1
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Vieira VA, Herbert N, Cromhout G, Adland E, Goulder P. Role of Early Life Cytotoxic T Lymphocyte and Natural Killer Cell Immunity in Paediatric HIV Cure/Remission in the Anti-Retroviral Therapy Era. Front Immunol 2022; 13:886562. [PMID: 35634290 PMCID: PMC9130627 DOI: 10.3389/fimmu.2022.886562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Only three well-characterised cases of functional cure have been described in paediatric HIV infection over the past decade. This underlines the fact that early initiation of combination antiretroviral therapy (cART), whilst minimising the size of the viral reservoir, is insufficient to achieve cure, unless other factors contribute. In this review, we consider these additional factors that may facilitate functional cure in paediatric infection. Among the early life immune activity, these include HIV-specific cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses. The former have less potent antiviral efficacy in paediatric compared with adult infection, and indeed, in early life, NK responses have greater impact in suppressing viral replication than CTL. This fact may contribute to a greater potential for functional cure to be achieved in paediatric versus adult infection, since post-treatment control in adults is associated less with highly potent CTL activity, and more with effective antiviral NK cell responses. Nonetheless, antiviral CTL responses can play an increasingly effective role through childhood, especially in individuals expressing then 'protective' HLA-I molecules HLA-B*27/57/58:01/8101. The role of the innate system on preventing infection, in shaping the particular viruses transmitted, and influencing outcome is discussed. The susceptibility of female fetuses to in utero mother-to-child transmission, especially in the setting of recent maternal infection, is a curiosity that also provides clues to mechanisms by which cure may be achieved, since initial findings are that viral rebound is less frequent among males who interrupt cART. The potential of broadly neutralising antibody therapy to facilitate cure in children who have received early cART is discussed. Finally, we draw attention to the impact of the changing face of the paediatric HIV epidemic on cure potential. The effect of cART is not limited to preventing AIDS and reducing the risk of transmission. cART also affects which mothers transmit. No longer are mothers who transmit those who carry genes associated with poor immune control of HIV. In the cART era, a high proportion (>70% in our South African study) of transmitting mothers are those who seroconvert in pregnancy or who for social reasons are diagnosed late in pregnancy. As a result, now, genes associated with poor immune control of HIV are not enriched in mothers who transmit HIV to their child. These changes will likely influence the effectiveness of HLA-associated immune responses and therefore cure potential among children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Herbert
- Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom,Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: Philip Goulder,
| |
Collapse
|
3
|
Immunodominant Cytomegalovirus Epitopes Suppress Subdominant Epitopes in the Generation of High-Avidity CD8 T Cells. Pathogens 2021; 10:pathogens10080956. [PMID: 34451420 PMCID: PMC8400798 DOI: 10.3390/pathogens10080956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023] Open
Abstract
CD8+ T-cell responses to pathogens are directed against infected cells that present pathogen-encoded peptides on MHC class-I molecules. Although natural responses are polyclonal, the spectrum of peptides that qualify for epitopes is remarkably small even for pathogens with high coding capacity. Among those few that are successful at all, a hierarchy exists in the magnitude of the response that they elicit in terms of numbers of CD8+ T cells generated. This led to a classification into immunodominant and non-immunodominant or subordinate epitopes, IDEs and non-IDEs, respectively. IDEs are favored in the design of vaccines and are chosen for CD8+ T-cell immunotherapy. Using murine cytomegalovirus as a model, we provide evidence to conclude that epitope hierarchy reflects competition on the level of antigen recognition. Notably, high-avidity cells specific for non-IDEs were found to expand only when IDEs were deleted. This may be a host’s back-up strategy to avoid viral immune escape through antigenic drift caused by IDE mutations. Importantly, our results are relevant for the design of vaccines based on cytomegaloviruses as vectors to generate high-avidity CD8+ T-cell memory specific for unrelated pathogens or tumors. We propose the deletion of vector-encoded IDEs to avoid the suppression of epitopes of the vaccine target.
Collapse
|
4
|
Dolina JS, Van Braeckel-Budimir N, Thomas GD, Salek-Ardakani S. CD8 + T Cell Exhaustion in Cancer. Front Immunol 2021; 12:715234. [PMID: 34354714 PMCID: PMC8330547 DOI: 10.3389/fimmu.2021.715234] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
A paradigm shift in the understanding of the exhausted CD8+ T cell (Tex) lineage is underway. Originally thought to be a uniform population that progressively loses effector function in response to persistent antigen, single-cell analysis has now revealed that CD8+ Tex is composed of multiple interconnected subpopulations. The heterogeneity within the CD8+ Tex lineage is comprised of immune checkpoint blockade (ICB) permissive and refractory subsets termed stem-like and terminally differentiated cells, respectively. These populations occupy distinct peripheral and intratumoral niches and are characterized by transcriptional processes that govern transitions between cell states. This review presents key findings in the field to construct an updated view of the spatial, transcriptional, and functional heterogeneity of anti-tumoral CD8+ Tex. These emerging insights broadly call for (re-)focusing cancer immunotherapies to center on the driver mechanism(s) underlying the CD8+ Tex developmental continuum aimed at stabilizing functional subsets.
Collapse
Affiliation(s)
- Joseph S Dolina
- Cancer Immunology Discovery, Pfizer, San Diego, CA, United States
| | | | - Graham D Thomas
- Cancer Immunology Discovery, Pfizer, San Diego, CA, United States
| | | |
Collapse
|
5
|
Rose DL, Reagin KL, Oliva KE, Tompkins SM, Klonowski KD. Enhanced generation of influenza-specific tissue resident memory CD8 T cells in NK-depleted mice. Sci Rep 2021; 11:8969. [PMID: 33903648 PMCID: PMC8076325 DOI: 10.1038/s41598-021-88268-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells are among the first effectors to directly contact influenza and influenza-infected cells and their activation affects not only their intrinsic functions, but also subsequent CD8+ T cell responses. We utilized a NK cell depletion model to interrogate the contribution of NK cells to the development of anti-influenza CD8+ T cell memory. NK cell ablation increased the number of influenza-specific memory CD8+ T cells in the respiratory tract and lung-draining lymph node. Interestingly, animals depleted of NK cells during primary influenza infection were protected as well as their NK-intact counterparts despite significantly fewer reactivated CD8+ T cells infiltrating the respiratory tract after lethal, heterosubtypic challenge. Instead, protection in NK-deficient animals seems to be conferred by rapid reactivation of an enlarged pool of lung tissue-resident (TRM) memory cells within two days post challenge. Further interrogation of how NK cell ablation enhances respiratory TRM indicated that TRM development is independent of global and NK cell derived IFN-γ. These data suggest that reduction in NK cell activation after vaccination with live, non-lethal influenza virus increases compartmentalized, broadly protective memory CD8+ T cell generation and decreases the risk of CD8+ T cell-mediated pathology following subsequent influenza infections.
Collapse
Affiliation(s)
- David L Rose
- Department of Shared Resources, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Katie L Reagin
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kimberly E Oliva
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
6
|
Khan A, Singh VK, Mishra A, Soudani E, Bakhru P, Singh CR, Zhang D, Canaday DH, Sheri A, Padmanabhan S, Challa S, Iyer RP, Jagannath C. NOD2/RIG-I Activating Inarigivir Adjuvant Enhances the Efficacy of BCG Vaccine Against Tuberculosis in Mice. Front Immunol 2020; 11:592333. [PMID: 33365029 PMCID: PMC7751440 DOI: 10.3389/fimmu.2020.592333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) kills about 1.5 million people each year and the widely used Bacille Calmette-Guérin (BCG) vaccine provides a partial protection against TB in children and adults. Because BCG vaccine evades lysosomal fusion in antigen presenting cells (APCs), leading to an inefficient production of peptides and antigen presentation required to activate CD4 T cells, we sought to boost its efficacy using novel agonists of RIG-I and NOD2 as adjuvants. We recently reported that the dinucleotide SB 9200 (Inarigivir) derived from our small molecule nucleic acid hybrid (SMNH)® platform, activated RIG-I and NOD2 receptors and exhibited a broad-spectrum antiviral activity against hepatitis B and C, Norovirus, RSV, influenza and parainfluenza. Inarigivir increased the ability of BCG-infected mouse APCs to secrete elevated levels of IL-12, TNF-α, and IFN-β, and Caspase-1 dependent IL-1β cytokine. Inarigivir also increased the ability of macrophages to kill MTB in a Caspase-1-, and autophagy-dependent manner. Furthermore, Inarigivir led to a Capsase-1 and NOD2- dependent increase in the ability of BCG-infected APCs to present an Ag85B-p25 epitope to CD4 T cells in vitro. Consistent with an increase in immunogenicity of adjuvant treated APCs, the Inarigivir-BCG vaccine combination induced robust protection against tuberculosis in a mouse model of MTB infection, decreasing the lung burden of MTB by 1-log10 more than that afforded by BCG vaccine alone. The Inarigivir-BCG combination was also more efficacious than a muramyl-dipeptide-BCG vaccine combination against tuberculosis in mice, generating better memory T cell responses supporting its novel adjuvant potential for the BCG vaccine.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Vipul K Singh
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Emily Soudani
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Pearl Bakhru
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Christopher R Singh
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| | - Dekai Zhang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - David H Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | | | - Sreerupa Challa
- Spring Bank Pharmaceuticals, Inc., Hopkinton, MA, United States
| | | | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Human Infectious Diseases, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, United States
| |
Collapse
|
7
|
Solouki S, Huang W, Elmore J, Limper C, Huang F, August A. TCR Signal Strength and Antigen Affinity Regulate CD8 + Memory T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1217-1227. [PMID: 32759295 DOI: 10.4049/jimmunol.1901167] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
CD8+ T cells play a critical role in adaptive immunity, differentiating into CD8+ memory T cells that form the basis of protective cellular immunity. Vaccine efficacy is attributed to long-term protective immunity, and understanding the parameters that regulate development of CD8+ T cells is critical to the design of T cell-mediated vaccines. We show in this study using mouse models that two distinct parameters, TCR signal strength (regulated by the tyrosine kinase ITK) and Ag affinity, play important but separate roles in modulating the development of memory CD8+ T cells. Unexpectedly, our data reveal that reducing TCR signal strength along with reducing Ag affinity for the TCR leads to enhanced and accelerated development of CD8+ memory T cells. Additionally, TCR signal strength is able to regulate CD8+ T cell effector cytokine R production independent of TCR Ag affinity. Analysis of RNA-sequencing data reveals that genes for inflammatory cytokines/cytokine receptors are significantly altered upon changes in Ag affinity and TCR signal strength. Furthermore, our findings show that the inflammatory milieu is critical in regulating this TCR signal strength-mediated increase in memory development, as both CpG oligonucleotide treatment or cotransfer of wild-type and Itk-/- T cells eliminates the observed increase in memory cell formation. These findings suggest that TCR signal strength and Ag affinity independently contribute to CD8+ memory T cell development, which is modulated by inflammation, and suggest that manipulating TCR signal strength along with Ag affinity, may be used to tune the development of CD8+ memory T cells during vaccine development.
Collapse
Affiliation(s)
- Sabrina Solouki
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Jessica Elmore
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Candice Limper
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Fei Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| |
Collapse
|
8
|
Enders M, Franken L, Philipp MS, Kessler N, Baumgart AK, Eichler M, Wiertz EJH, Garbi N, Kurts C. Splenic Red Pulp Macrophages Cross-Prime Early Effector CTL That Provide Rapid Defense against Viral Infections. THE JOURNAL OF IMMUNOLOGY 2019; 204:87-100. [PMID: 31776205 DOI: 10.4049/jimmunol.1900021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Cross-presentation allows dendritic cells (DCs) to present peptides derived from endocytosed Ags on MHC class I molecules, which is important for activating CTL against viral infections and tumors. Type 1 classical DCs (cDC1), which depend on the transcription factor Batf3, are considered the main cross-presenting cells. In this study, we report that soluble Ags are efficiently cross-presented also by transcription factor SpiC-dependent red pulp macrophages (RPM) of the spleen. In contrast to cDC1, RPM used the mannose receptor for Ag uptake and employed the proteasome- and TAP-dependent cytosolic cross-presentation pathway, previously shown to be used in vitro by bone marrow-derived DCs. In an in vivo vaccination model, both cDC1 and RPM cross-primed CTL efficiently but with distinct kinetics. Within a few days, RPM induced very early effector CTL of a distinct phenotype (Ly6A/E+ Ly6C(+) KLRG1- CD127- CX3CR1- Grz-B+). In an adenoviral infection model, such CTL contained the early viral spread, whereas cDC1 induced short-lived effector CTL that eventually cleared the virus. RPM-induced early effector CTL also contributed to the endogenous antiviral response but not to CTL memory generation. In conclusion, RPM can contribute to antiviral immunity by generating a rapid CTL defense force that contains the virus until cDC1-induced CTL are available to eliminate it. This function can be harnessed for improving vaccination strategies aimed at inducing CTL.
Collapse
Affiliation(s)
- Marika Enders
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Lars Franken
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Marie-Sophie Philipp
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Nina Kessler
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Ann-Kathrin Baumgart
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Melanie Eichler
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Emmanuel J H Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Natalio Garbi
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Christian Kurts
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| |
Collapse
|
9
|
Pizzolla A, Wakim LM. Memory T Cell Dynamics in the Lung during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:374-381. [PMID: 30617119 DOI: 10.4049/jimmunol.1800979] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/08/2018] [Indexed: 01/06/2023]
Abstract
Influenza A virus is highly contagious, infecting 5-15% of the global population every year. It causes significant morbidity and mortality, particularly among immunocompromised and at-risk individuals. Influenza virus is constantly evolving, undergoing continuous, rapid, and unpredictable mutation, giving rise to novel viruses that can escape the humoral immunity generated by current influenza virus vaccines. Growing evidence indicates that influenza-specific T cells resident along the respiratory tract are highly effective at providing potent and rapid protection against this inhaled pathogen. As these T cells recognize fragments of the virus that are highly conserved and less prone to mutation, they have the potential to provide cross-strain protection against a wide breadth of influenza viruses, including newly emerging strains. In this review, we will discuss how influenza-specific memory T cells in the lung are established and maintained and how we can harness this knowledge to design broadly protective influenza A virus vaccines.
Collapse
Affiliation(s)
- Angela Pizzolla
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
10
|
Chen L, Shen Z. Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol 2019; 17:64-75. [PMID: 31595056 DOI: 10.1038/s41423-019-0291-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/25/2019] [Indexed: 11/09/2022] Open
Abstract
The skin is the largest organ of the body. The establishment of immunological memory in the skin is a crucial component of the adaptive immune response. Once naive T cells are activated by antigen-presenting cells, a small fraction of them differentiate into precursor memory T cells. These precursor cells ultimately develop into several subsets of memory T cells, including central memory T (TCM) cells, effector memory T (TEM) cells, and tissue resident memory T (TRM) cells. TRM cells have a unique transcriptional profile, and their most striking characteristics are their long-term survival (longevity) and low migration in peripheral tissues, including the skin. Under physiological conditions, TRM cells that reside in the skin can respond rapidly to pathogenic challenges. However, there is emerging evidence to support the vital role of TRM cells in the recurrence of chronic inflammatory skin disorders, including psoriasis, vitiligo, and fixed drug eruption, under pathological or uncontrolled conditions. Clarifying and characterizing the mechanisms that are involved in skin TRM cells will help provide promising strategies for reducing the frequency and magnitude of skin inflammation recurrence. Here, we discuss recent insights into the generation, homing, retention, and survival of TRM cells and share our perspectives on the biological characteristics of TRM cells in the recurrence of inflammatory skin disorders.
Collapse
Affiliation(s)
- Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhu Shen
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital; School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
11
|
Khan A, Bakhru P, Saikolappan S, Das K, Soudani E, Singh CR, Estrella JL, Zhang D, Pasare C, Ma Y, Sun J, Wang J, Hunter RL, Tony Eissa N, Dhandayuthapani S, Jagannath C. An autophagy-inducing and TLR-2 activating BCG vaccine induces a robust protection against tuberculosis in mice. NPJ Vaccines 2019; 4:34. [PMID: 31396406 PMCID: PMC6683161 DOI: 10.1038/s41541-019-0122-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/15/2019] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium bovis BCG is widely used as a vaccine against tuberculosis due to M. tuberculosis (Mtb), which kills millions of people each year. BCG variably protects children, but not adults against tuberculosis. BCG evades phagosome maturation, autophagy, and reduces MHC-II expression of antigen-presenting cells (APCs) affecting T-cell activation. To bypass these defects, an autophagy-inducing, TLR-2 activating C5 peptide from Mtb-derived CFP-10 protein was overexpressed in BCG in combination with Ag85B. Recombinant BCG85C5 induced a robust MHC-II-dependent antigen presentation to CD4 T cells in vitro, and elicited stronger TH1 cytokines (IL-12, IL-1β, and TNFα) from APCs of C57Bl/6 mice increasing phosphorylation of p38MAPK and ERK. BCG85C5 also enhanced MHC-II surface expression of MΦs by inhibiting MARCH1 ubiquitin ligase that degrades MHC-II. BCG85C5 infected APCs from MyD88 or TLR-2 knockout mice showed decreased antigen presentation. Furthermore, BCG85C5 induced LC3-dependent autophagy in macrophages increasing antigen presentation. Consistent with in vitro effects, BCG85C5 markedly expanded both effector and central memory T cells in C57Bl/6 mice protecting them against both primary aerosol infection with Mtb and reinfection, but was less effective among TLR-2 knockout mice. Thus, BCG85C5 induces stronger and longer lasting immunity, and is better than BCG against tuberculosis of mice.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Pearl Bakhru
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Sankaralingam Saikolappan
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Kishore Das
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Emily Soudani
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Christopher R. Singh
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Jaymie L. Estrella
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Dekai Zhang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Yue Ma
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Houston, TX USA
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Houston, TX USA
| | - Jin Wang
- Methodist Hospital Research Institute, Houston, TX USA
| | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | | | - Subramanian Dhandayuthapani
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
- Methodist Hospital Research Institute, Houston, TX USA
| |
Collapse
|
12
|
Tallapaka SB, Karuturi BVK, Yeapuri P, Curran SM, Sonawane YA, Phillips JA, David Smith D, Sanderson SD, Vetro JA. Surface conjugation of EP67 to biodegradable nanoparticles increases the generation of long-lived mucosal and systemic memory T-cells by encapsulated protein vaccine after respiratory immunization and subsequent T-cell-mediated protection against respiratory infection. Int J Pharm 2019; 565:242-257. [PMID: 31077762 DOI: 10.1016/j.ijpharm.2019.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
Encapsulation of protein vaccines in biodegradable nanoparticles (NP) increases T-cell expansion after mucosal immunization but requires incorporating a suitable immunostimulant to increase long-lived memory T-cells. EP67 is a clinically viable, host-derived peptide agonist of the C5a receptor that selectively activates antigen presenting cells over neutrophils. We previously found that encapsulating EP67-conjugated CTL peptide vaccines in NP increases long-lived memory subsets of CTL after respiratory immunization. Thus, we hypothesized that alternatively conjugating EP67 to the NP surface can increase long-lived mucosal and systemic memory T-cells generated by encapsulated protein vaccines. We found that respiratory immunization of naïve female C57BL/6 mice with LPS-free ovalbumin (OVA) encapsulated in PLGA 50:50 NP (∼380 nm diameter) surface-conjugated with ∼0.1 wt% EP67 through 2 kDa PEG linkers (i) increased T-cell expansion and long-lived memory subsets of OVA323-339-specific CD4+ and OVA257-264-specific CD8a+ T-cells in the lungs (CD44HI/CD127/KLRG1) and spleen (CD44HI/CD127/KLRG1/CD62L) and (ii) decreased peak CFU of OVA-expressing L. monocytogenes (LM-OVA) in the lungs, liver, and spleen after respiratory challenge vs. encapsulation in unmodified NP. Thus, conjugating EP67 to the NP surface is one approach to increase the generation of long-lived mucosal and systemic memory T-cells by encapsulated protein vaccines after respiratory immunization.
Collapse
Affiliation(s)
- Shailendra B Tallapaka
- DILIsym Services Inc., Six Davis Drive, PO Box 12317, Research Triangle Park, NC 27709, USA(1)
| | - Bala V K Karuturi
- Mylan Pharmaceuticals Inc., 781 Chestnut Ridge Road, Morgantown, WV 26505, USA(1)
| | - Pravin Yeapuri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Stephen M Curran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68022, USA
| | - Joy A Phillips
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA 92115, USA
| | - D David Smith
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Sam D Sanderson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Joseph A Vetro
- Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
13
|
Qin Y, Lee Y, Seo J, Kim T, Shin JH, Park SH. NIH3T3 Directs Memory-Fated CTL Programming and Represses High Expression of PD-1 on Antitumor CTLs. Front Immunol 2019; 10:761. [PMID: 31031760 PMCID: PMC6470252 DOI: 10.3389/fimmu.2019.00761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/21/2019] [Indexed: 11/15/2022] Open
Abstract
Memory CD8+ T cells have long been considered a promising population for adoptive cell therapy (ACT) due to their long-term persistence and robust re-stimulatory response. NIH3T3 is an immortalized mouse embryonic fibroblast cell line. We report that NIH3T3-conditioned medium (CM) can augment effector functions of CTLs following antigen priming and confer phenotypic and transcriptional properties of central memory cells. After NIH3T3-CM-educated CTLs were infused into naïve mice, they predominantly developed to central memory cells. A large number of NIH3T3-CM-educated CTLs with high functionality persisted and infiltrated to tumor mass. In addition, NIH3T3-CM inhibited CTLs expression of PD-1 in vitro and repressed their high expression of PD-1 in tumor microenvironment after adoptive transfer. Consequently, established tumor models showed that infusion of NIH3T3-CM-educated CTLs dramatically improved CTL mediated-antitumor immunity. Furthermore, NIH3T3-CM also promoted human CD8+ T cells differentiation into memory cells. These results suggest that NIH3T3-CM-programmed CTLs are good candidates for adoptive transfer in tumor therapy.
Collapse
Affiliation(s)
- Yingyu Qin
- Department of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Yuna Lee
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Jaeho Seo
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Taehyun Kim
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Jung Hoon Shin
- ImmunoMax Co., Ltd, Korea University, Seoul, South Korea
| | - Se-Ho Park
- Department of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
14
|
Paracrine costimulation of IFN-γ signaling by integrins modulates CD8 T cell differentiation. Proc Natl Acad Sci U S A 2018; 115:11585-11590. [PMID: 30348790 DOI: 10.1073/pnas.1804556115] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cytokine IFN-γ is a critical regulator of immune system development and function. Almost all leukocytes express the receptor for IFN-γ, yet each cell type elicits a different response to this cytokine. Cell type-specific effects of IFN-γ make it difficult to predict the outcomes of the systemic IFN-γ blockade and limit its clinical application, despite many years of research. To better understand the cell-cell interactions and cofactors that specify IFN-γ functions, we focused on the function of IFN-γ on CD8 T cell differentiation. We demonstrated that during bacterial infection, IFN-γ is a dominant paracrine trigger that skews CD8 T cell differentiation toward memory. This skewing is preferentially driven by contact-dependent T cell-T cell (T-T) interactions and the localized IFN-γ secretion among activated CD8 T cells in a unique splenic microenvironment, and is less sensitive to concurrent IFN-γ production by other immune cell populations such as natural killer (NK) cells. Modulation of CD8 T cell differentiation by IFN-γ relies on a nonconventional IFN-γ outcome that occurs specifically within 24 hours following infection. This is driven by IFN-γ costimulation by integrins at T-T synapses, and leads to synergistic phosphorylation of the proximal STAT1 molecule and accelerated IL-2 receptor down-regulation. This study provides evidence of the importance of context-dependent cytokine signaling and gives another example of how cell clusters and the microenvironment drive unique biology.
Collapse
|
15
|
Karuturi BVK, Tallapaka SB, Yeapuri P, Curran SM, Sanderson SD, Vetro JA. Encapsulation of an EP67-Conjugated CTL Peptide Vaccine in Nanoscale Biodegradable Particles Increases the Efficacy of Respiratory Immunization and Affects the Magnitude and Memory Subsets of Vaccine-Generated Mucosal and Systemic CD8 + T Cells in a Diameter-Dependent Manner. Mol Pharm 2017; 14:1469-1481. [PMID: 28319404 DOI: 10.1021/acs.molpharmaceut.6b01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The diameter of biodegradable particles used to coencapsulate immunostimulants and subunit vaccines affects the magnitude of memory CD8+ T cells generated by systemic immunization. Possible effects on the magnitude of CD8+ T cells generated by mucosal immunization or memory subsets that potentially correlate more strongly with protection against certain pathogens, however, are unknown. In this study, we conjugated our novel host-derived mucosal immunostimulant, EP67, to the protective MCMV CTL epitope, pp89, through a lysosomal protease-labile double arginine linker (pp89-RR-EP67) and encapsulated in PLGA 50:50 micro- or nanoparticles. We then compared total magnitude, effector/central memory (CD127/KRLG1/CD62L), and IFN-γ/TNF-α/IL-2 secreting subsets of pp89-specific CD8+ T cells as well as protection of naive female BALB/c mice against primary respiratory infection with MCMV 21 days after respiratory immunization. We found that decreasing the diameter of encapsulating particle from ∼5.4 μm to ∼350 nm (i) increased the magnitude of pp89-specific CD8+ T cells in the lungs and spleen; (ii) partially changed CD127/KLRG1 effector memory subsets in the lungs but not the spleen; (iii) changed CD127/KRLG1/CD62L effector/central memory subsets in the spleen; (iv) changed pp89-responsive IFN-γ/TNF-α/IL-2 secreting subsets in the lungs and spleen; (v) did not affect the extent to which encapsulation increased efficacy against primary MCMV respiratory infection over unencapsulated pp89-RR-EP67. Thus, although not observed under our current experimental conditions with MCMV, varying the diameter of nanoscale biodegradable particles may increase the efficacy of mucosal immunization with coencapsulated immunostimulant/subunit vaccines against certain pathogens by selectively increasing memory subset(s) of CD8+ T cells that correlate the strongest with protection.
Collapse
Affiliation(s)
- Bala V K Karuturi
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Shailendra B Tallapaka
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Pravin Yeapuri
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Stephen M Curran
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Sam D Sanderson
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Joseph A Vetro
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
16
|
Kueberuwa G, Gornall H, Alcantar-Orozco EM, Bouvier D, Kapacee ZA, Hawkins RE, Gilham DE. CCR7 + selected gene-modified T cells maintain a central memory phenotype and display enhanced persistence in peripheral blood in vivo. J Immunother Cancer 2017; 5:14. [PMID: 28239467 PMCID: PMC5319186 DOI: 10.1186/s40425-017-0216-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Adoptive T cell immunotherapy (ATCT) for cancer entails infusing patients with T cells that recognise and destroy tumour cells. Efficient engraftment of T cells and persistence in the circulation correlate with favourable clinical outcomes. T cells of early differentiation possess an increased capacity for proliferation and therefore persistence, using these cells for ATCT could therefore lead to improved clinical outcomes. METHOD We describe a method to enrich T cells of early differentiation status using paramagnetic beads and antibodies targeting cells expressing C-C motif chemokine receptor 7 (CCR7). RESULTS Selection of cells expressing CCR7 enriches T cells of bearing markers of early differentiation status. This was validated through analysis of an array of surface markers and an observed reduction in effector cell functions ex vivo. CCR7 selection resulted in dramatic 83.6 and 137 fold increases in circulating levels of CD4 and CD8 T cells respectively compared to non-sorted T cells 3 weeks after adoptive transfer to NSG mice. We observed no significant difference in the engraftment levels of CCR7 or CD62L selected cells in the NSG mouse model. Comparison of cells ex vivo, however, suggests CCR7 selection is superior to CD62L selection in enriching T cells of early differentiation status. CONCLUSIONS CCR7 selection offers a means to enrich T cells of early differentiation status for ACTC. Together our data suggests that these T cells are likely to display enhanced engraftment and persistence in patients in vivo and could therefore improve therapeutic efficacy of ACTC.
Collapse
Affiliation(s)
- Gray Kueberuwa
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - Hannah Gornall
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - Erik Marcelo Alcantar-Orozco
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - Deborah Bouvier
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - Zainul Abedin Kapacee
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - Robert Edward Hawkins
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| | - David Edward Gilham
- Clinical and Experimental Immunotherapy Group, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Division of Cancer Sciences, The University of Manchester, Wilmslow Road, Withington, Manchester, M20 4QL UK
| |
Collapse
|
17
|
Chesson CB, Ekpo-Otu S, Endsley JJ, Rudra JS. Biomaterials-Based Vaccination Strategies for the Induction of CD8 +T Cell Responses. ACS Biomater Sci Eng 2016; 3:126-143. [PMID: 33450791 DOI: 10.1021/acsbiomaterials.6b00412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural and synthetic biomaterials are increasingly being used for the development of vaccines and immunotherapies as alternatives to traditional live-attenuated formulations due to their improved safety profiles and no risk of reversion to virulence. Polymeric materials in particular enjoy attention due to the ease of fabrication, control over physicochemical properties, and their wide range of immunogenicity. While the majority of studies focus on inducing protective antibody responses, in recent years, materials-based strategies for the delivery of antigens and immunomodulators to improve CD8+T cell immunity against infectious and non-infectious diseases have gained momentum. Notably, platforms based on polymeric nanoparticles, liposomes, micelles, virus-like particles, self-assembling peptides and peptidomimetics, and multilayer thin films show considerable promise in preclinical studies. In this Review, we first introduce the concepts of CD8+T cell activation, effector and memory functions, and cytotoxic activity, followed by vaccine design for eliciting robust and protective long-lived CD8+T cell immunity. We then discuss different materials-based vaccines developed in the past decade to elicit CD8+T cell responses based on molecular composition or fabrication methods and conclude with a summary and glimpse at the future trends in this area.
Collapse
Affiliation(s)
- Charles B Chesson
- Department of Pharmacology & Toxicology, ‡Department of Microbiology & Immunology, and §Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Shaunte Ekpo-Otu
- Department of Pharmacology & Toxicology, Department of Microbiology & Immunology, and §Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Janice J Endsley
- Department of Pharmacology & Toxicology, Department of Microbiology & Immunology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jai S Rudra
- Department of Pharmacology & Toxicology, Department of Microbiology & Immunology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
18
|
Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San Segundo L, Inogés S, Santos-Briz Á, García-Briñón J, Corchete LA, San Miguel JF, Del Cañizo C, Blanco B. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol 2016; 9:113. [PMID: 27765055 PMCID: PMC5072323 DOI: 10.1186/s13045-016-0343-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity. PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed for cancer therapy. However, few studies have explored their immunosuppressive effect. METHODS The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated. RESULTS Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting. Importantly, BEZ235 prevented naïve T cell activation and induced tolerance of alloreactive T cells, while maintaining an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly improved the survival and decreased the GvHD development in mice. CONCLUSIONS These results support the use of PI3K inhibitors to control T cell responses and show the potential utility of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.
Collapse
Affiliation(s)
- Mª Carmen Herrero-Sánchez
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Concepción Rodríguez-Serrano
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Julia Almeida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Servicio de Citometría, Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Laura San Segundo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Susana Inogés
- Laboratorio de Inmunoterapia, Clínica Universidad de Navarra, Avda. Pío XII 55, 31008, Pamplona, Spain
| | - Ángel Santos-Briz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Departamento de Patología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain
| | - Jesús García-Briñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Departamento de Biología Celular y Patología, Facultad de Medicina, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Luis Antonio Corchete
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Avda. Pío XII 55, 31008, Pamplona, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Belén Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
19
|
Takeda Y, Azuma M, Matsumoto M, Seya T. Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8(+) T cells during vaccine immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:143. [PMID: 27619885 PMCID: PMC5020536 DOI: 10.1186/s13046-016-0416-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/01/2016] [Indexed: 01/07/2023]
Abstract
Background Dendritic cells (DCs) mount tumor-associated antigens (TAAs), and the double-stranded RNA adjuvant Poly(I:C) stimulates Toll-like receptor 3 (TLR3) signal in DC, which in turn induces type I interferon (IFN) and interleukin-12 (IL-12), then cross-primes cytotoxic T lymphocytes (CTLs). Proliferation of CTLs correlates with tumor regression. How these potent cells expand with high quality is crucial to the outcome of CTL therapy. However, good markers reflecting the efficacy of DC-target immunotherapy have not been addressed. Methods Using an EG7 (ovalbumin, OVA-positive) tumor-implant mouse model, we examined what is a good marker for active CTL induction in treatment with Poly(I:C)/OVA. Results Simultaneous administration of Poly(I:C) and antigen (Ag) OVA significantly increased a minor population of CD8+ T cells, that express CD11c in lymphoid and tumor sites. The numbers of the CD11c+ CD8+ T cells correlated with those of induced Ag-specific CD8+ T cells and tumor regression. The CD11c+ CD8+ T cell moiety was characterized by its high killing activity and IFN-γ-producing ability, which represent an active phenotype of the effector CTLs. Not only a TLR3-specific (TICAM-1-dependent) signal but also TLR2 (MyD88) signal in DC triggered the expansion of CD11c+ CD8+ T cells in tumor-bearing mice. Notably, human CD11c+ CD8+ T cells also proliferated in peripheral blood mononuclear cells (PBMC) stimulated with cytomegalovirus (CMV) Ag. Conclusions CD11c expression in CD8+ T cells reflects anti-tumor CTL activity and would be a marker for immunotherapeutic efficacy in mouse models and probably cancer patients as well. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0416-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohei Takeda
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahiro Azuma
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
20
|
Watson AM, Lam LKM, Klimstra WB, Ryman KD. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells. PLoS Pathog 2016; 12:e1005786. [PMID: 27463517 PMCID: PMC4962991 DOI: 10.1371/journal.ppat.1005786] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/05/2016] [Indexed: 12/16/2022] Open
Abstract
A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines. The 17D line yellow fever virus (YFV) vaccines are some of the safest and most effective live-attenuated virus vaccines ever produced, protecting recipients for life against deadly yellow fever (YF). As a testament to this safety and efficacy, the 17D line of live-attenuated vaccines has become an important model for the design of future vaccines. However, we still lack a fundamental understanding of the protective immunity elicited against the virulent YFV, a knowledge gap that must be overcome to inform the design of future live-attenuated and subunit vaccines. Humans develop robust antibody and T cell responses following vaccination, leading some to suggest that vaccine-elicited CD8+ T cells are important for protection against virulent YFV. Since this can never be tested in humans, we have used mice to model immunity to the 17D-204 vaccine strain. We found that CD4+ T cells elicited by 17D-204 contributed to protection against virulent YFV, but CD8+ T cells had no effect on the outcomes of survival or disease. Our study is the first to demonstrate that vaccine-elicited CD4+ T cells can protect against YFV infection. These results suggest that vaccine developers should consider the importance of CD4+ T cells when designing vaccines against viruses similar to YFV.
Collapse
Affiliation(s)
- Alan M. Watson
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - L. K. Metthew Lam
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kate D. Ryman
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
21
|
Li N, Wang N, Wang X, Zhen Y, Wang T. Microneedle arrays delivery of the conventional vaccines based on nonvirulent viruses. Drug Deliv 2016; 23:3234-3247. [DOI: 10.3109/10717544.2016.1165311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Ning Wang
- School of Medical Engineering, Hefei University of Technology, Hefei, China
| | - Xueting Wang
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| |
Collapse
|
22
|
Urban SL, Berg LJ, Welsh RM. Type 1 interferon licenses naïve CD8 T cells to mediate anti-viral cytotoxicity. Virology 2016; 493:52-9. [PMID: 26999026 DOI: 10.1016/j.virol.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 11/28/2022]
Abstract
Naïve T cells, unlike memory T cells, exhibit very limited effector function in response to cognate antigen, but exposure to type 1 interferon (IFN) prior to cognate antigen allows for rapid manifestation of effector functions. A full assessment of the functions of these IFN-sensitized otherwise naïve T cells has not been made, nor has their capacity to be effector cells in vivo. We describe here that IFN-sensitized naïve T cells in the absence of cognate antigen adopt a partial activated phenotype distinguished by the upregulation of the surface activation marker CD69, effector-associated transcription factors Eomes and IRF4, and cytotoxicity effector molecule granzyme B. IFN-sensitized naive T cells lysed target cells in vivo and responded to low concentrations and affinities of cognate ligands. We suggest that this rapid and sensitive effector function of IFN-conditioned naïve CD8 T cells may play a role in pathogen control and help ward off superinfections.
Collapse
Affiliation(s)
- Stina L Urban
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Leslie J Berg
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Raymond M Welsh
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|
23
|
Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San-Segundo L, Inogés S, Santos-Briz Á, García-Briñón J, SanMiguel JF, Del Cañizo C, Blanco B. Effect of mTORC1/mTORC2 inhibition on T cell function: potential role in graft-versus-host disease control. Br J Haematol 2016; 173:754-68. [PMID: 26914848 DOI: 10.1111/bjh.13984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is crucial for the activation and function of T cells, which play an essential role in the development of graft-versus-host disease (GvHD). Despite its partial ability to block mTOR pathway, the mTORC1 inhibitor rapamycin has shown encouraging results in the control of GvHD. Therefore, we considered that simultaneous targeting of both mTORC1 and mTORC2 complexes could exert a more potent inhibition of T cell activation and, thus, could have utility in GvHD control. To assess this assumption, we have used the dual mTORC1/mTORC2 inhibitors CC214-1 and CC214-2. In vitro studies confirmed the superior ability of CC214-1 versus rapamycin to block mTORC1 and mTORC2 activity and to reduce T cell proliferation. Both drugs induced a similar decrease in Th1/Th2 cytokine secretion, but CC214-1 was more efficient in inhibiting naïve T cell activation and the expression of T-cell activation markers. In addition, CC214-1 induced specific tolerance against alloantigens, while preserving anti-cytomegalovirus response. Finally, in a mouse model of GvHD, the administration of CC214-2 significantly improved mice survival and decreased GvHD-induced damages. In conclusion, the current study shows, for the first time, the immunosuppressive ability of CC214-1 on T lymphocytes and illustrates the role of CC214-2 in the allogeneic transplantation setting as a possible GvHD prophylaxis agent.
Collapse
Affiliation(s)
- Ma Carmen Herrero-Sánchez
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Concepción Rodríguez-Serrano
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Julia Almeida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Servicio de Citometría, Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Laura San-Segundo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Susana Inogés
- Laboratorio de Inmunoterapia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ángel Santos-Briz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jesús García-Briñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Biología Celular y Patología, Facultad de Medicina, Salamanca, Spain
| | - Jesús F SanMiguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Belén Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
24
|
McQueen B, Trace K, Whitman E, Bedsworth T, Barber A. Natural killer group 2D and CD28 receptors differentially activate mammalian/mechanistic target of rapamycin to alter murine effector CD8+ T-cell differentiation. Immunology 2016; 147:305-20. [PMID: 26661515 DOI: 10.1111/imm.12563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
Memory CD8+ T cells are an essential component of anti-tumour and anti-viral immunity. Activation of the mammalian/mechanistic target of rapamycin (mTOR) pathway has been implicated in regulating the differentiation of effector and memory T cells. However, the mechanisms that control mTOR activity during immunity to tumours and infections are not well known. Activation of co-stimulatory receptors, including CD28 and natural killer group 2D (NKG2D), activate phosphatidylinositol-3 kinase and subsequently may activate the mTOR pathway in CD8+ T cells. This study compared the activation of the mTOR signalling pathway after co-stimulation through CD28 or NKG2D receptors in murine effector CD8+ T cells. Compared with CD28 co-stimulation, activation through CD3 and NKG2D receptors had weaker activation of mTORc1, as shown by decreased phosphorylation of mTORc1 targets S6K1, ribosomal protein S6 and eukaryotic initiation factor 4E binding protein 1. NKG2D co-stimulation also showed increased gene expression of tuberous sclerosis protein 2, a negative regulator of mTORc1, whereas CD28 co-stimulation increased gene expression of Ras homologue enriched in brain, an activator of mTORc1, and hypoxia-inducible factor-1α and vascular endothelial growth factor-α, pro-angiogenic factors downstream of mTORc1. Strong mTORc1 activation in CD28-co-stimulated cells also increased expression of transcription factors that support effector cell differentiation, namely T-bet, B lymphocyte-induced maturation protein (BLIMP-1), interferon regulatory factor 4, and inhibitor of DNA binding 2, whereas low levels of mTORc1 activation allowed for the expression of Eomes, B-cell lymphoma 6 (BCL6), and inhibitor of DNA binding 3 during NKG2D stimulation, and increased expression of memory markers CD62 ligand and CD127. These data show that compared with CD28, co-stimulation through the NKG2D receptor leads to the differential activation of the mTOR signalling pathway and potentially supports memory CD8+ T-cell differentiation.
Collapse
Affiliation(s)
- Bryan McQueen
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Kelsey Trace
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Emily Whitman
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Taylor Bedsworth
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Amorette Barber
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| |
Collapse
|
25
|
Holtappels R, Podlech J, Lemmermann NAW, Schmitt E, Reddehase MJ. Non-cognate bystander cytolysis by clonal epitope-specific CTL lines through CD28-CD80 interaction inhibits antibody production: A potential caveat to CD8 T-cell immunotherapy. Cell Immunol 2016; 308:44-56. [PMID: 26717854 DOI: 10.1016/j.cellimm.2015.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Adoptive transfer of virus epitope-specific CD8 T cells is an immunotherapy option to control cytomegalovirus (CMV) infection and prevent CMV organ disease in immunocompromised solid organ transplantation (SOT) and hematopoietic cell transplantation (HCT) recipients. The therapy aims at an early, selective recognition and cytolysis of infected cells for preventing viral spread in tissues with no adverse immunopathogenic side-effects by attack of uninfected bystander cells. Here we describe that virus epitope-specific, cloned T-cell lines lyse target cells that present the cognate antigenic peptide to the TCR, but simultaneously have the potential to lyse uninfected cells expressing the CD28 ligand CD80 (B7-1). While TCR-mediated cytolysis requires co-receptor CD8 and depends on perforin, the TCR-independent and viral epitope-independent cytolysis through CD28-CD80 signaling does not require CD8 on the effector cells and is perforin-independent. Importantly, this non-cognate cytolysis pathway leads to bystander cytolysis of CD80-expressing B-cell blasts and thereby inhibits pan-specific antibody production.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Edgar Schmitt
- Institute for Immunology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
26
|
CD8+ T cell exhaustion, suppressed gamma interferon production, and delayed memory response induced by chronic Brucella melitensis infection. Infect Immun 2015; 83:4759-71. [PMID: 26416901 DOI: 10.1128/iai.01184-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 01/18/2023] Open
Abstract
Brucella melitensis is a well-adapted zoonotic pathogen considered a scourge of mankind since recorded history. In some cases, initial infection leads to chronic and reactivating brucellosis, incurring significant morbidity and economic loss. The mechanism by which B. melitensis subverts adaptive immunological memory is poorly understood. Previous work has shown that Brucella-specific CD8(+) T cells express gamma interferon (IFN-γ) and can transition to long-lived memory cells but are not polyfunctional. In this study, chronic infection of mice with B. melitensis led to CD8(+) T cell exhaustion, manifested by programmed cell death 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) expression and a lack of IFN-γ production. The B. melitensis-specific CD8(+) T cells that produced IFN-γ expressed less IFN-γ per cell than did CD8(+) cells from uninfected mice. Both memory precursor (CD8(+) LFA1(HI) CD127(HI) KLRG1(LO)) and long-lived memory (CD8(+) CD27(HI) CD127(HI) KLRG1(LO)) cells were identified during chronic infection. Interestingly, after adoptive transfer, mice receiving cells from chronically infected animals were able to contain infection more rapidly than recipients of cells from acutely infected or uninfected donors, although the proportions of exhausted CD8(+) T cells increased after adoptive transfer in both challenged and unchallenged recipients. CD8(+) T cells of challenged recipients initially retained the stunted IFN-γ production found prior to transfer, and cells from acutely infected mice were never seen to transition to either memory subset at all time points tested, up to 30 days post-primary infection, suggesting a delay in the generation of memory. Here we have identified defects in Brucella-responsive CD8(+) T cells that allow chronic persistence of infection.
Collapse
|
27
|
Carbone FR. Tissue-Resident Memory T Cells and Fixed Immune Surveillance in Nonlymphoid Organs. THE JOURNAL OF IMMUNOLOGY 2015; 195:17-22. [PMID: 26092813 DOI: 10.4049/jimmunol.1500515] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell immunity is often defined in terms of memory lymphocytes that use the blood to access a range of organs. T cells are involved in two patterns of recirculation. In one, the cells shuttle back and forth between blood and secondary lymphoid organs, whereas in the second, memory cells recirculate between blood and nonlymphoid tissues. The latter is a means by which blood T cells control peripheral infection. It is now clear that there exists a distinct memory T cell subset that is absent from blood but found within nonlymphoid tissues. These nonrecirculating tissue-resident memory T (TRM) cells develop within peripheral compartments and never spread beyond their point of lodgement. This review examines fixed immune surveillance by TRM cells, highlighting features that make them potent controllers of infection in nonlymphoid tissues. These features provide clues about TRM cell specialization, such as their ability to deal with sequestered, persisting infections confined to peripheral compartments.
Collapse
Affiliation(s)
- Francis R Carbone
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
28
|
Thomas S, Klobuch S, Podlech J, Plachter B, Hoffmann P, Renzaho A, Theobald M, Reddehase MJ, Herr W, Lemmermann NAW. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice. PLoS Pathog 2015; 11:e1005049. [PMID: 26181057 PMCID: PMC4504510 DOI: 10.1371/journal.ppat.1005049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/25/2015] [Indexed: 01/05/2023] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease. Pre-emptive CD8 T-cell therapy of human cytomegalovirus (HCMV) disease in immunocompromised recipients of hematopoietic stem cell transplantation gave promising results in clinical trials, but limited efficacy and the need of HCMV-seropositive memory cell donors has so far prevented adoptive cell transfer from becoming clinical routine. Further development is currently hampered by the lack of experimental animal models that allow preclinical testing of the protective efficacy of human T cells in functional organs. While humanized mouse models with human tissue implants are technically and statistically demanding, and are limited to studying human T-cell activation and local virus control in the implants, a more feasible model for control of systemic infection and prevention of multiple-organ CMV disease is regrettably missing. Here we introduce such a model based on infection of genetically immunocompromised, HLA-A2.1-transgenic NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV engineered to express the HCMV NLV-peptide epitope. Mimicking the scenario of HCMV-unexperienced donors, human T cells transduced with a human T-cell receptor specific for HLA-A.2.1-presented NLV peptide controlled systemic infection and moderated organ disease resulting in a survival benefit. The model promises to become instrumental in defining T-cell properties that determine their protective efficacy for a further development of adoptive immunotherapy of post-transplantation CMV infection.
Collapse
Affiliation(s)
- Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Bodo Plachter
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Angelique Renzaho
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Theobald
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
29
|
Becker PD, Hervouet C, Mason GM, Kwon SY, Klavinskis LS. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine 2015; 33:4691-8. [PMID: 25917679 DOI: 10.1016/j.vaccine.2015.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 01/31/2023]
Abstract
A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension.
Collapse
Affiliation(s)
- Pablo D Becker
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, Kings's College London, London SE1 9RT, United Kingdom.
| | - Catherine Hervouet
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, Kings's College London, London SE1 9RT, United Kingdom.
| | - Gavin M Mason
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, Kings's College London, London SE1 9RT, United Kingdom.
| | | | - Linda S Klavinskis
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, Kings's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
30
|
Elia AR, Circosta P, Sangiolo D, Bonini C, Gammaitoni L, Mastaglio S, Genovese P, Geuna M, Avolio F, Inghirami G, Tarella C, Cignetti A. Cytokine-induced killer cells engineered with exogenous T-cell receptors directed against melanoma antigens: enhanced efficacy of effector cells endowed with a double mechanism of tumor recognition. Hum Gene Ther 2015; 26:220-31. [PMID: 25758764 DOI: 10.1089/hum.2014.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokine-induced killer (CIK) cells consist of a heterogeneous population of polyclonal T lymphocytes displaying NK phenotype and HLA-unrestricted cytotoxic activity against a broad range of tumors. We sought to determine whether transduction of CIK cells with T cell receptor (TCR) genes specific for tumor-associated antigens could generate effector cells endowed with a double mechanism of tumor recognition. HLA-A2-restricted TCR-transduced (TD) CIK directed against the melanoma antigens Mart1 and NY-ESO1 were generated by lentiviral transduction and successfully expanded over a 3-4-week period. TD-CIK cells were both CD3(+)/CD56(-) and CD3(+)/CD56(+) (31±8% and 59±9%, respectively), indicating that both major histocompatibility complex (MHC)-restricted T cells and MHC-unrestricted CIK could be targeted by lentiviral transduction. At the end of the culture, the majority of both unmodified and TD-CIK displayed an effector memory phenotype, without considerable expression of replicative senescence and exhaustion markers. Functionally, TD-CIK specifically recognized tumor cells expressing the relevant antigen as well as maintained their MHC-unrestricted tumor activity. The cytotoxic activity of TD-CIK against HLA-A2(+) melanoma cell lines was significantly higher than the untransduced counterparts at a low effector:target ratio (cytotoxic activity of TD-CIK was from 1.9- to 4.3-fold higher than untransduced counterparts). TD-CIK were highly proficient in releasing high amount of IFN-γ upon antigen-specific stimulation and were able to recognize primary melanoma targets. In conclusion, we showed that (1) the reproducibility and simplicity of CIK transduction and expansion might solve the problem of obtaining adequate numbers of potent antitumor effector cells for adoptive immunotherapy; (2) the presence of both terminal effectors as well as of less differentiated progenitors might confer them long survival in vivo; and (3) the addition of an MHC-restricted antigen recognition allows not only targeting tumor surface antigens but also a wider range of cytoplasmic or nuclear antigens, involved in tumor proliferation and survival. TD-CIK cells with a double mechanism of tumor recognition are an attractive and alternative tool for the development of efficient cell therapeutic strategies.
Collapse
Affiliation(s)
- Angela R Elia
- 1 Molecular Biotechnology Center, University of Torino , 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gerner W, Talker SC, Koinig HC, Sedlak C, Mair KH, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol 2014; 66:3-13. [PMID: 25466616 DOI: 10.1016/j.molimm.2014.10.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/27/2022]
Abstract
Domestic pigs are considered as a valuable large animal model because of their close relation to humans in regard to anatomy, genetics and physiology. This includes their potential use as organ donors in xenotransplantation but also studies on various zoonotic infections affecting pigs and humans. Such work also requires a thorough understanding of the porcine immune system which was partially hampered in the past by restrictions on available immunological tools compared to rodent models. However, progress has been made during recent years in the study of both, the innate and the adaptive immune system of pigs. In this review we will summarize the current knowledge on porcine αβ T cells, which comprise two major lymphocyte subsets of the adaptive immune system: CD4(+) T cells with important immunoregulatory functions and CD8(+) T cells, also designated as cytolytic T cells. Aspects on their functional and phenotypic differentiation are presented. In addition, we summarize currently available tools to study these subsets which may support a more widespread use of swine as a large animal model.
Collapse
Affiliation(s)
- Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Stephanie C Talker
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Hanna C Koinig
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Corinna Sedlak
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
32
|
CD8 T cells in innate immune responses: using STAT4-dependent but antigen-independent pathways to gamma interferon during viral infection. mBio 2014; 5:e01978-14. [PMID: 25336459 PMCID: PMC4212840 DOI: 10.1128/mbio.01978-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The cytokine gamma interferon (IFN-γ), with antimicrobial and immunoregulatory functions, can be produced by T cells following stimulation through their T cell receptors (TCRs) for antigen. The innate cytokines type 1 IFNs and interleukin-12 (IL-12) can also stimulate IFN-γ production by natural killer (NK) but not naive T cells. High basal expression of signal transducer and activator of transcription 4 (STAT4), used by type 1 IFN and IL-12 to induce IFN-γ as well as CD25, contributes to the NK cell responses. During acute viral infections, antigen-specific CD8 T cells are stimulated to express elevated STAT4 and respond to the innate factors with IFN-γ production. Little is known about the requirements for cytokine compared to TCR stimulation. Primary infections of mice with lymphocytic choriomeningitis virus (LCMV) demonstrated that although the elicited antigen-specific CD8 T cells acquired STAT4-dependent innate cytokine responsiveness for IFN-γ and CD25 induction ex vivo, TCR stimulation induced these through STAT4-independent pathways. During secondary infections, LCMV-immune CD8 T cells had STAT4-dependent IFN-γ expression at times of innate cytokine induction but subsequently expanded through STAT4-independent pathways. At times of innate cytokine responses during infection with the antigen-distinct murine cytomegalovirus virus (MCMV), NK and LCMV-immune CD8 T cells both had activation of pSTAT4 and IFN-γ. The T cell IFN-γ response was STAT4 and IL-12 dependent, but antigen-dependent expansion was absent. By dissecting requirements for STAT4 and antigen, this work provides novel insights into the endogenous regulation of cytokine and proliferative responses and demonstrates conditioning of innate immunity by experience. Understanding the regulation and function of adaptive immunity is key to the development of new and improved vaccines. Its CD8 T cells are activated through antigen-specific receptors to contribute to long-lasting immunity after natural infections or purposeful immunization. The antigen-receptor pathway of stimulation can lead to production of gamma interferon (IFN-γ), a cytokine having both direct antimicrobial and immunoregulatory functions. Natural killer cells can also produce IFN-γ in response to the innate cytokines type 1 IFNs and/or interleukin-12. This work demonstrates that CD8 T cells acquire parallel responsiveness to innate cytokine signaling for IFN-γ expression during their selection and development and maintain this capability to participate in innate immune responses as long-lived memory cells. Thus, CD8 T cells are conditioned to play a role in innate immunity, and their presence under immune conditions has the potential to regulate resistance to either secondary challenges or primary infections with unrelated agents.
Collapse
|
33
|
Out-of-sequence signal 3 as a mechanism for virus-induced immune suppression of CD8 T cell responses. PLoS Pathog 2014; 10:e1004357. [PMID: 25255454 PMCID: PMC4177909 DOI: 10.1371/journal.ppat.1004357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/28/2014] [Indexed: 12/15/2022] Open
Abstract
Virus infections are known to induce a transient state of immune suppression often associated with an inhibition of T cell proliferation in response to mitogen or cognate-antigen stimulation. Recently, virus-induced immune suppression has been linked to responses to type 1 interferon (IFN), a signal 3 cytokine that normally can augment the proliferation and differentiation of T cells exposed to antigen (signal 1) and co-stimulation (signal 2). However, pre-exposure of CD8 T cells to IFN-inducers such as viruses or poly(I∶C) prior to antigen signaling is inhibitory, indicating that the timing of IFN exposure is of essence. We show here that CD8 T cells pretreated with poly(I∶C) down-regulated the IFN receptor, up-regulated suppressor of cytokine signaling 1 (SOCS1), and were refractory to IFNβ-induced signal transducers and activators of transcription (STAT) phosphorylation. When exposed to a viral infection, these CD8 T cells behaved more like 2-signal than 3-signal T cells, showing defects in short lived effector cell differentiation, reduced effector function, delayed cell division, and reduced levels of survival proteins. This suggests that IFN-pretreated CD8 T cells are unable to receive the positive effects that type 1 IFN provides as a signal 3 cytokine when delivered later in the signaling process. This desensitization mechanism may partially explain why vaccines function poorly in virus-infected individuals.
Collapse
|
34
|
Zickovich JM, Meyer SI, Yagita H, Obar JJ. Agonistic anti-CD40 enhances the CD8+ T cell response during vesicular stomatitis virus infection. PLoS One 2014; 9:e106060. [PMID: 25166494 PMCID: PMC4148391 DOI: 10.1371/journal.pone.0106060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/31/2014] [Indexed: 02/07/2023] Open
Abstract
Intracellular pathogens are capable of inducing vigorous CD8+ T cell responses. However, we do not entirely understand the factors driving the generation of large pools of highly protective memory CD8+ T cells. Here, we studied the generation of endogenous ovalbumin-specific memory CD8+ T cells following infection with recombinant vesicular stomatitis virus (VSV) and Listeria monocytogenes (LM). VSV infection resulted in the generation of a large ovalbumin-specific memory CD8+ T cell population, which provided minimal protective immunity that waned with time. In contrast, the CD8+ T cell population of LM-ova provided protective immunity and remained stable with time. Agonistic CD40 stimulation during CD8+ T cell priming in response to VSV infection enabled the resultant memory CD8+ T cell population to provide strong protective immunity against secondary infection. Enhanced protective immunity by agonistic anti-CD40 was dependent on CD70. Agonistic anti-CD40 not only enhanced the size of the resultant memory CD8+ T cell population, but enhanced their polyfunctionality and sensitivity to antigen. Our data suggest that immunomodulation of CD40 signaling may be a key adjuvant to enhance CD8+ T cell response during development of VSV vaccine strategies.
Collapse
Affiliation(s)
- Julianne M. Zickovich
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Susan I. Meyer
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Hideo Yagita
- Department of Immunology, Juntendo University, School of Medicine, Toyko, Japan
| | - Joshua J. Obar
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
35
|
Shane HL, Klonowski KD. Every breath you take: the impact of environment on resident memory CD8 T cells in the lung. Front Immunol 2014; 5:320. [PMID: 25071780 PMCID: PMC4085719 DOI: 10.3389/fimmu.2014.00320] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/24/2014] [Indexed: 01/08/2023] Open
Abstract
Resident memory T cells (TRM) are broadly defined as a population of T cells, which persist in non-lymphoid sites long-term, do not re-enter the circulation, and are distinct from central memory T cells (TCM) and circulating effector memory T cells (TEM). Recent studies have described populations of TRM cells in the skin, gut, lungs, and nervous tissue. However, it is becoming increasingly clear that the specific environment in which the TRM reside can further refine their phenotypical and functional properties. Here, we focus on the TRM cells that develop following respiratory infection and reside in the lungs and the lung airways. Specifically, we will review recent studies that have described some of the requirements for establishment of TRM cells in these tissues, and the defining characteristics of TRM in the lungs and lung airways. With continual bombardment of the respiratory tract by both pathogenic and environmental antigens, dynamic fluctuations in the local milieu including homeostatic resources and niche restrictions can impact TRM longevity. Beyond a comprehensive characterization of lung TRM cells, special attention will be placed on studies, which have defined how the microenvironment of the lung influences memory T cell survival at this site. As memory T cell populations in the lung airways are requisite for protection yet wane numerically over time, developing a comprehensive picture of factors which may influence TRM development and persistence at these sites is important for improving T cell-based vaccine design.
Collapse
Affiliation(s)
- Hillary L Shane
- Department of Cellular Biology, University of Georgia , Athens, GA , USA
| | | |
Collapse
|
36
|
Hervas-Stubbs S, Riezu-Boj JI, Mancheño U, Rueda P, Lopez L, Alignani D, Rodríguez-García E, Thieblemont N, Leclerc C. Conventional but not plasmacytoid dendritic cells foster the systemic virus-induced type I IFN response needed for efficient CD8 T cell priming. THE JOURNAL OF IMMUNOLOGY 2014; 193:1151-61. [PMID: 24973449 DOI: 10.4049/jimmunol.1301440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are considered to be the principal type-I IFN (IFN-I) source in response to viruses, whereas the contribution of conventional DCs (cDCs) has been underestimated because, on a per-cell basis, they are not considered professional IFN-I-producing cells. We have investigated their respective roles in the IFN-I response required for CTL activation. Using a nonreplicative virus, baculovirus, we show that despite the high IFN-I-producing abilities of pDCs, in vivo cDCs but not pDCs are the pivotal IFN-I producers upon viral injection, as demonstrated by selective pDC or cDC depletion. The pathway involved in the virus-triggered IFN-I response is dependent on TLR9/MyD88 in pDCs and on stimulator of IFN genes (STING) in cDCs. Importantly, STING is the key molecule for the systemic baculovirus-induced IFN-I response required for CTL priming. The supremacy of cDCs over pDCs in fostering the IFN-I response required for CTL activation was also verified in the lymphocytic choriomeningitis virus model, in which IFN-β promoter stimulator 1 plays the role of STING. However, when the TLR-independent virus-triggered IFN-I production is impaired, the pDC-induced IFNs-I have a primary impact on CTL activation, as shown by the detrimental effect of pDC depletion and IFN-I signaling blockade on the residual lymphocytic choriomeningitis virus-triggered CTL response detected in IFN-β promoter stimulator 1(-/-) mice. Our findings reveal that cDCs play a major role in the TLR-independent virus-triggered IFN-I production required for CTL priming, whereas pDC-induced IFNs-I are dispensable but become relevant when the TLR-independent IFN-I response is impaired.
Collapse
Affiliation(s)
- Sandra Hervas-Stubbs
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain;
| | - Jose-Ignacio Riezu-Boj
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Uxua Mancheño
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Paloma Rueda
- Inmunología y Genética Aplicada, S.A., Madrid 28037, Spain
| | - Lissette Lopez
- Inmunología y Genética Aplicada, S.A., Madrid 28037, Spain
| | - Diego Alignani
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Estefanía Rodríguez-García
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Nathalie Thieblemont
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8147, Université René Descartes Paris V, Hôpital Necker, Paris F-75015, France
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France; and INSERM, Unité 1041, Paris F-75015, France
| |
Collapse
|
37
|
CD8+ TCR transgenic strains expressing public versus private TCR targeting the respiratory syncytial virus K(d)M2(82-90) epitope demonstrate similar functional profiles. PLoS One 2014; 9:e99249. [PMID: 24897427 PMCID: PMC4045939 DOI: 10.1371/journal.pone.0099249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 05/12/2014] [Indexed: 11/19/2022] Open
Abstract
Our previous work has characterized the functional and clonotypic features of two respiratory syncytial virus (RSV) epitope-specific T cell responses in mice. Following single-cell sequencing, we selected T cell receptor sequences to represent both a public and a private clone specific for the dominant K(d)M2(82-90) epitope for the generation of T cell receptor transgenic (TCR Tg) mice. We evaluated cells from these TCR Tg strains for three major functions of CD8+ T cells: proliferation, cytokine production and cytolytic activity. In vitro comparisons of the functional characteristics of T cells from the newly-generated mice demonstrated many similarities in their responsiveness to cognate antigen stimulation. Cells from both TRBV13-1 (private) and TRBV13-2 (public) TCR Tg mice had similar affinity, and proliferated similarly in vitro in response to cognate antigen stimulation. When transferred to BALB/c mice, cells from both strains demonstrated extensive proliferation in mediastinal lymph nodes following RSV infection, with TRBV13-2 demonstrating better in vivo proliferation. Both strains similarly expressed cytokines and chemokines following stimulation, and had similar Granzyme B and perforin expression, however cells expressing TRBV13-1 demonstrated better cytolytic activity than TRBV13-2 cells. These new, well-characterized mouse strains provide new opportunities to study molecular mechanisms that control the phenotype and function of CD8+ T cell responses.
Collapse
|
38
|
Abstract
The activation of T cells is a tightly regulated process that has evolved to maximize protective immune responses to pathogens while minimizing damage to self-tissues. A delicate balance of cell-intrinsic, costimulatory, and transcriptional pathways as well as micro-environmental cues such as local cytokines controls the magnitude and nature of T-cell responses in vivo. The discovery of functional small noncoding RNAs called micro-RNAs (miRNAs) has introduced new mechanisms that contribute to the regulation of protein translation and cellular responses to stimuli. miRNAs are short (approximately 22 bp) RNA species, which bind to mRNAs and suppress translation. Due to their short length and imperfect base pairing requirements, each miRNA has the potential to regulate various pathways through the translational inhibition of multiple mRNAs. The human and mouse genomes each encode hundreds of miRNAs, and studying the function of miRNAs has led to the realization that they play important roles in diverse biological processes from development and cancer to immunity. This review focuses on the function of mir-155 in T cells and the impact of this miRNA on autoimmunity, tumor immunity, and pathogen-induced immunity.
Collapse
|
39
|
Mamonkin M, Puppi M, Lacorazza HD. Transcription factor ELF4 promotes development and function of memory CD8+T cells inListeria monocytogenesinfection. Eur J Immunol 2014; 44:715-27. [DOI: 10.1002/eji.201343775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/11/2013] [Accepted: 12/10/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Maksim Mamonkin
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children's Hospital; Houston TX USA
| | - Monica Puppi
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children's Hospital; Houston TX USA
| | - H. Daniel Lacorazza
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children's Hospital; Houston TX USA
- Department of Pediatrics; Baylor College of Medicine; Houston TX USA
| |
Collapse
|
40
|
Chee J, Ko HJ, Skowera A, Jhala G, Catterall T, Graham KL, Sutherland RM, Thomas HE, Lew AM, Peakman M, Kay TWH, Krishnamurthy B. Effector-Memory T Cells Develop in Islets and Report Islet Pathology in Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2013; 192:572-80. [DOI: 10.4049/jimmunol.1302100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Ho LP, Yit PS, Ng LH, Linn YC, Zhao Y, Sun L, Ling KL, Chai Koh MB, Monica Shih MC, Li S, Wang XY, Tien SL, Goh YT. The Road to Memory: An Early Rest for the Long Journey. THE JOURNAL OF IMMUNOLOGY 2013; 191:5603-14. [DOI: 10.4049/jimmunol.1301175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol 2013; 14:1294-301. [PMID: 24162776 DOI: 10.1038/ni.2744] [Citation(s) in RCA: 934] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022]
Abstract
Tissue-resident memory T cells (T(RM) cells) provide superior protection against infection in extralymphoid tissues. Here we found that CD103(+)CD8(+) T(RM) cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1. A combination of entry into the epithelium plus local signaling by interleukin 15 (IL-15) and transforming growth factor-β (TGF-β) was required for the formation of these long-lived memory cells. Notably, differentiation into T(RM) cells resulted in the progressive acquisition of a unique transcriptional profile that differed from that of circulating memory cells and other types of T cells that permanently reside in skin epithelium. We provide a comprehensive molecular framework for the local differentiation of a distinct peripheral population of memory cells that forms a first-line immunological defense system in barrier tissues.
Collapse
|
43
|
Plumlee CR, Sheridan BS, Cicek BB, Lefrançois L. Environmental cues dictate the fate of individual CD8+ T cells responding to infection. Immunity 2013; 39:347-56. [PMID: 23932571 PMCID: PMC3817618 DOI: 10.1016/j.immuni.2013.07.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 11/26/2022]
Abstract
Many studies have examined pathways controlling effector T cell differentiation, but less is known about the fate of individual CD8+ T cells during infection. Here, we examine the antiviral and antibacterial responses of single CD8+ T cells from the polyclonal repertoire. The progeny of naive clonal CD8+ T cells displayed unique profiles of differentiation based on extrinsic pathogen-induced environmental cues, with some clones demonstrating extreme bias toward a single developmental pathway. Moreover, even within the same animal, a single naive CD8+ T cell exhibited distinct fates that were controlled by tissue-specific events. However, memory CD8+ T cells relied on intrinsic factors to control differentiation upon challenge. Our results demonstrate that stochastic and instructive events differentially contribute to shaping the primary and secondary CD8+ T cell response and provide insight into the underlying forces that drive effector differentiation and protective memory formation.
Collapse
Affiliation(s)
- Courtney R Plumlee
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | |
Collapse
|
44
|
HIV immune activation drives increased Eomes expression in memory CD8 T cells in association with transcriptional downregulation of CD127. AIDS 2013; 27:1867-77. [PMID: 23965471 DOI: 10.1097/qad.0b013e3283618487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND During HIV infection distinct mechanisms drive immune activation of the CD4 and CD8 T cells leading to CD4 T-cell depletion and expansion of the CD8 T-cell pool. This immune activation is polyclonal and extends beyond HIV-specific T cells. One consequence of this immune activation is a profound decrease in IL-7Rα (CD127) expression on memory CD8 T cells. The mechanisms leading to this are unknown and because of the potential impact of reduced IL-7 signaling in memory T cells specific to HIV and other pathogens, in the present study we examined the molecular mechanisms implicated in this downregulation of CD127. METHODS Membrane bound (mIL7RA) and soluble (sIL7RA) mRNA expression was determined by qRT-PCR. CD127, Eomesodermin (Eomes) and T-bet expression in healthy controls and HIV-infected patients were studied by flow cytometry. RESULTS CD127 downregulation occurs at the transcriptional level for both mIL7RA and sIL7RA alternative spliced forms in the CD127 memory CD8 T cells. CD127 memory CD8 T cells exhibited increased Eomes expression and an 'effector-like' gene profile. These changes were associated with higher HIV-RNA levels. Following combination antiretroviral therapy (cART), there was an increase in CD127 expression over an extended period of time (>5 months) which was associated with decreased Eomes expression. CONCLUSION CD127 is downregulated at a transcriptional level in memory CD8 T cells in association with upregulation of Eomes expression.
Collapse
|
45
|
Iborra S, Ramos M, Arana DM, Lázaro S, Aguilar F, Santos E, López D, Fernández-Malavé E, Del Val M. N-ras couples antigen receptor signaling to Eomesodermin and to functional CD8+ T cell memory but not to effector differentiation. ACTA ACUST UNITED AC 2013; 210:1463-79. [PMID: 23776078 PMCID: PMC3698526 DOI: 10.1084/jem.20112495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-ras−/− CD8+ T cells have an intrinsic defect in Eomes expression resulting in impaired generation of protective memory cells that can be rescued by enforced Eomes expression. Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate.
Collapse
Affiliation(s)
- Salvador Iborra
- Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Amoah S, Holbrook BC, Yammani RD, Alexander-Miller MA. High viral burden restricts short-lived effector cell number at late times postinfection through increased natural regulatory T cell expansion. THE JOURNAL OF IMMUNOLOGY 2013; 190:5020-9. [PMID: 23589620 DOI: 10.4049/jimmunol.1200971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Generating and maintaining a robust CD8(+) T cell response in the face of high viral burden is vital for host survival. Further, balancing the differentiation of effectors along the memory precursor effector cell pathway versus the short-lived effector cell (SLEC) pathway may be critical in controlling the outcome of virus infection with regard to clearance and establishing protection. Although recent studies have identified several factors that have the capacity to regulate effector CD8(+) T cell differentiation-for example, inflammatory cytokines-we are far from a complete understanding of how cells choose the memory precursor effector cell versus SLEC fate following infection. In this study, we have modulated the infectious dose of the poxvirus vaccinia virus as an approach to modulate the environment present during activation and expansion of virus-specific effector cells. Surprisingly, in the face of a high virus burden, the number of SLECs was decreased. This decrease was the result of increased natural regulatory T cells (Tregs) generated by high viral burden, as depletion of these cells restored SLECs. Our data suggest Treg modulation of differentiation occurs via competition for IL-2 during the late expansion period, as opposed to the time of T cell priming. These findings support a novel model wherein modulation of the Treg response as a result of high viral burden regulates late-stage SLEC number.
Collapse
Affiliation(s)
- Samuel Amoah
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
47
|
Gerlach C, Rohr JC, Perié L, van Rooij N, van Heijst JWJ, Velds A, Urbanus J, Naik SH, Jacobs H, Beltman JB, de Boer RJ, Schumacher TNM. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 2013; 340:635-9. [PMID: 23493421 DOI: 10.1126/science.1235487] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Upon infection, antigen-specific CD8(+) T lymphocyte responses display a highly reproducible pattern of expansion and contraction that is thought to reflect a uniform behavior of individual cells. We tracked the progeny of individual mouse CD8(+) T cells by in vivo lineage tracing and demonstrated that, even for T cells bearing identical T cell receptors, both clonal expansion and differentiation patterns are heterogeneous. As a consequence, individual naïve T lymphocytes contributed differentially to short- and long-term protection, as revealed by participation of their progeny during primary versus recall infections. The discordance in fate of individual naïve T cells argues against asymmetric division as a singular driver of CD8(+) T cell heterogeneity and demonstrates that reproducibility of CD8(+) T cell responses is achieved through population averaging.
Collapse
Affiliation(s)
- Carmen Gerlach
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. Nat Immunol 2013; 14:356-63. [PMID: 23475183 DOI: 10.1038/ni.2547] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/16/2013] [Indexed: 12/11/2022]
Abstract
Immunization results in the differentiation of CD8+ T cells, such that they acquire effector abilities and convert into a memory pool. Priming of T cells takes place via an immunological synapse formed with an antigen-presenting cell (APC). By disrupting synaptic stability at different times, we found that the differentiation of CD8+ T cells required cell interactions beyond those made with APCs. We identified a critical differentiation period that required interactions between primed T cells. We found that T cell-T cell synapses had a major role in the generation of protective CD8+ T cell memory. T cell-T cell synapses allowed T cells to polarize critical secretion of interferon-γ (IFN-γ) toward each other. Collective activation and homotypic clustering drove cytokine sharing and acted as regulatory stimuli for T cell differentiation.
Collapse
|
49
|
Xu D, Fu HH, Obar JJ, Park JJ, Tamada K, Yagita H, Lefrançois L. A potential new pathway for PD-L1 costimulation of the CD8-T cell response to Listeria monocytogenes infection. PLoS One 2013; 8:e56539. [PMID: 23409193 PMCID: PMC3569435 DOI: 10.1371/journal.pone.0056539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/10/2013] [Indexed: 01/28/2023] Open
Abstract
Programmed death ligand-1 (PD-L1) is an important negative regulator of T cell immune responses via interactions with PD-1 and CD80. However, PD-L1 can also act as a positive costimulator, but the relevant counterreceptor is not known. We analyzed the role of PD-L1 in CD8-T cell responses to infection with Listeria monocytogenes (LM) or vesicular stomatitis virus (VSV). PD-L1 blockade impaired antigen-specific CD8 effector T cell expansion in response to LM, but not to VSV infection, particularly limiting short-lived effector cell differentiation. Simultaneous CD4-T cell depletion and anti-PD-L1 blockade revealed that PD-L1 provided costimulation even in the absence of CD4-T cells. Most importantly, specific blockade of PD-L1 binding to CD80 or to PD-1 did not recapitulate PDL-1 blockade. The results suggested that PD-L1 plays an important costimulatory role for antigen-specific CD8 T cells during LM infection perhaps through a distinct receptor or interaction epitope.
Collapse
Affiliation(s)
- Daqi Xu
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Han-Hsuan Fu
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Joshua J. Obar
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Jang-June Park
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| | - Koji Tamada
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Leo Lefrançois
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
50
|
CD11a regulates effector CD8 T cell differentiation and central memory development in response to infection with Listeria monocytogenes. Infect Immun 2013; 81:1140-51. [PMID: 23357382 DOI: 10.1128/iai.00749-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
β2 (CD18) integrins with α-chains CD11a, -b, -c, and -d are important adhesion molecules necessary for leukocyte migration and cellular interactions. CD18 deficiency leads to recurrent bacterial infections and poor wound healing due to reduced migration of leukocytes to inflammatory sites. CD8 T cells also upregulate CD11a, CD11b, and CD11c upon activation. However, the role these molecules play for CD8 T cells in vivo is not known. To determine the function of individual β2 integrins, we examined CD8 T cell responses to Listeria monocytogenes infection in CD11a-, CD11b-, and CD11c-deficient mice. The absence of CD11b or CD11c had no effect on the generation of antigen-specific CD8 T cells. In contrast, the magnitude of the primary CD8 T cell response in CD11a-deficient mice was significantly reduced. Moreover, the response in CD11a(-/-) mice exhibited reduced differentiation of short-lived effector cells (KLRG1(hi) CD127(lo)), although cytokine and granzyme B production levels were unaffected. Notably, CD11a deficiency resulted in greatly enhanced generation of CD62L(+) central memory cells. Surprisingly, CD8 T cells lacking CD11a mounted a robust secondary response to infection. Taken together, these findings demonstrated that CD11a expression contributes to expansion and differentiation of primary CD8 T cells but may be dispensable for secondary responses to infection.
Collapse
|