1
|
Janezic S, Garneau JR, Monot M. Comparative Genomics of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:199-218. [PMID: 38175477 DOI: 10.1007/978-3-031-42108-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France
| |
Collapse
|
2
|
Spigaglia P, Mastrantonio P, Barbanti F. Antibiotic Resistances of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:169-198. [PMID: 38175476 DOI: 10.1007/978-3-031-42108-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rapid evolution of antibiotic resistance in Clostridioides difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are a matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances, and most of the epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways or biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Paola Mastrantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
3
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023; 14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Blau K, Berger FK, Mellmann A, Gallert C. Clostridioides difficile from Fecally Contaminated Environmental Sources: Resistance and Genetic Relatedness from a Molecular Epidemiological Perspective. Microorganisms 2023; 11:2497. [PMID: 37894155 PMCID: PMC10608975 DOI: 10.3390/microorganisms11102497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile is the most important pathogen causing antimicrobial-associated diarrhea and has recently been recognized as a cause of community-associated C. difficile infection (CA-CDI). This study aimed to characterize virulence factors, antimicrobial resistance (AMR), ribotype (RT) distribution and genetic relationship of C. difficile isolates from diverse fecally contaminated environmental sources. C. difficile isolates were recovered from different environmental samples in Northern Germany. Antimicrobial susceptibility testing was determined by E-test or disk diffusion method. Toxin genes (tcdA and tcdB), genes coding for binary toxins (cdtAB) and ribotyping were determined by PCR. Furthermore, 166 isolates were subjected to whole genome sequencing (WGS) for core genome multi-locus sequence typing (cgMLST) and extraction of AMR and virulence-encoding genes. Eighty-nine percent (148/166) of isolates were toxigenic, and 51% (76/148) were positive for cdtAB. Eighteen isolates (11%) were non-toxigenic. Thirty distinct RTs were identified. The most common RTs were RT127, RT126, RT001, RT078, and RT014. MLST identified 32 different sequence types (ST). The dominant STs were ST11, followed by ST2, ST3, and ST109. All isolates were susceptible to vancomycin and metronidazole and displayed a variable rate of resistance to moxifloxacin (14%), clarithromycin (26%) and rifampicin (2%). AMR genes, such as gyrA/B, blaCDD-1/2, aph(3')-llla-sat-4-ant(6)-la cassette, ermB, tet(M), tet(40), and tetA/B(P), conferring resistance toward fluoroquinolone, beta-lactam, aminoglycoside, macrolide and tetracycline antimicrobials, were found in 166, 137, 29, 32, 21, 72, 17, and 9 isolates, respectively. Eleven "hypervirulent" RT078 strains were detected, and several isolates belonged to RTs (i.e., RT127, RT126, RT023, RT017, RT001, RT014, RT020, and RT106) associated with CA-CDI, indicating possible transmission between humans and environmental sources pointing out to a zoonotic potential.
Collapse
Affiliation(s)
- Khald Blau
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| | - Fabian K. Berger
- Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, 66421 Homburg, Germany;
- German National Reference Center for Clostridioides Difficile, 66421 Homburg, Germany;
| | - Alexander Mellmann
- German National Reference Center for Clostridioides Difficile, 66421 Homburg, Germany;
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Claudia Gallert
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| |
Collapse
|
5
|
Marcos P, Doyle A, Whyte P, Rogers TR, McElroy M, Fanning S, Frias J, Bolton D. Characterization of Food Chain Clostridioides difficile Isolates in Terms of Ribotype and Antimicrobial Resistance. Microorganisms 2023; 11:1296. [PMID: 37317270 DOI: 10.3390/microorganisms11051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
The aim of this study was to characterize C. difficile isolates from the farm, abattoir, and retail outlets in Ireland in terms of ribotype and antibiotic resistance (vancomycin, erythromycin, metronidazole, moxifloxacin, clindamycin, and rifampicin) using PCR and E-test methods, respectively. The most common ribotype in all stages of the food chain (including retail foods) was 078 and a variant (RT078/4). Less commonly reported (014/0, 002/1, 049, and 205) and novel (RT530, 547, and 683) ribotypes were also detected, but at lower frequencies. Approximately 72% (26/36 tested) of the isolates tested were resistant to at least one antibiotic, with the majority of these (65%; 17/26) displaying a multi-drug (three to five antibiotics) resistant phenotype. It was concluded that ribotype 078, a hypervirulent strain commonly associated with C. difficile infection (CDI) in Ireland, was the most frequent ribotype along the food chain, resistance to clinically important antibiotics was common in C. difficile food chain isolates, and there was no relationship between ribotype and antibiotic resistance profile.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Aoife Doyle
- Department of Clinical Microbiology, Trinity College Dublin, Central Pathology Laboratory, St James's Hospital, Dublin 8, D08 RX0X Dublin, Ireland
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Central Pathology Laboratory, St James's Hospital, Dublin 8, D08 RX0X Dublin, Ireland
| | - Máire McElroy
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Seamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Jesus Frias
- Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, D07 H6K8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K Dublin, Ireland
| |
Collapse
|
6
|
Grudlewska-Buda K, Bauza-Kaszewska J, Wiktorczyk-Kapischke N, Budzyńska A, Gospodarek-Komkowska E, Skowron K. Antibiotic Resistance in Selected Emerging Bacterial Foodborne Pathogens-An Issue of Concern? Antibiotics (Basel) 2023; 12:antibiotics12050880. [PMID: 37237783 DOI: 10.3390/antibiotics12050880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are β-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| |
Collapse
|
7
|
Anusha M, Tejaswini V, Udhaya Kumar S, Prashantha CN, Vasudevan K, George Priya Doss C. Gene network interaction analysis to elucidate the antimicrobial resistance mechanisms in the Clostridiumdifficile. Microb Pathog 2023; 178:106083. [PMID: 36958645 DOI: 10.1016/j.micpath.2023.106083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
Antimicrobial resistance has caused chaos worldwide due to the depiction of multidrug-resistant (MDR) infective microorganisms. A thorough examination of antimicrobial resistance (AMR) genes and associated resistant mechanisms is vital to solving this problem. Clostridium difficile (C. difficile) is an opportunistic nosocomial bacterial strain that has acquired exogenous AMR genes that confer resistance to antimicrobials such as erythromycin, azithromycin, clarithromycin, rifampicin, moxifloxacin, fluoroquinolones, vancomycin, and others. A network of interactions, including 20 AMR genes, was created and analyzed. In functional enrichment analysis, Cellular components (CC), Molecular Functions (MF), and Biological Processes (BP) were discovered to have substantial involvement. Mutations in the rpl genes, which encode ribosomal proteins, confer resistance in Gram-positive bacteria. Full erythromycin and azithromycin cross-resistance can be conferred if more than one of the abovementioned genes is present. In the enriched BP, rps genes related to transcriptional regulation and biosynthesis were found. The genes belong to the rpoB gene family, which has previously been related to rifampicin resistance. The genes rpoB, gyrA, gyrB, rpoS, rpl genes, rps genes, and Van genes are thought to be the hub genes implicated in resistance in C. difficile. As a result, new medications could be developed using these genes. Overall, our observations provide a thorough understanding of C. difficile AMR mechanisms.
Collapse
Affiliation(s)
- M Anusha
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, India
| | - V Tejaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - C N Prashantha
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
| |
Collapse
|
8
|
Clostridioides difficile in Foods with Animal Origins; Prevalence, Toxigenic Genes, Ribotyping Profile, and Antimicrobial Resistance. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4868409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Clostridioides difficile is an important nosocomial pathogen and is considered as a reason of diarrhea and gastrointestinal infections. As a majority of community-originated C. difficile cases are not related to antibiotic prescription and hospitalization, the food portion as a vector of infection transmission has been raised. An existing survey was aimed evaluating the prevalence, antimicrobial resistance, profile of toxigenic genes, and ribotypes of C. difficile isolated from raw meat and carcass surface swab samples. In total, 485 raw meat and carcass surface swab samples were collected. C. difficile was isolated via culture and a diverse biochemical examination. The assessment of minimum inhibitory concentration (MIC) was addressed to evaluate the antibiotic resistance of isolates. Toxin genes detection and ribotyping were used for isolates characterization. The prevalence of C. difficile contamination in all examined samples was 3.71%. The bacterium was detected in 2.91% of raw meat and 4.48% of carcass surface swab samples. Raw sheep meat (5%) and sheep carcass swab (7.50%) samples harbored the highest C. difficile prevalence. The highest rate of antibiotic resistance was observed toward clindamycin (38.88%), ciprofloxacin (38.88%), metronidazole (44.44%), erythromycin (72.22%), and tetracycline (77.77%). C. difficile bacteria showed the minimum rate of resistance meropenem (16.66%) and chloramphenicol (16.66%). TcdA, tcdB, cdtA, and cdtB toxigenic genes were detected in 22.22%, 44.44%, and 16.66% of isolates, respectively. TcdB + tcdA (27.77%) were the most prevalent combined toxigenic gene profile. Both 027 and 078 ribotypes were identified in C. difficile isolates. The role of raw meat and carcass surface swab samples as toxigenic and antibiotic-resistant C. difficile strains vectors was signified. This study authorizes that food animals, particularly sheep and cattle, are C. difficile carriers at slaughter stages and ribotypes are equal in human cases. Subsequently, contamination of carcasses occurs inside the slaughterhouse.
Collapse
|
9
|
Marcos P, Whyte P, Burgess C, Ekhlas D, Bolton D. Detection and Genomic Characterisation of Clostridioides difficile from Spinach Fields. Pathogens 2022; 11:1310. [PMID: 36365061 PMCID: PMC9695345 DOI: 10.3390/pathogens11111310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
Despite an increased incidence of Clostridioides difficile infections, data on the reservoirs and dissemination routes of this bacterium are limited. This study examined the prevalence and characteristics of C. difficile isolates in spinach fields. C. difficile was detected in 2/60 (3.3%) of spinach and 6/60 (10%) of soil samples using culture-based techniques. Whole genome sequencing (WGS) analysis identified the spinach isolates as belonging to the hypervirulent clade 5, sequence type (ST) 11, ribotypes (RT) 078 and 126 and carried the genes encoding toxins A, B and CDT. The soil isolates belonged to clade 1 with different toxigenic ST/RT (ST19/RT614, ST12/RT003, ST46/RT087, ST16/RT050, ST49/RT014/0) strains and one non-toxigenic ST79/RT511 strain. Antimicrobial resistance to erythromycin (one spinach isolate), rifampicin (two soil isolates), clindamycin (one soil isolate), both moxifloxacin and rifampicin (one soil isolate), and multi-drug resistance to erythromycin, vancomycin and rifampicin (two soil isolates) were observed using the E test, although a broader range of resistance genes were detected using WGS. Although the sample size was limited, our results demonstrate the presence of C. difficile in horticulture and provide further evidence that there are multiple sources and dissemination routes for these bacteria.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | | | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| |
Collapse
|
10
|
Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture. Biomedicines 2022; 10:biomedicines10092245. [PMID: 36140346 PMCID: PMC9496071 DOI: 10.3390/biomedicines10092245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) has been implicated as a microbiological factor in the pathogenesis of inflammatory bowel disease (IBD). We evaluated the ability of six live biotherapeutic products (LBPs) to inhibit the interaction of an AIEC strain to three cell lines representing human gut epithelium. Co-inoculation of LBPs with AIEC showed a reduction in adhesion (up to 73%) and invasion of AIEC (up to 89%). Pre-inoculation of LBPs in HT-29-MTX and Caco-2 cells before challenging with AIEC further reduced the adhesion and invasion of the AIEC, with three LBPs showing significantly (p < 0.0001) higher efficiency in reducing the adhesion of AIEC. In co-inoculation experiments, the highest reduction in adhesion (73%) of AIEC was observed in HT-29-MTX cells, whereas the highest reduction in invasion (89%) was seen in HT-29-MTX and the co-culture of cells. Pre-inoculation of LBPs further reduced the invasion of AIEC with highest reduction (97%) observed in co-culture of cells. Our results indicated that whilst there were differences in the efficacy of LBPs, they all reduced interaction of AIEC with cell lines representing gut epithelium. Their efficiency was higher when they were pre-inoculated onto the cells, suggesting their potential as candidates for alleviating pathogenesis of AIEC in patients with IBD.
Collapse
|
11
|
Gu W, Li W, Jia S, Zhou Y, Yin J, Wu Y, Fu X. Antibiotic resistance and genomic features of Clostridioides difficile in southwest China. PeerJ 2022; 10:e14016. [PMID: 36093337 PMCID: PMC9454788 DOI: 10.7717/peerj.14016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023] Open
Abstract
Background Clostridioides difficile infection (CDI) caused by toxigenic strains leads to antibiotic-related diarrhea, colitis, or even fatal pseudomembranous enteritis. Previously, we conducted a cross-sectional study on prevalence of CDI in southwest China. However, the antibiotics resistance and characteristics of genomes of these isolates are still unknown. Methods Antibiotic susceptibility testing with E-test strips and whole genome sequence analysis were used to characterize the features of these C. difficile isolates. Results Forty-nine strains of C. difficile were used in this study. Five isolates were non-toxigenic and the rest carried toxigenic genes. We have previously reported that ST35/RT046, ST3/RT001 and ST3/RT009 were the mostly distributed genotypes of strains in the children group. In this study, all the C. difficile isolates were sensitive to metronidazole, meropenem, amoxicillin/clavulanic acid and vancomycin. Most of the strains were resistant to erythromycin, gentamicin and clindamycin. The annotated resistant genes, such as macB, vanRA, vanRG, vanRM, arlR, and efrB were mostly identified related to macrolide, glycopeptide, and fluoroquinolone resistance. Interestingly, 77.55% of the strains were considered as multi-drug resistant (MDR). Phylogenetic analysis based on core genome of bacteria revealed all the strains were divided into clade 1 and clade 4. The characteristics of genome diversity for clade 1 could be found. None of the isolates showed 18-bp deletion of tcdC as RT027 strain as described before, and polymorphism of tcdB showed a high degree of conservation than tcdA gene. Conclusions Most of the C. difficile isolates in this study were resistant to macrolide and aminoglycoside antibiotics. Moreover, the MDR strains were commonly found. All the isolates belonged to clade 1 and clade 4 according to phylogenetic analysis of bacterial genome, and highly genomic diversity of clade 1 was identified for these strains.
Collapse
Affiliation(s)
- Wenpeng Gu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Wenge Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Senquan Jia
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Yongming Zhou
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Jianwen Yin
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiaoqing Fu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| |
Collapse
|
12
|
Finsterwalder SK, Loncaric I, Cabal A, Szostak MP, Barf LM, Marz M, Allerberger F, Burgener IA, Tichy A, Feßler AT, Schwarz S, Monecke S, Ehricht R, Ruppitsch W, Spergser J, Künzel F. Dogs as carriers of virulent and resistant genotypes of Clostridioides difficile. Zoonoses Public Health 2022; 69:673-681. [PMID: 35546073 PMCID: PMC9544694 DOI: 10.1111/zph.12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
While previous research on zoonotic transmission of community-acquired Clostridioides difficile infection (CA-CDI) focused on food-producing animals, the present study aimed to investigate whether dogs are carriers of resistant and/or virulent C. difficile strains. Rectal swabs were collected from 323 dogs and 38 C. difficile isolates (11.8%) were obtained. Isolates were characterized by antimicrobial susceptibility testing, whole-genome sequencing (WGS) and a DNA hybridization assay. Multilocus sequence typing (MLST), core genome MLST (cgMLST) and screening for virulence and antimicrobial resistance genes were performed based on WGS. Minimum inhibitory concentrations for erythromycin, clindamycin, tetracycline, vancomycin and metronidazole were determined by E-test. Out of 38 C. difficile isolates, 28 (73.7%) carried genes for toxins. The majority of isolates belonged to MLST sequence types (STs) of clade I and one to clade V. Several isolates belonged to STs previously associated with human CA-CDI. However, cgMLST showed low genetic relatedness between the isolates of this study and C. difficile strains isolated from humans in Austria for which genome sequences were publicly available. Four isolates (10.5%) displayed resistance to three of the tested antimicrobial agents. Isolates exhibited resistance to erythromycin, clindamycin, tetracycline and metronidazole. These phenotypic resistances were supported by the presence of the resistance genes erm(B), cfr(C) and tet(M). All isolates were susceptible to vancomycin. Our results indicate that dogs may carry virulent and antimicrobial-resistant C. difficile strains.
Collapse
Affiliation(s)
- SK Finsterwalder
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| | - I Loncaric
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - A Cabal
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - MP Szostak
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - LM Barf
- Faculty of Mathematics and Computer ScienceFriedrich Schiller University JenaJenaGermany
- Max Planck Institute for Science of Human HistoryJenaGermany
| | - M Marz
- Faculty of Mathematics and Computer ScienceFriedrich Schiller University JenaJenaGermany
- FLI Leibniz Institute for Age ResearchJenaGermany
- InfectoGnostics Research Campus JenaJenaGermany
| | - F Allerberger
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - IA Burgener
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| | - A Tichy
- Department of Biomedical ScienceUniversity of Veterinary Medicine ViennaViennaAustria
| | - AT Feßler
- Department of Veterinary Medicine, Centre of Infection Medicine, Institute of Microbiology and EpizooticsFreie Universität BerlinBerlinGermany
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR)Freie Universität BerlinBerlinGermany
| | - S Schwarz
- Department of Veterinary Medicine, Centre of Infection Medicine, Institute of Microbiology and EpizooticsFreie Universität BerlinBerlinGermany
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR)Freie Universität BerlinBerlinGermany
| | - S Monecke
- InfectoGnostics Research Campus JenaJenaGermany
- Leibniz Institute of Photonic Technology (IPHT)JenaGermany
- Institut für Medizinische Mikrobiologie und HygieneUniversitätsklinik DresdenDresdenGermany
| | - R Ehricht
- InfectoGnostics Research Campus JenaJenaGermany
- Leibniz Institute of Photonic Technology (IPHT)JenaGermany
- Institute of Physical ChemistryFriedrich Schiller University JenaJenaGermany
| | - W Ruppitsch
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - J Spergser
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - F Künzel
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
13
|
Antibiotic Resistance Profile of RT 027/176 Versus Other Clostridioides difficile Isolates in Silesia, Southern Poland. Pathogens 2022; 11:pathogens11080949. [PMID: 36015069 PMCID: PMC9416131 DOI: 10.3390/pathogens11080949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Clostridioides difficile is an important health care-associated pathogen. The aim of this study was to analyze the antibiotic susceptibility of C. difficile isolates from feces of patients from 13 hospitals in Silesia, Poland. The incidence of CDI per 100.000 people in Silesia in 2018−2019 was higher than the average in Poland (39.3−38.7 vs. 30.2−29.5, respectively). The incidence doubled from 26.4 in 2020 to 55.1 in 2021. Two hundred and thirty stool samples tested positive for GDH (glutamate dehydrogenase) and toxins were cultured anaerobically for C. difficile. The isolates were characterized, typed, and tested for susceptibility to 11 antibiotics by E-test (EUCAST, 2021). The genes of toxins A/B and binary were detected by mPCR. Of 215 isolates, 166 (77.2%) were classified as RT 027 and 6 (2.8%) as related RT 176. Resistance to ciprofloxacin (96.7%), moxifloxacin (79.1%), imipenem (78.1%), penicillin (67%), and rifampicin (40.5%) was found. The ermB gene was detected in 79 (36.7%) strains. Multidrug resistance (MDR) was confirmed in 50 (23.3%) strains of RT 027 (94%). We concluded that a high prevalence of MDR among hypervirulent RT 027/176 C. difficile was found in the Silesian region of Poland, emphasizing the need to enhance regional infection control on CDI and antibiotic stewardships.
Collapse
|
14
|
Phenotypical and Genotypical Comparison of Clostridium difficile Isolated from Clinical Samples: Homebrew DNA Fingerprinting versus Antibiotic Susceptibility Testing (AST) and Clostridial Toxin Genes. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2021; 2021:7386554. [PMID: 34900067 PMCID: PMC8660249 DOI: 10.1155/2021/7386554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022]
Abstract
Background Clostridium (Clostridioides) difficile is recognized as the major cause of healthcare antibiotic-associated diarrhea. We surveyed a molecular epidemiological correlation between the clinical isolates from two general hospitals in Iran through clustering toxigenic types and antibiotic susceptibility testing (AST) accuracy. Methods Study population included 460 diarrhoeic specimens from inpatients with a history of antibiotic therapy. All samples underwent enriched anaerobic culture, confirmed by detection of gluD gene with PCR. Toxin status and AST were assessed by the disk diffusion method (DDM) and minimal inhibitory concentrations (MICs) of metronidazole, vancomycin, and rifampin. C. difficile outbreak was analyzed through conventional PCR by tracing toxin genes and Homebrew pulsed-field gel electrophoresis (PFGE) for characterizing isolates within our healthcare systems. Results A total of 29 C. difficile strains were isolated by enriched anaerobic culture from the clinical samples. Among them, 22 (4.8%) toxigenic profiles yielded toxins A and B (tcdA, tcdB) and binary toxins (cdtA, cdtB). The minimum inhibitory concentration (MIC) was 18.1% and 9% for vancomycin and metronidazole, and all isolates were susceptible to rifampicin and its minimum inhibitory concentration was at <0.003 μg/mL. The most dominant toxigenic and antibiotic-resistant “pulsotype F” was detected through PFGE combined with multiple Clostridial toxigenic pattern and AST. Conclusions DNA fingerprinting studies represent a powerful tool in surveying hypervirulent C. difficile strains in clinical settings. Resistance to vancomycin and metronidazole, as first-line antibiotics, necessitate accomplishment of proper control strategies and also prescription of tigecycline as a more appropriate option.
Collapse
|
15
|
Kabała M, Gofron Z, Aptekorz M, Sacha K, Harmanus C, Kuijper E, Martirosian G. Clostridioides difficile Ribotype 027 (RT027) Outbreak Investigation Due to the Emergence of Rifampicin Resistance Using Multilocus Variable-Number Tandem Repeat Analysis (MLVA). Infect Drug Resist 2021; 14:3247-3254. [PMID: 34429622 PMCID: PMC8380304 DOI: 10.2147/idr.s324745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022] Open
Abstract
Objective The aim of this study was Clostridioides difficile outbreak investigation due to the emergence of rifampicin resistant ribotype 027 (RT 027) fecal isolates from patients of Polish tertiary care hospital between X. 2017 and II. 2018 using multilocus variable tandem repeat analysis (MLVA). Materials and Methods Twenty-nine C. difficile fecal isolates from patients of tertiary care hospital in Southern Poland were ribotyped and analyzed by MLVA. Multiplex PCR (mPCR) for genes encoding GDH (gluD), toxins A (tcdA)/ B (tcdB), 16S rDNA and binary toxin genes (ctdA and ctdB) was performed. The antibiotic susceptibility profile was determined by E-test. Results The A, B and binary toxins encoding genes were detected in all 29 C. difficile strains which were sensitive to metronidazole, vancomycin and were resistant to erythromycin, clindamycin, and moxifloxacin; resistance to imipenem demonstrated 97%, to rifampicin – 45% isolates. C. difficile strains could be grouped by MLVA into 5 distinct clusters, and the largest cluster II contains 16 strains. The comparison of rifampicin GM MIC of cluster II (n=16 strains) with all others (n=13) showed that strains from clusters I, III, IV and V possessed significantly (p <0.005) higher GM MIC and were more resistant to rifampicin. Conclusion MLVA analysis proved transmission and recognized outbreak due to multidrug-resistant RT 027 C. difficile among patients of tertiary care hospital in Southern Poland. The reason for this is probably the widespread occurrence of spores in the hospital environment, which includes, among others, neglect of hygienic procedures and epidemic supervision. High resistance to imipenem (97%) and to rifampicin (45%) among C. difficile RT 027 Silesian isolates is threatening and requires further studies to elucidate this phenomenon.
Collapse
Affiliation(s)
- Monika Kabała
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Zygmunt Gofron
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Małgorzata Aptekorz
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Krzysztof Sacha
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| | - Celine Harmanus
- Department of Medical Microbiology Leiden University Medical Center, Leiden, the Netherlands
| | - Ed Kuijper
- Department of Medical Microbiology Leiden University Medical Center, Leiden, the Netherlands
| | - Gayane Martirosian
- Department of Medical Microbiology Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
16
|
O’Grady K, Knight DR, Riley TV. Antimicrobial resistance in Clostridioides difficile. Eur J Clin Microbiol Infect Dis 2021; 40:2459-2478. [DOI: 10.1007/s10096-021-04311-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023]
|
17
|
Antimicrobial resistance progression in the United Kingdom: A temporal comparison of Clostridioides difficile antimicrobial susceptibilities. Anaerobe 2021; 70:102385. [PMID: 34048922 DOI: 10.1016/j.anaerobe.2021.102385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Clostridioides difficile (CD) is widely reported as one of the most prevalent multi-drug resistant (MDR) organisms. Assessment of temporally disparate isolate collections can give valuable epidemiological data to further the understanding of antimicrobial resistance progression. METHODS A collection of 75 CD isolates (1980-86) was characterised by PCR ribotyping, cell cytotoxicity assay and susceptibility testing with a panel of 16 antimicrobials and compared to a modern surveillance collection consisting of 416 UK isolates (2012-2016). Agar-incorporation was performed to ascertain susceptibility data for vancomycin, metronidazole, rifampicin, fidaxomicin, moxifloxacin, clindamycin, imipenem, chloramphenicol, tigecycline, linezolid, ciprofloxacin, piperacillin/tazobactam, ceftriaxone, amoxicillin, tetracycline and erythromycin. Genomes were obtained using Illumina HiSeq3000 sequencing and assembled using CLC Genomics Workbench. Resistance genes were identified using the Comprehensive Antibiotic Research Database's Resistance Gene Identifier and ResFinder3.0. RESULTS Twenty-six known and one previously unobserved ribotype (RT) were detected. RT015 and RT020 dominated; 21.3% and 17.3%, respectively. Three moxifloxacin resistant (16-32 mg/L) RT027 isolates were recovered, pre-dating the earliest reports of this phenotype/genotype. Phenotypic resistance was observed to moxifloxacin (9.3% of isolates), ciprofloxacin (100%), erythromycin (17.3%), tetracycline (9.3%), linezolid and chloramphenicol (4.0%). Phenotypic comparisons with modern strains revealed increasing minimum inhibitory concentrations (MIC), with MIC50 elevations of one doubling-dilution for the majority of compounds, excluding clindamycin and imipenem. Moxifloxacin MIC90 comparisons revealed a two doubling-dilution increase between temporal isolate collections. Historical genomes revealed twenty different resistance determinants, including ermB (8.0% of isolates), tetM (9.3%), cfr (5.3%) and gyrA substitution Thr-82→Ile (9.3%). Seventeen isolates (22.7%) were resistant to ≥3 compounds (MDR), demonstrating ten different combinations. Intra-RT diversity was observed. CONCLUSIONS Antibiotic resistance in CD has increased since the early 1980s, across the majority of classes. Moxifloxacin resistance determinants may pre-date its introduction.
Collapse
|
18
|
Putsathit P, Hong S, George N, Hemphill C, Huntington PG, Korman TM, Kotsanas D, Lahra M, McDougall R, McGlinchey A, Moore CV, Nimmo GR, Prendergast L, Robson J, Waring L, Wehrhahn MC, Weldhagen GF, Wilson RM, Riley TV, Knight DR. Antimicrobial resistance surveillance of Clostridioides difficile in Australia, 2015-18. J Antimicrob Chemother 2021; 76:1815-1821. [PMID: 33895826 DOI: 10.1093/jac/dkab099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Clostridioides difficile was listed as an urgent antimicrobial resistance (AMR) threat in a report by the CDC in 2019. AMR drives the evolution of C. difficile and facilitates its emergence and spread. The C. difficile Antimicrobial Resistance Surveillance (CDARS) study is nationwide longitudinal surveillance of C. difficile infection (CDI) in Australia. OBJECTIVES To determine the antimicrobial susceptibility of C. difficile isolated in Australia between 2015 and 2018. METHODS A total of 1091 strains of C. difficile were collected over a 3 year period by a network of 10 diagnostic microbiology laboratories in five Australian states. These strains were tested for their susceptibility to nine antimicrobials using the CLSI agar incorporation method. RESULTS All strains were susceptible to metronidazole, fidaxomicin, rifaximin and amoxicillin/clavulanate and low numbers of resistant strains were observed for meropenem (0.1%; 1/1091), moxifloxacin (3.5%; 38/1091) and vancomycin (5.7%; 62/1091). Resistance to clindamycin was common (85.2%; 929/1091), followed by resistance to ceftriaxone (18.8%; 205/1091). The in vitro activity of fidaxomicin [geometric mean MIC (GM) = 0.101 mg/L] was superior to that of vancomycin (1.700 mg/L) and metronidazole (0.229 mg/L). The prevalence of MDR C. difficile, as defined by resistance to ≥3 antimicrobial classes, was low (1.7%; 19/1091). CONCLUSIONS The majority of C. difficile isolated in Australia did not show reduced susceptibility to antimicrobials recommended for treatment of CDI (vancomycin, metronidazole and fidaxomicin). Resistance to carbapenems and fluoroquinolones was low and MDR was uncommon; however, clindamycin resistance was frequent. One fluoroquinolone-resistant ribotype 027 strain was detected.
Collapse
Affiliation(s)
- Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, WA, Australia
| | - Stacey Hong
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch 6150, WA, Australia
| | - Narelle George
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston 4029, QLD, Australia
| | | | - Peter G Huntington
- Department of Microbiology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, 2065, NSW, Australia
| | - Tony M Korman
- Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Despina Kotsanas
- Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Monica Lahra
- Department of Microbiology, The Prince of Wales Hospital, Randwick 2031, NSW, Australia
| | | | | | - Casey V Moore
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide 5000, SA, Australia
| | - Graeme R Nimmo
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston 4029, QLD, Australia
| | | | | | | | | | - Gerhard F Weldhagen
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide 5000, SA, Australia
| | - Richard M Wilson
- Australian Clinical Labs, Microbiology Department, Wayville 5034, SA, Australia
| | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, WA, Australia.,Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch 6150, WA, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia
| | - Daniel R Knight
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch 6150, WA, Australia
| |
Collapse
|
19
|
Kartalidis P, Skoulakis A, Tsilipounidaki K, Florou Z, Petinaki E, Fthenakis GC. Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis. Microorganisms 2021; 9:microorganisms9071383. [PMID: 34202117 PMCID: PMC8307371 DOI: 10.3390/microorganisms9071383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/11/2023] Open
Abstract
The present paper is divided into two parts. The first part focuses on the role of Clostridioides difficile in the accumulation of genes associated with antimicrobial resistance and then the transmission of them to other pathogenic bacteria occupying the same human intestinal niche. The second part describes an in silico analysis of the genomes of C. difficile available in GenBank, with regard to the presence of mobile genetic elements and antimicrobial resistance genes. The diversity of the C. difficile genome is discussed, and the current status of resistance of the organisms to various antimicrobial agents is reviewed. The role of transposons associated with antimicrobial resistance is appraised; the importance of plasmids associated with antimicrobial resistance is discussed, and the significance of bacteriophages as a potential shuttle for antimicrobial resistance genes is presented. In the in silico study, 1101 C. difficile genomes were found to harbor mobile genetic elements; Tn6009, Tn6105, CTn7 and Tn6192, Tn6194 and IS256 were the ones more frequently identified. The genes most commonly harbored therein were: ermB, blaCDD, vanT, vanR, vanG and vanS. Tn6194 was likely associated with resistance to erythromycin, Tn6192 and CTn7 with resistance to the β-lactams and vancomycin, IS256 with resistance to aminoglycoside and Tn6105 to vancomycin.
Collapse
Affiliation(s)
- Philip Kartalidis
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Anargyros Skoulakis
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Katerina Tsilipounidaki
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Zoi Florou
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Efthymia Petinaki
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
- Correspondence:
| |
Collapse
|
20
|
Sarmah H, Hazarika R, Tamuly S, Deka P, Manoharan S, Sharma RK. Evaluation of different antigenic preparations against necrotic enteritis in broiler birds using a novel Clostridium perfringens type G strain. Anaerobe 2021; 70:102377. [PMID: 33957249 DOI: 10.1016/j.anaerobe.2021.102377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Keeping in view, the constraints faced by the Indian broiler industry with lack of a suitable vaccine against Necrotic Enteritis (NE), a study has been proposed to explore the prevalence and detail characterization of C. perfringens type G in NE suspected broiler chicken in the process of suitable vaccine development. METHODS Intestinal scrapings/faecal contents of NE suspected broiler chickens were screened to establish the prevalence of C.perfringens type G in broiler birds. A most pathogenic, highly resistant type G isolate of C. perfringens, bearing both tpeL and gapC gene was selected for preparation of three different vaccine formulations, and to evaluate their immunogenic potential in broiler birds. RESULTS Screening of clinical samples of NE suspected broiler birds revealed C. perfringens type G, bearing gapC gene in 51.22% samples, of which 47.62% revealed tpeL gene. Seven of the tpeLpos type G isolates were comparatively more pathogenic for mice, of which, one exhibited multidrug resistance towards ciprofloxacin, norfloxacin, tetracycline and levofloxacin. The sonicated supernatant (SS) prepared from the selected tpeL and gapC positive isolate could maintain a significantly higher protective IgG response than toxoid and bacterin preparation from the 21st to 28thday of age in immunized birds. CONCLUSION The additional TpeL toxin in C. perfringens type G has been proved to be an additional key biological factor in the pathogenesis of NE in broiler chickens. Considering the release of more immunogenic proteins, the SS proved to be a better immunogenic preparation against NE with a multiple immunization dose.
Collapse
Affiliation(s)
- Hiramoni Sarmah
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Ritam Hazarika
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Shantonu Tamuly
- Department of Animal Biochemistry, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Pankaj Deka
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Seeralan Manoharan
- Vaccine Research Centre-Bacterial Vaccines, Centre for Animal Health Studies, TANUVAS, Chennai, India
| | - Rajeev K Sharma
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India.
| |
Collapse
|
21
|
Effect of Restriction of Fluoroquinolone Antibiotics on Clostridioides difficile Infections in the University Hospital Hradec Králové. Antibiotics (Basel) 2021; 10:antibiotics10050519. [PMID: 34063201 PMCID: PMC8147471 DOI: 10.3390/antibiotics10050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Clostridioides difficile is the most common pathogen responsible for hospital-acquired diarrhea. This complication of antibiotic treatment mainly endangers the health of elder patients. Preventing the development of C. difficile infections (CDI) is still a challenge that needs to be addressed. In our study, the results of 872 C. difficile positive stool samples were used to describe the epidemiological situation affected by a change in the prescription of fluoroquinolone antibiotics. In a total, 93 of strains were typed by polymerase chain reaction (PCR) and capillary gel electrophoresis. Between years 2014 and 2018 the decline in the fluoroquinolones consumption was 69.3 defined daily dose (DDD) per 1000 patient-days (from 103.3 to 34.0), in same period CDI incidence declined by 1.3 cases per 10,000 patient-bed days (from 5.6 to 4.3). Results of epidemiologic and statistical analysis shows that decline in fluoroquinolones consumption has significant influence on CDI incidence and prevalence of hypervirulent strains. In the University Hospital Hradec Králové properly managed antibiotic stewardship policy has reduced CDI incidence by 23.2% and lowered rate of hypervirulent ribotypes 001 and 176.
Collapse
|
22
|
Editorial for the Special Issue: Clostridium difficile. Microorganisms 2021; 9:microorganisms9020368. [PMID: 33673344 PMCID: PMC7918445 DOI: 10.3390/microorganisms9020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium difficile (reclassified as Clostridioides difficile [...].
Collapse
|
23
|
Mutai WC, Mureithi MW, Anzala O, Revathi G, Kullin B, Burugu M, Kyany'a C, Odoyo E, Otieno P, Musila L. High Prevalence of Multidrug-Resistant Clostridioides difficile Following Extensive Use of Antimicrobials in Hospitalized Patients in Kenya. Front Cell Infect Microbiol 2021; 10:604986. [PMID: 33628744 PMCID: PMC7897694 DOI: 10.3389/fcimb.2020.604986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction Clostridioides difficile is a neglected pathogen in many African countries as it is generally not regarded as one of the major contributors toward the diarrheal disease burden in the continent. However, several studies have suggested that C. difficile infection (CDI) may be underreported in many African settings. The aim of this study was to determine the prevalence of CDI in hospitalized patients, evaluate antimicrobial exposure, and detect toxin and antimicrobial resistance profiles of the isolated C. difficile strains. Methods In this cross-sectional study, 333 hospitalized patients with hospital-onset diarrhoea were selected. The stool samples were collected and cultured on cycloserine-cefoxitin egg yolk agar (CCEY). Isolates were presumptively identified by phenotypic characteristics and Gram stain and confirmed by singleplex real-time PCR (qPCR) assays detecting the species-specific tpi gene, toxin A (tcdA) gene, toxin B (tcdB) gene, and the binary toxin (cdtA/cdtB) genes. Confirmed C. difficile isolates were tested against a panel of eight antimicrobials (vancomycin, metronidazole, rifampicin, ciprofloxacin, tetracycline, clindamycin, erythromycin, and ceftriaxone) using E-test strips. Results C. difficile was detected in 57 (25%) of diarrheal patients over the age of two, 56 (98.2%) of whom received antimicrobials before the diarrheal episode. Amongst the 71 confirmed isolates, 69 (97.1%) harbored at least one toxin gene. More than half of the toxigenic isolates harbored a truncated tcdA gene. All isolates were sensitive to vancomycin, while three isolates (2.1%) were resistant to metronidazole (MIC >32 mg/L). High levels of resistance were observed to rifampicin (65/71, 91.5%), erythromycin (63/71, 88.7%), ciprofloxacin (59/71, 83.1%), clindamycin (57/71, 80.3%), and ceftriaxone (36/71, 50.7.8%). Among the resistant isolates, 61 (85.9%) were multidrug-resistant. Conclusion Multidrug-resistant C. difficile strains were a significant cause of healthcare facility-onset C. difficile infections in patients with prior antimicrobial exposure in this Kenyan hospital.
Collapse
Affiliation(s)
- Winnie C Mutai
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Marianne W Mureithi
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Omu Anzala
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Division of Medical Microbiology, Aga Khan University Hospital, Nairobi, Kenya
| | - Brian Kullin
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Magdaline Burugu
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya
| | | | - Erick Odoyo
- US Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Peter Otieno
- US Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Lillian Musila
- US Army Medical Research Directorate-Africa, Nairobi, Kenya
| |
Collapse
|
24
|
Sholeh M, Krutova M, Forouzesh M, Mironov S, Sadeghifard N, Molaeipour L, Maleki A, Kouhsari E. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020; 9:158. [PMID: 32977835 PMCID: PMC7517813 DOI: 10.1186/s13756-020-00815-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Clostridioides (Clostridium) difficile is an important pathogen of healthcare- associated diarrhea, however, an increase in the occurrence of C. difficile infection (CDI) outside hospital settings has been reported. The accumulation of antimicrobial resistance in C. difficile can increase the risk of CDI development and/or its spread. The limited number of antimicrobials for the treatment of CDI is matter of some concern. Objectives In order to summarize the data on antimicrobial resistance to C. difficile derived from humans, a systematic review and meta-analysis were performed. Methods We searched five bibliographic databases: (MEDLINE [PubMed], Scopus, Embase, Cochrane Library and Web of Science) for studies that focused on antimicrobial susceptibility testing in C. difficile and were published between 1992 and 2019. The weighted pooled resistance (WPR) for each antimicrobial agent was calculated using a random- effects model. Results A total of 111 studies were included. The WPR for metronidazole and vancomycin was 1.0% (95% CI 0–3%) and 1% (95% CI 0–2%) for the breakpoint > 2 mg/L and 0% (95% CI 0%) for breakpoint ≥32 μg/ml. Rifampin and tigecycline had a WPRs of 37.0% (95% CI 18–58%) and 1% (95% CI 0–3%), respectively. The WPRs for the other antimicrobials were as follows: ciprofloxacin 95% (95% CI 85–100%), moxifloxacin 32% (95% CI 25–40%), clindamycin 59% (95% CI 53–65%), amoxicillin/clavulanate 0% (0–0%), piperacillin/tazobactam 0% (0–0%) and ceftriaxone 47% (95% CI 29–65%). Tetracycline had a WPR 20% (95% CI 14–27%) and meropenem showed 0% (95% CI 0–1%); resistance to fidaxomicin was reported in one isolate (0.08%). Conclusion Resistance to metronidazole, vancomycin, fidaxomicin, meropenem and piperacillin/tazobactam is reported rarely. From the alternative CDI drug treatments, tigecycline had a lower resistance rate than rifampin. The high-risk antimicrobials for CDI development showed a high level of resistance, the highest was seen in the second generation of fluoroquinolones and clindamycin; amoxicillin/clavulanate showed almost no resistance. Tetracycline resistance was present in one fifth of human clinical C. difficile isolates.
Collapse
Affiliation(s)
- Mohammad Sholeh
- Dept. of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marcela Krutova
- Dept. of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mehdi Forouzesh
- Assistant professor of Legal medicine Research Center, Legal Medicine organization, Tehran, Iran
| | - Sergey Mironov
- Department of propaedeutics of dental diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Leila Molaeipour
- Dept. of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran. .,Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran. .,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
25
|
Tilkorn FKMT, Frickmann H, Simon IS, Schwanbeck J, Horn S, Zimmermann O, Groß U, Bohne W, Zautner AE. Antimicrobial Resistance Patterns in Clostridioides difficile Strains Isolated from Neonates in Germany. Antibiotics (Basel) 2020; 9:E481. [PMID: 32759868 PMCID: PMC7460221 DOI: 10.3390/antibiotics9080481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 01/15/2023] Open
Abstract
Young children are frequently colonized with Clostridioides (C.) difficile. Depending on their resistance patterns, antibiotic treatment can facilitate gastrointestinal spreading in colonized individuals, potentially leading to transmission to others. C. difficile was isolated from stool samples from infants born in two hospitals in Göttingen and Darmstadt, Germany. All isolates were subjected to phenotypic antimicrobial resistance testing, PCR-based screening for toxin genes and mass spectrometry-based exclusion of ribotypes 027 and 176. Within an initial cohort of 324 neonates with a longitudinal survey of C. difficile, 137 strains were isolated from 48 individuals. Antimicrobial resistance was recorded against metronidazole in one (0.7%), erythromycin in 16 (11.7%) and moxifloxacin in 2 (1.5%) of the strains, whereas no resistance was observed against vancomycin (0.0%) or rifampicin (0.0%). Newly observed resistance against erythromycin in children with detection of previously completely sensitive isolates was reported for C. difficile isolates from 2 out of 48 children. In 20 children (42%), non-toxigenic strains were detected, and from 27 children (56%), toxigenic strains were isolated, while both toxigenic and non-toxigenic strains were recorded for 1 child (2%). Ribotypes 027 or 176 were not observed. In conclusion, the German C. difficile strains isolated from the children showed mild to moderate resistance with predominance of macrolide resistance, a substance class which is frequently applied in children. The observed switches to the dominance of macrolide-resistant isolates suggests likely selection of resistant C. difficile strains already in children.
Collapse
Affiliation(s)
- Friederike K. M. T. Tilkorn
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.K.M.T.T.); (I.S.S.); (J.S.); (O.Z.); (U.G.); (W.B.)
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany;
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Isabel S. Simon
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.K.M.T.T.); (I.S.S.); (J.S.); (O.Z.); (U.G.); (W.B.)
- Department of Pediatrics, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Julian Schwanbeck
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.K.M.T.T.); (I.S.S.); (J.S.); (O.Z.); (U.G.); (W.B.)
| | - Sebastian Horn
- Department of Pediatrics, University Medical Center Göttingen, 37075 Göttingen, Germany;
- Department of Pediatrics, SRH Central Hospital Suhl, 98527 Suhl, Germany
| | - Ortrud Zimmermann
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.K.M.T.T.); (I.S.S.); (J.S.); (O.Z.); (U.G.); (W.B.)
| | - Uwe Groß
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.K.M.T.T.); (I.S.S.); (J.S.); (O.Z.); (U.G.); (W.B.)
| | - Wolfgang Bohne
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.K.M.T.T.); (I.S.S.); (J.S.); (O.Z.); (U.G.); (W.B.)
| | - Andreas E. Zautner
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (F.K.M.T.T.); (I.S.S.); (J.S.); (O.Z.); (U.G.); (W.B.)
| |
Collapse
|
26
|
Kachrimanidou M, Protonotariou E, Kaiafa G, Ζtrieva E, Skoura L, Savopoulos C, Kuijper E. Bacteremia due to a toxin A-negative, B-positive Clostridioides difficile ribotype 017 strain. Anaerobe 2020; 63:102195. [DOI: 10.1016/j.anaerobe.2020.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
|
27
|
Guerrero-Araya E, Meneses C, Castro-Nallar E, Guzmán D. AM, Álvarez-Lobos M, Quesada-Gómez C, Paredes-Sabja D, Rodríguez C. Origin, genomic diversity and microevolution of the Clostridium difficile B1/NAP1/RT027/ST01 strain in Costa Rica, Chile, Honduras and Mexico. Microb Genom 2020; 6:e000355. [PMID: 32176604 PMCID: PMC7371124 DOI: 10.1099/mgen.0.000355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile B1/NAP1/RT027/ST01 has been responsible for outbreaks of antibiotic-associated diarrhoea in clinical settings worldwide and is associated with severe disease presentations and increased mortality rates. Two fluoroquinolone-resistant (FQR) lineages of the epidemic B1/NAP1/RT027/ST01 strain emerged in the USA in the early 1990s and disseminated trans continentally (FQR1 and FQR2). However, it is unclear when and from where they entered Latin America (LA) and whether isolates from LA exhibit unique genomic features when compared to B1/NAP1/RT027/ST01 isolates from other regions of the world. To answer the first issue we compared whole-genome sequences (WGS) of 25 clinical isolates typed as NAP1, RT027 or ST01 in Costa Rica (n=16), Chile (n=5), Honduras (n=3) and Mexico (n=1) to WGS of 129 global isolates from the same genotype using Bayesian phylogenomics. The second question was addressed through a detailed analysis of the number and type of mutations of the LA isolates and their mobile resistome. All but two B1/NAP1/RT027/ST01 isolates from LA belong to the FQR2 lineage (n=23, 92 %), confirming its widespread distribution. As indicated by analysis of a dataset composed of 154 WGS, the B1/NAP1/RT027/ST01 strain was introduced into the four LA countries analysed between 1998 and 2005 from North America (twice) and Europe (at least four times). These events occurred soon after the emergence of the FQR lineages and more than one decade before the first report of the detection of the B1/NAP1/RT027/ST01 in LA. A total of 552 SNPs were identified across all genomes examined (3.8-4.3 Mb) in pairwise comparisons to the R20291 reference genome. Moreover, pairwise SNP distances were among the smallest distances determined in this species so far (0 to 55). Despite this high level of genomic conservation, 39 unique SNPs (7 %) in genes that play roles in the infection process (i.e. slpA) or antibiotic resistance (i.e. rpoB, fusA) distinguished the LA isolates. In addition, isolates from Chile, Honduras and Mexico had twice as many antibiotic resistance genes (ARGs, n=4) than related isolates from other regions. Their unique set of ARGs includes a cfr-like gene and tetM, which were found as part of putative mobile genetic elements whose sequences resemble undescribed integrative and conjugative elements. These results show multiple, independent introductions of B1/NAP1/RT027/ST01 isolates from the FQR1 and FQR2 lineages from different geographical sources into LA and a rather rapid accumulation of distinct mutations and acquired ARG by the LA isolates.
Collapse
Affiliation(s)
- Enzo Guerrero-Araya
- Millennium Nucleus in the Biology of Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ana M. Guzmán D.
- Department of Clinical Laboratory, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Álvarez-Lobos
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Quesada-Gómez
- Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Paredes-Sabja
- Millennium Nucleus in the Biology of Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - César Rodríguez
- Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
28
|
Cheng JW, Liu C, Kudinha T, Xiao M, Fan X, Yang CX, Wei M, Liang GW, Shao DH, Xiong ZJ, Hou X, Yu SY, Wang Y, Yang QW, Su JR, Xu YC. The tcdA-negative and tcdB-positive Clostridium difficile ST81 clone exhibits a high level of resistance to fluoroquinolones: a multi-centre study in Beijing, China. Int J Antimicrob Agents 2020; 56:105981. [PMID: 32330584 DOI: 10.1016/j.ijantimicag.2020.105981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/24/2023]
Abstract
Clostridium difficile infection (CDI) is the leading cause of antibiotic-associated diarrhoea worldwide. In order to gain a better understanding about the molecular epidemiology of C. difficile in Beijing, China, molecular typing, antimicrobial susceptibility testing and drug resistance gene sequencing were performed on 174 strains of C. difficile collected from four large tertiary hospitals in Beijing. In total, 31 sequence types (STs) were identified among the 174 strains. ST81 was found to be the most prevalent (26.4%, 46/174), followed by ST2 (16.7%, 29/174) and ST54 (9.8%, 17/174). All isolates were susceptible to metronidazole and vancomycin. The test strains displayed resistance rates of 97.1%, 44.3% and 44.3% for ciprofloxacin, levofloxacin and moxifloxacin, respectively. ST81 isolates displayed a drug resistance rate of 97.8% for levofloxacin and moxifloxacin, which was significantly higher than ST2 (0%), ST54 (17.6%) and ST42 (0%) isolates (P<0.05). An amino acid mutation (T82I) was identified in GyrA, and the total mutation rate of the C. difficile strains was 40.8% (71/174). The mutation rate of ST81 isolates was 95.7% (44/46). Three amino acid mutations (D426N, S366A and D426V) were identified in GyrB, and the total mutation rate of GyrB was 39.1%. A double-site mutation in GyrB (S366A+D426V) was identified in all ST81 (n=46) isolates. In conclusion, the C. difficile ST81 clone showed a high level of resistance to fluoroquinolones in Beijing, highlighting the need for nationwide surveillance of CDI.
Collapse
Affiliation(s)
- Jing-Wei Cheng
- Centre of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Liu
- Department of Clinical Laboratory, Beijing Huaxin Hospital, First Affiliated Hospital of Tsinghua University, Beijing, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, New South Wales, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, Westmead, New South Wales, Australia
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chun-Xia Yang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ming Wei
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guo-Wei Liang
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Dong-Hua Shao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Zhu-Jia Xiong
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Xin Hou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu-Ying Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yao Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi-Wen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Rong Su
- Centre of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Zhang WZ, Li WG, Liu YQ, Gu WP, Zhang Q, Li H, Liu ZJ, Zhang X, Wu Y, Lu JX. The molecular characters and antibiotic resistance of Clostridioides difficile from economic animals in China. BMC Microbiol 2020; 20:70. [PMID: 32228454 PMCID: PMC7106571 DOI: 10.1186/s12866-020-01757-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND It has been performed worldwidely to explore the potential of animals that might be a reservoir for community associated human infections of Clostridioides difficile. Several genetically undistinguished PCR ribotypes of C. difficile from animals and human have been reported, illustrating potential transmission of C. difficile between them. Pig and calf were considered as the main origins of C. difficile with predominant RT078 and RT033, respectively. As more investigations involved, great diversity of molecular types from pig and calf were reported in Europe, North American and Australia. However, there were quite limited research on C. difficile isolates from meat animals in China, leading to non-comprehensive understanding of molecular epidemiology of C. difficile in China. RESULTS A total of 55 C. difficile were isolated from 953 animal stool samples, within which 51 strains were from newborn dairy calf less than 7 days in Shandong Province. These isolates were divided into 3 STs and 6 RTs, of which ST11/RT126 was predominant type, and responsible for majority antibiotic resistance isolates. All the isolates were resistant to at least one tested antibiotics, however, only two multidrug resistant (MDR) isolates were identified. Furthermore, erythromycin (ERY) and clindamycin (CLI) were the two main resistant antibiotics. None of the isolates were resistant to vancomycin (VAN), metronidazole (MTZ), tetracycline (TET), and rifampin (RIF). CONCLUSIONS In this study, we analyzed the prevalence, molecular characters and antibiotic resistance of C. difficile from calf, sheep, chicken, and pig in China. Some unique features were found here: first, RT126 not RT078 were the dominant type from baby calf, and none isolates were got from pig; second, on the whole, isolates from animals display relative lower resistant rate to these 11 tested antibiotics, compared with isolates from human in China in our previous report. Our study helps to deep understanding the situation of C. difficile from economic animals in China, and to further study the potential transmission of C. difficile between meat animals and human.
Collapse
Affiliation(s)
- Wen-Zhu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Wen-Ge Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Yu-Qing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong academy of agricultural Sciences, Jinan, China
| | - Wen-Peng Gu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Qing Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong academy of agricultural Sciences, Jinan, China
| | - Hu Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China.,Regional Center for Disease Prevention and Control, Aksu, Xinjiang, China
| | - Zheng-Jie Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| | - Jin-Xing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
30
|
High prevalence of Clostridiodes diffiicle PCR ribotypes 001 and 126 in Iran. Sci Rep 2020; 10:4658. [PMID: 32170182 PMCID: PMC7070088 DOI: 10.1038/s41598-020-61604-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a leading causative agent of hospital-acquired and community-acquired diarrhea in human. This study aims to characterize the predominant C. difficile strains, RT001 and 126, circulating in Iranian hospitals in relation to resistant phenotypes, the antibiotic resistance genes, and their genetic relatedness. A total number of 735 faecal specimens were collected from patients suspected of CDI in Tehran hospitals. Typing and subtyping of the strains were performed using CE-PCR ribotyping and MLVA, respectively, followed by PCR assays for ARGs and indicators of Tns. Minimum inhibitory concentrations (MICs) of five antibiotics were determined by MIC Test Strips. Among 65 strains recovered from CDI patients, RT001 (32.3%) and RT126 (9.2%) were found as the most frequent ribotypes, and 64 MLVA types were identified. Using MLVA, RT001 and RT126 were subtyped into 6 and 4 groups, respectively. The vanA, nim, tetM, gyrA, gyrB genes were detected in 24.6%, 0%, 89.2%, 95.3%, and 92.3% of the strains, respectively. The indicators of Tns including vanHAX, tndX, and int were found in 0%, 3% and 29.2% of the strains, respectively. The most common amino acid (AA) alterations of GyrA and GyrB were related to substitutions of Thr82 → Val and Ser366 → Val, respectively. Resistance rate to metronidazole, vancomycin, tetracycline, ciprofloxacin, and moxifloxacin was 81.5%, 30.7%, 85%, 79%, and 74%, respectively. This study, for the first time revealed the subtypes of circulating RT001 and RT126 in Iran. It is of importance that the majority of the strains belonging to RT001 were multidrug resistant (MDR). This study also pointed to the intra-hospital dissemination of the strains belonging to RT001 and RT126 for short and long periods, respectively, using MLVA. The most important resistance phenotypes observed in this study was vancomycin-resistant phenotypes. Resistance to metronidazole was also high and highlights the need to determine its resistance mechanisms in the future studies.
Collapse
|
31
|
Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat Commun 2020; 11:598. [PMID: 32001686 PMCID: PMC6992631 DOI: 10.1038/s41467-020-14382-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Metronidazole was until recently used as a first-line treatment for potentially life-threatening Clostridioides difficile (CD) infection. Although cases of metronidazole resistance have been documented, no clear mechanism for metronidazole resistance or a role for plasmids in antimicrobial resistance has been described for CD. Here, we report genome sequences of seven susceptible and sixteen resistant CD isolates from human and animal sources, including isolates from a patient with recurrent CD infection by a PCR ribotype (RT) 020 strain, which developed resistance to metronidazole over the course of treatment (minimal inhibitory concentration [MIC] = 8 mg L−1). Metronidazole resistance correlates with the presence of a 7-kb plasmid, pCD-METRO. pCD-METRO is present in toxigenic and non-toxigenic resistant (n = 23), but not susceptible (n = 563), isolates from multiple countries. Introduction of a pCD-METRO-derived vector into a susceptible strain increases the MIC 25-fold. Our finding of plasmid-mediated resistance can impact diagnostics and treatment of CD infections. Cases of C. difficile (CD) resistant to metronidazole have been reported but the mechanism remains enigmatic. Here the authors identify a plasmid, which correlates with metronidazole resistance status in a large international collection of CD isolates, and demonstrate that the plasmid can confer metronidazole resistance.
Collapse
|
32
|
Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. Antimicrobial resistance in Clostridium difficile ribotype 017. Expert Rev Anti Infect Ther 2019; 18:17-25. [PMID: 31800331 DOI: 10.1080/14787210.2020.1701436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Antimicrobial resistance (AMR) played an important role in the initial outbreaks of Clostridium difficile infection (CDI) in the 1970s. C. difficile ribotype (RT) 017 has emerged as the major strain of C. difficile in Asia, where antimicrobial use is poorly regulated. This strain has also caused CDI outbreaks around the world for almost 30 years. Many of these outbreaks were associated with clindamycin and fluoroquinolone resistance. AMR and selective pressure is likely to be responsible for the success of this RT and may drive future outbreaks.Areas covered: This narrative review summarizes the prevalence and mechanisms of AMR in C. difficile RT 017 and transmission of these AMR mechanisms. To address these topics, reports of outbreaks due to C. difficile RT 017, epidemiologic studies with antimicrobial susceptibility results, studies on resistance mechanisms found in C. difficile and related publications available through Pubmed until September 2019 were collated and the findings discussed.Expert opinion: Primary prevention is the key to control CDI. This should be achieved by developing antimicrobial stewardship in medical, veterinary and agricultural practices. AMR is the key factor that drives CDI outbreaks, and methods for the early detection of AMR can facilitate the control of outbreaks.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daniel R Knight
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| | - Brian Kullin
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| |
Collapse
|
33
|
Antibiotic resistance of clinical isolates of Clostridioides difficile in China and its association with geographical regions and patient age. Anaerobe 2019; 60:102094. [PMID: 31499177 DOI: 10.1016/j.anaerobe.2019.102094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
It is known that antibiotic usage is associated with the development of Clostridioides difficile infection (CDI), especially clindamycin, third-generation cephalosporins, and fuoroquinolones. Antibiotic resistance rates to many antibiotics varies a lot by study. We performed a study focused on antibiotic resistance in clinical isolates of C. difficile from more widespread geographic regions across China. Of 319 C. difficile isolates tested against 11 antibiotics, 313 (98.1%) were resistant to at least one antibiotic. The highest rate of resistance was to ciprofloxacin, clindamycin, and erythromycin across all age groups, similar to previous studies. However, all isolates were susceptible to metronidazole and vancomycin. Overall the resistance rate to tested antibiotics was lower than other reports in China except for chloramphenicol and meropenem. Genotype ST37/RT017 in clade 4 was resistant to more antibiotics than other types. Unexpectedly, RT078 isolates in this study were susceptible to almost all tested antibiotics. In addition, the proportion of multi-drug resistant (MDR) isolates observed (17%) in this study was much lower than several European studies (up to 55%) and a previous study in China (78%). Although isolates from patients aged between 65 and 85 were more resistant to antibiotics in comparison to other age groups, MDR isolates were still detected in children below 2-years of age. The highest percentage of MDR isolates was determined in South China, an area that is most developed economically. The clade 4, RT017 (ST37) has been associated with outbreaks in Europe and North America and is responsible for most C. difficile infections (CDIs) in Asia. In addition, RT017 is often clindamycin and fluoroquinolone resistant. This study provided a relatively comprehensive description of antibiotic resistance of C. difficile in China, and further elucidates the epidemiology and antibiotic resistance of clinical isolates of C. difficile in China at a national level.
Collapse
|
34
|
Knight DR, Riley TV. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health 2019; 7:164. [PMID: 31281807 PMCID: PMC6595230 DOI: 10.3389/fpubh.2019.00164] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023] Open
Abstract
Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen historically associated with diarrhea and pseudomembranous colitis in hospitalized patients. In recent years, there have been dramatic increases in the incidence and severity of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare and community settings. C. difficile is an ancient and diverse species that displays a sympatric lifestyle, establishing itself in a range of ecological niches external to the healthcare system. These sources/reservoirs include food, water, soil, and over a dozen animal species, in particular, livestock such as pigs and cattle. In a manner analogous to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore contamination of meat, vegetables grown in soil containing animal feces, agricultural by-products such as compost and manure, and the environment in general (households, lawns, and public spaces) is contributing to a persistent community source/reservoir of C. difficile and the insidious rise of CDI in the community. The whole-genome sequencing era continues to redefine our view of this complex pathogen. The application of high-resolution microbial genomics in a One Health framework (encompassing clinical, veterinary, and environment derived datasets) is the optimal paradigm for advancing our understanding of CDI in humans and animals. This approach has begun to yield critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the C. difficile core genome shows strains common to humans and animals (livestock or companion animals) do not form distinct populations but share a recent evolutionary history. Moreover, for C. difficile sequence type 11 and PCR ribotypes 078 and 014, major lineages of One Health importance, this approach has substantiated inter-species clonal transmission between animals and humans. These findings indicate either a zoonosis or anthroponosis. Moreover, they challenge the existing paradigm and the long-held misconception that CDI is primarily a healthcare-associated infection. In this article, evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic factors that contribute to the spread of C. difficile from the farm to the community.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Thomas V Riley
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia
| |
Collapse
|
35
|
Pellissery AJ, Vinayamohan PG, Yin HB, Mooyottu S, Venkitanarayanan K. In vitro efficacy of sodium selenite in reducing toxin production, spore outgrowth and antibiotic resistance in hypervirulent Clostridium difficile. J Med Microbiol 2019; 68:1118-1128. [PMID: 31172910 DOI: 10.1099/jmm.0.001008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study investigated the efficacy of the essential mineral, selenium (sodium selenite), in reducing the toxin production, spore outgrowth and antibiotic resistance of Clostridium difficile in vitro. METHODOLOGY Two hypervirulent C. difficile isolates were cultured in brain heart infusion broth with and without a sub-minimum inhibitory concentration (sub-MIC) of sodium selenite, and the supernatant and bacterial pellet were harvested for total toxin quantitation and RT-qPCR analysis of toxin-encoding genes, respectively. Additionally, C. difficile isolates were cultured in brain heart infusion broth containing 0.5 or 1× the minimum inhibitory concentration (MIC) of either ciprofloxacin or vancomycin with or without sub-MICs of sodium selenite. Further, the effect of sodium selenite on C. difficile germination and spore outgrowth was also determined by exposing C. difficile spores to a sub-MIC of sodium selenite in a germination medium and measuring the germination and outgrowth by measuring the optical density at 600 nm. RESULTS Sodium selenite significantly reduced C. difficile toxin synthesis, cytotoxicity and spore outgrowth. Further, the expression of the toxin production genes, tcdA and tcdB, was downregulated in the presence of sodium selenite, while sodium selenite significantly increased the sensitivity of C. difficile to ciprofloxacin , but not vancomycin, as revealed by decreased bacterial growth in samples containing ciprofloxacin+selenium compared to the antibiotic control. Although the sub-MIC of sodium selenite did not inhibit spore germination, it was capable of completely inhibiting spore outgrowth. CONCLUSION Our results suggest that sodium selenite could potentially be used to control C. difficile and indicate that future in vivo studies are warranted.
Collapse
Affiliation(s)
| | | | | | - Shankumar Mooyottu
- Department of Veterinary Pathology, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
36
|
Evolutionary and Genomic Insights into Clostridioides difficile Sequence Type 11: a Diverse Zoonotic and Antimicrobial-Resistant Lineage of Global One Health Importance. mBio 2019; 10:mBio.00446-19. [PMID: 30992351 PMCID: PMC6469969 DOI: 10.1128/mbio.00446-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Historically, Clostridioides difficile (Clostridium difficile) has been associated with life-threatening diarrhea in hospitalized patients. Increasing rates of C. difficile infection (CDI) in the community suggest exposure to C. difficile reservoirs outside the hospital, including animals, the environment, or food. C. difficile sequence type 11 (ST11) is known to infect/colonize livestock worldwide and comprises multiple ribotypes, many of which cause disease in humans, suggesting CDI may be a zoonosis. Using high-resolution genomics, we investigated the evolution and zoonotic potential of ST11 and a new closely related ST258 lineage sourced from diverse origins. We found multiple intra- and interspecies clonal transmission events in all ribotype sublineages. Clones were spread across multiple continents, often without any health care association, indicative of zoonotic/anthroponotic long-range dissemination in the community. ST11 possesses a massive pan-genome and numerous clinically important antimicrobial resistance elements and prophages, which likely contribute to the success of this globally disseminated lineage of One Health importance. Clostridioides difficile (Clostridium difficile) sequence type 11 (ST11) is well established in production animal populations worldwide and contributes considerably to the global burden of C. difficile infection (CDI) in humans. Increasing evidence of shared ancestry and genetic overlap of PCR ribotype 078 (RT078), the most common ST11 sublineage, between human and animal populations suggests that CDI may be a zoonosis. We performed whole-genome sequencing (WGS) on a collection of 207 ST11 and closely related ST258 isolates of human and veterinary/environmental origin, comprising 16 RTs collected from Australia, Asia, Europe, and North America. Core genome single nucleotide variant (SNV) analysis identified multiple intraspecies and interspecies clonal groups (isolates separated by ≤2 core genome SNVs) in all the major RT sublineages: 078, 126, 127, 033, and 288. Clonal groups comprised isolates spread across different states, countries, and continents, indicative of reciprocal long-range dissemination and possible zoonotic/anthroponotic transmission. Antimicrobial resistance genotypes and phenotypes varied across host species, geographic regions, and RTs and included macrolide/lincosamide resistance (Tn6194 [ermB]), tetracycline resistance (Tn6190 [tetM] and Tn6164 [tet44]), and fluoroquinolone resistance (gyrA/B mutations), as well as numerous aminoglycoside resistance cassettes. The population was defined by a large “open” pan-genome (10,378 genes), a remarkably small core genome of 2,058 genes (only 19.8% of the gene pool), and an accessory genome containing a large and diverse collection of important prophages of the Siphoviridae and Myoviridae. This study provides novel insights into strain relatedness and genetic variability of C. difficile ST11, a lineage of global One Health importance.
Collapse
|
37
|
Kouhsari E, Douraghi M, Fakhre Yaseri H, Talebi M, Ahmadi A, Sholeh M, Amirmozafari N. Molecular typing of Clostridioides difficile isolates from clinical and non-clinical samples in Iran. APMIS 2019; 127:222-227. [PMID: 30803047 DOI: 10.1111/apm.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/07/2019] [Indexed: 01/17/2023]
Abstract
Clostridioides difficile is a major cause of nosocomial infectious diarrhea in hospitalized patients throughout the world. We aimed to characterize C. difficile isolates among hospitalized patients, hospital staffs, and hospital environment samples obtained in three tertiary care hospitals of Iran with regard to their molecular types between June 2016 and November 2017. The toxigenicity of C. difficile isolates was determined by toxigenic culture and multiplex-PCR. Toxigenic C. difficile isolates collected were ribotyped using capillary gel electrophoresis-based PCR and the database of WEBRIBO (http://webribo.ages.at). Of 500 clinical and non-clinical samples, toxigenic C. difficile were identified in 35 of 250 stool samples (14%) and in 3 of 250 swabs (1.2%). The most frequently found ribotypes (RTs) were 039, AI-12, and AI-21 (15.8, 10.52, and 10.52% of all isolates, respectively). Further RTs were: 017, 001, AI-3, AI-15, AI-18, AI-10, AI-4, and PR21195 (as new ribotype). The epidemic RTs (027 and 078) seen in the Europe, North America, and Asia were completely absent in this study.
Collapse
Affiliation(s)
- Ebrahim Kouhsari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hashem Fakhre Yaseri
- Research Center for Gastroenterology and Liver Disease, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Independent Microevolution Mediated by Mobile Genetic Elements of Individual Clostridium difficile Isolates from Clade 4 Revealed by Whole-Genome Sequencing. mSystems 2019; 4:mSystems00252-18. [PMID: 30944881 PMCID: PMC6435816 DOI: 10.1128/msystems.00252-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022] Open
Abstract
Mobile genetic elements play a key role in the continuing evolution of Clostridium difficile, resulting in the emergence of new phenotypes for individual isolates. On the basis of whole-genome sequencing analysis, we comprehensively explored transposons, CRISPR, prophage, and genetic sites for drug resistance within clade 4 C. difficile isolates with different sequence types. Great diversity in MGEs and a high rate of multidrug resistance were found within this clade, including new transposons, Tn4453a/b with aac(6′) aph(2′′) instead of catD, and a relatively high rate of prophage-carried CRISPR arrays. These findings provide important new insights into the mechanism of genome remodeling within clade 4 and offer a new method for typing and tracing the origins of closely related isolates. Horizontal gene transfer of mobile genetic elements (MGEs) accounts for the mosaic genome of Clostridium difficile, leading to acquisition of new phenotypes, including drug resistance and reconstruction of the genomes. MGEs were analyzed according to the whole-genome sequences of 37 C. difficile isolates with a variety of sequence types (STs) within clade 4 from China. Great diversity was found in each transposon even within isolates with the same ST. Two novel transposons were identified in isolates ZR9 and ZR18, of which approximately one third to half of the genes showed heterogenous origins compared with the usual intestinal bacterial genes. Most importantly, catD, known to be harbored by Tn4453a/b, was replaced by aac(6′) aph(2′′) in isolates 2, 7, and 28. This phenomenon illustrated the frequent occurrence of gene exchanges between C. difficile and other enterobacteria with individual heterogeneity. Numerous prophages and CRISPR arrays were identified in C. difficile isolates of clade 4. Approximately 20% of spacers were located in prophage-carried CRISPR arrays, providing a new method for typing and tracing the origins of closely related isolates, as well as in-depth studies of the mechanism underlying genome remodeling. The rates of drug resistance were obviously higher than those reported previously around the world, although all isolates retained high sensitivity to vancomycin and metronidazole. The increasing number of C. difficile isolates resistant to all antibiotics tested here suggests the ease with which resistance is acquired in vivo. This study gives insights into the genetic mechanism of microevolution within clade 4. IMPORTANCE Mobile genetic elements play a key role in the continuing evolution of Clostridium difficile, resulting in the emergence of new phenotypes for individual isolates. On the basis of whole-genome sequencing analysis, we comprehensively explored transposons, CRISPR, prophage, and genetic sites for drug resistance within clade 4 C. difficile isolates with different sequence types. Great diversity in MGEs and a high rate of multidrug resistance were found within this clade, including new transposons, Tn4453a/b with aac(6′) aph(2′′) instead of catD, and a relatively high rate of prophage-carried CRISPR arrays. These findings provide important new insights into the mechanism of genome remodeling within clade 4 and offer a new method for typing and tracing the origins of closely related isolates.
Collapse
|
39
|
Dingle KE, Didelot X, Quan TP, Eyre DW, Stoesser N, Marwick CA, Coia J, Brown D, Buchanan S, Ijaz UZ, Goswami C, Douce G, Fawley WN, Wilcox MH, Peto TEA, Walker AS, Crook DW. A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated Clostridium difficile PCR Ribotype 078. mBio 2019; 10:e02790-18. [PMID: 30862754 PMCID: PMC6414706 DOI: 10.1128/mbio.02790-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/31/2019] [Indexed: 02/04/2023] Open
Abstract
The increasing clinical importance of human infections (frequently severe) caused by Clostridium difficile PCR ribotype 078 (RT078) was first reported in 2008. The severity of symptoms (mortality of ≤30%) and the higher proportion of infections among community and younger patients raised concerns. Farm animals, especially pigs, have been identified as RT078 reservoirs. We aimed to understand the recent changes in RT078 epidemiology by investigating a possible role for antimicrobial selection in its recent evolutionary history. Phylogenetic analysis of international RT078 genomes (isolates from 2006 to 2014, n = 400), using time-scaled, recombination-corrected, maximum likelihood phylogenies, revealed several recent clonal expansions. A common ancestor of each expansion had independently acquired a different allele of the tetracycline resistance gene tetM Consequently, an unusually high proportion (76.5%) of RT078 genomes were tetM positive. Multiple additional tetracycline resistance determinants were also identified (including efflux pump tet40), frequently sharing a high level of nucleotide sequence identity (up to 100%) with sequences found in the pig pathogen Streptococcus suis and in other zoonotic pathogens such as Campylobacter jejuni and Campylobacter coli Each RT078 tetM clonal expansion lacked geographic structure, indicating rapid, recent international spread. Resistance determinants for C. difficile infection-triggering antimicrobials, including fluoroquinolones and clindamycin, were comparatively rare in RT078. Tetracyclines are used intensively in agriculture; this selective pressure, plus rapid, international spread via the food chain, may explain the increased RT078 prevalence in humans. Our work indicates that the use of antimicrobials outside the health care environment has selected for resistant organisms, and in the case of RT078, has contributed to the emergence of a human pathogen.IMPORTANCEClostridium difficile PCR ribotype 078 (RT078) has multiple reservoirs; many are agricultural. Since 2005, this genotype has been increasingly associated with human infections in both clinical settings and the community. Investigations of RT078 whole-genome sequences revealed that tetracycline resistance had been acquired on multiple independent occasions. Phylogenetic analysis revealed a rapid, recent increase in numbers of closely related tetracycline-resistant RT078 (clonal expansions), suggesting that tetracycline selection has strongly influenced its recent evolutionary history. We demonstrate recent international spread of emergent, tetracycline-resistant RT078. A similar tetracycline-positive clonal expansion was also identified in unrelated nontoxigenic C. difficile, suggesting that this process may be widespread and may be independent of disease-causing ability. Resistance to typical C. difficile infection-associated antimicrobials (e.g., fluoroquinolones, clindamycin) occurred only sporadically within RT078. Selective pressure from tetracycline appears to be a key factor in the emergence of this human pathogen and the rapid international dissemination that followed, plausibly via the food chain.
Collapse
Affiliation(s)
- Kate E Dingle
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - T Phuong Quan
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - David W Eyre
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Nicole Stoesser
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Charis A Marwick
- Population Health Sciences, School of Medicine, University of Dundee, Scotland, United Kingdom
| | - John Coia
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | - Derek Brown
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | | | - Umer Z Ijaz
- University of Glasgow, Scotland, United Kingdom
| | | | - Gill Douce
- University of Glasgow, Scotland, United Kingdom
| | - Warren N Fawley
- Department of Microbiology, Leeds General Infirmary, Leeds Teaching Hospitals, University of Leeds, Leeds, United Kingdom
| | - Mark H Wilcox
- Department of Microbiology, Leeds General Infirmary, Leeds Teaching Hospitals, University of Leeds, Leeds, United Kingdom
| | - Timothy E A Peto
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Derrick W Crook
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| |
Collapse
|
40
|
Clostridioides (Clostridium) difficile infection burden in Japan: A multicenter prospective study. Anaerobe 2019; 60:102011. [PMID: 30872073 DOI: 10.1016/j.anaerobe.2019.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 03/06/2019] [Indexed: 01/16/2023]
Abstract
Clostridioides (Clostridium) difficile is the leading cause of healthcare-associated infectious diarrhea in the developed world. Retrospective studies have shown a lower incidence of C. difficile infection (CDI) in Japan than in Europe or North America. Prospective studies are needed to determine if this is due lack of testing for C. difficile or a true difference in CDI epidemiology. A prospective cohort study of CDI was conducted from May 2014 to May 2015 at 12 medical facilities (20 wards) in Japan. Patients with at least three diarrheal bowel movements (Bristol stool grade 6-7) in the preceding 24 h were enrolled. CDI was defined by positive result on enzyme immunoassay for toxins A/B, nucleic acid amplification test for the toxin B gene or toxigenic culture. C. difficile isolates were subjected to PCR-ribotyping (RT), slpA-sequence typing (slpA-ST), and antimicrobial susceptibility testing. The overall incidence of CDI was 7.4/10,000 patient-days (PD). The incidence was highest in the five ICU wards (22.2 CDI/10,000 PD; range: 13.9-75.5/10,000 PD). The testing frequency and CDI incidence rate were highly correlated (R2 = 0.91). Of the 146 isolates, RT018/018″ was dominant (29%), followed by types 014 (23%), 002 (12%), and 369 (11%). Among the 15 non-ICU wards, two had high CDI incidence rates (13.0 and 15.9 CDI/10,000 PD), with clusters of RT018/slpA-ST smz-02 and 018"/smz-01, respectively. Three non-RT027 or 078 binary toxin-positive isolates were found. All RT018/018" isolates were resistant to moxifloxacin, gatifloxacin, clindamycin, and erythromycin. This study identified a higher CDI incidence in Japanese hospitals than previously reported by actively identifying and testing patients with clinically significant diarrhea. This suggests numerous patients with CDI are being overlooked due to inadequate diagnostic testing in Japan.
Collapse
|
41
|
Zhou Y, Mao L, Yu J, Lin Q, Luo Y, Zhu X, Sun Z. Epidemiology of Clostridium difficile infection in hospitalized adults and the first isolation of C. difficile PCR ribotype 027 in central China. BMC Infect Dis 2019; 19:232. [PMID: 30845918 PMCID: PMC6407249 DOI: 10.1186/s12879-019-3841-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 02/21/2019] [Indexed: 02/08/2023] Open
Abstract
Background Clostridium difficile infection (CDI) is an emerging healthcare problem in the world. The purpose of this study was to perform a systematic epidemiological research of CDI in Tongji hospital, the central of China. Methods Stool samples from hospitalized adults suspected of CDI were enrolled. The diagnosis of CDI were based on the combination of clinical symptoms and laboratory results. Clinical features of CDI and non-CDI patients were compared by appropriate statistical tests to determine the risk factors of CDI. Multilocus sequence typing (MLST) was employed for molecular epidemiological analysis. Susceptibility testing and relevant antimicrobial agent resistance genes were performed as well. Results From June 2016 to September 2017, 839 hospitalized adults were enrolled. Among them, 107 (12.8%, 107/839) patients were C. difficile culture positive, and 73 (8.7%, 73/839) were infected with toxigenic C. difficile (TCD), with tcdA + tcdB+ strains accounting for 90.4% (66/73) and tcdA-tcdB+ for 9.6% (7/73). Meanwhile, two TCD strains were binary toxin positive and one of them was finally identified as CD027. Severe symptoms were observed in these two cases. Multivariate analysis indicated antibiotic exposure (p = 0.001, OR = 5.035) and kidney disease (p = 0.015, OR = 8.329) significantly increased the risk of CDI. Phylogenetic tree analysis demonstrated 21 different STs, including one new ST (ST467); and the most dominant type was ST54 (35.6%, 26/73). Multidrug-resistant (MDR) TCD were 53.4% (39/73); resistance to ciprofloxacin, erythromycin, and clindamycin were > 50%. Other antibiotics showed relative efficiency and all strains were susceptible to metronidazole and vancomycin. All moxifloxacin-resistant isolates carried a mutation in GyrA (Thr82 → Ile), with one both having mutation in GyrB (Ser366 → Ala). Conclusions Knowledge of epidemiological information for CDI is limited in China. Our finding indicated tcdA + tcdB+ C. difficile strains were the dominant for CDI in our hospital. Significant risk factors for CDI in our setting appeared to be antibiotic exposure and kidney disease. Metronidazole and vancomycin were still effective for CDI. Although no outbreak was observed, the first isolation of CD027 in center China implied the potential spread of this hypervirulent clone. Further studies are needed to enhance our understanding of the epidemiology of CDI in China. Electronic supplementary material The online version of this article (10.1186/s12879-019-3841-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014, Hangzhou, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Jing Yu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | - Xuhui Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China.
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
42
|
Antimicrobial susceptibility and mechanisms of resistance of Greek Clostridium difficile clinical isolates. J Glob Antimicrob Resist 2019; 16:53-58. [DOI: 10.1016/j.jgar.2018.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022] Open
|
43
|
MOHAMMADBEIGI M, SAFAYI DELOUYI Z, MOHAMMADZADEH N, ALA’ALMOHADESIN A, TAHERI K, EDALATI E, SEDIGHI M, ZAHEDI BIALVAEI A. Prevalence and antimicrobial susceptibility pattern of toxigenic Clostridium difficilestrains isolated in Iran. Turk J Med Sci 2019; 49:384-391. [PMID: 30761842 PMCID: PMC7350832 DOI: 10.3906/sag-1808-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background/aim Clostridium difficile is a frequent cause of nosocomial infections and has become a major public health concern in developed nations. In the present study, the prevalence and antimicrobial susceptibility pattern of toxigenic C. difficile strains isolated in Iran were investigated. Materials and methods Between June 2016 and May 2017, 2947 inpatient fecal samples were taken from symptomatic adult hospitalized patients in different units of 32 care facilities in Tehran, Iran. C. difficile strains were identified by microbiological/biochemical methods. Susceptibility to 20 antimicrobials was measured by E-test method. Toxin-specific immunoassays and cytotoxicity assays were used to determine in vitro toxin production. Results Out of 2947 fecal samples, 538 (18.25%) C. difficile isolates were obtained among those with suspected CDI. In E-test method, all C. difficile isolates were susceptible to fidaxomicin, vancomycin, amoxicillin/clavulanate, and meropenem and were resistant to penicillin G. The prevalence of multidrug resistant C. difficile was 69.33% (373/538). Among 538 C. difficile, 147 (27.32%), 169 (31.41%), and 222 (41.26%) isolates were TcdA+/TcdB+, TcdA-/TcdB+, and TcdA-/TcdB-, respectively. Conclusion The results evidently support the hypothesis of a probable role of toxigenic strains of C. difficile in developing gastrointestinal complaints in patients with diarrhea.
Collapse
Affiliation(s)
- Maryam MOHAMMADBEIGI
- Department of Microbiology and Immunology, Qazvin University of Medical Sciences, QazvinIran
| | - Zahra SAFAYI DELOUYI
- Department of Microbiology, School of Basic Sciences, Qom Branch, Islamic Azad University, QomIran
| | - Nima MOHAMMADZADEH
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, TehranIran
| | - Arash ALA’ALMOHADESIN
- Department of Microbiology, School of Basic Sciences, Qom Branch, Islamic Azad University, QomIran
| | - Keyvan TAHERI
- Department of Biology, Damghan Branch, Islamic Azad University, DamghanIran
| | - Elahe EDALATI
- Department of Microbiology, Kerman Branch, Islamic Azad University, KermanIran
| | - Mansour SEDIGHI
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, TehranIran
- Azarbaijan-Gharbi Regional Blood Transfusion Center, UrmiaIran
| | - Abed ZAHEDI BIALVAEI
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, TehranIran
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Hong S, Knight DR, Riley TV. The impact of antimicrobial resistance on induction, transmission and treatment of Clostridium difficile infection. MICROBIOLOGY AUSTRALIA 2019. [DOI: 10.1071/ma19022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Clostridium difficile infection (CDI) of the gastrointestinal (GI) tract is a potentially life-threatening disease that has surpassed multi-drug-resistant Staphylococcus aureus as the commonest antimicrobial-resistant organism associated with healthcare1. This obligate anaerobic spore-forming Gram-positive bacillus colonises the GI tract and its numbers increase after disruption of the commensal GI microbiota often induced by exposure to antimicrobial agents2. Paradoxically, the disease that may follow its outgrowth necessitates further antimicrobial treatment. Already a major challenge to infection prevention and control strategies, there are indications that C. difficile is developing further resistance to currently used antimicrobial agents.
Collapse
|
45
|
Isidro J, Menezes J, Serrano M, Borges V, Paixão P, Mimoso M, Martins F, Toscano C, Santos A, Henriques AO, Oleastro M. Genomic Study of a Clostridium difficile Multidrug Resistant Outbreak-Related Clone Reveals Novel Determinants of Resistance. Front Microbiol 2018; 9:2994. [PMID: 30574133 PMCID: PMC6291485 DOI: 10.3389/fmicb.2018.02994] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background:Clostridium difficile infection (CDI) is prevalent in healthcare settings. The emergence of hypervirulent and antibiotic resistant strains has led to an increase in CDI incidence and frequent outbreaks. While the main virulence factors are the TcdA and TcdB toxins, antibiotic resistance is thought to play a key role in the infection by and dissemination of C. difficile. Methods: A CDI outbreak involving 12 patients was detected in a tertiary care hospital, in Lisbon, which extended from January to July, with a peak in February, in 2016. The C. difficile isolates, obtained from anaerobic culture of stool samples, were subjected to antimicrobial susceptibility testing with Etest®strips against 11 antibiotics, determination of toxin genes profile, PCR-ribotyping, multilocus variable-number tandem-repeat analysis (MLVA) and whole genome sequencing (WGS). Results: Of the 12 CDI cases detected, 11 isolates from 11 patients were characterized. All isolates were tcdA-/tcdB+ and belonged to ribotype 017, and showed high level resistance to clindamycin, erythromycin, gentamicin, imipenem, moxifloxacin, rifampicin and tetracycline. The isolates belonged to four genetically related MLVA types, with six isolates forming a clonal cluster. Three outbreak isolates, each from a different MLVA type, were selected for WGS. Bioinformatics analysis showed the presence of several antibiotic resistance determinants, including the Thr82Ile substitution in gyrA, conferring moxifloxacin resistance, the substitutions His502Asn and Arg505Lys in rpoB for rifampicin resistance, the tetM gene, associated with tetracycline resistance, and two genes encoding putative aminoglycoside-modifying enzymes, aadE and aac(6′)-aph(2″). Furthermore, a not previously described 61.3 kb putative mobile element was identified, presenting a mosaic structure and containing the genes ermG, mefA/msrD and vat, associated with macrolide, lincosamide and streptogramins resistance. A substitution found in a class B penicillin-binding protein, Cys721Ser, is thought to contribute to imipenem resistance. Conclusion: We describe an epidemic, tcdA-/tcdB+, multidrug resistant clone of C. difficile from ribotype 017 associated with a hospital outbreak, providing further evidence that the lack of TcdA does not impair the infectious potential of these strains. We identified several determinants of antimicrobial resistance, including new ones located in mobile elements, highlighting the importance of horizontal gene transfer in the pathogenicity and epidemiological success of C. difficile.
Collapse
Affiliation(s)
- Joana Isidro
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal.,Departamento de Genética Humana, Unidade de Tecnologia e Inovação, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Juliana Menezes
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Vítor Borges
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Pedro Paixão
- Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | | | | | | | - Andrea Santos
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Mónica Oleastro
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
46
|
Kullin BR, Reid S, Abratt V. Clostridium difficile in patients attending tuberculosis hospitals in Cape Town, South Africa, 2014-2015. Afr J Lab Med 2018; 7:846. [PMID: 30568907 PMCID: PMC6295828 DOI: 10.4102/ajlm.v7i2.846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background Diarrhoea due to Clostridium difficile infection (CDI) poses a significant burden on healthcare systems around the world. However, there are few reports on the current status of the disease in sub-Saharan Africa. Objectives This study examined the occurrence of CDI in a South African population of tuberculosis patients, as well as the molecular epidemiology and antibiotic susceptibility profiles of C. difficile strains responsible for disease. Methods Toxigenic C. difficile in patients with suspected CDI attending two specialist tuberculosis hospitals in the Cape Town area were detected using a PCR-based diagnostic assay (Xpert® C. difficile). C. difficile strains isolated from PCR-positive specimens were characterised by ribotyping, multilocus variable-number tandem-repeat analysis and antibiotic susceptibility testing. Results The period prevalence of CDI was approximately 70.07 cases per 1000 patient admissions. Strains belonging to ribotype 017 (RT017) made up over 95% of the patient isolates and all of them were multi-drug resistant. Multilocus variable-number tandem-repeat analysis revealed several clusters of highly related C. difficile RT017 strains present in tuberculosis patients in several wards at each hospital. Conclusion Tuberculosis patients represent a population that may be at an increased risk of developing CDI and, in addition, may constitute a multi-drug resistant reservoir of this bacterium. This warrants further investigation and surveillance of the disease in this patient group and other high-risk patient groups in sub-Saharan Africa.
Collapse
Affiliation(s)
- Brian R Kullin
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Sharon Reid
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Valerie Abratt
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Arca-Suárez J, Galán-Sánchez F, Cano-Cano F, García-Santos G, Rodríguez-Iglesias M. Antimicrobial susceptibility and molecular typing of toxigenic clinical isolates of Clostridium difficile causing infections in the south of Spain. Anaerobe 2018; 54:146-150. [DOI: 10.1016/j.anaerobe.2018.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023]
|
48
|
Trautwein-Schult A, Maaß S, Plate K, Otto A, Becher D. A Metabolic Labeling Strategy for Relative Protein Quantification in Clostridioides difficile. Front Microbiol 2018; 9:2371. [PMID: 30386308 PMCID: PMC6198727 DOI: 10.3389/fmicb.2018.02371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023] Open
Abstract
Clostridioides difficile (formerly Clostridium difficile) is a Gram-positive, anaerobe, spore-forming pathogen, which causes drug-induced diseases in hospitals worldwide. A detailed analysis of the proteome may provide new targets for drug development or therapeutic strategies to combat this pathogen. The application of metabolic labeling (ML) would allow for accurate quantification of significant differences in protein abundance, even in the case of very small changes. Additionally, it would be possible to perform more accurate studies of the membrane or surface proteomes, which usually require elaborated sample preparation. Such studies are therefore prone to higher standard deviations during the quantification. The implementation of ML strategies for C. difficile is complicated due to the lack in arginine and lysine auxotrophy as well as the Stickland dominated metabolism of this anaerobic pathogen. Hence, quantitative proteome analyses could only be carried out by label free or chemical labeling methods so far. In this paper, a ML approach for C. difficile is described. A cultivation procedure with 15N-labeled media for strain 630Δerm was established achieving an incorporation rate higher than 97%. In a proof-of-principle experiment, the performance of the ML approach in C. difficile was tested. The proteome data of the cytosolic subproteome of C. difficile cells grown in complex medium as well as two minimal media in the late exponential and early stationary growth phase obtained via ML were compared with two label free relative quantification approaches (NSAF and LFQ). The numbers of identified proteins were comparable within the three approaches, whereas the number of quantified proteins were between 1,110 (ML) and 1,861 (LFQ) proteins. A hierarchical clustering showed clearly separated clusters for the different conditions and a small tree height with ML approach. Furthermore, it was shown that the quantification based on ML revealed significant altered proteins with small fold changes compared to the label free approaches. The quantification based on ML was accurate, reproducible, and even more sensitive compared to label free quantification strategies.
Collapse
Affiliation(s)
| | | | | | | | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
49
|
Harnvoravongchai P, Chankhamhaengdecha S, Ounjai P, Singhakaew S, Boonthaworn K, Janvilisri T. Antimicrobial Effect of Asiatic Acid Against Clostridium difficile Is Associated With Disruption of Membrane Permeability. Front Microbiol 2018; 9:2125. [PMID: 30245677 PMCID: PMC6137100 DOI: 10.3389/fmicb.2018.02125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance is a major concern in Clostridium difficile, the causative agent of antibiotic-associated diarrhea. Reduced susceptibility to first- and second-line agents is widespread, therefore various attempts have been made to seek alternative preventive and therapeutic strategies against this pathogen. In this work, the antimicrobial properties of asiatic acid were evaluated against C. difficile. Asiatic acid displayed substantial inhibitory effects on 19 C. difficile isolates collected from different sources with minimal inhibitory concentrations ranging from 10 to 20 μg/ml. Time kill analysis and minimal bactericidal concentration revealed potential bactericidal activity of this compound. Asiatic acid induced membrane damages and alterations in morphological ultrastructure in C. difficile, thereby causing the leakage of intracellular substances. Moreover, asiatic acid also displayed an inhibitory effect on cell motility, but did not interfere with biofilm formation and spore germination. Analysis of drug combination showed no synergistic effect between asiatic acid and vancomycin/metronidazole. Altogether, asiatic acid exhibited strong antimicrobial activity against vegetative cells and could serve as an alternative resource for tackling C. difficile.
Collapse
Affiliation(s)
| | | | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sombat Singhakaew
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kanpong Boonthaworn
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
50
|
Novel Insight from Computational Virtual Screening Depict the Binding Potential of Selected Phytotherapeutics Against Probable Drug Targets of Clostridium difficile. Interdiscip Sci 2018; 10:583-604. [PMID: 28217823 DOI: 10.1007/s12539-017-0215-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
This study explores computational screening and molecular docking approaches to screen novel herbal therapeutics against probable drug targets of Clostridium difficile. The essential genes were predicted by comparative genome analysis of C. difficile and best homologous organisms using BLAST search at database of essential genes (DEG). The functions of these genes in various metabolic pathways were predicted and some of these genes were considered as potential targets. Three major proteins were selected as putative targets, namely permease IIC component, ABC transporter and histidine kinase. The three-dimensional structures of these targets were predicted by molecular modelling. The herbal bioactive compounds were screened by computer-aided virtual screening and binding potentials against the drug targets were predicted by molecular docking. Quercetin present in Psidium guajava (binding energy of -9.1 kcal/mol), Ellagic acid found in Punica granatum and Psidium guajava (binding energy -9.0 kcal/mol) and Curcumin, present in Curcuma longa (binding energy -7.8 kcal/mol) demonstrated minimum binding energy and more number of interacting residues with the drug targets. Further, comparative study revealed that phytoligands demonstrated better binding affinities to the drug targets in comparison with usual ligands. Thus, this investigation explores the therapeutic probabilities of selected phytoligands against the putative drug targets of C. difficile.
Collapse
|