1
|
Dehghan M, Askari H, Tohidfar M, Siadat S, Fatemi F. Improvement of RBD-FC Immunogenicity by Using Alum-Sodium Alginate Adjuvant Against SARS-COV-2. Influenza Other Respir Viruses 2024; 18:e70018. [PMID: 39478310 PMCID: PMC11525037 DOI: 10.1111/irv.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Adjuvants use several mechanisms to boost immunogenicity and to modulate immune response. The strength of adsorption of antigen by adjuvants can be a determinant factor for significant improvement of immunopotentiation. METHODS We expressed recombinant RBD-FC in PichiaPink Strain 4 and examined the vaccination of mice by vaccine formulation with different adjuvants (sodium alginate and aluminum hydroxide, alone and together). RESULTS Sodium alginate significantly increased the immunogenicity and stability of RBD-FC antigen, so RBD-FC formulated with combined alginate and alum (AlSa) and sodium alginate alone showed higher antibody titer and stability. Immunogenicity of RBD-FC:AlSa was determined by serological assays including direct enzyme-linked immunosorbent assay (ELISA) and surrogate virus neutralization test (sVNT). High levels of IgGs and neutralizing antibodies were measured in serum of mice immunized with the RBD-FC:AlSa formulation. On the other hand, cytokines IL-10 and INF-γ were severely accumulated in response to RBD-FC:AlSa, and after 10 days, their accumulation was significantly declined, whereas IL-4 showed the highest and the lowest accumulation in response to alum and alginate, respectively. CONCLUSIONS Our data may suggest that combination of alum and sodium alginate has a better compatibility with RBD-FC in vaccine formulation.
Collapse
MESH Headings
- Alginates/chemistry
- Animals
- Mice
- Alum Compounds/administration & dosage
- Adjuvants, Immunologic/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- SARS-CoV-2/immunology
- Mice, Inbred BALB C
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Female
- Adjuvants, Vaccine
- COVID-19/prevention & control
- COVID-19/immunology
- Immunogenicity, Vaccine
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/immunology
- Aluminum Hydroxide/chemistry
- Humans
- Immunoglobulin G/blood
- Cytokines
- Immunoglobulin Fc Fragments/immunology
Collapse
Affiliation(s)
- Mahboobeh Dehghan
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Hossein Askari
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Masoud Tohidfar
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | | | - Fataneh Fatemi
- Protein Research CenterShahid Beheshti UniversityTehranIran
| |
Collapse
|
2
|
Kim M, Noh K, Kim P, Kim JH, Choi BW, Singh R, Choi JH, Han SB, Kim SS, Lee EY, Bae MA, Shin D, Kim M, Ahn JH. Design, Synthesis, and Biological Evaluation of New 2,6,7-Substituted Purine Derivatives as Toll-like Receptor 7 Agonists for Intranasal Vaccine Adjuvants. J Med Chem 2024; 67:9389-9405. [PMID: 38787938 DOI: 10.1021/acs.jmedchem.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
TLR7/8 agonists are versatile immune stimulators capable of treating various diseases such as viral infections, autoimmune, and cancer. Despite the structural similarity of TLR7/8, their immune stimulation mechanisms and time-course responses significantly differ. In this study, a new series of TLR7-selective agonists was synthesized utilizing the economical building block 2,6-dichloropurine. Compound 27b showed the most potent activity on hTLR7 with an EC50 of 17.53 nM and demonstrated high hTLR7 selectivity (224 folds against TLR8). 27b effectively stimulated the secretion of proinflammatory cytokines in mouse macrophages and enhanced intranasal vaccine efficacy against influenza A virus in vivo. Assessment of humoral and mucosal antibody titers confirmed that 27b elevates IgG and IgA levels, protecting against both homologous and heterologous influenza viral infections. These findings suggest that 27b is a promising candidate as a vaccine adjuvant to prevent viral infections or as a robust immunomodulator with prolonged activity for treating immune-suppressed diseases.
Collapse
Affiliation(s)
- Morgan Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kyungseob Noh
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Pyeongkeun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Ho Kim
- JD Bioscience, 208 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Byeong Wook Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ravi Singh
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Soo Bong Han
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seong Soon Kim
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Eun-Young Lee
- JD Bioscience, 208 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Myung Ae Bae
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Daeho Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- JD Bioscience, 208 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
3
|
Kaushik D, Kaur A, Patil MT, Sihag B, Piplani S, Sakala I, Honda-Okubo Y, Ramakrishnan S, Petrovsky N, Salunke DB. Structure-Activity Relationships toward the Identification of a High-Potency Selective Human Toll-like Receptor-7 Agonist. J Med Chem 2024; 67:8346-8360. [PMID: 38741265 DOI: 10.1021/acs.jmedchem.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Toll-like receptor (TLR)-7 agonists are immunostimulatory vaccine adjuvants. A systematic structure-activity relationship (SAR) study of TLR7-active 1-benzyl-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine led to the identification of a potent hTLR7-specific p-hydroxymethyl IMDQ 23 with an EC50 value of 0.22 μM. The SAR investigation also resulted in the identification of TLR7 selective carboxamide 12 with EC50 values of 0.32 μM for hTLR7 and 18.25 μM for hTLR8. In the vaccination study, TLR7-specific compound 23 alone or combined with alum (aluminum hydroxide wet gel) showed adjuvant activity for a spike protein immunogen in mice, with enhanced anti-spike antibody production. Interestingly, the adjuvant system comprising carboxamide 12 and alum showed prominent adjuvant activity with high levels of IgG1, IgG2b, and IgG2c in immunized mice, confirming a balanced Th1/Th2 response. In the absence of any apparent toxicity, the TLR7 selective agonists in combination with alum may make a suitable vaccine adjuvant.
Collapse
Affiliation(s)
- Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Madhuri T Patil
- Mehr Chand Mahajan DAV College for Women, Sector 36A, Chandigarh 160 036, India
| | - Binita Sihag
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Isaac Sakala
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | - Nikolai Petrovsky
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials (NICOVIA), Panjab University, Chandigarh 160 014, India
| |
Collapse
|
4
|
DeYoung EG, Howe JM, Fang S, Reddy MM, Handel JP, Gillen Miller JT, Wheeler DR, Tumey LN. Synthesis and Optimization of 1-Substituted Imidazo[4,5- c]quinoline TLR7 Agonists. ACS Med Chem Lett 2023; 14:1358-1368. [PMID: 37849530 PMCID: PMC10577892 DOI: 10.1021/acsmedchemlett.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
TLR7 agonists have significant therapeutic potential in a variety of oncology and autoimmune applications. We recently reported a potent TLR7 selective agonist 1 that could be delivered by antibody-drug conjugate (ADC) technology to elicit potent anticancer activity. Herein we report synthetic chemistry and structure-activity relationship studies to develop TLR7 agonists with improved potency for next-generation ADC efforts. We found that the addition of hydrophobic acyl tails to parent compound 1 generally resulted in retained or improved TLR7 agonist activity without sacrificing the permeability or the selectivity over TLR8. In contrast, the addition of a simple alkyl tail at the same position resulted in a dramatic loss in potency. Molecular modeling was performed to provide a rationale for this dramatic loss in potency. We ultimately identified compounds 17b, 16b, and 16d as highly potent TLR7 agonists that potently induced the activation of mouse macrophages and hPBMCs at low-nanomolar concentrations.
Collapse
Affiliation(s)
- Emma G. DeYoung
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Justin M. Howe
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Siteng Fang
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Mullapudi Mohan Reddy
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Jillian P. Handel
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Jared T. Gillen Miller
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Daniel R. Wheeler
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - L. Nathan Tumey
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| |
Collapse
|
5
|
Silva MJA, Silva CS, da Silva Vieira MC, dos Santos PAS, Frota CC, Lima KVB, Lima LNGC. The Relationship between TLR3 rs3775291 Polymorphism and Infectious Diseases: A Meta-Analysis of Case-Control Studies. Genes (Basel) 2023; 14:1311. [PMID: 37510216 PMCID: PMC10379146 DOI: 10.3390/genes14071311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
As the host's first line of defense against pathogens, Toll-like receptors (TLRs), such as the TLR3, are genes encoding transmembrane receptors of the same name. Depending on their expression, TLRs cause a pro- or anti-inflammatory response. The purpose of the article was to determine whether there is an association between the Toll-like receptor 3 (TLR3) rs3775291 Single Nucleotide Polymorphism-SNP and susceptibility to infections. This review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines and was registered in PROSPERO under the code CRD42023429533. A systematic search for relevant studies was performed using PubMed, Scopus, SciELO, Google Scholar, and Science Direct by the MeSH descriptors and the Boolean Operator "AND": "Infections"; "TLR3"; "SNP", between January 2005 and July 2022. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated for genotypic comparison assuming a dominant genetic model (CT + TT vs. CC). A meta-analysis of 18 studies consisting of 3118 cases and 4368 controls found a significant association for risk between the presence of the TLR3 SNP rs3775291 and infections as part of the general analysis (OR = 1.16, 95% CI = 1.04-1.28, p = 0.004). In the subgroups of continents, the SNP had a protective role in Europe for 1044 cases and 1471 controls (OR = 0.83, 95% CI = 0.70-0.99, p = 0.04); however, the Asian (for 1588 patients and 2306 controls) and American (for 486 patients and 591 controls) continents had an increase in infectious risk (OR = 1.37, 95% CI = 1.19-1.58, p < 0.001; OR = 1.42, 95% CI = 1.08-1.86, and p = 0.01, respectively). Heterogeneity between studies was detected (I2 = 58%) but was explained in meta-regression by the subgroup of continents itself and publication bias was not evident. The results of the meta-analysis suggest a significant association between the TLR3 rs3775291 polymorphism and susceptibility to infections. Thus, when analyzing subgroups, the Asian and American continents showed that this SNP confers a higher risk against infections in a dominant genotypic model. Therefore, more studies are necessary to fully elucidate the role of TLR3 rs3775291 in infections.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil;
| | - Caroliny Soares Silva
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil; (C.S.S.); (M.C.d.S.V.); (P.A.S.d.S.)
| | - Marcelo Cleyton da Silva Vieira
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil; (C.S.S.); (M.C.d.S.V.); (P.A.S.d.S.)
| | - Pabllo Antonny Silva dos Santos
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil; (C.S.S.); (M.C.d.S.V.); (P.A.S.d.S.)
| | - Cristiane Cunha Frota
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60441-750, CE, Brazil;
| | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section of the Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil;
| | | |
Collapse
|
6
|
Yuen MF, Balabanska R, Cottreel E, Chen E, Duan D, Jiang Q, Patil A, Triyatni M, Upmanyu R, Zhu Y, Canducci F, Gane EJ. TLR7 agonist RO7020531 versus placebo in healthy volunteers and patients with chronic hepatitis B virus infection: a randomised, observer-blind, placebo-controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:496-507. [PMID: 36509100 DOI: 10.1016/s1473-3099(22)00727-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Toll-like receptor 7 (TLR7) agonists augment immune activity and have potential for the treatment of chronic hepatitis B virus (HBV) infection. We aimed to assess the safety and tolerability of RO7020531 (also called RG7854), a prodrug of the TLR7 agonist RO7011785, in healthy volunteers and patients with chronic HBV infection. METHODS This randomised, observer-blind, placebo-controlled, phase 1 study was done in two parts. Part 1 was done at one site in New Zealand and part 2 was done at 12 sites in Bulgaria, Hong Kong, Italy, New Zealand, the Netherlands, Taiwan, Thailand, and the UK. In part 1, healthy volunteers were randomly assigned (4:1) within one of eight dose cohorts (3 mg, 10 mg, 20 mg, 40 mg, 60 mg, 100 mg, 140 mg, or 170 mg) to receive a single RO7020531 dose or placebo or randomly assigned (4:1) within one of three dose cohorts (100 mg, 140 mg, or 170 mg) to receive either RO7020531 or placebo every other day for 13 days. In part 2, nucleoside or nucleotide analogue-suppressed patients with chronic HBV infection were randomly assigned (4:1) within cohorts 1-3 (150 mg, 150 mg, or 170 mg) to receive either RO7020531 or placebo and treatment-naive patients with chronic HBV infection were randomly assigned (3:1) in cohort 4 to receive either 150 mg of RO7020531 or placebo. Patients were treated every other day for 6 weeks. Study medication was administered orally to participants after they had fasted. Study participants and investigational staff were masked to treatment allocation. The primary outcome was the safety and tolerability of RO7020531, as measured by the incidence and severity of adverse events and the incidence of laboratory, vital sign, and electrocardiogram abnormalities, and was analysed in all participants who received at least one dose of the study medication. This trial is registered with ClinicalTrials.gov, NCT02956850, and the study is complete. FINDINGS Between Dec 12, 2016, and March 21, 2021, 340 healthy volunteers were screened in part 1, of whom 80 were randomly assigned in the single ascending dose study (eight assigned RO7020531 in each cohort and 16 assigned placebo) and 30 were randomly assigned in the multiple ascending dose study (eight assigned RO7020531 in each cohort and six assigned placebo), and 110 patients were screened in part 2, of whom 30 were randomly assigned in cohorts 1-3 (16 assigned RO7020531 150 mg, eight assigned RO7020531 170 mg, and six assigned placebo) and 20 were randomly assigned in cohort 4 (15 assigned RO7020531 and five assigned placebo). All randomly assigned participants received at least one dose of a study drug and were included in the safety analysis. All tested doses of RO7020531 were safe and had acceptable tolerability in healthy volunteers and patients. The most frequent treatment-related adverse events among the total study population were headache (15 [9%] of 160 participants), influenza-like illness (seven [4%] of 160 participants), and pyrexia (ten [6%] of 160 participants). Most adverse events were mild and transient. There were no severe or serious adverse events in healthy volunteers. In the patient cohorts, there was one severe adverse event (influenza-like illness with 170 mg of RO7020531) and one serious adverse event (moderate influenza-like illness with a 3-day hospitalisation in a treatment-naive patient receiving RO7020531). There were no treatment-related deaths. INTERPRETATION Due to acceptable safety and tolerability, RO7020531 should continue to be developed for the treatment of patients with chronic HBV infection. FUNDING F Hoffmann-La Roche.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rozalina Balabanska
- Clinic of Gastroenterology, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
| | - Emmanuelle Cottreel
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ethan Chen
- Roche Pharma Product Development China, Shanghai, China
| | - Dan Duan
- Roche Pharma Research and Early Development, Roche Innovation Center, Shanghai, China
| | - Qiudi Jiang
- Roche Pharma Research and Early Development, Roche Innovation Center, Shanghai, China
| | - Avinash Patil
- Product Development Data Science Department, Roche Products, Welwyn, UK
| | - Miriam Triyatni
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ruchi Upmanyu
- Product Development Data Science Department, Roche Products, Welwyn, UK
| | - Yonghong Zhu
- Roche Pharma Research and Early Development, Roche Innovation Center, Shanghai, China
| | - Filippo Canducci
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland.
| | - Edward J Gane
- Faculty of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Mahmoudvand S, Esmaeili Gouvarchin Ghaleh H, Jalilian FA, Farzanehpour M, Dorostkar R. Design of a multi-epitope-based vaccine consisted of immunodominant epitopes of structural proteins of SARS-CoV-2 using immunoinformatics approach. Biotechnol Appl Biochem 2023:10.1002/bab.2431. [PMID: 36577011 PMCID: PMC9880719 DOI: 10.1002/bab.2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown rapid global spread and has resulted in a significant death toll worldwide. In this study, we aimed to design a multi-epitope vaccine against SARS-CoV-2 based on structural proteins S, M, N, and E. We identified B- and T-cell epitopes and then the antigenicity, toxicity, allergenicity, and similarity of predicted epitopes were analyzed. T-cell epitopes were docked with corresponding HLA alleles. Consequently, the selected T- and B-cell epitopes were included in the final construct. All selected epitopes were connected with different linkers and flagellin and pan-HLA DR binding epitopes (PADRE) as an adjuvant were used in the vaccine construct. Furthermore, molecular docking was used to evaluate the complex between the final vaccine construct and two alleles, HLA-A*02:01 and HLA-DRB1*01:01. Finally, codons were optimized for in silico cloning into pET28a(+) vector using SnapGene. The final vaccine construct comprised 11 CTL, HTL, and B-cell epitopes corresponding to 394 amino acid residues. In silico evaluation showed that the designed vaccine might potentially promote an immune response. Further in vivo preclinical and clinical testing is required to determine the safety and efficacy of the designed vaccine.
Collapse
Affiliation(s)
- Shahab Mahmoudvand
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | | - Farid Azizi Jalilian
- Department of Medical VirologyFaculty of MedicineHamadan University of Medical SciencesHamadanIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Ruhollah Dorostkar
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Dowling DJ, Barman S, Smith AJ, Borriello F, Chaney D, Brightman SE, Melhem G, Brook B, Menon M, Soni D, Schüller S, Siram K, Nanishi E, Bazin HG, Burkhart DJ, Levy O, Evans JT. Development of a TLR7/8 agonist adjuvant formulation to overcome early life hyporesponsiveness to DTaP vaccination. Sci Rep 2022; 12:16860. [PMID: 36258023 PMCID: PMC9579132 DOI: 10.1038/s41598-022-20346-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Infection is the most common cause of mortality early in life, yet the broad potential of immunization is not fully realized in this vulnerable population. Most vaccines are administered during infancy and childhood, but in some cases the full benefit of vaccination is not realized in-part. New adjuvants are cardinal to further optimize current immunization approaches for early life. However, only a few classes of adjuvants are presently incorporated in vaccines approved for human use. Recent advances in the discovery and delivery of Toll-like receptor (TLR) agonist adjuvants have provided a new toolbox for vaccinologists. Prominent among these candidate adjuvants are synthetic small molecule TLR7/8 agonists. The development of an effective infant Bordetella pertussis vaccine is urgently required because of the resurgence of pertussis in many countries, contemporaneous to the switch from whole cell to acellular vaccines. In this context, TLR7/8 adjuvant based vaccine formulation strategies may be a promising tool to enhance and accelerate early life immunity by acellular B. pertussis vaccines. In the present study, we optimized (a) the formulation delivery system, (b) structure, and (c) immunologic activity of novel small molecule imidazoquinoline TLR7/8 adjuvants towards human infant leukocytes, including dendritic cells. Upon immunization of neonatal mice, this TLR7/8 adjuvant overcame neonatal hyporesponsiveness to acellular pertussis vaccination by driving a T helper (Th)1/Th17 biased T cell- and IgG2c-skewed humoral response to a licensed acellular vaccine (DTaP). This potent immunization strategy may represent a new paradigm for effective immunization against pertussis and other pathogens in early life.
Collapse
Affiliation(s)
- David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Alyson J Smith
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Seagen, Bothell, WA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, 80131, Italy
- WAO Center of Excellence, Naples, 80131, Italy
- Generate Biomedicines, Cambridge, MA, USA
| | - Danielle Chaney
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Spencer E Brightman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Gandolina Melhem
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Manisha Menon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Simone Schüller
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Karthik Siram
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Hélène G Bazin
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - David J Burkhart
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT & Harvard, Cambridge, MA, USA.
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA.
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
9
|
Fang S, Brems BM, Olawode EO, Miller JT, Brooks TA, Tumey LN. Design and Characterization of Immune-Stimulating Imidazo[4,5-c]quinoline Antibody-Drug Conjugates. Mol Pharm 2022; 19:3228-3241. [PMID: 35904247 PMCID: PMC10166635 DOI: 10.1021/acs.molpharmaceut.2c00392] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Traditional antibody-drug conjugate (ADC) technology has employed tumor-targeting antibodies to selectively deliver ultrapotent cytotoxins to tumor tissue. While this technology has been highly successful, resulting in the FDA approval of over 10 ADCs, the field continues to struggle with modest efficacy and significant off-target toxicity. Concurrent with the struggles of the ADC field, a new generation of immune-activating therapeutics has arisen, most clearly exemplified by the PD-1/PD-L1 inhibitors that are now part of standard-of-care treatment regimens for a variety of cancers. The success of these immuno-oncology therapeutic agents has prompted the investigation of a variety of new immuno-stimulant approaches, including toll-like receptor (TLR) activators. Herein, we describe the optimization of ADC technology for the selective delivery of a potent series of TLR7 agonists. A series of imidazole[4,5-c]quinoline agonists (as exemplified by compound 1) were shown to selectively agonize the human and mouse TLR7 receptor at low nanomolar concentrations, resulting in the release of IFNα from human peripheral blood mononuclear cells (hPBMCs) and the upregulation of CD86 on antigen-presenting cells. Compound 1 was attached to a deglycosylated (Fc-γ null) HER2-targeting antibody via a cleavable linker, resulting in an ADC (anti-HER2_vc-1) that potently and selectively activated the TLR7 pathway in tumor-associated macrophages via a "bystander" mechanism. We demonstrated that this ADC rapidly released the TLR7 agonist into the media when incubated with HER2+ cells. This release was not observed upon incubation with an isotype control ADC and furthermore was suppressed by co-administration of the naked antibody. In co-culture experiments with HER2+ HCC1954 cells, this ADC induced the activation of the NFκB pathway in mouse macrophages and the release of IFNα from hPBMCs, while a corresponding isotype control ADC did not. Finally, we demonstrated that IP administration of anti-HER2_vc-1 induced complete tumor regression in an HCC1954 xenograft study in SCID beige mice. Unlike related ADC technology that has been reported recently, our technology relies on the passive diffusion of the TLR7 agonist into tumor-associated macrophages rather than Fc-γ-mediated uptake. Based on these observations, we believe that this ADC technology holds significant potential for both oncology and infectious disease applications.
Collapse
Affiliation(s)
- Siteng Fang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Brittany M Brems
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Emmanuel O Olawode
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Jared T Miller
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Tracy A Brooks
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - L Nathan Tumey
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| |
Collapse
|
10
|
Girkin JLN, Maltby S, Bartlett NW. Toll-like receptor-agonist-based therapies for respiratory viral diseases: thinking outside the cell. Eur Respir Rev 2022; 31:210274. [PMID: 35508333 PMCID: PMC9488969 DOI: 10.1183/16000617.0274-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Respiratory virus infections initiate in the upper respiratory tract (URT). Innate immunity is critical for initial control of infection at this site, particularly in the absence of mucosal virus-neutralising antibodies. If the innate immune response is inadequate, infection can spread to the lower respiratory tract (LRT) causing community-acquired pneumonia (as exemplified by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019). Vaccines for respiratory viruses (influenza and SARS-CoV-2) leverage systemic adaptive immunity to protect from severe lung disease. However, the URT remains vulnerable to infection, enabling viral transmission and posing an ongoing risk of severe disease in populations that lack effective adaptive immunity.Innate immunity is triggered by host cell recognition of viral pathogen-associated molecular patterns via molecular sensors such as Toll-like receptors (TLRs). Here we review the role of TLRs in respiratory viral infections and the potential of TLR-targeted treatments to enhance airway antiviral immunity to limit progression to severe LRT disease and reduce person-to-person viral transmission. By considering cellular localisation and antiviral mechanisms of action and treatment route/timing, we propose that cell surface TLR agonist therapies are a viable strategy for preventing respiratory viral diseases by providing immediate, durable pan-viral protection within the URT.
Collapse
Affiliation(s)
- Jason L N Girkin
- Viral Immunology and Respiratory Disease Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
11
|
Li X, Sun X, Guo X, Li X, Peng S, Mu X. Chemical reagents modulate nucleic acid-activated toll-like receptors. Biomed Pharmacother 2022; 147:112622. [PMID: 35008000 DOI: 10.1016/j.biopha.2022.112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. Receptors sensing exogenous nucleic acid molecules are localized in the cytosol and endosomes. Cytosolic sensors, including cGAS, RIG-I, and MDA5, and endosome-anchored receptors are toll-like receptors (TLR3, TLR7, TLR8, and TLR9). These TLRs share the same domain architecture and have similar structures, facing the interior of endosomes so their binding to nucleic acids of invading pathogens via endocytosis is possible. The correct function of these receptors is crucial for cell homeostasis and effective response against pathogen invasion. A variety of endogenous mechanisms modulates their activities. Nevertheless, naturally occurring mutations lead to aberrant TLR-mediated interferon (IFN) signaling. Furthermore, certain pathogens require a more robust defense against control. Thus, manipulating these TLR activities has a profound impact. High-throughput virtual screening followed by experimental validation led to the discovery of numerous chemicals that can change these TLR-mediated IFN signaling activities. Many of them are unique in selectivity, while others regulate more than one TLR due to commonalities in these receptors. We summarized these nucleic acid-sensing TLR-mediated IFN signaling pathways and the corresponding chemicals activating or deactivating their signaling.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyuan Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuemin Guo
- Meizhou People's Hospital, Meizhou 514031, China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou 514031, China
| | - Xueren Li
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China.
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
12
|
Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021; 12:444-469. [PMID: 33660566 PMCID: PMC7939569 DOI: 10.1080/21505594.2021.1871823] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.
Collapse
Affiliation(s)
- Jiarui Li
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| | - Ester Boix
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
13
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Grippo JF, Folitar I, Passe S, Jiang Q, Rodriguez I, Fettner SH, Calleja E. Safety, tolerability, pharmacokinetics, and pharmacodynamics of a TLR7 agonist prodrug RO6870868 in healthy volunteers. Clin Transl Sci 2021; 14:1524-1534. [PMID: 33742764 PMCID: PMC8301559 DOI: 10.1111/cts.13016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
RO6870868 is an oral prodrug of the toll‐like receptor 7 (TLR7) specific agonist, RO6871765. TLR7 agonists augment host immune activity and are in development to treat hepatitis B infection. We evaluated the safety, tolerability, pharmacokinetics (PKs), and pharmacodynamics (PDs) of RO6870868 in a first‐in‐human, phase I, randomized, single ascending oral dose study in 60 healthy volunteers at 6 dose levels (200–2000 mg). Single oral doses were generally well‐tolerated with a predictable safety profile associated with dose‐dependent increases in systemic interferon. No serious adverse events (AEs) were reported and no subject withdrew from the study due to an AE. No clinically significant changes were observed in vital signs, electrocardiograms, or laboratory parameters. Following oral RO6870868 doses, plasma RO6871765 concentrations increased rapidly, exhibiting mean terminal half‐life ranging 2–6 h across all cohorts, with area under the plasma concentration versus time curve extrapolated to infinity (AUC0‐∞) increasing proportionally with dose. A pattern of dose and time‐dependent PD activity was demonstrated consistent with engagement of the TLR7 system. Single RO6870868 doses activated components of the TLR innate immune system in a dose‐dependent manner with adequate safety and tolerability. Single‐dose data in healthy volunteers are useful to evaluate safety, PK, and PD activity of TLR7 agonists and help to guide dose and regimen selection for further trials in patients with chronic hepatitis B.
Collapse
Affiliation(s)
| | | | - Sharon Passe
- Roche Innovation Center, New York, New York, USA
| | - Qiudi Jiang
- Roche Innovation Center Shanghai, Shanghai, China
| | | | | | | |
Collapse
|
15
|
Sajiki Y, Konnai S, Okagawa T, Maekawa N, Nakamura H, Kato Y, Suzuki Y, Murata S, Ohashi K. A TLR7 agonist activates bovine Th1 response and exerts antiviral activity against bovine leukemia virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103847. [PMID: 32888966 DOI: 10.1016/j.dci.2020.103847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Bovine leukemia virus (BLV) infection is a bovine chronic infection caused by BLV, a member of the genus Deltaretrovirus. In this study, we examined the immunomodulatory effects of GS-9620, a toll-like receptor (TLR) 7 agonist, in cattle (Bos taurus) and its therapeutic potential for treating BLV infection. GS-9620 induced cytokine production in peripheral blood mononuclear cells (PBMCs) as well as CD80 expression in CD11c+ cells and increased CD69 and interferon (IFN)-γ expressions in T cells. Removing CD11c+ cells from PBMCs decreased CD69 expression in T cells in the presence of GS-9620. These results suggest that TLR7 agonism promotes T-cell activation via CD11c+ cells. Analyses using PBMCs from BLV-infected cattle revealed that TLR7 expression in CD11c+ cells was upregulated during late-stage BLV infection. Furthermore, GS-9620 increased IFN-γ and TNF-α production and inhibited syncytium formation in vitro, suggesting that GS-9620 may be used to treat BLV infection.
Collapse
Affiliation(s)
- Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Hayato Nakamura
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8575, Japan.
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0019, Japan.
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| |
Collapse
|
16
|
Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 2020; 5:237. [PMID: 33051445 PMCID: PMC7551521 DOI: 10.1038/s41392-020-00352-y] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/06/2020] [Accepted: 09/27/2020] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that is highly pathogenic and has caused the recent worldwide pandemic officially named coronavirus disease (COVID-19). Currently, considerable efforts have been put into developing effective and safe drugs and vaccines against SARS-CoV-2. Vaccines, such as inactivated vaccines, nucleic acid-based vaccines, and vector vaccines, have already entered clinical trials. In this review, we provide an overview of the experimental and clinical data obtained from recent SARS-CoV-2 vaccines trials, and highlight certain potential safety issues that require consideration when developing vaccines. Furthermore, we summarize several strategies utilized in the development of vaccines against other infectious viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), with the aim of aiding in the design of effective therapeutic approaches against SARS-CoV-2.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Antibodies, Viral/biosynthesis
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Clinical Trials as Topic
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Gene Expression Regulation/drug effects
- Humans
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Middle East Respiratory Syndrome Coronavirus/drug effects
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- Pandemics/prevention & control
- Patient Safety
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Protein Binding
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Severe acute respiratory syndrome-related coronavirus/drug effects
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe acute respiratory syndrome-related coronavirus/pathogenicity
- SARS-CoV-2
- Severe Acute Respiratory Syndrome/immunology
- Severe Acute Respiratory Syndrome/prevention & control
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
Collapse
Affiliation(s)
- Yetian Dong
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Hangzhou, 310058, China
| | - Tong Dai
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Yujun Wei
- Anhui Anlong Gene Technology Co., Ltd, Hefei, 230041, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Hangzhou, 310058, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
17
|
Pryde DC, Middya S, Banerjee M, Shrivastava R, Basu S, Ghosh R, Yadav DB, Surya A. The discovery of potent small molecule activators of human STING. Eur J Med Chem 2020; 209:112869. [PMID: 33038794 DOI: 10.1016/j.ejmech.2020.112869] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023]
Abstract
The adaptor protein STING plays a major role in innate immune sensing of cytosolic nucleic acids, by triggering a robust interferon response. Despite the importance of this protein as a potential therapeutic target for serious unmet medical conditions including cancer and infectious disease there remains a paucity of STING ligands. Starting with a benzothiazinone series of weak STING activators (human EC50 ∼10 μM) we identified several chemotypes with sub-micromolar STING activity across all the major protein polymorphs. An example compound 53 based on an oxindole core structure demonstrated robust on-target functional activation of STING (human EC50 185 nM) in immortalised and primary cells and a cytokine induction fingerprint consistent with STING activation. Our study has identified several related series of potent small molecule human STING activators with potential to be developed as immunomodulatory therapeutics.
Collapse
Affiliation(s)
- David C Pryde
- Curadev Pharma Ltd, Innovation House, Discovery Park, Ramsgate Road, Sandwich, Kent, CT13 9ND, UK.
| | - Sandip Middya
- Curadev Pharma Pvt. Ltd, B-87, Sector 83, Noida 201305, Uttar Pradesh, India
| | - Monali Banerjee
- Curadev Pharma Pvt. Ltd, B-87, Sector 83, Noida 201305, Uttar Pradesh, India
| | - Ritesh Shrivastava
- Curadev Pharma Pvt. Ltd, B-87, Sector 83, Noida 201305, Uttar Pradesh, India
| | - Sourav Basu
- Curadev Pharma Pvt. Ltd, B-87, Sector 83, Noida 201305, Uttar Pradesh, India
| | - Rajib Ghosh
- Curadev Pharma Pvt. Ltd, B-87, Sector 83, Noida 201305, Uttar Pradesh, India
| | - Dharmendra B Yadav
- Curadev Pharma Pvt. Ltd, B-87, Sector 83, Noida 201305, Uttar Pradesh, India
| | - Arjun Surya
- Curadev Pharma Pvt. Ltd, B-87, Sector 83, Noida 201305, Uttar Pradesh, India
| |
Collapse
|
18
|
Luk A, Jiang Q, Glavini K, Triyatni M, Zhao N, Racek T, Zhu Y, Grippo JF. A Single and Multiple Ascending Dose Study of Toll-Like Receptor 7 Agonist (RO7020531) in Chinese Healthy Volunteers. Clin Transl Sci 2020; 13:985-993. [PMID: 32268000 PMCID: PMC7485962 DOI: 10.1111/cts.12791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Toll‐like receptor 7 (TLR7) agonists modulate broad spectrum immune activity and are evaluated in the treatment of human diseases, including cancer and chronic viral infection. RO7020531, an oral prodrug of a TLR7 agonist, is in clinical development as part of a curative regimen against chronic hepatitis B. We report the safety, tolerability, pharmacokinetics (PKs), and pharmacodynamics (PDs) of RO7020531 in healthy Chinese volunteers following single and multiple ascending doses (SAD and MAD). PK and PD samples were evaluated from four SAD cohorts and 3 MAD cohorts with 10 subjects each (8 active and 2 placebo). Safety and tolerability were monitored throughout the study. A total of 155 adverse events (AEs) were reported in 49 subjects. Fifty‐one AEs in 18 subjects were assessed as treatment‐related. Most of the AEs were mild; nine subjects experienced moderate AEs; there were no severe AEs. In two 150 mg MAD cohorts given every other day (q.o.d.), 7 of 20 subjects experienced pyrexia and were discontinued due to transient asymptomatic lymphopenia, which resolved 24–48 hours postdose. The PK of the active metabolite, RO7011785, increased linearly with dose from 40 mg to 170 mg. There was no PK accumulation following q.o.d. dosing. The PK profile is consistent with observations in white subjects in the global first‐in‐human study. SADs and MADs of RO7020531 resulted in dose‐dependent increases in TLR7 response markers at 100 mg or above. Flu‐like symptoms were associated with higher interferon‐α levels. RO7020531 was safe and acceptably tolerated in healthy Chinese volunteers with a multiple 150 mg q.o.d. dose regimen.
Collapse
Affiliation(s)
- Andrea Luk
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiudi Jiang
- Roche Innovation Center Shanghai, Shanghai, China
| | | | | | - Na Zhao
- Roche Pharma Development Shanghai, Shanghai, China
| | - Tomas Racek
- Roche Innovation Center Basel, Basel, Switzerland
| | - Yonghong Zhu
- Roche Innovation Center Shanghai, Shanghai, China
| | | |
Collapse
|
19
|
Bazin HG, Bess LS, Livesay MT, Li Y, Cybulski V, Miller SM, Johnson DA, Evans JT. Optimization of 8-oxoadenines with toll-like-receptor 7 and 8 activity. Bioorg Med Chem Lett 2020; 30:126984. [PMID: 32001135 PMCID: PMC7050994 DOI: 10.1016/j.bmcl.2020.126984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 01/15/2023]
Abstract
Toll-like receptors 7 and 8 (TLR7/8) agonists are potent immunostimulants that are attracting considerable interest as vaccine adjuvants. We recently reported the synthesis of a new series of 2-O-butyl-8-oxoadenines substituted at the 9-position with various linkers and N-heterocycles, and showed that TLR7/8 selectivity, potency and cytokine induction could be modulated by varying the alkyl linker length and the N-heterocyclic ring. In the present study, we further optimized the oxoadenine scaffold by investigating the effect of different substituents at the 2-position of the oxoadenine on TLR7/8 potency/selectivity, cytokine induction and DC maturation in human PBMCs. The results show that introducing a 1-(S)-methylbutoxy group at the 2-position of the oxoadenine significantly increased potency for TLR7/8 activity, cytokine induction and DC maturation.
Collapse
Affiliation(s)
- Hélène G Bazin
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, United States; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, United States; GSK Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, United States.
| | - Laura S Bess
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, United States; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, United States; GSK Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, United States
| | - Mark T Livesay
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, United States; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, United States; GSK Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, United States
| | - Yufeng Li
- GSK Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, United States
| | - Van Cybulski
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, United States; Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States; GSK Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, United States
| | - Shannon M Miller
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, United States; Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States
| | - David A Johnson
- GSK Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, United States
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, United States; Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States; GSK Vaccines, 553 Old Corvallis Road, Hamilton, MT 59840, United States
| |
Collapse
|
20
|
Reyes M, Lutz JD, Lau AH, Gaggar A, Grant EP, Joshi A, Mackman RL, Ling J, Tan SK, Ayithan N, Daffis S, Woo J, Wu P, Lam T, Fletcher SP, Kottilil S, Poonia B, Gane EJ, Mathias A, German P. Safety, pharmacokinetics and pharmacodynamics of selgantolimod, an oral Toll-like receptor 8 agonist: a Phase Ia study in healthy subjects. Antivir Ther 2020; 25:171-180. [PMID: 32667286 DOI: 10.3851/imp3363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Selgantolimod is a novel oral, selective Toll-like receptor 8 (TLR8) agonist in development for the treatment of chronic hepatitis B (CHB). TLR8 is an endosomal innate immune receptor and a target for treatment of viral infections. This first-in-human study investigated the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of selgantolimod in healthy volunteers. METHODS Of 71 subjects enrolled, 59 received a single dose of selgantolimod (0.5, 1.5, 3 or 5 mg) or placebo, and 12 were evaluated for food effect. Safety, PK and PD activity by induction of cytokines, chemokines and acute phase proteins were assessed. PK/PD analyses were conducted. RESULTS Single doses of 0.5-5 mg were generally safe. No serious adverse events (AEs) or AEs leading to discontinuation were reported, and most were Grade 1 in severity. Selgantolimod displayed rapid absorption and dose-proportional PK and PD activity. Food had minimal effect on PK but resulted in diminished PD activity. In PK/PD analyses, near-saturation of induction for most evaluated biomarkers occurred at the 5-mg dose. CONCLUSIONS Single doses of up to 5 mg selgantolimod were safe and induced dose-dependent PD responses. These data support evaluation of selgantolimod in combination with other agents in future clinical studies of CHB. Australian New Zealand Clinical Trials Registration: ACTRN12616001646437.
Collapse
Affiliation(s)
- Maribel Reyes
- Clinical Pharmacology, Gilead Sciences, Foster City, CA, USA
| | - Justin D Lutz
- Clinical Pharmacology, Gilead Sciences, Foster City, CA, USA
| | - Audrey H Lau
- Clinical Research, Gilead Sciences, Foster City, CA, USA
| | - Anuj Gaggar
- Clinical Research, Gilead Sciences, Foster City, CA, USA
| | | | - Adarsh Joshi
- Biostatistics, Gilead Sciences, Foster City, CA, USA
| | | | - John Ling
- Bioanalytical Chemistry, Gilead Sciences, Foster City, CA, USA
| | - Susanna K Tan
- Clinical Research, Gilead Sciences, Foster City, CA, USA
| | - Natarajan Ayithan
- Institute of Human Virology, University of Maryland, Baltimore, MD, USA
| | | | - Jacky Woo
- Biology, Gilead Sciences, Foster City, CA, USA
| | - Peiwen Wu
- Biostatistics, Gilead Sciences, Foster City, CA, USA
| | - Tina Lam
- Clinical Operations, Gilead Sciences, Foster City, CA, USA
| | | | | | - Bhawna Poonia
- Institute of Human Virology, University of Maryland, Baltimore, MD, USA
| | | | - Anita Mathias
- Clinical Pharmacology, Gilead Sciences, Foster City, CA, USA
| | - Polina German
- Clinical Pharmacology, Gilead Sciences, Foster City, CA, USA
| |
Collapse
|
21
|
Macedo AB, Novis CL, Bosque A. Targeting Cellular and Tissue HIV Reservoirs With Toll-Like Receptor Agonists. Front Immunol 2019; 10:2450. [PMID: 31681325 PMCID: PMC6804373 DOI: 10.3389/fimmu.2019.02450] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023] Open
Abstract
The elimination of both cellular and tissue latent reservoirs is a challenge toward a successful HIV cure. "Shock and Kill" are among the therapeutic strategies that have been more extensively studied to target these reservoirs. These strategies are aimed toward the reactivation of the latent reservoir using a latency-reversal agent (LRA) with the subsequent killing of the reactivated cell either by the cytotoxic arm of the immune system, including NK and CD8 T cells, or by viral cytopathic mechanisms. Numerous LRAs are currently being investigated in vitro, ex vivo as well as in vivo for their ability to reactivate and reduce latent reservoirs. Among those, several toll-like receptor (TLR) agonists have been shown to reactivate latent HIV. In humans, there are 10 TLRs that recognize different pathogen-associated molecular patterns. TLRs are present in several cell types, including CD4 T cells, the cell compartment that harbors the majority of the latent reservoir. Besides their ability to reactivate latent HIV, TLR agonists also increase immune activation and promote an antiviral response. These combined properties make TLR agonists unique among the different LRAs characterized to date. Additionally, some of these agonists have shown promise toward finding an HIV cure in animal models. When in combination with broadly neutralizing antibodies, TLR-7 agonists have shown to impact the SIV latent reservoir and delay viral rebound. Moreover, there are FDA-approved TLR agonists that are currently being investigated for cancer therapy and other diseases. All these has prompted clinical trials using TLR agonists either alone or in combination toward HIV eradication approaches. In this review, we provide an extensive characterization of the state-of-the-art of the use of TLR agonists toward HIV eradication strategies and the mechanism behind how TLR agonists target both cellular and tissue HIV reservoirs.
Collapse
Affiliation(s)
- Amanda B. Macedo
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Camille L. Novis
- Department of Pathology, Division of Microbiology and Immunology, The University of Utah, Salt Lake City, UT, United States
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
22
|
Critical Role of B Cells in Toll-Like Receptor 7-Mediated Protection against Listeria monocytogenes Infection. Infect Immun 2019; 87:IAI.00742-19. [PMID: 31591164 DOI: 10.1128/iai.00742-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptors (TLR) trigger the immune system to mount a rapid innate response capable of protecting the host from a wide variety of bacterial and viral pathogens. There is interest in harnessing TLR agonists to reduce the susceptibility of at-risk populations to infection. However, the widespread prophylactic use of TLR agonists has been compromised by the need to administer them by parenteral injection. An exception is the TLR7/8 agonist R848, which can boost gastrointestinal and systemic immunity when administered orally. This work examines the effect of R848 on host susceptibility to Listeria monocytogenes in a murine challenge model and describes the underlying mechanisms. Results show that prophylactic administration of R848 significantly reduces susceptibility to infection of BALB/c mice, an effect that lasts 1 week. Oral R848 directly stimulated B cells to produce cytokines and Ig. In the absence of B cells, R848-mediated protection was lost. These findings support the use of oral R848 to reduce the susceptibility of at-risk individuals to infection and identify the critical role of B cells in TLR7-mediated resistance to bacterial infection.
Collapse
|
23
|
Selective Toll-like receptor 7 agonists with novel chromeno[3,4-d]imidazol-4(1H)-one and 2-(trifluoromethyl)quinoline/ quinazoline-4-amine scaffolds. Eur J Med Chem 2019; 179:109-122. [DOI: 10.1016/j.ejmech.2019.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
|
24
|
Evans JT, Bess LS, Mwakwari SC, Livesay MT, Li Y, Cybulski V, Johnson DA, Bazin HG. Synthetic Toll-like Receptors 7 and 8 Agonists: Structure-Activity Relationship in the Oxoadenine Series. ACS OMEGA 2019; 4:15665-15677. [PMID: 31572869 PMCID: PMC6761749 DOI: 10.1021/acsomega.9b02138] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/27/2019] [Indexed: 05/08/2023]
Abstract
Toll-like receptors 7 and 8 (TLR7/8) are broadly expressed on antigen-presenting cells, making TLR7/8 agonists likely candidates for the development of new vaccine adjuvants. We previously reported the synthesis of a new series of 8-oxoadenines substituted at the 9-position with a 4-piperidinylalkyl moiety and demonstrated that TLR7/8 selectivity and potency could be modulated by varying the length of the alkyl linker. In the present study, we broadened our initial structure-activity relationship study to further evaluate the effects of N-heterocycle ring size, chirality, and substitution on TLR7/8 potency, receptor selectivity, and cytokine (IFNα and TNFα) induction from human peripheral blood mononuclear cells (PBMCs). TLR7/8 activity correlated primarily to linker length and to a lesser extent to ring size, while ring chirality had little effect on TLR7/8 potency or selectivity. Substitution of the heterocyclic ring with an aminoalkyl or hydroxyalkyl group for subsequent conjugation to phospholipids or antigens was well tolerated with the retention of both TLR7/8 activity and cytokine induction from human PBMCs.
Collapse
Affiliation(s)
- Jay T. Evans
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
- Division of Biological Sciences and Department of Biomedical and Pharmaceutical
Sciences, University of Montana, Missoula, Montana 59802, United States
| | - Laura S. Bess
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
- Division of Biological Sciences and Department of Biomedical and Pharmaceutical
Sciences, University of Montana, Missoula, Montana 59802, United States
| | - Sandra C. Mwakwari
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
| | - Mark T. Livesay
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
- Division of Biological Sciences and Department of Biomedical and Pharmaceutical
Sciences, University of Montana, Missoula, Montana 59802, United States
| | - Yufeng Li
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
| | - Van Cybulski
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
- Division of Biological Sciences and Department of Biomedical and Pharmaceutical
Sciences, University of Montana, Missoula, Montana 59802, United States
| | - David A. Johnson
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
| | - Hélène G. Bazin
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
- Division of Biological Sciences and Department of Biomedical and Pharmaceutical
Sciences, University of Montana, Missoula, Montana 59802, United States
| |
Collapse
|
25
|
Gupta A, Deka P, Kumar S. Resiquimod inhibits Newcastle disease virus replication by modulating host cytokines: An understanding towards its possible therapeutics. Cytokine 2019; 125:154811. [PMID: 31446178 DOI: 10.1016/j.cyto.2019.154811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/14/2019] [Accepted: 08/10/2019] [Indexed: 01/21/2023]
Abstract
Newcastle disease virus (NDV) infects domestic and wild avian species with high mortality and morbidity worldwide. Although this disease is mainly controlled through NDV vaccines, alternative use of antiviral compounds is increasingly under study. Resiquimod (R-848), an imidazoquinoline compound is a potent synthetic agonist of Toll-like receptor 7 (TLR7). Until now reports regarding the adjuvant potential of resiquimod is well established against human viruses but has been less explored against avian viruses. In the present study, we have analysed the anti-NDV effect of resiquimod in chicken embryo fibroblast cells (DF-1) and embryonated chicken eggs. About 70% reduction in NDV replication was observed 48 h and 72 h post-resiquimod treatment in DF-1 cells. Furthermore, differential host genes expression was observed in resiquimod treated DF-1 cells, PBMCs, and tissue sample of chicken embryos at a different time point. Among all the analyzed genes, significant up-regulation of viperin, IFNα, IFNγ, IL-1β, TNFα, IL18 were observed in its transcriptional level. Furthermore, resiquimod treatment showed NDV reduction in two weeks old chickens. About 61% and 38% reduction in NDV replication was observed 72 h post-infection in lungs and spleen, respectively. The study suggests the modulation of host innate immunity regulatory genes by resiquimod, which eventually modulates the NDV replication. The result of the study could be explored further to establish resiquimod as an alternative antiviral compound against NDV.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pankaj Deka
- Department of Veterinary Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam 781022, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
26
|
5-Oxo-1-[(2,3,6,7-tetramethoxy-9-phenanthrenyl)methyl]-L-proline Inhibits Hepatitis C Virus Entry. Sci Rep 2019; 9:7288. [PMID: 31086268 PMCID: PMC6514212 DOI: 10.1038/s41598-019-43783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is the major causative agent of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. The recent development of highly effective direct-acting antivirals (DAAs) has revolutionized the treatment of HCV patients. However, these DAAs are exorbitantly expensive for the majority of HCV patients worldwide. Moreover, these drugs still show genotypic difference in cure rate and have some resistant-associated variants. Tylophorine, a natural compound derived from Tylophora indica plants, is known to have anti-inflammatory and anti-cancerous growth activities. In the present study, we showed that two tylophorine intermediates, 5-Oxo-1-[(2,3,6,7-tetramethoxy-9-phenanthrenyl) methyl]-L-proline (O859585) and 2,3,6,7-tetramethoxy-9-phenanthrenecarboxylic acid (T298875), displayed anti-HCV activity with an EC50 of 38.25 µM for T298875 and 29.11~35.3 µM for O859585 in various HCV genotypes. We demonstrated that O859585 efficiently blocked HCV attachment by neutralizing free viral particles without affecting other stages of the HCV life cycle and interferon stimulation. O859585 interrupted binding between HCV E2 and CD81. Of note, co-treatment of O859585 with either interferon alpha (IFNα) or sofosbuvir exerted either an additive or synergistic antiviral activity in HCV-infected cells with no measurable effect on cell viability. Most importantly, O859585 in combination with IFNα and sofosbuvir exhibited synergistic effects on anti-HCV activity in primary human hepatocytes. Collectively, these data suggest that O859585 may be a novel antiviral agent for HCV therapy.
Collapse
|
27
|
Bazin HG, Bess LS, Livesay MT. Synthesis and Applications of Imidazoquinolines: A Review. ORG PREP PROCED INT 2018. [DOI: 10.1080/00304948.2018.1433427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hélène G. Bazin
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| | - Laura S. Bess
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| | - Mark T. Livesay
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| |
Collapse
|
28
|
Carignan D, Herblot S, Laliberté-Gagné MÈ, Bolduc M, Duval M, Savard P, Leclerc D. Activation of innate immunity in primary human cells using a plant virus derived nanoparticle TLR7/8 agonist. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2317-2327. [PMID: 29128662 DOI: 10.1016/j.nano.2017.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022]
Abstract
Rod-shaped virus-like nanoparticles (VLNP) made of papaya mosaic virus (PapMV) coat proteins (CP) self-assembled around a single stranded RNA (ssRNA) were showed to be a TLR7 agonist. Their utilization as an immune modulator in cancer immunotherapy was shown to be promising. To establish a clinical relevance in human for PapMV VLNP, we showed that stimulation of human peripheral blood mononuclear cells (PBMC) with VLNP induces the secretion of interferon alpha (IFNα) and other pro-inflammatory cytokines and chemokines. Plasmacytoid dendritic cells (pDCs) were activated and secreted IFN-α upon VLNP exposure. Monocyte-derived dendritic cells upregulate maturation markers and produce IL-6 in response to PapMV VLNP stimulation, which suggests the activation of TLR8. Finally, when co-cultured with NK cells, PapMV induced pDCs promoted the NK cytolytic activity against cancer cells. These data obtained with primary human immune cells further strengthen the clinical relevance of PapMV VLNPs as a cancer immunotherapy agent.
Collapse
Affiliation(s)
- Damien Carignan
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Sabine Herblot
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Marie-Ève Laliberté-Gagné
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Marilène Bolduc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Michel Duval
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Pierre Savard
- Neurosciences, Laval University, Québec City, PQ, Canada
| | - Denis Leclerc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada.
| |
Collapse
|
29
|
Thermosensitive Gel–Based Formulation for Intratumoral Delivery of Toll-Like Receptor 7/8 Dual Agonist, MEDI9197. J Pharm Sci 2017; 106:2037-2045. [DOI: 10.1016/j.xphs.2017.04.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 11/20/2022]
|
30
|
Khiar S, Lucas-Hourani M, Nisole S, Smith N, Helynck O, Bourgine M, Ruffié C, Herbeuval JP, Munier-Lehmann H, Tangy F, Vidalain PO. Identification of a small molecule that primes the type I interferon response to cytosolic DNA. Sci Rep 2017; 7:2561. [PMID: 28566766 PMCID: PMC5451460 DOI: 10.1038/s41598-017-02776-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/19/2017] [Indexed: 01/22/2023] Open
Abstract
The type I interferon response plays a pivotal role in host defense against infectious agents and tumors, and promising therapeutic approaches rely on small molecules designed to boost this system. To identify such compounds, we developed a high-throughput screening assay based on HEK-293 cells expressing luciferase under the control of Interferon-Stimulated Response Elements (ISRE). An original library of 10,000 synthetic compounds was screened, and we identified a series of 1H-benzimidazole-4-carboxamide compounds inducing the ISRE promoter sequence, specific cellular Interferon-Stimulated Genes (ISGs), and the phosphorylation of Interferon Regulatory Factor (IRF) 3. ISRE induction by ChX710, a prototypical member of this chemical series, was dependent on the adaptor MAVS and IRF1, but was IRF3 independent. Although it was unable to trigger type I IFN secretion per se, ChX710 efficiently primed cellular response to transfected plasmid DNA as assessed by potent synergistic effects on IFN-β secretion and ISG expression levels. This cellular response was dependent on STING, a key adaptor involved in the sensing of cytosolic DNA and immune activation by various pathogens, stress signals and tumorigenesis. Our results demonstrate that cellular response to cytosolic DNA can be boosted with a small molecule, and potential applications in antimicrobial and cancer therapies are discussed.
Collapse
Affiliation(s)
- Samira Khiar
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR3569, Paris, France
| | | | - Sébastien Nisole
- Mécanismes d'action des interférons et voies bio-thérapeutiques, Université Paris Descartes, INSERM UMR-S1124, Paris, France
| | - Nikaïa Smith
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, Paris, France
| | - Maryline Bourgine
- Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, Paris, France
| | - Claude Ruffié
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR3569, Paris, France
| | - Jean-Philippe Herbeuval
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS UMR8601, Paris, France
| | | | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR3569, Paris, France.
| | - Pierre-Olivier Vidalain
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS UMR8601, Paris, France.
| |
Collapse
|
31
|
Chai HH, Lim D, Suk JE, Choi BH, Cho YM. Design of anti-BVDV drug based on common chemical features, their interaction, and scaffolds of TLR8 agonists. Int J Biol Macromol 2016; 92:1095-1112. [DOI: 10.1016/j.ijbiomac.2016.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 11/16/2022]
|
32
|
Smith AJ, Li Y, Bazin HG, St-Jean JR, Larocque D, Evans JT, Baldridge JR. Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants. Vaccine 2016; 34:4304-12. [PMID: 27402566 PMCID: PMC4968040 DOI: 10.1016/j.vaccine.2016.06.080] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/21/2022]
Abstract
Small-molecule adjuvants that boost and direct adaptive immunity provide a powerful means to increase the effectiveness of vaccines. Through rational design several novel imidazoquinoline and oxoadenine TLR7/8 agonists, each with unique molecular modifications, were synthesized and assessed for their ability to augment adaptive immunity. All agonists bound human TLR7 and TLR8 and induced maturation of both human mDCs and pDCs. All agonists prompted production of type I interferon and/or proinflammatory cytokines, albeit with varying potencies. In most in vitro assays, the oxoadenine class of agonists proved more potent than the imidazoquinolines. Therefore, an optimized oxoadenine TLR7/8 agonist that demonstrated maximal activity in the in vitro assays was further assessed in a vaccine study with the CRM197 antigen in a porcine model. Antigen-specific antibody production was greatly enhanced in a dose dependent manner, with antibody titers increased 800-fold compared to titers from pigs vaccinated with the non-adjuvanted vaccine. Moreover, pigs vaccinated with antigen containing the highest dose of adjuvant promoted a 13-fold increase in the percentage of antigen-specific CD3(+)/CD8(+) T cells over pigs vaccinated with antigen alone. Together this work demonstrates the promise of these novel TLR7/8 agonists as effective human vaccine adjuvants.
Collapse
Affiliation(s)
| | - Yufeng Li
- GSK Vaccines, Hamilton, MT 59840, USA
| | | | | | | | | | | |
Collapse
|
33
|
Agger EM. Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv Drug Deliv Rev 2016; 102:73-82. [PMID: 26596558 DOI: 10.1016/j.addr.2015.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 01/18/2023]
Abstract
There is an urgent need for a new and improved vaccine against tuberculosis for controlling this disease that continues to pose a global health threat. The current research strategy is to replace the present BCG vaccine or boost BCG-immunity with subunit vaccines such as viral vectored- or protein-based vaccines. The use of recombinant proteins holds a number of production advantages including ease of scalability, but requires an adjuvant inducing cell-mediated immune responses. A number of promising novel adjuvant formulations have recently been designed and show evidence of induction of cellular immune responses in humans. A common trait of effective TB adjuvants including those already in current clinical testing is a two-component approach combining a delivery system with an appropriate immunomodulator. This review summarizes the status of current TB adjuvant research with a focus on the division of labor between delivery systems and immunomodulators.
Collapse
Affiliation(s)
- Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
34
|
Bazin HG, Bess LS, Livesay MT, Mwakwari SC, Johnson DA. Phospholipidation of TLR7/8-active imidazoquinolines using a tandem phosphoramidite method. Tetrahedron Lett 2016; 57:2063-2066. [PMID: 32863446 PMCID: PMC7451945 DOI: 10.1016/j.tetlet.2016.03.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A high-yielding and scalable phosphoramidite procedure was developed for the phospholipidation of TLR7/8-active imidazoquinolines. This method involves the reaction of a 1,2-diacyl- or dialkyl-sn-glycerol or 3-chlolesterylalkanol with 2-cyanoethyl N,N,N',N'-tetraisopropylphosphordiamidite in the presence of 1H-tetrazole followed by treatment of the resulting N,N'-diisopropylphosphoramidite lipid in situ with 1-imidazoquinolinylalkanols. The resulting phosphite can be purified or directly oxidized with t-butyl hydroperoxide. The cyanoethyl protecting group is then removed with triethylamine and the phospholipidated imidazoquinoline products isolated in good yield and purity by simple filtration.
Collapse
|
35
|
Biggadike K, Ahmed M, Ball DI, Coe DM, Dalmas Wilk DA, Edwards CD, Gibbon BH, Hardy CJ, Hermitage SA, Hessey JO, Hillegas AE, Hughes SC, Lazarides L, Lewell XQ, Lucas A, Mallett DN, Price MA, Priest FM, Quint DJ, Shah P, Sitaram A, Smith SA, Stocker R, Trivedi NA, Tsitoura DC, Weller V. Discovery of 6-Amino-2-{[(1S)-1-methylbutyl]oxy}-9-[5-(1-piperidinyl)pentyl]-7,9-dihydro-8H-purin-8-one (GSK2245035), a Highly Potent and Selective Intranasal Toll-Like Receptor 7 Agonist for the Treatment of Asthma. J Med Chem 2016; 59:1711-26. [PMID: 26861551 DOI: 10.1021/acs.jmedchem.5b01647] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Induction of IFNα in the upper airways via activation of TLR7 represents a novel immunomodulatory approach to the treatment of allergic asthma. Exploration of 8-oxoadenine derivatives bearing saturated oxygen or nitrogen heterocycles in the N-9 substituent has revealed a remarkable selective enhancement in IFNα inducing potency in the nitrogen series. Further potency enhancement was achieved with the novel (S)-pentyloxy substitution at C-2 leading to the selection of GSK2245035 (32) as an intranasal development candidate. In human cell cultures, compound 32 resulted in suppression of Th2 cytokine responses to allergens, while in vivo intranasal administration at very low doses led to local upregulation of TLR7-mediated cytokines (IP-10). Target engagement was confirmed in humans following single intranasal doses of 32 of ≥20 ng, and reproducible pharmacological response was demonstrated following repeat intranasal dosing at weekly intervals.
Collapse
Affiliation(s)
- Keith Biggadike
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Mahbub Ahmed
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Doug I Ball
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Diane M Coe
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Deidre A Dalmas Wilk
- GlaxoSmithKline R&D, UpperMerion , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Chris D Edwards
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Bob H Gibbon
- GlaxoSmithKline R&D, David Jack Centre , Park Road, Ware, Hertfordshire SG12 ODP, U.K
| | - Charlotte J Hardy
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Stephen A Hermitage
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Joanne O Hessey
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Aimee E Hillegas
- GlaxoSmithKline R&D, UpperMerion , 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Stephen C Hughes
- GlaxoSmithKline R&D, David Jack Centre , Park Road, Ware, Hertfordshire SG12 ODP, U.K
| | - Linos Lazarides
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Xiao Q Lewell
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Amanda Lucas
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David N Mallett
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Mark A Price
- GlaxoSmithKline R&D, David Jack Centre , Park Road, Ware, Hertfordshire SG12 ODP, U.K
| | - Fiona M Priest
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Diana J Quint
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Poonam Shah
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Anesh Sitaram
- GlaxoSmithKline R&D, David Jack Centre , Park Road, Ware, Hertfordshire SG12 ODP, U.K
| | - Stephen A Smith
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Richard Stocker
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Naimisha A Trivedi
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Daphne C Tsitoura
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Victoria Weller
- GlaxoSmithKline R&D, Medicines Research Centre , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
36
|
Schölch S, Rauber C, Tietz A, Rahbari NN, Bork U, Schmidt T, Kahlert C, Haberkorn U, Tomai MA, Lipson KE, Carretero R, Weitz J, Koch M, Huber PE. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors. Oncotarget 2016; 6:4663-76. [PMID: 25609199 PMCID: PMC4467106 DOI: 10.18632/oncotarget.3081] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 12/26/2014] [Indexed: 12/28/2022] Open
Abstract
In addition to local cytotoxic activity, radiotherapy may also elicit local and systemic antitumor immunity, which may be augmented by immunotherapeutic agents including Toll-like receptor (TLR) 7/8 agonists. Here, we investigated the ability of 3M-011 (854A), a TLR7/8 agonist, to boost the antigen-presenting activity of dendritic cells (DC) as an adjuvant to radiotherapy. The combined treatment induced marked local and systemic responses in subcutaneous and orthotopic mouse models of colorectal and pancreatic cancer. In vitro cytotoxicity assays as well as in vivo depletion experiments with monoclonal antibodies identified NK and CD8 T cells as the cell populations mediating the cytotoxic effects of the treatment, while in vivo depletion of CD11c+ dendritic cells (DC) in CD11c-DTR transgenic mice revealed DC as the pivotal immune hub in this setting. The specificity of the immune reaction was confirmed by ELISPOT assays. TLR7/8 agonists therefore seem to be potent adjuvants to radiotherapy, inducing strong local and profound systemic immune responses to tumor antigens released by conventional therapy.
Collapse
Affiliation(s)
- Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,CCU Molecular and Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Center, 69120 Heidelberg, Germany
| | - Conrad Rauber
- Department of General, Gastrointestinal and Transplant Surgery, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany.,CCU Molecular and Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Center, 69120 Heidelberg, Germany
| | - Alexandra Tietz
- CCU Molecular and Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Center, 69120 Heidelberg, Germany
| | - Nuh N Rahbari
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ulrich Bork
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thomas Schmidt
- Department of General, Gastrointestinal and Transplant Surgery, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Kahlert
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Uwe Haberkorn
- Division of Nuclear Medicine, Department of Radiology, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | | - Rafael Carretero
- Division of Molecular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Moritz Koch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Peter E Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Center, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Khiar S, Pietrancosta N, Vidalain PO. [Stimulating Type I interferon response with small molecules: revival of an old idea]. Biol Aujourdhui 2015; 209:145-59. [PMID: 26514384 DOI: 10.1051/jbio/2015015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Indexed: 01/04/2023]
Abstract
Type I interferons play a central role in the establishment of an innate immune response against viral infections and tumor cells. Shortly after their discovery in 1957, several groups have looked for small molecules capable of inducing the expression of these cytokines with therapeutic applications in mind. A set of active compounds in mice were identified, but because of their relative inefficiency in humans for reasons not understood at the time, these studies fell into oblivion. In recent years, the characterization of pathogen recognition receptors and the signaling pathways they activate, together with the discovery of plasmacytoid dendritic cells, have revolutionized our understanding of innate immunity. These discoveries and the popularization of high-throughput screening technologies have renewed the interest for small molecules that can induce type I interferons. Proofs about their therapeutic potency in humans are expected very soon.
Collapse
Affiliation(s)
- Samira Khiar
- Unitéde Génomique Virale et Vaccination, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France - CNRS UMR3569, 28 rue du Dr. Roux, 75015 Paris, France
| | - Nicolas Pietrancosta
- Plateau 2MI, CNRS UMR8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CICB-Paris (FR 3567), Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Pierre-Olivier Vidalain
- qÉuipe Chimie et Biologie, Nucléo(s)tides & Immunologie pour la Thérapie, CNRS UMR8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CICB-Paris (FR 3567), Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
38
|
Shinchi H, Crain B, Yao S, Chan M, Zhang SS, Ahmadiiveli A, Suda Y, Hayashi T, Cottam HB, Carson DA. Enhancement of the Immunostimulatory Activity of a TLR7 Ligand by Conjugation to Polysaccharides. Bioconjug Chem 2015; 26:1713-23. [PMID: 26193334 DOI: 10.1021/acs.bioconjchem.5b00285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) in the innate immune system recognize specific pathogen-associated molecular patterns derived from microbes. Synthetic small molecule TLR7 agonists have been extensively evaluated as topical agents for antiviral and anticancer therapy, and as adjuvants for vaccine. However, safe and reproducible administration of synthetic TLR7 ligands has been difficult to achieve due to undesirable pharmacokinetics and unacceptable side effects. Here, we conjugated a versatile low molecular weight TLR7 ligand to various polysaccharides in order to improve its water solubility, enhance its potency, and maintain low toxicity. The synthetic TLR7 ligand, 2-methoxyethoxy-8-oxo-9-(4-carboxy benzyl)adenine, designated 1V209, was stably conjugated to primary amine functionalized Ficoll or dextran using benzoic acid functional groups. The conjugation ratios using specified equivalents of TLR7 ligand were dose responsive and reproducible. The zeta potential value of the polysaccharides was decreased in inverse proportion to the ratio of conjugated TLR7 ligand. These conjugates were highly water-soluble, stable for at least 6 months at room temperature in aqueous solution, and easy to lyophilize and reconstitute without altering potency. In vitro studies with murine mononuclear leukocytes showed that the TLR7 agonist conjugated to polysaccharides had 10- to 1000-fold higher potencies than the unconjugated TLR7 ligand. In vivo pharmacodynamics studies after injection indicate that the conjugates induced systemic cytokine production. When the conjugates were used as vaccine adjuvants, they enhanced antigen specific humoral and cellular immune responses to a much greater extent than did unconjugated TLR7 ligands. These results indicated that small molecule TLR7 ligands conjugated to polysaccharides have improved immunostimulatory potency and pharmacodynamics. Polysaccharides can be conjugated to a variety of molecules such as antigens, peptides, and TLR ligands. Therefore, such conjugates could represent a versatile platform for the development of vaccines against cancer and infectious diseases.
Collapse
Affiliation(s)
- Hiroyuki Shinchi
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States.,‡Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Brian Crain
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Shiyin Yao
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Michael Chan
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Shannon S Zhang
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Alast Ahmadiiveli
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Yasuo Suda
- ‡Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Tomoko Hayashi
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Howard B Cottam
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Dennis A Carson
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| |
Collapse
|
39
|
Reduction of avian influenza virus shedding by administration of Toll-like receptor ligands to chickens. Vaccine 2015; 33:4843-9. [PMID: 26238721 DOI: 10.1016/j.vaccine.2015.07.070] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 11/23/2022]
Abstract
Avian influenza viruses (AIV) are of concern to the poultry industry. Outbreaks of AIV highlight the urgent need for effective control measures. Prophylactic strategies should be explored that rapidly elicit immunity against the virus. Toll-like receptors (TLRs) are innate immune molecules that can induce anti-viral responses, therefore the application of TLR ligands as prophylactic agents in chickens is gaining more attention. We hypothesized that treatment of chickens with TLR ligands reduces the shedding of AIV from infected birds. In addition, the effects of TLR ligand dose and route of administration on the efficiency of TLR ligands to reduce AIV shedding were examined. Chickens were treated with TLR2, 4, 7 and 21 ligands using different doses and routes of administration, 18h before AIV infection. Moreover, the expression of several candidate genes, such as type I interferons, PKR, OAS, viperin and IFITM3 was quantified at 3, 8 and 18h post-treatment with TLR ligands. The results revealed that route of administration and dosage affect the efficacy of TLR ligands to reduce virus shedding. Furthermore, varying effects were observed when different ligands were applied. Our results demonstrated that all TLR ligand treatments reduced AIV shedding, with the CpG-ODN 1826 being the most efficacious to reduce oral virus shedding, whereas LPS from Escherichia coli 026:B6 resulted in the largest reduction in cloacal virus shedding. Moreover, TLR ligands induced the expression of genes involved in antiviral responses such as type I interferons and interferon-stimulated genes in chicken trachea and cecal tonsils. These results raise the possibility of treatment of chickens with TLR ligands as anti-viral agents.
Collapse
|
40
|
Rajaram S, Bright H. Commentary on articles published on 2010 Southern Hemisphere Trivalent Influenza Vaccine association with adverse events. Vaccine 2015; 33:3271-2. [PMID: 25239485 DOI: 10.1016/j.vaccine.2014.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/04/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
|
41
|
Schölch S, Rauber C, Weitz J, Koch M, Huber PE. TLR activation and ionizing radiation induce strong immune responses against multiple tumor entities. Oncoimmunology 2015; 4:e1042201. [PMID: 26451314 DOI: 10.1080/2162402x.2015.1042201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022] Open
Abstract
Toll-like receptor (TLR) 7/8 ligands act together with radiotherapy and induce profound systemic antitumor immune reactions coordinated by dendritic cells and executed by natural killer (NK) and cytotoxic T cells. Combining TLR ligands and radiation improves both local and distant tumor control and has been shown to be effective against multiple tumor entities.
Collapse
Affiliation(s)
- Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery; Medizinische Fakultät Carl Gustav Carus; Technische Universität Dresden ; Dresden, Germany ; CCU Molecular and Radiation Oncology; German Cancer Research Center ; Heidelberg, Germany
| | - Conrad Rauber
- Department of Gastroenterology and Hepatology; University Hospital Heidelberg ; Heidelberg, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery; Medizinische Fakultät Carl Gustav Carus; Technische Universität Dresden ; Dresden, Germany
| | - Moritz Koch
- Department of Gastrointestinal, Thoracic and Vascular Surgery; Medizinische Fakultät Carl Gustav Carus; Technische Universität Dresden ; Dresden, Germany
| | - Peter E Huber
- CCU Molecular and Radiation Oncology; German Cancer Research Center ; Heidelberg, Germany ; Department of Radiation Oncology; University Hospital Center ; Heidelberg, Germany
| |
Collapse
|
42
|
Thapa S, Nagy E, Abdul-Careem MF. In ovo delivery of Toll-like receptor 2 ligand, lipoteichoic acid induces pro-inflammatory mediators reducing post-hatch infectious laryngotracheitis virus infection. Vet Immunol Immunopathol 2015; 164:170-8. [PMID: 25764942 DOI: 10.1016/j.vetimm.2015.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/07/2023]
Abstract
Toll-like receptor (TLR) ligands are pathogen associated molecular patterns (PAMPs) recognized by the TLRs resulting in induction of host innate immune responses. One of the PAMPs that binds to TLR2 and cluster of differentiation (CD) 14 is lipotechoic acid (LTA), which activates downstream signals culminating in the release of pro-inflammatory cytokines. In this study, we investigated whether in ovo LTA delivery leads to the induction of antiviral responses against post-hatch infectious laryngotracheitis virus (ILTV) infection. We first delivered the LTA into embryo day (ED)18 eggs via in ovo route so that the compound is available at the respiratory mucosa. Then the LTA treated and control ED18 eggs were allowed to hatch and the hatched chicken was infected with ILTV intratracheally on the day of hatch. We found that in ovo delivered LTA reduces ILTV infection post-hatch. We also found that in ovo delivery of LTA significantly increases mRNA expression of pro-inflammatory mediators in pre-hatch embryo lungs as well as mononuclear cell infiltration, predominantly macrophages, in lung of post-hatch chickens. Altogether, the data suggest that in ovo delivered LTA could be used to reduce ILTV infection in newly hatched chickens.
Collapse
Affiliation(s)
- S Thapa
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, Canada AB T2N 2Z6
| | - E Nagy
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - M F Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, Canada AB T2N 2Z6.
| |
Collapse
|
43
|
Lawitz E, Gruener D, Marbury T, Hill J, Webster L, Hassman D, Nguyen AH, Pflanz S, Mogalian E, Gaggar A, Massetto B, Subramanian GM, McHutchison JG, Jacobson IM, Freilich B, Rodriguez-Torres M. Safety, pharmacokinetics and pharmacodynamics of the oral toll-like receptor 7 agonist GS-9620 in treatment-naive patients with chronic hepatitis C. Antivir Ther 2014; 20:699-708. [PMID: 25105516 DOI: 10.3851/imp2845] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND GS-9620 is a potent oral agonist of toll-like receptor 7, a key modulator of the innate immune response. In healthy volunteers, low doses of GS-9620 (2, 4 and 6 mg) induced significant expression of peripheral interferon-stimulated-gene (ISG) mRNA in the absence of detectable serum interferon-α and systemic adverse events (AEs). We evaluated the safety, pharmacokinetics and pharmacodynamics of GS-9620 in treatment-naive patients chronically infected with HCV genotype 1. METHODS In this double-blind, placebo-controlled study, 51 patients were randomized 5:1 (active:placebo) to receive either a single dose or two once-weekly doses of GS-9620 at four dose levels (0.3, 1, 2 and 4 mg) or placebo. Pharmacodynamic assessments included peripheral ISG15 mRNA expression, serum interferon-α and interferon-γ-inducible protein (IP)-10 levels and HCV RNA quantification. RESULTS GS-9620 was well-tolerated at all doses. Most AEs were mild or moderate in severity. GS-9620 exhibited dose-linear pharmacokinetics with a median half-life in plasma of 18 h. Transient, dose-dependent ISG15 induction was observed at 1, 2 and 4 mg, with peak mean fold change within 48 h followed by a decline to baseline levels within 7 days of dosing. Serum interferon-α induction post-baseline was detected in 16.7% (8/48) of patients. No clinically significant reductions in HCV RNA were observed. CONCLUSIONS GS-9620 was safe, well-tolerated and biologically active in patients with HCV infection. Induction of ISG15 occurred in the absence of detectable serum interferon-α or systemic AEs in most patients, supporting a pre-systemic mechanism of action. ClinicalTrials.gov identifier: NCT01591668.
Collapse
Affiliation(s)
- Eric Lawitz
- Texas Liver Institute, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wisskirchen K, Lucifora J, Michler T, Protzer U. New pharmacological strategies to fight enveloped viruses. Trends Pharmacol Sci 2014; 35:470-8. [PMID: 25108320 PMCID: PMC7112871 DOI: 10.1016/j.tips.2014.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Many emerging or known, chronic viral diseases are caused by enveloped viruses. The review discusses research driven development of antivirals that became recently available or are in clinical evaluation. The main focus is on antiviral strategies with a broader therapeutic range, and on novel immune based therapeutics. Broad-spectrum antivirals will help to react faster to newly emerging viral diseases. Targeting immune cells against infected cells can restore immune responses in chronic infections.
Enveloped viruses pose an important health threat because most of the persistent and many emerging viruses are enveloped. In particular, newly emerging viruses create a need to develop broad-spectrum antivirals, which usually are obtained by targeting host cell factors. Persistent viruses have developed efficient strategies to escape host immune control, and treatment options are limited. Targeting host cell factors essential for virus persistence, or immune-based therapies provide alternative approaches. In this review, we therefore focus on recent developments to generate antivirals targeting host cell factors or immune-based therapeutic approaches to fight infections with enveloped viruses.
Collapse
Affiliation(s)
- Karin Wisskirchen
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany
| | - Julie Lucifora
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany
| | - Thomas Michler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany.
| |
Collapse
|
45
|
Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato Y, Morikawa S, Tashiro M, Sata T, Hasegawa H, Nagata N. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol 2014; 88:8597-614. [PMID: 24850731 PMCID: PMC4135953 DOI: 10.1128/jvi.00983-14] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Severe acute respiratory syndrome-related coronavirus (SARS-CoV) is an emerging pathogen that causes severe respiratory illness. Whole UV-inactivated SARS-CoV (UV-V), bearing multiple epitopes and proteins, is a candidate vaccine against this virus. However, whole inactivated SARS vaccine that includes nucleocapsid protein is reported to induce eosinophilic infiltration in mouse lungs after challenge with live SARS-CoV. In this study, an ability of Toll-like receptor (TLR) agonists to reduce the side effects of UV-V vaccination in a 6-month-old adult BALB/c mouse model was investigated, using the mouse-passaged Frankfurt 1 isolate of SARS-CoV. Immunization of adult mice with UV-V, with or without alum, resulted in partial protection from lethal doses of SARS-CoV challenge, but extensive eosinophil infiltration in the lungs was observed. In contrast, TLR agonists added to UV-V vaccine, including lipopolysaccharide, poly(U), and poly(I·C) (UV-V+TLR), strikingly reduced excess eosinophilic infiltration in the lungs and induced lower levels of interleukin-4 and -13 and eotaxin in the lungs than UV-V-immunization alone. Additionally, microarray analysis showed that genes associated with chemotaxis, eosinophil migration, eosinophilia, and cell movement and the polarization of Th2 cells were upregulated in UV-V-immunized but not in UV-V+TLR-immunized mice. In particular, CD11b(+) cells in the lungs of UV-V-immunized mice showed the upregulation of genes associated with the induction of eosinophils after challenge. These findings suggest that vaccine-induced eosinophil immunopathology in the lungs upon SARS-CoV infection could be avoided by the TLR agonist adjuvants. IMPORTANCE Inactivated whole severe acute respiratory syndrome-related coronavirus (SARS-CoV) vaccines induce neutralizing antibodies in mouse models; however, they also cause increased eosinophilic immunopathology in the lungs upon SARS-CoV challenge. In this study, the ability of adjuvant Toll-like receptor (TLR) agonists to reduce the side effects of UV-inactivated SARS-CoV vaccination in a BALB/c mouse model was tested, using the mouse-passaged Frankfurt 1 isolate of SARS-CoV. We found that TLR stimulation reduced the high level of eosinophilic infiltration that occurred in the lungs of mice immunized with UV-inactivated SARS-CoV. Microarray analysis revealed that genes associated with chemotaxis, eosinophil migration, eosinophilia, and cell movement and the polarization of Th2 cells were upregulated in UV-inactivated SARS-CoV-immunized mice. This study may be helpful for elucidating the pathogenesis underlying eosinophilic infiltration resulting from immunization with inactivated vaccine.
Collapse
Affiliation(s)
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
46
|
Association of Toll-like receptor 3 polymorphisms with chronic hepatitis B and hepatitis B-related acute-on-chronic liver failure. Inflammation 2013; 36:413-8. [PMID: 23076446 DOI: 10.1007/s10753-012-9560-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the major causes of chronic liver inflammation. Toll-like receptor 3 (TLR3) plays a key role in innate immunity and is responsible for recognizing viral pathogens. It has been reported that the TLR3 C1234T polymorphism is associated with various diseases. The aim of this study was to investigate whether TLR3 polymorphisms were correlated with susceptibility to chronic HBV infection. Two polymorphisms in the TLR3 gene, A952T and C1234T, were tested by direct sequencing in 452 chronic hepatitis B (CHB) patients and 462 healthy controls. Data showed that subjects carrying 1234CT genotype and TT genotype had 1.42-fold and 2.31-fold increased risk of chronic HBV infection compared to those with CC genotype (95 % confidence interval [CI] = 1.08-1.86, p = 0.012; 95 % CI = 1.34-3.96, p = 0.002, respectively). Further analysis revealed that the prevalence of 1234CT genotype and T allele was significantly increased in CHB patients with acute-on-chronic liver failure (ACLF) than those without ACLF (odds ratio [OR] = 1.55, p = 0.030; OR = 1.43, p = 0.040, respectively). These results indicate that TLR3 C1234T polymorphism could be a risk factor for the development of chronic HBV infection, especially the CHB-related ACLF.
Collapse
|
47
|
Li G, Zheng Z. Toll-like receptor 3 genetic variants and susceptibility to hepatocellular carcinoma and HBV-related hepatocellular carcinoma. Tumour Biol 2013; 34:1589-94. [PMID: 23404408 DOI: 10.1007/s13277-013-0689-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/03/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive cancer with few treatment options. Toll-like receptor 3 (TLR3) plays a key role in innate immunity and may affect the development of cancers. This study aimed to investigate whether TLR3 polymorphisms were associated with susceptibility to HCC. Two polymorphisms in the TLR3 gene, -976T/A and +1234C/T, were tested by polymerase chain reaction-restriction fragment length polymorphism in 466 HCC patients and 482 healthy controls. Results showed that the prevalence of +1234CT genotype and +1234TT genotype were significantly increased in the HCC cases than in controls (odds ratio [OR] =1.51; 95 % confidence interval [CI]; 1.22-1.93; p=0.004 and OR=3.19; 95 % CI, 1.82-5.39; p=1.99 × 10(-5), respectively). The -976T/A polymorphism did not reveal any differences between cases and controls. When analyzing the TLR3 +1234C/T polymorphism with different clinical parameters in HCC patients, the cases who were hepatitis B virus (HBV) carriers had higher number of +1234CT genotype and +1234T allele than those without HBV infection (p=0.032 and p=0.043). These data indicate that TLR3 +1234C/T polymorphism could be a novel risk factor for HCC, especially the HBV-related HCC.
Collapse
Affiliation(s)
- Guanggang Li
- Department of ICU, General Hospital of Beijing Military Command, Beijing, 100700, China
| | | |
Collapse
|
48
|
Yoo E, Crall BM, Balakrishna R, Malladi SS, Fox LM, Hermanson AR, David SA. Structure–activity relationships in Toll-like receptor 7 agonistic 1H-imidazo[4,5-c]pyridines. Org Biomol Chem 2013; 11:6526-45. [DOI: 10.1039/c3ob40816g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Lopatin U, Wolfgang G, Tumas D, Frey CR, Ohmstede C, Hesselgesser J, Kearney B, Moorehead L, Subramanian GM, McHutchison JG. Safety, pharmacokinetics and pharmacodynamics of GS-9620, an oral Toll-like receptor 7 agonist. Antivir Ther 2013; 18:409-18. [DOI: 10.3851/imp2548] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 01/27/2023]
|
50
|
Burtness B, Marur S, Bauman JE, Golemis EA, Mehra R, Cohen SJ. Comment on "epidermal growth factor receptor is essential for toll-like receptor 3 signaling". Sci Signal 2012; 5:lc5. [PMID: 23233526 DOI: 10.1126/scisignal.2003734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) play important roles in tumor growth, which has stimulated efforts toward the design of targeted cancer therapeutics that inhibit their function. A growing body of literature indicates that EGFR and mTOR are also essential to support a functional innate immune response. Hence, although combination therapies that block both EGFR and mTOR may have improved activity against tumors, they may also place patients at risk of fulminant infections. We discuss data supporting this hypothesis.
Collapse
Affiliation(s)
- Barbara Burtness
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|