cytokine, and safely deploy therapeutics for the betterment of human health.
Collapse
Affiliation(s)
| | | | - Murray C. H. Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
12
|
Hauptmann J, Johann L, Marini F, Kitic M, Colombo E, Mufazalov IA, Krueger M, Karram K, Moos S, Wanke F, Kurschus FC, Klein M, Cardoso S, Strauß J, Bolisetty S, Lühder F, Schwaninger M, Binder H, Bechman I, Bopp T, Agarwal A, Soares MP, Regen T, Waisman A. Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier. Acta Neuropathol 2020; 140:549-567. [PMID: 32651669 PMCID: PMC7498485 DOI: 10.1007/s00401-020-02187-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/05/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
The proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity. IL-1 signaling in BBB-ECs upregulated the expression of the adhesion molecules Vcam-1, Icam-1 and the chemokine receptor Darc, all of which have been previously shown to promote CNS-specific inflammation. In contrast, IL-1R1 signaling suppressed the expression of the stress-responsive heme catabolizing enzyme heme oxygenase-1 (HO-1) in BBB-ECs, promoting disease progression via a mechanism associated with deregulated expression of the IL-1-responsive genes Vcam1, Icam1 and Ackr1 (Darc). Mechanistically, our data emphasize a functional crosstalk of BBB-EC IL-1 signaling and HO-1, controlling the transcription of downstream proinflammatory genes promoting the pathogenesis of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Judith Hauptmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lisa Johann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Federico Marini
- Center of Thrombosis and Hemostasis Mainz (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Maja Kitic
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisa Colombo
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Krueger
- Anatomical Institute, University of Leipzig, Leipzig, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sonja Moos
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area Roche Innovation Center, Basel, Switzerland
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Judith Strauß
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Subhashini Bolisetty
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ingo Bechman
- Anatomical Institute, University of Leipzig, Leipzig, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anupam Agarwal
- Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
13
|
Melchor SJ, Saunders CM, Sanders I, Hatter JA, Byrnes KA, Coutermarsh-Ott S, Ewald SE. IL-1R Regulates Disease Tolerance and Cachexia in Toxoplasma gondii Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3329-3338. [PMID: 32350081 PMCID: PMC7323938 DOI: 10.4049/jimmunol.2000159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that establishes life-long infection in a wide range of hosts, including humans and rodents. To establish a chronic infection, pathogens often exploit the trade-off between resistance mechanisms, which promote inflammation and kill microbes, and tolerance mechanisms, which mitigate inflammatory stress. Signaling through the type I IL-1R has recently been shown to control disease tolerance pathways in endotoxemia and Salmonella infection. However, the role of the IL-1 axis in T. gondii infection is unclear. In this study we show that IL-1R-/- mice can control T. gondii burden throughout infection. Compared with wild-type mice, IL-1R-/- mice have more severe liver and adipose tissue pathology during acute infection, consistent with a role in acute disease tolerance. Surprisingly, IL-1R-/- mice had better long-term survival than wild-type mice during chronic infection. This was due to the ability of IL-1R-/- mice to recover from cachexia, an immune-metabolic disease of muscle wasting that impairs fitness of wild-type mice. Together, our data indicate a role for IL-1R as a regulator of host homeostasis and point to cachexia as a cost of long-term reliance on IL-1-mediated tolerance mechanisms.
Collapse
Affiliation(s)
- Stephanie J Melchor
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Claire M Saunders
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Imani Sanders
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jessica A Hatter
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Kari A Byrnes
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
14
|
Focus on the Role of NLRP3 Inflammasome in Diseases. Int J Mol Sci 2020; 21:ijms21124223. [PMID: 32545788 PMCID: PMC7352196 DOI: 10.3390/ijms21124223] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a protective reaction activated in response to detrimental stimuli, such as dead cells, irritants or pathogens, by the evolutionarily conserved immune system and is regulated by the host. The inflammasomes are recognized as innate immune system sensors and receptors that manage the activation of caspase-1 and stimulate inflammation response. They have been associated with several inflammatory disorders. The NLRP3 inflammasome is the most well characterized. It is so called because NLRP3 belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs). Recent evidence has greatly improved our understanding of the mechanisms by which the NLRP3 inflammasome is activated. Additionally, increasing data in animal models, supported by human studies, strongly implicate the involvement of the inflammasome in the initiation or progression of disorders with a high impact on public health, such as metabolic pathologies (obesity, type 2 diabetes, atherosclerosis), cardiovascular diseases (ischemic and non-ischemic heart disease), inflammatory issues (liver diseases, inflammatory bowel diseases, gut microbiome, rheumatoid arthritis) and neurologic disorders (Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis and other neurological disorders), compared to other molecular platforms. This review will provide a focus on the available knowledge about the NLRP3 inflammasome role in these pathologies and describe the balance between the activation of the harmful and beneficial inflammasome so that new therapies can be created for patients with these diseases.
Collapse
|
15
|
Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol 2020; 11:947. [PMID: 32582147 PMCID: PMC7283538 DOI: 10.3389/fimmu.2020.00947] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
A critical role for IL-17, a cytokine produced by T helper 17 (Th17) cells, has been indicated in the pathogenesis of chronic inflammatory and autoimmune diseases. A positive effect of blockade of IL-17 secreted by autoreactive T cells has been shown in various inflammatory diseases. Several cytokines, whose production is affected by environmental factors, control Th17 differentiation and its maintenance in tissues during chronic inflammation. The roles of IL-17 in the pathogenesis of chronic neuroinflammatory conditions, multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), Alzheimer's disease, and ischemic brain injury are reviewed here. The role of environmental stimuli in Th17 differentiation is also summarized, highlighting the role of viral infection in the regulation of pathogenic T helper cells in EAE.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Stojanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
16
|
Angelou CC, Wells AC, Vijayaraghavan J, Dougan CE, Lawlor R, Iverson E, Lazarevic V, Kimura MY, Peyton SR, Minter LM, Osborne BA, Pobezinskaya EL, Pobezinsky LA. Differentiation of Pathogenic Th17 Cells Is Negatively Regulated by Let-7 MicroRNAs in a Mouse Model of Multiple Sclerosis. Front Immunol 2020; 10:3125. [PMID: 32010153 PMCID: PMC6978752 DOI: 10.3389/fimmu.2019.03125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a disabling demyelinating autoimmune disorder of the central nervous system (CNS) which is driven by IL-23- and IL-1β-induced autoreactive Th17 cells that traffic to the CNS and secrete proinflammatory cytokines. Th17 pathogenicity in MS has been correlated with the dysregulation of microRNA (miRNA) expression, and specific miRNAs have been shown to promote the pathogenic Th17 phenotype. In the present study, we demonstrate, using the animal model of MS, experimental autoimmune encephalomyelitis (EAE), that let-7 miRNAs confer protection against EAE by negatively regulating the proliferation, differentiation and chemokine-mediated migration of pathogenic Th17 cells to the CNS. Specifically, we found that let-7 miRNAs may directly target the cytokine receptors Il1r1 and Il23r, as well as the chemokine receptors Ccr2 and Ccr5. Therefore, our results identify a novel regulatory role for let-7 miRNAs in pathogenic Th17 differentiation during EAE development, suggesting a promising therapeutic application for disease treatment.
Collapse
Affiliation(s)
- Constance C. Angelou
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Alexandria C. Wells
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Jyothi Vijayaraghavan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Carey E. Dougan
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Rebecca Lawlor
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Elizabeth Iverson
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Motoko Y. Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Lisa M. Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Elena L. Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Leonid A. Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
17
|
Musella A, Fresegna D, Rizzo FR, Gentile A, De Vito F, Caioli S, Guadalupi L, Bruno A, Dolcetti E, Buttari F, Bullitta S, Vanni V, Centonze D, Mandolesi G. 'Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opin Ther Targets 2020; 24:37-46. [PMID: 31899994 DOI: 10.1080/14728222.2020.1709823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: It has been recognized for about 20 years that interleukin (IL)-1 signaling is implicated in Multiple Sclerosis (MS), a disabling, chronic, inflammatory and neurodegenerative disease of the central nervous system (CNS). Only recently, multifaceted roles of IL-1 emerged in MS pathophysiology as a result of both clinical and preclinical studies. Notably, drugs that directly target the IL-1 system have not been tested so far in MS.Areas covered: Recent studies in animal models, together with the development of ex vivo chimeric MS models, have disclosed a critical role for IL-1 not only at the peripheral level but also within the CNS. In the present review, we highlight the IL-1-dependent neuropathological aspects of MS, by providing an overview of the cells of the immune and CNS systems that respond to IL-1 signaling, and by emphasizing the subsequent effects on the CNS, from demyelinating processes, to synaptopathy, and excitotoxicity.Expert opinion: Drugs that act on the IL-1 system show a therapeutic potential in several autoinflammatory diseases and preclinical studies have highlighted the effects of these compounds in MS. We will discuss why anti-IL-1 therapies in MS have been neglected to date.
Collapse
Affiliation(s)
- Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Silvia Caioli
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy.,Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| |
Collapse
|
18
|
Alrashdi B, Dawod B, Schampel A, Tacke S, Kuerten S, Marshall JS, Côté PD. Nav1.6 promotes inflammation and neuronal degeneration in a mouse model of multiple sclerosis. J Neuroinflammation 2019; 16:215. [PMID: 31722722 PMCID: PMC6852902 DOI: 10.1186/s12974-019-1622-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In multiple sclerosis (MS) and in the experimental autoimmune encephalomyelitis (EAE) model of MS, the Nav1.6 voltage-gated sodium (Nav) channel isoform has been implicated as a primary contributor to axonal degeneration. Following demyelination Nav1.6, which is normally co-localized with the Na+/Ca2+ exchanger (NCX) at the nodes of Ranvier, associates with β-APP, a marker of neural injury. The persistent influx of sodium through Nav1.6 is believed to reverse the function of NCX, resulting in an increased influx of damaging Ca2+ ions. However, direct evidence for the role of Nav1.6 in axonal degeneration is lacking. METHODS In mice floxed for Scn8a, the gene that encodes the α subunit of Nav1.6, subjected to EAE we examined the effect of eliminating Nav1.6 from retinal ganglion cells (RGC) in one eye using an AAV vector harboring Cre and GFP, while using the contralateral either injected with AAV vector harboring GFP alone or non-targeted eye as control. RESULTS In retinas, the expression of Rbpms, a marker for retinal ganglion cells, was found to be inversely correlated to the expression of Scn8a. Furthermore, the gene expression of the pro-inflammatory cytokines Il6 (IL-6) and Ifng (IFN-γ), and of the reactive gliosis marker Gfap (GFAP) were found to be reduced in targeted retinas. Optic nerves from targeted eyes were shown to have reduced macrophage infiltration and improved axonal health. CONCLUSION Taken together, our results are consistent with Nav1.6 promoting inflammation and contributing to axonal degeneration following demyelination.
Collapse
Affiliation(s)
- Barakat Alrashdi
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Biology, Al-Jouf University, Sakaka, Saudi Arabia
| | - Bassel Dawod
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Andrea Schampel
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine Tacke
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Patrice D Côté
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
19
|
Godwin MS, Reeder KM, Garth JM, Blackburn JP, Jones M, Yu Z, Matalon S, Hastie AT, Meyers DA, Steele C. IL-1RA regulates immunopathogenesis during fungal-associated allergic airway inflammation. JCI Insight 2019; 4:129055. [PMID: 31550242 DOI: 10.1172/jci.insight.129055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Severe asthma with fungal sensitization (SAFS) defines a subset of human asthmatics with allergy to 1 or more fungal species and difficult-to-control asthma. We have previously reported that human asthmatics sensitized to fungi have worse lung function and a higher degree of atopy, which was associated with higher IL-1 receptor antagonist (IL-1RA) levels in bronchoalveolar lavage fluid. IL-1RA further demonstrated a significant negative association with bronchial hyperresponsiveness to methacholine. Here, we show that IL-1α and IL-1β are elevated in both bronchoalveolar lavage fluid and sputum from human asthmatics sensitized to fungi, implicating an association with IL-1α, IL-1β, or IL-1RA in fungal asthma severity. In an experimental model of fungal-associated allergic airway inflammation, we demonstrate that IL-1R1 signaling promotes type 1 (IFN-γ, CXCL9, CXCL10) and type 17 (IL-17A, IL-22) responses that were associated with neutrophilic inflammation and increased airway hyperreactivity. Each of these were exacerbated in the absence of IL-1RA. Administration of human recombinant IL-1RA (Kineret/anakinra) during fungal-associated allergic airway inflammation improved airway hyperreactivity and lowered type 1 and type 17 responses. Taken together, these data suggest that IL-1R1 signaling contributes to fungal asthma severity via immunopathogenic type 1 and type 17 responses and can be targeted for improving allergic asthma severity.
Collapse
Affiliation(s)
- Matthew S Godwin
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Kristen M Reeder
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Jaleesa M Garth
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Jonathan P Blackburn
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - MaryJane Jones
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, USA
| | - Zhihong Yu
- Department of Anesthesiology, UAB, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology, UAB, Birmingham, Alabama, USA
| | - Annette T Hastie
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Deborah A Meyers
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
20
|
Komuczki J, Tuzlak S, Friebel E, Hartwig T, Spath S, Rosenstiel P, Waisman A, Opitz L, Oukka M, Schreiner B, Pelczar P, Becher B. Fate-Mapping of GM-CSF Expression Identifies a Discrete Subset of Inflammation-Driving T Helper Cells Regulated by Cytokines IL-23 and IL-1β. Immunity 2019; 50:1289-1304.e6. [DOI: 10.1016/j.immuni.2019.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/06/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
21
|
Yang Q, Liu R, Yu Q, Bi Y, Liu G. Metabolic regulation of inflammasomes in inflammation. Immunology 2019; 157:95-109. [PMID: 30851192 DOI: 10.1111/imm.13056] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammasome activation and subsequent inflammatory cytokine secretion are essential for innate immune defence against multiple stimuli and are regarded as a link to adaptive immune responses. Dysfunction of inflammasome activation has been discovered at the onset or progression of infectious diseases, autoimmune diseases and cancer, all of which are also associated with metabolic factors. Furthermore, many studies concerning the metabolic regulation of inflammasome activation have emerged in recent years, especially regarding the activity of the NLRP3 inflammasome under metabolic reprogramming. In this review, we discuss the molecular mechanisms of the interactions between metabolic pathways and inflammasome activation, which exerts further important effects on various diseases.
Collapse
Affiliation(s)
- Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ruichen Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
22
|
Nedumpun T, Techakriengkrai N, Thanawongnuwech R, Suradhat S. Negative Immunomodulatory Effects of Type 2 Porcine Reproductive and Respiratory Syndrome Virus-Induced Interleukin-1 Receptor Antagonist on Porcine Innate and Adaptive Immune Functions. Front Immunol 2019; 10:579. [PMID: 30972072 PMCID: PMC6443931 DOI: 10.3389/fimmu.2019.00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Impaired innate and adaptive immune responses are evidenced throughout the course of PRRSV infection. We previously reported that interleukin-1 receptor antagonist (IL-1Ra) was involved in PRRSV-induced immunosuppression during an early phase of infection. However, the exact mechanism associated with PRRSV-induced IL-1Ra immunomodulation remains unknown. To explore the immunomodulatory properties of PRRSV-induced IL-1Ra on porcine immune functions, monocyte-derived dendritic cells (MoDC) and leukocytes were cultured with type 2 PRRSV, and the immunological role of IL-1Ra was assessed by addition of anti-porcine IL-1Ra Ab. The results demonstrated that PRRSV-induced IL-1Ra reduced phagocytosis, surface expression of MHC II (SLA-DR) and CD86, as well as downregulation of IFNA and IL1 gene expression in the MoDC culture system. Interestingly, IL-1Ra secreted by the PRRSV-infected MoDC also inhibited T lymphocyte differentiation and proliferation, but not IFN-γ production. Although PRRSV-induced IL-1Ra was not directly linked to IL-10 production, it contributed to the differentiation of regulatory T lymphocytes (Treg) within the culture system. Taken together, our results demonstrated that PRRSV-induced IL-1Ra downregulates innate immune functions, T lymphocyte differentiation and proliferation, and influences collectively with IL-10 in the Treg induction. The immunomodulatory roles of IL-1Ra elucidated in this study increase our understanding of the immunobiology of PRRSV.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Interdisciplinary Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.,Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| |
Collapse
|
23
|
Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol 2019; 41:283-297. [PMID: 30891627 DOI: 10.1007/s00281-019-00733-8] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
IL-17-producing T helper (Th17) cells have been implicated in the pathogenesis of many inflammatory and autoimmune diseases. Targeting the effector cytokines IL-17 and GM-CSF secreted by autoimmune Th17 cells has been shown to be effective for the treatment of the diseases. Understanding a molecular basis of Th17 differentiation and effector functions is therefore critical for the regulation of the pathogenicity of tissue Th17 cells in chronic inflammation. Here, we discuss the roles of proinflammatory cytokines and environmental stimuli in the control of Th17 differentiation and chronic tissue inflammation by pathogenic Th17 cells in humans and in mouse models of autoimmune diseases. We also highlight recent advances in the regulation of pathogenic Th17 cells by gut microbiota and immunometabolism in autoimmune arthritis.
Collapse
Affiliation(s)
- Keiko Yasuda
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Department of Nephrology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
24
|
Kummari E, Nichols JM, Yang EJ, Kaplan BLF. Neuroinflammation and B-Cell Phenotypes in Cervical and Lumbosacral Regions of the Spinal Cord in Experimental Autoimmune Encephalomyelitis in the Absence of Pertussis Toxin. Neuroimmunomodulation 2019; 26:198-207. [PMID: 31454809 PMCID: PMC7368493 DOI: 10.1159/000501765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The active experimental autoimmune encephalomyelitis (EAE) model is often initiated using myelin oligodendrocyte glycoprotein (MOG) immunization followed by pertussis toxin (PTX) to study multiple sclerosis. However, PTX inactivates G protein-coupled receptors, and with increasing knowledge of the role that various G protein-coupled receptors play in immune homeostasis, it is valuable to establish neuroimmune endpoints for active EAE without PTX. METHODS Female C57BL/6 mice were immunized with MOG35-55 peptide in Complete Freund's Adjuvant and neuroinflammation, including central nervous system B-cell infiltration, was compared to saline-injected mice. Since it was anticipated that disease onset would be slower and less robust than EAE in the presence of PTX, both cervical and lumbosacral sections of the spinal cord were evaluated. RESULTS Immunohistochemical analysis showed that EAE without PTX induced immune infiltration, CCL2 and VCAM-1 upregulation. Demyelination in the cervical region correlated with the infiltration of CD19+ B cells in the cervical region. There was upregulation of IgG, CD38, and PDL1 on B cells in cervical and lumbosacral regions of the spinal cord in EAE without PTX. Interestingly, IgG was expressed predominantly by CD19- cells. CONCLUSIONS These data demonstrate that many neuroimmune endpoints are induced in EAE without PTX and although clinical disease is mild, this can be used as an autoimmune model when PTX inactivation of G protein-coupled receptors is not desired.
Collapse
Affiliation(s)
- Evangel Kummari
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - James M Nichols
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Eun-Ju Yang
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA,
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA,
| |
Collapse
|
25
|
Gogoleva VS, Atretkhany KSN, Drutskaya MS, Mufazalov IA, Kruglov AA, Nedospasov SA. Cytokines as Mediators of Neuroinflammation in Experimental Autoimmune Encephalomyelitis. BIOCHEMISTRY (MOSCOW) 2018; 83:1089-1103. [PMID: 30472948 DOI: 10.1134/s0006297918090110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytokines play a pivotal role in maintaining homeostasis of the immune system and in regulation of the immune response. Cytokine dysregulation is often associated with development of various pathological conditions, including autoimmunity. Recent studies have provided insights into the cytokine signaling pathways that are involved not only in pathogenesis of autoimmune neuroinflammatory disorders, such as multiple sclerosis, but also in neurodegenerative states, for example, Alzheimer's disease. Understanding the exact molecular mechanisms of disease pathogenesis and evaluation of relevant experimental animal models are necessary for development of effective therapeutic approaches.
Collapse
Affiliation(s)
- V S Gogoleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia
| | - K-S N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia
| | - M S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia
| | - I A Mufazalov
- University of California, San Francisco, CA 94143, USA
| | - A A Kruglov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - S A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Biological Faculty, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
26
|
Kim EH, Wong SW, Martinez J. Programmed Necrosis and Disease:We interrupt your regular programming to bring you necroinflammation. Cell Death Differ 2018; 26:25-40. [PMID: 30349078 DOI: 10.1038/s41418-018-0179-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Compared to the tidy and immunologically silent death during apoptosis, necrosis seems like a chaotic and unorganized demise. However, we now recognize that there is a method to its madness, as many forms of necrotic cell death are indeed programmed and function beyond lytic cell death to support homeostasis and immunity. Inherently more immunogenic than their apoptotic counterpart, programmed necrosis, such as necroptosis, pyroptosis, ferroptosis, and NETosis, releases inflammatory cytokines and danger-associated molecular patterns (DAMPs), skewing the milieu to a pro-inflammatory state. Moreover, impaired clearance of dead cells often leads to inflammation. Importantly, these pathways have all been implicated in inflammatory and autoimmune diseases, therefore careful understanding of their molecular mechanisms can have long lasting effects on how we interpret their role in disease and how we translate these mechanisms into therapy.
Collapse
Affiliation(s)
- Eui Ho Kim
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
27
|
Imani D, Azimi A, Salehi Z, Rezaei N, Emamnejad R, Sadr M, Izad M. Association of nod-like receptor protein-3 single nucleotide gene polymorphisms and expression with the susceptibility to relapsing-remitting multiple sclerosis. Int J Immunogenet 2018; 45:329-336. [DOI: 10.1111/iji.12401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 05/13/2018] [Accepted: 08/16/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Danyal Imani
- Immunology Department, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Amirreza Azimi
- Neurology Department, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- MS Research Center, Neuroscience Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Zahra Salehi
- Immunology Department, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Nima Rezaei
- Immunology Department, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Molecular Immunology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Rahimeh Emamnejad
- Immunology Department, School of Medicine; Shahre-Kord University of Medical Sciences, Shahre-Kord; Iran
| | - Maryam Sadr
- Molecular Immunology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Maryam Izad
- Immunology Department, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- MS Research Center, Neuroscience Institute; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
28
|
Swanton T, Cook J, Beswick JA, Freeman S, Lawrence CB, Brough D. Is Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery? SLAS DISCOVERY 2018; 23:991-1017. [PMID: 29969573 DOI: 10.1177/2472555218786210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is becoming increasingly recognized as a critical factor in the pathology of both acute and chronic neurological conditions. Inflammasomes such as the one formed by NACHT, LRR, and PYD domains containing protein 3 (NLRP3) are key regulators of inflammation due to their ability to induce the processing and secretion of interleukin 1β (IL-1β). IL-1β has previously been identified as a potential therapeutic target in a variety of conditions due to its ability to promote neuronal damage under conditions of injury. Thus, inflammasome inhibition has the potential to curtail inflammatory signaling, which could prove beneficial in certain diseases. In this review, we discuss the evidence for inflammasome contributions to the pathology of neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease, epilepsy, and acute degeneration following brain trauma or stroke. In addition, we review the current landscape of drug development targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tessa Swanton
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Cook
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James A Beswick
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sally Freeman
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Zhu G, Liu X, Fang Y, Zhai B, Xu R, Han G, Chen G, Xiao H, Hou C, Shen B, Li Y, Iwakura Y, Wang L, Jiang Z, Ma N, Liu G, Wang R. Increased mTOR cancels out the effect of reduced Xbp-1 on antibody secretion in IL-1α-deficient B cells. Cell Immunol 2018; 328:9-17. [DOI: 10.1016/j.cellimm.2018.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/05/2018] [Accepted: 02/22/2018] [Indexed: 12/27/2022]
|
30
|
Gu SM, Park MH, Yun HM, Han SB, Oh KW, Son DJ, Yun JS, Hong JT. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice. Oncotarget 2017; 7:15382-93. [PMID: 26985768 PMCID: PMC4941248 DOI: 10.18632/oncotarget.8097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/28/2016] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5-/-) mice. CCR5-/- and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5-/- mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5-/- mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5-/- mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5-/- mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Hyung Mun Yun
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jae Suk Yun
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
31
|
Chatziandreou N, Farsakoglu Y, Palomino-Segura M, D'Antuono R, Pizzagalli DU, Sallusto F, Lukacs-Kornek V, Uguccioni M, Corti D, Turley SJ, Lanzavecchia A, Carroll MC, Gonzalez SF. Macrophage Death following Influenza Vaccination Initiates the Inflammatory Response that Promotes Dendritic Cell Function in the Draining Lymph Node. Cell Rep 2017; 18:2427-2440. [PMID: 28273457 DOI: 10.1016/j.celrep.2017.02.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/14/2016] [Accepted: 02/07/2017] [Indexed: 10/20/2022] Open
Abstract
The mechanism by which inflammation influences the adaptive response to vaccines is not fully understood. Here, we examine the role of lymph node macrophages (LNMs) in the induction of the cytokine storm triggered by inactivated influenza virus vaccine. Following vaccination, LNMs undergo inflammasome-independent necrosis-like death that is reliant on MyD88 and Toll-like receptor 7 (TLR7) expression and releases pre-stored interleukin-1α (IL-1α). Furthermore, activated medullary macrophages produce interferon-β (IFN-β) that induces the autocrine secretion of IL-1α. We also found that macrophage depletion promotes lymph node-resident dendritic cell (LNDC) relocation and affects the capacity of CD11b+ LNDCs to capture virus and express co-stimulatory molecules. Inhibition of the IL-1α-induced inflammatory cascade reduced B cell responses, while co-administration of recombinant IL-1α increased the humoral response. Stimulation of the IL-1α inflammatory pathway might therefore represent a strategy to enhance antigen presentation by LNDCs and improve the humoral response against influenza vaccines.
Collapse
Affiliation(s)
- Nikolaos Chatziandreou
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Yagmur Farsakoglu
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Miguel Palomino-Segura
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Rocco D'Antuono
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Diego Ulisse Pizzagalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Institute of Computational Science, Università della Svizzera Italiana, via G. Buffi 13, 6900 Lugano, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Veronika Lukacs-Kornek
- Department of Internal Medicine II, Saarland University Medical Centre, 66424 Homburg, Germany
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano-Milan, Italy
| | | | - Shannon J Turley
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Michael C Carroll
- Department of Pediatrics, Harvard Medical School and PCMM, Boston Childrens Hospital, Boston, MA 02115, USA
| | - Santiago F Gonzalez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland.
| |
Collapse
|
32
|
Lin CC, Edelson BT. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2017; 198:4553-4560. [PMID: 28583987 DOI: 10.4049/jimmunol.1700263] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis, are neuroinflammatory diseases driven by autoreactive pathogenic TH cells that elicit demyelination and axonal damage. How TH cells acquire pathogenicity and communicate with myeloid cells and cells of the CNS remain unclear. IL-1β is recognized to play an important role in experimental autoimmune encephalomyelitis (EAE) and perhaps MS. Clinical EAE is significantly attenuated in IL-1R-deficient and IL-1β-deficient mice, and IL-1β is found in the blood, cerebrospinal fluid, and CNS lesions of MS patients. In this article, we focus on new reports that elucidate the cellular sources of IL-1β and its actions during EAE, in both lymphoid tissues and within the CNS. Several immune cell types serve as critical producers of IL-1β during EAE, with this cytokine inducing response in both hematopoietic and nonhematopoietic cells. These findings from the EAE model should inspire efforts toward investigating the therapeutic potential of IL-1 blockade in MS.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
33
|
Rogier R, Ederveen THA, Boekhorst J, Wopereis H, Scher JU, Manasson J, Frambach SJCM, Knol J, Garssen J, van der Kraan PM, Koenders MI, van den Berg WB, van Hijum SAFT, Abdollahi-Roodsaz S. Aberrant intestinal microbiota due to IL-1 receptor antagonist deficiency promotes IL-17- and TLR4-dependent arthritis. MICROBIOME 2017; 5:63. [PMID: 28645307 PMCID: PMC5481968 DOI: 10.1186/s40168-017-0278-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Perturbation of commensal intestinal microbiota has been associated with several autoimmune diseases. Mice deficient in interleukin-1 receptor antagonist (Il1rn -/- mice) spontaneously develop autoimmune arthritis and are susceptible to other autoimmune diseases such as psoriasis, diabetes, and encephalomyelitis; however, the mechanisms of increased susceptibility to these autoimmune phenotypes are poorly understood. We investigated the role of interleukin-1 receptor antagonist (IL-1Ra) in regulation of commensal intestinal microbiota, and assessed the involvement of microbiota subsets and innate and adaptive mucosal immune responses that underlie the development of spontaneous arthritis in Il1rn -/- mice. RESULTS Using high-throughput 16S rRNA gene sequencing, we show that IL-1Ra critically maintains the diversity and regulates the composition of intestinal microbiota in mice. IL-1Ra deficiency reduced the intestinal microbial diversity and richness, and caused specific taxonomic alterations characterized by overrepresented Helicobacter and underrepresented Ruminococcus and Prevotella. Notably, the aberrant intestinal microbiota in IL1rn -/- mice specifically potentiated IL-17 production by intestinal lamina propria (LP) lymphocytes and skewed the LP T cell balance in favor of T helper 17 (Th17) cells, an effect transferable to WT mice by fecal microbiota. Importantly, LP Th17 cell expansion and the development of spontaneous autoimmune arthritis in IL1rn -/- mice were attenuated under germ-free condition. Selective antibiotic treatment revealed that tobramycin-induced alterations of commensal intestinal microbiota, i.e., reduced Helicobacter, Flexispira, Clostridium, and Dehalobacterium, suppressed arthritis in IL1rn -/- mice. The arthritis phenotype in IL1rn -/- mice was previously shown to depend on Toll-like receptor 4 (TLR4). Using the ablation of both IL-1Ra and TLR4, we here show that the aberrations in the IL1rn -/- microbiota are partly TLR4-dependent. We further identify a role for TLR4 activation in the intestinal lamina propria production of IL-17 and cytokines involved in Th17 differentiation preceding the onset of arthritis. CONCLUSIONS These findings identify a critical role for IL1Ra in maintaining the natural diversity and composition of intestinal microbiota, and suggest a role for TLR4 in mucosal Th17 cell induction associated with the development of autoimmune disease in mice.
Collapse
Affiliation(s)
- Rebecca Rogier
- Experimental Rheumatology (272), Radboud University Medical Center, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Thomas H. A. Ederveen
- Experimental Rheumatology (272), Radboud University Medical Center, PO Box 9101, 6500HB Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jos Boekhorst
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
| | - Harm Wopereis
- Danone Nutricia Research, Utrecht, The Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Jose U. Scher
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, 301 East 17th Street, Room 1611A, New York, USA
| | - Julia Manasson
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, 301 East 17th Street, Room 1611A, New York, USA
| | - Sanne J. C. M. Frambach
- Experimental Rheumatology (272), Radboud University Medical Center, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Jan Knol
- Danone Nutricia Research, Utrecht, The Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Johan Garssen
- Danone Nutricia Research, Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter M. van der Kraan
- Experimental Rheumatology (272), Radboud University Medical Center, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Marije I. Koenders
- Experimental Rheumatology (272), Radboud University Medical Center, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Wim B. van den Berg
- Experimental Rheumatology (272), Radboud University Medical Center, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Sacha A. F. T. van Hijum
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
| | - Shahla Abdollahi-Roodsaz
- Experimental Rheumatology (272), Radboud University Medical Center, PO Box 9101, 6500HB Nijmegen, The Netherlands
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, 301 East 17th Street, Room 1611A, New York, USA
| |
Collapse
|
34
|
Nedumpun T, Wongyanin P, Sirisereewan C, Ritprajak P, Palaga T, Thanawongnuwech R, Suradhat S. Interleukin-1 receptor antagonist: an early immunomodulatory cytokine induced by porcine reproductive and respiratory syndrome virus. J Gen Virol 2017; 98:77-88. [PMID: 27902420 DOI: 10.1099/jgv.0.000665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection poorly induces pro-inflammatory cytokines (IL-1, IL-6 and TNF-α) and type I IFN production during the early phase of infection. Our microarray analysis indicated strong upregulation of the IL1RA gene in type 2 PRRSV -infected monocyte-derived dendritic cells. Interleukin-1 receptor antagonist (IL-1Ra) is an early inhibitory cytokine that suppresses pro-inflammatory cytokines and T-lymphocyte responses. To investigate the induction of IL-1Ra by PRRSV, monocyte-derived dendritic cells were cultured with type 2 PRRSV or other swine viruses. PRRSV increased both IL1RA gene expression and IL-1Ra protein production in the culture. The enhanced production of IL-1Ra was further confirmed in PRRSV-cultured PBMC and PRRSV-exposed pigs by flow cytometry. Myeloid cell population appeared to be the major IL-1Ra producer both in vitro and in vivo. In contrast to the type 2 PRRSV, the highly pathogenic (HP)- PRRSV did not upregulate IL1RA gene expression in vitro. To determine the kinetics of PRRSV-induced IL1RA gene expression in relation to other pro-inflammatory cytokine genes, PRRSV-negative pigs were vaccinated with a commercially available type 2 modified-live PRRS vaccine or intranasally inoculated with HP-PRRSV. In modified-live PRRS vaccine pigs, upregulation of IL1RA, but not IL1B and IFNA, gene expression was observed from 2 days post- vaccination. Consistent with the in vitro findings, upregulation of IL1RA gene expression was not observed in the HP-PRRSV-infected pigs throughout the experiment. This study identified IL-1Ra as an early immunomodulatory mediator that could be involved in the immunopathogenesis of PRRSV infections.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Piya Wongyanin
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Chaitawat Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, RU in Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.,Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| |
Collapse
|
35
|
Sharma D, Sharma BR, Vogel P, Kanneganti TD. IL-1β and Caspase-1 Drive Autoinflammatory Disease Independently of IL-1α or Caspase-8 in a Mouse Model of Familial Mediterranean Fever. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:236-244. [PMID: 27998728 PMCID: PMC5389372 DOI: 10.1016/j.ajpath.2016.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
Abstract
Mutations in the gene encoding pyrin are associated with autoinflammatory disorder Familial Mediterranean Fever (FMF). A FMF-knock-in mouse strain that expresses chimeric pyrin protein with a V726A mutation (MefvV726A/V726A) was generated to model human FMF. This mouse strain shows an autoinflammatory disorder that is prevented by genetic deletion of IL-1 (IL-1) receptor or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC). ASC-mediated cell death leads to the release of IL-1α and IL-1β, both of which signal through IL-1 receptor. Furthermore, caspase-1 and caspase-8 can interact with ASC to mediate secretion of IL-1 cytokines. The specific IL-1 cytokine instigating development of FMF and the enzymatic caspase involved in its secretion currently are unknown. In this study, we show that the autoinflammation observed in MefvV726A/V726A mice is mediated specifically by IL-1β and not IL-1α. Furthermore, the disorder is dependent on the caspase-1-ASC axis, whereas caspase-8 is dispensable. Concurrently, aberrant IL-1β release by MefvV726A/V726A monocytes in response to stimulation with lipopolysaccharide also is dependent on the caspase-1-ASC axis. In conclusion, our studies have uncovered a specific role for caspase-1-mediated IL-1β release in the manifestation of FMF.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
36
|
Malik A, Sharma D, Zhu Q, Karki R, Guy CS, Vogel P, Kanneganti TD. IL-33 regulates the IgA-microbiota axis to restrain IL-1α-dependent colitis and tumorigenesis. J Clin Invest 2016; 126:4469-4481. [PMID: 27775548 PMCID: PMC5127671 DOI: 10.1172/jci88625] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel diseases (IBD) affect over 5 million individuals in the industrialized world, with an increasing incidence rate worldwide. IBD also predisposes affected individuals to development of colorectal cancer, which is a leading cause of cancer-related deaths in adults. Mutations in genes encoding molecules in the IL-33 signaling pathway are associated with colitis and colitis-associated cancer (CAC), but how IL-33 modulates gut homeostasis is unclear. Here, we have shown that Il33-deficient mice are highly susceptible to colitis and CAC. Mechanistically, we observed that IL-33 promoted IgA production from B cells, which is important for maintaining microbial homeostasis in the intestine. Il33-deficient mice developed a dysbiotic microbiota that was characterized by increased levels of mucolytic and colitogenic bacteria. In response to chemically induced colitis, this microbial landscape promoted the release of IL-1α, which acted as a critical driver of colitis and CAC. Consequently, reconstitution of symbiotic microbiota or IL-1α ablation markedly ameliorated colitis susceptibility in Il33-deficient animals. Our results demonstrate that IL-33 promotes IgA production to maintain gut microbial homoeostasis and restrain IL-1α-dependent colitis and CAC. This study therefore highlights modulation of IL-33, IgA, IL-1α, and the microbiota as a potential therapeutic approach in the treatment of IBD and CAC.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Deepika Sharma
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Qifan Zhu
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Clifford S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
37
|
Sha Y, Markovic-Plese S. Activated IL-1RI Signaling Pathway Induces Th17 Cell Differentiation via Interferon Regulatory Factor 4 Signaling in Patients with Relapsing-Remitting Multiple Sclerosis. Front Immunol 2016; 7:543. [PMID: 27965670 PMCID: PMC5126112 DOI: 10.3389/fimmu.2016.00543] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 12/30/2022] Open
Abstract
IL-1β plays a crucial role in the differentiation of human Th17 cells. We report here that IL-1RI expression is significantly increased in both naive and memory CD4+ T cells derived from relapsing-remitting multiple sclerosis (RR MS) patients in comparison to healthy controls. Interleukin 1 receptor (IL-1R)I expression is upregulated in the in vitro-differentiated Th17 cells from RR MS patients in comparison to the Th1 and Th2 cell subsets, indicating the role of IL-1R signaling in the Th17 cell differentiation in RR MS. When IL-1RI gene expression was silenced using siRNA, human naive CD4+ T cells cultured in the presence of Th17-polarizing cytokines had a significantly decreased expression of interleukin regulatory factor 4 (IRF4), RORc, IL-17A, IL-17F, IL-21, IL-22, and IL-23R genes, confirming that IL-1RI signaling induces Th17 cell differentiation. Since IL-1R gene expression silencing inhibited IRF4 expression and Th17 differentiation, and IRF4 gene expression silencing inhibited Th17 cell differentiation, our results indicate that IL-1RI induces human Th17 cell differentiation in an IRF4-dependant manner. Our study has identified that IL-1RI-mediated signaling pathway is constitutively activated, leading to an increased Th17 cell differentiation in IRF4-dependent manner in patients with RR MS.
Collapse
Affiliation(s)
- Yonggang Sha
- Department of Neurology, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Silva Markovic-Plese
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Gurung P, Sharma BR, Kanneganti TD. Distinct role of IL-1β in instigating disease in Sharpin cpdm mice. Sci Rep 2016; 6:36634. [PMID: 27892465 PMCID: PMC5125001 DOI: 10.1038/srep36634] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/17/2016] [Indexed: 12/25/2022] Open
Abstract
Mice deficient in SHARPIN (Sharpincpdm mice), a member of linear ubiquitin chain assembly complex (LUBAC), develop severe dermatitis associated with systemic inflammation. Previous studies have demonstrated that components of the TNF-signaling pathway, NLRP3 inflammasome and IL-1R signaling are required to provoke skin inflammation in Sharpincpdm mice. However, whether IL-1α or IL-1β, both of which signals through IL-1R, instigates skin inflammation and systemic disease is not known. Here, we have performed extensive cellular analysis of pre-diseased and diseased Sharpincpdm mice and demonstrated that cellular dysregulation precedes skin inflammation. Furthermore, we demonstrate a specific role for IL-1β, but not IL-1α, in instigating dermatitis in Sharpincpdm mice. Our results altogether demonstrate distinct roles of SHARPIN in initiating systemic inflammation and dermatitis. Furthermore, skin inflammation in Sharpincpdm mice is specifically modulated by IL-1β, highlighting the importance of specific targeted therapies in the IL-1 signaling blockade.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
39
|
Mufazalov IA, Schelmbauer C, Regen T, Kuschmann J, Wanke F, Gabriel LA, Hauptmann J, Müller W, Pinteaux E, Kurschus FC, Waisman A. IL-1 signaling is critical for expansion but not generation of autoreactive GM-CSF+ Th17 cells. EMBO J 2016; 36:102-115. [PMID: 27827809 DOI: 10.15252/embj.201694615] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/05/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022] Open
Abstract
Interleukin-1 (IL-1) is implicated in numerous pathologies, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which IL-1 is involved in the generation of pathogenic T cells and in disease development remains largely unknown. We found that following EAE induction, pertussis toxin administration leads to IL-1 receptor type 1 (IL-1R1)-dependent IL-1β expression by myeloid cells in the draining lymph nodes. This myeloid-derived IL-1β did not vitally contribute to the generation and plasticity of Th17 cells, but rather promoted the expansion of a GM-CSF+ Th17 cell subset, thereby enhancing its encephalitogenic potential. Lack of expansion of GM-CSF-producing Th17 cells led to ameliorated disease in mice deficient for IL-1R1 specifically in T cells. Importantly, pathogenicity of IL-1R1-deficient T cells was fully restored by IL-23 polarization and expansion in vitro Therefore, our data demonstrate that IL-1 functions as a mitogenic mediator of encephalitogenic Th17 cells rather than qualitative inducer of their generation.
Collapse
Affiliation(s)
- Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Janina Kuschmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Laureen A Gabriel
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Judith Hauptmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
40
|
Overexpression of soluble RAGE in mesenchymal stem cells enhances their immunoregulatory potential for cellular therapy in autoimmune arthritis. Sci Rep 2016; 6:35933. [PMID: 27804999 PMCID: PMC5090969 DOI: 10.1038/srep35933] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are attractive agents for cellular therapy in rheumatoid arthritis (RA). The receptor for advanced glycation end products (RAGE) serves as a pattern recognition receptor for endogenous inflammatory ligands. Soluble RAGE (sRAGE) is a truncated form of RAGE that functions as a decoy and acts as an anti-inflammatory molecule. The aim of this study was to determine whether sRAGE has therapeutic effects and the mechanisms active in sRAGE-overexpressing MSCs (sRAGE-MSCs) in an experimental model of RA. sRAGE-MSCs were generated by DNA transfection of human adipose tissue-derived MSCs (Ad-hMSCs). MSCs showed increased expression of VEGF, IL-1β, IL-6, and HMGB-1 under inflammatory conditions. However, sRAGE-MSCs showed significantly lower production of these proinflammatory molecules. Expression of immunomodulatory molecules such as IL-10, TGF-β, and indoleamine 2, 3-dioxygenase was higher in sRAGE-MSCs than in mock-MSCs. sRAGE-MSCs showed enhanced migration potential. Transplantation of sRAGE-MSCs into arthritic IL-1Ra-knockout mice markedly suppressed inflammatory arthritis, decreased Th17 cells, and reciprocally increased regulatory T cells. The differentiation of IFN-γ+CD4+ and IL-17+CD4+ cells was inhibited by incubation with sRAGE-MSCs compared with mock-MSCs. These findings suggest that sRAGE overexpression in Ad-hMSCs optimizes their immunoregulatory properties, which may be useful as a novel cellular therapy for RA.
Collapse
|
41
|
Yun J, Gu SM, Yun HM, Son DJ, Park MH, Lee MS, Hong JT. Myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis is ameliorated in interleukin-32 alpha transgenic mice. Oncotarget 2016; 6:40452-63. [PMID: 26564962 PMCID: PMC4747345 DOI: 10.18632/oncotarget.6306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/22/2015] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS), also known as disseminated sclerosis or encephalomyelitis disseminate, is an inflammatory disease in which myelin in the spinal cord and brain are damaged. IL-32α is known as a critical molecule in the pathophysiology of immune-mediated chronic inflammatory disease such as rheumatoid arthritis, chronic pulmonary disease, and cancers. However, the role of IL-32α on spinal cord injuries and demyelination is poorly understood. Recently, we reported that the release of proinflammatory cytokines were reduced in IL-32α-overexpressing transgenic mice. In this study, we investigated whether IL-32α plays a role on MS using experimental autoimmune encephalomyelitis (EAE), an experimental mouse model of MS, in human IL-32α Tg mice. The Tg mice were immunized with MOG35-55 suspended in CFA emulsion followed by pertussis toxin, and then EAE paralysis of mice was scored. We observed that the paralytic severity and neuropathology of EAE in IL-32α Tg mice were significantly decreased compared with that of non-Tg mice. The immune cells infiltration, astrocytes/microglials activation, and pro-inflammatory cytokines (IL-1β and IL-6) levels in spinal cord were suppressed in IL-32α Tg mice. Furthermore, NG2 and O4 were decreased in IL-32α Tg mice, indicating that spinal cord damaging was suppressed. In addition, in vitro assay also revealed that IL-32α has a preventive role against Con A stimulation which is evidenced by decrease in T cell proliferation and inflammatory cytokine levels in IL-32α overexpressed Jurkat cell. Taken together, our findings suggested that IL-32α may play a protective role in EAE by suppressing neuroinflammation in spinal cord.
Collapse
Affiliation(s)
- Jaesuk Yun
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, Republic of Korea
| | - Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, Republic of Korea
| | - Hyung Mun Yun
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, Republic of Korea
| | - Moon Soon Lee
- College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Heungdeok-gu, Cheongju-si, Chungbuk, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, Republic of Korea
| |
Collapse
|
42
|
Generation of a Novel T Cell Specific Interleukin-1 Receptor Type 1 Conditional Knock Out Mouse Reveals Intrinsic Defects in Survival, Expansion and Cytokine Production of CD4 T Cells. PLoS One 2016; 11:e0161505. [PMID: 27551932 PMCID: PMC4995027 DOI: 10.1371/journal.pone.0161505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022] Open
Abstract
Interleukin-1 (IL-1) plays a crucial role in numerous inflammatory diseases via action on its only known signaling IL-1 receptor type 1 (IL-1R1). To investigate the role of IL-1 signaling in selected cell types, we generated a new mouse strain in which exon 5 of the Il1r1 gene is flanked by loxP sites. Crossing of these mice with CD4-Cre transgenic mice resulted in IL-1R1 loss of function specifically in T cells. These mice, termed IL-1R1ΔT, displayed normal development under steady state conditions. Importantly, isolated CD4 positive T cells retained their capacity to differentiate toward Th1 or Th17 cell lineages in vitro, and strongly proliferated in cultures supplemented with either anti-CD3/CD28 or Concanavalin A, but, as predicted, were completely unresponsive to IL-1β administration. Furthermore, IL-1R1ΔT mice were protected from gut inflammation in the anti-CD3 treatment model, due to dramatically reduced frequencies and absolute numbers of IL-17A and interferon (IFN)-γ producing cells. Taken together, our data shows the necessity of intact IL-1 signaling for survival and expansion of CD4 T cells that were developed in an otherwise IL-1 sufficient environment.
Collapse
|
43
|
Russi AE, Walker-Caulfield ME, Guo Y, Lucchinetti CF, Brown MA. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity. J Autoimmun 2016; 73:100-10. [PMID: 27396526 DOI: 10.1016/j.jaut.2016.06.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease.
Collapse
Affiliation(s)
- Abigail E Russi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
44
|
Burm SM, Peferoen LAN, Zuiderwijk-Sick EA, Haanstra KG, 't Hart BA, van der Valk P, Amor S, Bauer J, Bajramovic JJ. Expression of IL-1β in rhesus EAE and MS lesions is mainly induced in the CNS itself. J Neuroinflammation 2016; 13:138. [PMID: 27266875 PMCID: PMC4895983 DOI: 10.1186/s12974-016-0605-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
Background Interleukin (IL)-1β is a pro-inflammatory cytokine that plays a role in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the animal model for MS. Yet, detailed studies on IL-1β expression in different stages of MS lesion development and a comparison of IL-1β expression in MS and EAE are lacking. Methods Here, we performed an extensive characterization of IL-1β expression in brain tissue of MS patients, which included different MS lesion types, and in brain tissue of rhesus macaques with EAE. Results In rhesus EAE brain tissue, we observed prominent IL-1β staining in MHC class II+ cells within perivascular infiltrates and at the edges of large demyelinating lesions. Surprisingly, staining was localized to resident microglia or differentiated macrophages rather than to infiltrating monocytes, suggesting that IL-1β expression is induced within the central nervous system (CNS). By contrast, IL-1β staining in MS brain tissue was much less pronounced. Staining was found in the parenchyma of active and chronic active MS lesions and in nodules of MHC class II+ microglia in otherwise normal appearing white matter. IL-1β expression was detected in a minority of the nodules only, which could not be distinguished by the expression of pro- and anti-inflammatory markers. These nodules were exclusively found in MS, and it remains to be determined whether IL-1β+ nodules are destined to progress into active lesions or whether they merely reflect a transient response to cellular stress. Conclusions Although the exact localization and relative intensity of IL-1β expression in EAE and MS is different, the staining pattern in both neuroinflammatory disorders is most consistent with the idea that the expression of IL-1β during lesion development is induced in the tissue rather than in the periphery. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0605-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saskia Maria Burm
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | | | - Ella Alwine Zuiderwijk-Sick
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Krista Geraldine Haanstra
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Bert Adriaan 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Paul van der Valk
- Department of Pathology, VU Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Sandra Amor
- Department of Pathology, VU Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria
| | - Jeffrey John Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
45
|
Lévesque SA, Paré A, Mailhot B, Bellver-Landete V, Kébir H, Lécuyer MA, Alvarez JI, Prat A, de Rivero Vaccari JP, Keane RW, Lacroix S. Myeloid cell transmigration across the CNS vasculature triggers IL-1β-driven neuroinflammation during autoimmune encephalomyelitis in mice. J Exp Med 2016; 213:929-49. [PMID: 27139491 PMCID: PMC4886360 DOI: 10.1084/jem.20151437] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
Abstract
Growing evidence supports a role for IL-1 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), but how it impacts neuroinflammation is poorly understood. We show that susceptibility to EAE requires activation of IL-1R1 on radiation-resistant cells via IL-1β secreted by bone marrow-derived cells. Neutrophils and monocyte-derived macrophages (MDMs) are the main source of IL-1β and produce this cytokine as a result of their transmigration across the inflamed blood-spinal cord barrier. IL-1R1 expression in the spinal cord is found in endothelial cells (ECs) of the pial venous plexus. Accordingly, leukocyte infiltration at EAE onset is restricted to IL-1R1(+) subpial and subarachnoid vessels. In response to IL-1β, primary cultures of central nervous system ECs produce GM-CSF, G-CSF, IL-6, Cxcl1, and Cxcl2. Initiation of EAE or subdural injection of IL-1β induces a similar cytokine/chemokine signature in spinal cord vessels. Furthermore, the transfer of Gr1(+) cells on the spinal cord is sufficient to induce illness in EAE-resistant IL-1β knockout (KO) mice. Notably, transfer of Gr1(+) cells isolated from C57BL/6 mice induce massive recruitment of recipient myeloid cells compared with cells from IL-1β KO donors, and this recruitment translates into more severe paralysis. These findings suggest that an IL-1β-dependent paracrine loop between infiltrated neutrophils/MDMs and ECs drives neuroinflammation.
Collapse
Affiliation(s)
- Sébastien A Lévesque
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Alexandre Paré
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Benoit Mailhot
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Victor Bellver-Landete
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Hania Kébir
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Marc-André Lécuyer
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Jorge Ivan Alvarez
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Robert W Keane
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Steve Lacroix
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| |
Collapse
|
46
|
Martin BN, Wang C, Zhang CJ, Kang Z, Gulen MF, Zepp JA, Zhao J, Bian G, Do JS, Min B, Pavicic PG, El-Sanadi C, Fox PL, Akitsu A, Iwakura Y, Sarkar A, Wewers MD, Kaiser WJ, Mocarski ES, Rothenberg ME, Hise AG, Dubyak GR, Ransohoff RM, Li X. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol 2016; 17:583-92. [PMID: 26998763 DOI: 10.1038/ni.3389] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
Interleukin 1β (IL-1β) is critical for the in vivo survival, expansion and effector function of IL-17-producing helper T (T(H)17) cells during autoimmune responses, including experimental autoimmune encephalomyelitis (EAE). However, the spatiotemporal role and cellular source of IL-1β during EAE pathogenesis are poorly defined. In the present study, we uncovered a T cell-intrinsic inflammasome that drives IL-1β production during T(H)17-mediated EAE pathogenesis. Activation of T cell antigen receptors induced expression of pro-IL-1β, whereas ATP stimulation triggered T cell production of IL-1β via ASC-NLRP3-dependent caspase-8 activation. IL-1R was detected on T(H)17 cells but not on type 1 helper T (T(H)1) cells, and ATP-treated T(H)17 cells showed enhanced survival compared with ATP-treated T(H)1 cells, suggesting autocrine action of T(H)17-derived IL-1β. Together these data reveal a critical role for IL-1β produced by a T(H)17 cell-intrinsic ASC-NLRP3-caspase-8 inflammasome during inflammation of the central nervous system.
Collapse
Affiliation(s)
- Bradley N Martin
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Chenhui Wang
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cun-jin Zhang
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Immunology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zizhen Kang
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Muhammet Fatih Gulen
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Jarod A Zepp
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Junjie Zhao
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Guanglin Bian
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Jeong-su Do
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Booki Min
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Paul G Pavicic
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Caroline El-Sanadi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Aoi Akitsu
- Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki, Noda, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki, Noda, Japan
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Mark D Wewers
- Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Amy G Hise
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Richard M Ransohoff
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Xiaoxia Li
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
47
|
Seno A, Maruhashi T, Kaifu T, Yabe R, Fujikado N, Ma G, Ikarashi T, Kakuta S, Iwakura Y. Exacerbation of experimental autoimmune encephalomyelitis in mice deficient for DCIR, an inhibitory C-type lectin receptor. Exp Anim 2016; 64:109-19. [PMID: 26176030 PMCID: PMC4427725 DOI: 10.1538/expanim.14-0079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor containing a
carbohydrate recognition domain in its extracellular portion and an immunoreceptor
tyrosine–based inhibitory motif, which transduces negative signals into cells, in its
cytoplasmic portion. Previously, we showed that Dcir–/– mice
spontaneously develop autoimmune diseases such as enthesitis and sialadenitis due to
excess expansion of dendritic cells (DCs), suggesting that DCIR is critically important
for the homeostasis of the immune system. In this report, we analyzed the role of DCIR in
the development of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease
model for multiple sclerosis. We found that EAE was exacerbated in
Dcir–/– mice associated with severe demyelination of the
spinal cords. The number of infiltrated CD11c+ DCs and CD4+ T cells
into spinal cords was increased in Dcir–/– mice. Recall
proliferative response of lymph node cells was higher in
Dcir–/– mice compared with wild-type mice. These
observations suggest that DCIR is an important negative regulator of the immune system,
and Dcir–/– mice should be useful for analyzing the roles of
DCIR in an array of autoimmune diseases.
Collapse
|
48
|
Lin CC, Bradstreet TR, Schwarzkopf EA, Jarjour NN, Chou C, Archambault AS, Sim J, Zinselmeyer BH, Carrero JA, Wu GF, Taneja R, Artyomov MN, Russell JH, Edelson BT. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med 2016; 213:251-71. [PMID: 26834156 PMCID: PMC4749922 DOI: 10.1084/jem.20150568] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
Lin et al. show that Bhlhe40 expression identifies encephalitogenic CD4+ T helper cells and define a pertussis toxin–IL-1–Bhlhe40 pathway active in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. The features that define autoreactive T helper (Th) cell pathogenicity remain obscure. We have previously shown that Th cells require the transcription factor Bhlhe40 to mediate experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Here, using Bhlhe40 reporter mice and analyzing both polyclonal and TCR transgenic Th cells, we found that Bhlhe40 expression was heterogeneous after EAE induction, with Bhlhe40-expressing cells displaying marked production of IFN-γ, IL-17A, and granulocyte-macrophage colony-stimulating factor. In adoptive transfer EAE models, Bhlhe40-deficient Th1 and Th17 cells were both nonencephalitogenic. Pertussis toxin (PTX), a classical co-adjuvant for actively induced EAE, promoted IL-1β production by myeloid cells in the draining lymph node and served as a strong stimulus for Bhlhe40 expression in Th cells. Furthermore, PTX co-adjuvanticity was Bhlhe40 dependent. IL-1β induced Bhlhe40 expression in polarized Th17 cells, and Bhlhe40-expressing cells exhibited an encephalitogenic transcriptional signature. In vivo, IL-1R signaling was required for full Bhlhe40 expression by Th cells after immunization. Overall, we demonstrate that Bhlhe40 expression identifies encephalitogenic Th cells and defines a PTX–IL-1–Bhlhe40 pathway active in EAE.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tara R Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Elizabeth A Schwarzkopf
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas N Jarjour
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Chun Chou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Angela S Archambault
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Julia Sim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gregory F Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - John H Russell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
49
|
Chanaday NL, Roth GA. Microglia and astrocyte activation in the frontal cortex of rats with experimental autoimmune encephalomyelitis. Neuroscience 2015; 314:160-9. [PMID: 26679600 DOI: 10.1016/j.neuroscience.2015.11.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for the human disease multiple sclerosis (MS), a demyelinating and neurodegenerative pathology of the central nervous system. Both diseases share physiopathological and clinical characteristics, mainly associated with a neuroinflammatory process that leads to a set of motor, sensory, and cognitive symptoms. In MS, gray matter atrophy is related to the emergence of cognitive deficits and contributes to clinical progression. In particular, injury and dysfunction in certain areas of the frontal cortex (FrCx) have been related to the development of cognitive impairments with high incidence, like central fatigue and executive dysfunction. In the present work we show the presence of region-specific microglia and astrocyte activation in the FrCx, during the first hours of acute EAE onset. It is accompanied by the production of the pro-inflammatory cytokines IL-6 and TNF-α, in the absence of detectable leukocyte infiltration. These findings expand previous studies showing presynaptic neural dysfunction occurring at the FrCx and might contribute to the understanding of the mechanisms involved in the genesis and prevalence of common MS symptoms.
Collapse
Affiliation(s)
- N L Chanaday
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - G A Roth
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| |
Collapse
|
50
|
Rodrigues DH, Leles BP, Costa VV, Miranda AS, Cisalpino D, Gomes DA, de Souza DG, Teixeira AL. IL-1β Is Involved with the Generation of Pain in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2015; 53:6540-6547. [PMID: 26614512 DOI: 10.1007/s12035-015-9552-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
Abstract
Pain is one of the main symptoms of multiple sclerosis, a demyelinating disease of the central nervous system that affects millions of people worldwide. The experimental autoimmune encephalomyelitis (EAE) is considered an experimental model of multiple sclerosis, and besides motor weakness, hypernociception is one of the clinical signs of animals with EAE. In this study, we investigated the influence of some cytokines in the generation of the hypernociceptive response in a mouse model of EAE using MOG35-55. We measured some cytokines in the dorsal root ganglia (DRG), an important anatomical structure involved in pain. We found increased levels of the cytokines TNF-α, IL-1β, and Kc in DRGs of animals with EAE. We used the antibody IL-1ra to antagonize the effects of IL-1β, and animals presented a decrease in the hypernociceptive response. Thus, our results suggest that hypernociception in this experimental model of EAE may be a consequence of the increase in some cytokines in DRGs, especially IL-1β.
Collapse
MESH Headings
- Animals
- Chemokine CXCL1/metabolism
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Interleukin 1 Receptor Antagonist Protein/metabolism
- Interleukin-1beta/metabolism
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- NAV1.8 Voltage-Gated Sodium Channel/genetics
- NAV1.8 Voltage-Gated Sodium Channel/metabolism
- Nociception
- Pain/complications
- Pain/genetics
- Pain/metabolism
- Pain/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- David Henrique Rodrigues
- Department of Basic and Health Sciences, Universidade Federal de Juiz de Fora-campus Governador Valadares, de Juiz de Fora, Brazil.
- Translational Psychoneuroimmunology Group, Laboratory of Immunopharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Bruno Pereira Leles
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Aline Silva Miranda
- Translational Psychoneuroimmunology Group, Laboratory of Immunopharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel Cisalpino
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Danielle Glória de Souza
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Antônio Lúcio Teixeira
- Translational Psychoneuroimmunology Group, Laboratory of Immunopharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Biochemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|