1
|
Heida A, Hamilton MT, Gambino J, Sanderson K, Schoen ME, Jahne MA, Garland J, Ramirez L, Quon H, Lopatkin AJ, Hamilton KA. Population Ecology-Quantitative Microbial Risk Assessment (QMRA) Model for Antibiotic-Resistant and Susceptible E. coli in Recreational Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40008406 DOI: 10.1021/acs.est.4c07248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/27/2025]
Abstract
Understanding and predicting the role of waterborne environments in transmitting antimicrobial-resistant (AMR) infections are critical for public health. A population ecology-quantitative microbial risk assessment (QMRA) model is proposed to evaluate urinary tract infection (UTI) development due to recreational waterborne exposures to Escherichia coli (E. coli) and antibiotic-resistant extended-spectrum β-lactamase-producing (ESBL) E. coli. The horizontal gene transfer (HGT) mechanism of conjugation and other evolutionary factors were modeled separately in the environment and the gut. Persistence/dilution dominated HGT in the environment; however, HGT highly impacted predicted ESBL populations in the body. Predicted disability life year (DALY) risks from exposure to ESBL E. coli at concentrations consistent with US recreational water criteria were less than the 10-6 pppy benchmark value but greater than the susceptible E. coli DALY risks associated with a UTI health outcome. However, the prevailing susceptible dose-response relationship may underestimate ESBL risk if HGT rates in vivo approach those reported in vitro. A sensitivity analysis demonstrated that DALY values, E. coli/ESBL concentrations, and exposure parameters were influential on predicted risks. The model is a preliminary tool to begin the expansion of the QMRA paradigm to explore the impacts of evolutionary changes in AMR risk assessment.
Collapse
Affiliation(s)
- Ashley Heida
- School for Engineering of Matter, Transport and Energy, Arizona State University, 502 E Tyler Mall, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
| | - Mark T Hamilton
- Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, United States
- New England Research and Development Center, Microsoft, 1 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Julia Gambino
- Duke University, Durham, North Carolina 27708, United States
| | | | - Mary E Schoen
- Soller Environmental, 3022 King St. Berkeley, California 94703, United States
| | - Michael A Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Jr. Dr., Cincinnati, Ohio 45268, United States
| | - Jay Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Jr. Dr., Cincinnati, Ohio 45268, United States
| | - Lucia Ramirez
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
| | - Hunter Quon
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| | - Allison J Lopatkin
- Department of Chemical Engineering, University of Rochester, 500 Joseph C. Wilson Blvd, Rochester, New York 14627, United States
- Department of Microbiology and Immunology, University of Rochester, 500 Joseph C. Wilson Blvd, Rochester, New York 14627, United States
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
2
|
Silvester R, Perry WB, Webster G, Rushton L, Baldwin A, Pass DA, Healey N, Farkas K, Craine N, Cross G, Kille P, Weightman AJ, Jones DL. Metagenomics unveils the role of hospitals and wastewater treatment plants on the environmental burden of antibiotic resistance genes and opportunistic pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178403. [PMID: 39798461 DOI: 10.1016/j.scitotenv.2025.178403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/13/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Antimicrobial resistance (AMR) is a global health challenge, with hospitals and wastewater treatment plants (WWTPs) serving as significant pathways for the dissemination of antibiotic resistance genes (ARGs). This study investigates the potential of wastewater-based epidemiology (WBE) as an early warning system for assessing the burden of AMR at the population level. In this comprehensive year-long study, effluent was collected weekly from three large hospitals, and treated and untreated wastewater were collected monthly from three associated community WWTPs. Metagenomic analysis revealed a significantly higher relative abundance and diversity of ARGs in hospital wastewater than in WWTPs. Notably, ARGs conferring resistance to clinically significant antibiotics such as β-lactams, aminoglycosides, sulfonamides, and tetracyclines were more prevalent in hospital effluents. Conversely, resistance genes associated with rifampicin and MLS (macrolides-lincosamide-streptogramin) were more commonly detected in the WWTPs, particularly in the treated effluent. Network analysis identified the potential bacterial hosts, which are the key carriers of these ARGs. The study further highlighted the variability in ARG removal efficiencies across the WWTPs, with none achieving complete elimination of ARGs or a significant reduction in bacterial diversity. Additionally, ARG profiles remained relatively consistent in hospital and community wastewater throughout the study, indicating a persistent release of a baseload of ARGs and pathogenic bacteria into surface waters, potentially polluting aquatic environments and entering the food chain. The study underscores the need for routine WBE surveillance, enhanced wastewater treatment strategies, and hospital-level source control measures to mitigate AMR dissemination into the environment.
Collapse
Affiliation(s)
- Reshma Silvester
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd Ll57 2UW, UK.
| | - William B Perry
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Gordon Webster
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Laura Rushton
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Amy Baldwin
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Daniel A Pass
- Compass Bioinformatics, 17 Habershon Street, Cardiff CF24 2DU, UK
| | - Nathaniel Healey
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd Ll57 2UW, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd Ll57 2UW, UK
| | - Noel Craine
- Public Health Wales, Microbiology Department, Ysbyty Gwynedd, Bangor LL57 2PW, UK
| | - Gareth Cross
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cathays Park, Cardiff CF10 3NQ, UK
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd Ll57 2UW, UK
| |
Collapse
|
3
|
Bonanno Ferraro G, Brandtner D, Franco A, Iaconelli M, Mancini P, Veneri C, Briancesco R, Coccia AM, Suffredini E, Muratore A, Ferrara F, Lucentini L, Piccioli A, La Rosa G. Global quantification and distribution of antibiotic resistance genes in oceans and seas: Anthropogenic impacts and regional variability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176765. [PMID: 39395504 DOI: 10.1016/j.scitotenv.2024.176765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
The global spread of antibiotic resistance genes (ARGs) in the marine environment poses a significant threat to public health and natural ecosystems. This study quantified and analysed the distribution and co-occurrence patterns of ARGs in a wide range of oceans and high seas, including the Atlantic, Arctic and Indian Ocean, the Mediterranean Sea and the Persian Gulf. Focusing on beta-lactamases (blaOXA-48, blaCTX-M-1 group, and blaTEM), sulfonamides (sul1) and tetracycline (tetA), our results showed that sul1 was ubiquitous, indicating widespread dissemination. Notably, the Mediterranean Sea exhibited higher levels of multiple ARGs in single samples, suggesting significant anthropogenic impact. Interestingly, the Arctic Ocean, particularly around the Svalbard Islands, also showed the presence of multiple ARGs, highlighting the pervasive occurrence of antibiotic resistance in remote areas. We employed two clustering approaches to explore ARG patterns, primarily focusing on identifying geographic trends and differences in ARG abundance. Additionally, we investigated potential sources of contamination, including proximity to wastewater treatment plants, ports, marine traffic, and currents. These findings clearly demonstrate that antibiotic resistance gene contamination is widespread across diverse marine environments, with significant regional variations. This underscores the urgent need for tailored intervention strategies and global collaboration to mitigate the spread of ARGs and manage their complex dynamics in marine ecosystems.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy.
| | - D Brandtner
- Departments of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - A Franco
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - C Veneri
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - R Briancesco
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - A M Coccia
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Muratore
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - F Ferrara
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - L Lucentini
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - A Piccioli
- Office of the Director General - Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Davidova-Gerzova L, Lausova J, Sukkar I, Nechutna L, Kubackova P, Krutova M, Bezdicek M, Dolejska M. Multidrug-resistant ESBL-producing Klebsiella pneumoniae complex in Czech hospitals, wastewaters and surface waters. Antimicrob Resist Infect Control 2024; 13:141. [PMID: 39593189 PMCID: PMC11590221 DOI: 10.1186/s13756-024-01496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria pose a significant challenge to the treatment of infectious diseases. Of particular concern are members of the Klebsiella pneumoniae species complex (KpSC), which are frequently associated with hospital-acquired infections and have the potential to spread outside hospitals via wastewaters. In this study, we aimed to investigate the occurrence and phylogenetic relatedness of MDR KpSC from patients with urinary tract infections (UTIs), hospital sewage, municipal wastewater treatment plants (mWWTPs) and surface waters and to evaluate the clinical relevance of the KpSC subspecies. METHODS A total of 372 KpSC isolates resistant to third-generation cephalosporins and/or meropenem were collected from patients (n = 130), hospital sewage (n = 95), inflow (n = 54) and outflow from the mWWTPs (n = 63), river upstream (n = 13) and downstream mWWTPs (n = 17) from three cities in the Czech Republic. The isolates were characterized by antimicrobial susceptibility testing and whole-genome sequencing (Illumina). The presence of antibiotic resistance genes, plasmid replicons and virulence-associated factors was determined. A phylogenetic tree and single nucleotide polymorphism matrix were created to reveal the relatedness between isolates. RESULTS The presence of MDR KpSC isolates (95%) was identified in all water sources and locations. Most isolates (99.7%) produced extended-spectrum beta-lactamases encoded by blaCTX-M-15. Resistance to carbapenems (5%) was observed mostly in wastewaters, but carbapenemase genes, such as blaGES-51 (n = 10), blaOXA-48 (n = 4), blaNDM-1 (n = 4) and blaKPC-3 (n = 1), were found in isolates from all tested locations and different sources except rivers. Among the 73 different sequence types (STs), phylogenetically related isolates were observed only among the ST307 lineage. Phylogenetic analysis revealed the transmission of this lineage from patients to the mWWTP and from the mWWTP to the adjacent river and the presence of the ST307 clone in the mWWTP over eight months. We confirmed the frequent abundance of K. pneumoniae (K. pneumoniae sensu stricto and K. pneumoniae subsp. ozaenae) in patients suffering from UTIs. K. variicola isolates formed only a minor proportion of UTIs, and K. quasipneumoniae was not found among UTIs isolates; however, these subspecies were frequently observed in hospital sewage communities during the first sampling period. CONCLUSION This study provides evidence of the transmission and persistence of the ST307 lineage from UTIs isolates via mWWTPs to surface waters. Isolates from UTIs consisted mostly of K. pneumoniae. Other isolates of KpSC were observed in hospital wastewaters, which implies the impact of sources other than UTIs. This study highlights the influence of urban wastewaters on the spread of MDR KpSC to receiving environments.
Collapse
Affiliation(s)
- Lenka Davidova-Gerzova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jarmila Lausova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, University of Veterinary Sciences VETUNI Brno, Brno, Czech Republic
| | - Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czech Republic
| | - Lucie Nechutna
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Petra Kubackova
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic.
- Department of Biology and Wildlife Diseases, University of Veterinary Sciences VETUNI Brno, Brno, Czech Republic.
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czech Republic.
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
5
|
Mendoza-Guido B, Barrantes K, Rodríguez C, Rojas-Jimenez K, Arias-Andres M. The Impact of Urban Pollution on Plasmid-Mediated Resistance Acquisition in Enterobacteria from a Tropical River. Antibiotics (Basel) 2024; 13:1089. [PMID: 39596782 PMCID: PMC11591392 DOI: 10.3390/antibiotics13111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The exposure of environmental bacteria to contaminants in aquatic ecosystems accelerates the dissemination of antibiotic-resistance genes (ARGs) through horizontal gene transfer (HGT). Methods: In this study, we sampled three locations along a contamination gradient of a polluted river, focusing on isolating Enterobacteria from the surface waters to investigate the relationship between urban pollution and antibiotic resistance. The genomes of 15 isolates (5 per site) were sequenced to identify plasmid-borne ARGs and their association with resistance phenotypes. Results: Isolates from the site with the highest contamination (Site 3) showeda larger number of ARGs, plasmids, and resistance phenotypes. Notably, one of the isolates analyzed, E. coli A231-12, exhibited phenotypic resistance to seven antibiotics, presumably conferred by a single plasmid carrying 12 ARGs. Comparative analysis of this plasmid revealed its close evolutionary relationship with another IncH plasmid hosted by Salmonella enterica, underscoring its high ARG burden in the aquatic environment. Other plasmids identified in our isolates carried sul and dfrA genes, conferring resistance to trimethoprim/sulfamethoxazole, a commonly prescribed antibiotic combination in clinical settings. Conclusions: These results highlight the critical need to expand research on the link between pollution and plasmid-mediated antimicrobial resistance in aquatic ecosystems, which can act as reservoirs of ARGs.
Collapse
Affiliation(s)
- Bradd Mendoza-Guido
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, San José P.O. Box 11501-2060, Costa Rica; (B.M.-G.); (K.B.)
| | - Kenia Barrantes
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, San José P.O. Box 11501-2060, Costa Rica; (B.M.-G.); (K.B.)
- Programa de Doctorado en Ciencias Naturales para el Desarrollo, Universidad Estatal a Distancia, San José P.O. Box 474-2050, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José P.O. Box 11501-2060, Costa Rica;
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, San José P.O. Box 11501-2060, Costa Rica
| | - Maria Arias-Andres
- Instituto Regional de Estudios en Sustancias Tóxicas, Universidad Nacional de Costa Rica, Heredia P.O. Box 86-3000, Costa Rica
| |
Collapse
|
6
|
Serra Comineti CDS, Schlindwein MM, de Oliveira Hoeckel PH. Socio-environmental externalities of sewage waste management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174109. [PMID: 38908579 DOI: 10.1016/j.scitotenv.2024.174109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Conventional sewage management is expensive and inefficient, putting the environment and public health at risk, making access to sewage services difficult for everyone. Reusing sewage waste has agricultural and economic potential, but can contain harmful contaminants if not treated properly. This review is based on the hypothesis that the destination of sewage waste generates environmental and social externalities, which have not yet been widely compared. With the aim of identifying, from the literature, the socio-environmental externalities generated by different sewage waste management approaches, a systematic review of the literature was carried out, including 244 documents, with 50 % of these discussing impacts of conventional treatment and 37 % analyzing the reuse of waste. The main impacts and externalities were evaluated in three situations: untreated sewage, treated sewage, and reused waste. The results indicate that sewage waste has an underutilized economic value and can generate revenue, reduce operational costs and electricity expenses. Six negative externalities generated by conventional sewage treatment were identified: health costs; environmental cleaning; carbon offsetting; damage to tourism; damage to fishing and agriculture; and real estate depreciation. In reuse, there is a risk of two negative externalities: health costs and environmental cleaning, but two positive externalities were also identified: the reduction of phosphate rock mining and the neutralization of carbon credits. The complexity of the transition to sustainable sewage treatment practices is highlighted given the lack of consensus on the safe use of sewage waste, the lack of regulatory standardization, implementation costs and differences in regional parameters, highlighting the need for preliminary experimentation in a multidisciplinary and contextualized approach, considering comparative externalities among the available sewage waste management possibilities.
Collapse
Affiliation(s)
- Camila da Silva Serra Comineti
- Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Cidade Universitária, Dourados 79.804-970, Brazil; Federal University of Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n° | Bairro Universitário, Campo Grande 79.070-900, Brazil.
| | - Madalena Maria Schlindwein
- Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Cidade Universitária, Dourados 79.804-970, Brazil.
| | | |
Collapse
|
7
|
Lu Z, Liu G, Xie H, Zhai Y, Li X. Advances and solutions in biological treatment for antibiotic wastewater with resistance genes: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122115. [PMID: 39121628 DOI: 10.1016/j.jenvman.2024.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/11/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Biological treatment represents a fundamental component of wastewater treatment plants (WWTPs). The transmission of antibiotic resistance bacteria (ARB) and resistance genes (ARGs) occurred through the continuous migration and transformation, attributed to the residual presence of antibiotics in WWTPs effluent, posing a significant threat to the entire ecosystem. It is necessary to propose novel biological strategies to address the challenge of refractory contaminants, such as antibiotics, ARGs and ARB. This review summarizes the occurrence of antibiotics in wastewater, categorized by high and low concentrations. Additionally, current biological treatments used in WWTPs, such as aerobic activated sludge, anaerobic digestion, sequencing batch reactor (SBR), constructed wetland, membrane-related bioreactors and biological aerated filter (BAF) are introduced. In particular, because microorganisms are the key to those biological treatments, the effect of high and low concentration of antibiotics on microorganisms are thoroughly discussed. Finally, solutions involving functional bacteria, partial nitrification (PN)-Anammox and lysozyme embedding are suggested from the perspective of the entire biological treatment process. Overall, this review provides valuable insights for the simultaneous removal of antibiotics and ARGs in antibiotics wastewater.
Collapse
Affiliation(s)
- Ziyi Lu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hongwei Xie
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yining Zhai
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
8
|
George PBL, Hillary LS, Leclerc S, Cooledge EC, Lemieux J, Duchaine C, Jones DL. Needles in haystacks: monitoring the potential escape of bioaerosolised antibacterial resistance genes from wastewater treatment plants with air and phyllosphere sampling. Can J Microbiol 2024; 70:348-357. [PMID: 38608289 DOI: 10.1139/cjm-2023-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/14/2024]
Abstract
Wastewater treatment plants are well-known point sources of emissions of antibacterial resistance genes (ARGs) into the environment. Although most work to date has focused on ARG dispersal via effluent, aerial dispersal in bioaerosols is a poorly understood, but likely important vector for ARG dispersal. Recent evidence suggests that ARG profiles of the conifer needle phyllosphere could be used to measure bioaerosol dispersal from anthropogenic sources. Here, we assessed airborne dispersal of ARGs from wastewater treatment plants in Wales, UK and Quebec, Canada, using conifer needles as passive bioaerosol monitors. ARG profiles of wastewater were compared to those of conifer phyllosphere using high-throughput qPCR. ARG richness was significantly lower in conifer phyllosphere samples than wastewater samples, though no differences were observed across the dispersal gradients. Mean copy number of ARGs followed a similar trend. ARG profiles showed limited, but consistent patterns with increasing distance from wastewater treatment plants, but these did not align with those of wastewater samples. For example, proportional abundance of aminoglycosides decreased over the dispersal gradient in Wales, whereas mobile genetic elements showed the inverse relationship. In summary, while distinct ARG profiles exist along dispersal gradients, links to those of wastewater were not apparent.
Collapse
Affiliation(s)
- Paul B L George
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Luke S Hillary
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Samantha Leclerc
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Emily C Cooledge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Joanie Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Caroline Duchaine
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
9
|
Robins K, O'Donnell G, Neumann A, Schmidt W, Hart A, Graham DW. Antimicrobial resistance in rural rivers: Comparative study of the Coquet (Northumberland) and Eden (Cumbria) River catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172348. [PMID: 38614353 DOI: 10.1016/j.scitotenv.2024.172348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Many studies have characterised resistomes in river microbial communities. However, few have compared resistomes in parallel rural catchments that have few point-source inputs of antimicrobial genes (ARGs) and organisms (i.e., AMR) - catchments where one can contrast more nebulous drivers of AMR in rural rivers. Here, we used quantitative microbial profiling (QMP) to compare resistomes and microbiomes in two rural river catchments in Northern England, the Coquet and Eden in Northumberland and Cumbria, respectively, with different hydrological and geographical conditions. The Eden has higher flow rates, higher annual surface runoff, and longer periods of soil saturation, whereas the Coquet is drier and has lower flowrates. QMP analysis showed the Eden contained significantly more abundant microbes associated with soil sources, animal faeces, and wastewater than the Coquet, which had microbiomes like less polluted rivers (Wilcoxon test, p < 0.01). The Eden also had greater ARG abundances and resistome diversity (Kruskal Wallis, p < 0.05), and higher levels of potentially clinically relevant ARGs. The Eden catchment had greater and flashier runoff and more extensive agricultural land use in its middle reach, which explains higher levels of AMR in the river. Hydrological and geographic factors drive AMR in rural rivers, which must be considered in environmental monitoring programmes.
Collapse
Affiliation(s)
- Katie Robins
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Greg O'Donnell
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Anke Neumann
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Wiebke Schmidt
- Chief Scientists Group, Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Alwyn Hart
- Chief Scientists Group, Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
10
|
Denissen J, Havenga B, Reyneke B, Khan S, Khan W. Comparing antibiotic resistance and virulence profiles of Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa from environmental and clinical settings. Heliyon 2024; 10:e30215. [PMID: 38720709 PMCID: PMC11076977 DOI: 10.1016/j.heliyon.2024.e30215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Antibiotic resistance and virulence profiles of Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa, isolated from water sources collected in informal settlements, were compared to clinical counterparts. Cluster analysis using repetitive extragenic palindromic sequence-based polymerase chain reaction (REP-PCR) indicated that, for each respective species, low genetic relatedness was observed between most of the clinical and environmental isolates, with only one clinical P. aeruginosa (PAO1) and one clinical K. pneumoniae (P2) exhibiting high genetic similarity to the environmental strains. Based on the antibiograms, the clinical E. faecium Ef CD1 was extensively drug resistant (XDR); all K. pneumoniae isolates (n = 12) (except K. pneumoniae ATCC 13883) were multidrug resistant (MDR), while the P. aeruginosa (n = 16) isolates exhibited higher susceptibility profiles. The tetM gene (tetracycline resistance) was identified in 47.4 % (n = 6 environmental; n = 3 clinical) of the E. faecium isolates, while the blaKPC gene (carbapenem resistance) was detected in 52.6 % (n = 7 environmental; n = 3 clinical) and 15.4 % (n = 2 environmental) of the E. faecium and K. pneumoniae isolates, respectively. The E. faecium isolates were predominantly poor biofilm formers, the K. pneumoniae isolates were moderate biofilm formers, while the P. aeruginosa isolates were strong biofilm formers. All E. faecium and K. pneumoniae isolates were gamma (γ)-haemolytic, non-gelatinase producing (E. faecium only), and non-hypermucoviscous (K. pneumoniae only), while the P. aeruginosa isolates exhibited beta (β)-haemolysis and produced gelatinase. The fimH (type 1 fimbriae adhesion) and ugE (uridine diphosphate galacturonate 4-epimerase synthesis) virulence genes were detected in the K. pneumoniae isolates, while the P. aeruginosa isolates possessed the phzM (phenazine production) and algD (alginate biosynthesis) genes. Similarities in antibiotic resistance and virulence profiles of environmental and clinical E. faecium, K. pneumoniae, and P. aeruginosa, thus highlights the potential health risks posed by using environmental water sources for daily water needs in low-and-middle-income countries.
Collapse
Affiliation(s)
- Julia Denissen
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| |
Collapse
|
11
|
Begmatov S, Beletsky AV, Dorofeev AG, Pimenov NV, Mardanov AV, Ravin NV. Metagenomic insights into the wastewater resistome before and after purification at large‑scale wastewater treatment plants in the Moscow city. Sci Rep 2024; 14:6349. [PMID: 38491069 PMCID: PMC10942971 DOI: 10.1038/s41598-024-56870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Wastewater treatment plants (WWTPs) are considered to be hotspots for the spread of antibiotic resistance genes (ARGs). We performed a metagenomic analysis of the raw wastewater, activated sludge and treated wastewater from two large WWTPs responsible for the treatment of urban wastewater in Moscow, Russia. In untreated wastewater, several hundred ARGs that could confer resistance to most commonly used classes of antibiotics were found. WWTPs employed a nitrification/denitrification or an anaerobic/anoxic/oxic process and enabled efficient removal of organic matter, nitrogen and phosphorus, as well as fecal microbiota. The resistome constituted about 0.05% of the whole metagenome, and after water treatment its share decreased by 3-4 times. The resistomes were dominated by ARGs encoding resistance to beta-lactams, macrolides, aminoglycosides, tetracyclines, quaternary ammonium compounds, and sulfonamides. ARGs for macrolides and tetracyclines were removed more efficiently than beta-lactamases, especially ampC, the most abundant ARG in the treated effluent. The removal efficiency of particular ARGs was impacted by the treatment technology. Metagenome-assembled genomes of multidrug-resistant strains were assembled both for the influent and the treated effluent. Ccomparison of resistomes from WWTPs in Moscow and around the world suggested that the abundance and content of ARGs depend on social, economic, medical, and environmental factors.
Collapse
Affiliation(s)
- Shahjahon Begmatov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071.
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Alexander G Dorofeev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Nikolai V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071.
| |
Collapse
|
12
|
Anokyewaa Appau AA, Ofori LA. Antibiotic Resistance Profile of E. coli Isolates from Lettuce, Poultry Manure, Irrigation Water, and Soil in Kumasi, Ghana. Int J Microbiol 2024; 2024:6681311. [PMID: 38312829 PMCID: PMC10838198 DOI: 10.1155/2024/6681311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Inputs such as irrigation water and poultry manure used in lettuce cultivation have been found to be associated with antibiotic-resistant pathogens. The study assessed the antibiotic resistance profile of Escherichia coli isolated from lettuce, poultry manure, irrigation water, and soil in Kumasi. One hundred and fifty-six samples of lettuce, irrigation water, soil, and manure were collected from three farms over a seven-week cultivation period (seedlings to harvest stage). E. coli were enumerated using standard methods. 98% of the samples were positive for E. coli. Geometric means for lettuce, irrigation water, and soil ranged from 2.0 × 105 to 1.67 × 107 MPN/100 ml while that of manure ranged from 2.0 × 105 to 1.31 × 107 MPN/100 ml. Generally, the microbial load of all parameters on all farms across the weeks was significant and exceeded World Health Organization (WHO) and International Commission on Microbiological Specifications for Foods (ICMSF) standard recommendations for food. Using the Kirby Bauer method, antibiotic sensitivity testing was performed against 225 biochemically confirmed E. coli with twelve antibiotics. Relatively high resistance was recorded for some members of the beta-lactam class: meropenem: 94.2%, ampicillin: 91.9%, cefuroxime: 95.1%, ceftriaxone: 94.7%, and cefotaxime: 94.2%. Eighty of the isolates were screened for extended spectrum beta lactamase (ESBL) production using cefotaxime (CTX) and cefotaxime/clavulanic acid (CTX/CLA) discs and three showed positive: one each from poultry manure, irrigation water, and soil. Polymerase chain reaction (PCR) confirmed the presence of blaCTX-M gene. The occurrence of antibiotic-resistant E. coli in vegetables and their production environment is alarming and poses serious health threats to the general public. The presence of blaCTX-M gene in E. coli from a vegetable production site recorded for the first time in Ghana requires enforcement by regulatory bodies on the inappropriate use of antibiotics in the country.
Collapse
Affiliation(s)
| | - Linda Aurelia Ofori
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science Technology, Kumasi, Ghana
| |
Collapse
|
13
|
Cimen C, Noster J, Stelzer Y, Rump A, Sattler J, Berends M, Voss A, Hamprecht A. Surface water in Lower Saxony: A reservoir for multidrug-resistant Enterobacterales. One Health 2023; 17:100606. [PMID: 37583366 PMCID: PMC10424258 DOI: 10.1016/j.onehlt.2023.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
The emergence of extended-spectrum β-lactamase and carbapenemase-producing Enterobacterales (ESBL-E and CPE, respectively) is a threat to modern medicine, as infections become increasingly difficult to treat. These bacteria have been detected in aquatic environments, which raises concerns about the potential spread of antibiotic resistance through water. Therefore, we investigated the occurrence of ESBL-E and CPE in surface water in Lower Saxony, Germany, using phenotypic and genotypic methods. Water samples were collected from two rivers, five water canals near farms, and 18 swimming lakes. ESBL-E and CPE were isolated from these samples using filters and selective agars. All isolates were analyzed by whole genome sequencing. Multidrug-resistant Enterobacterales were detected in 4/25 (16%) water bodies, including 1/2 rivers, 2/5 water canals and 1/18 lakes. Among all samples, isolates belonging to five different species/species complexes were detected: Escherichia coli (n = 10), Enterobacter cloacae complex (n = 4), Citrobacter freundii (n = 3), Citrobacter braakii (n = 2), and Klebsiella pneumoniae (n = 2). Of the 21 isolates, 13 (62%) were resistant at least to 3rd generation cephalosporins and eight (38%) additionally to carbapenems. CPE isolates harbored blaKPC-2 (n = 5), blaKPC-2 and blaVIM-1 (n = 2), or blaOXA-181 (n = 1); additionally, mcr-9 was detected in one isolate. Two out of eight CPE isolates were resistant to cefiderocol and two to colistin. Resistance to 3rd generation cephalosporins was mediated by ESBL (n = 10) or AmpC (n = 3). The presence of AmpC-producing Enterobacterales, ESBL-E and CPE in northern German surface water samples is alarming and highlights the importance of aquatic environments as a potential source of MDR bacteria.
Collapse
Affiliation(s)
- Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Janina Noster
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Yvonne Stelzer
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Andreas Rump
- University Institute for Medical Genetics, Klinikum Oldenburg, Oldenburg, Germany
| | - Janko Sattler
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Matthijs Berends
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
- Certe Medical Diagnostics and Advice Foundation, Department of Medical Epidemiology, Groningen, the Netherlands
| | - Andreas Voss
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Axel Hamprecht
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Sekizuka T, Yamaguchi N, Kanamori H, Kuroda M. Multiplex Hybrid Capture Improves the Deep Detection of Antimicrobial Resistance Genes from Wastewater Treatment Plant Effluents to Assess Environmental Issues. Microb Drug Resist 2023; 29:510-515. [PMID: 37433210 DOI: 10.1089/mdr.2023.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/13/2023] Open
Abstract
Metagenomic sequencing (mDNA-seq) is one of the best approaches to address antimicrobial resistance (AMR) issues and characterize AMR genes (ARGs) and their host bacteria (ARB); however, the sensitivity provided is insufficient for the overall detection in wastewater treatment plant (WWTP) effluents because the effluent is well treated. This study investigated the multiplex hybrid capture (xHYB) method (QIAseq × HYB AMR Panel) and its potential to increase AMR assessment sensitivity. The mDNA-Seq analysis suggested that the WWTP effluents had an average of 104 reads per kilobase of gene per million (RPKM) for the detection of all targeted ARGs, whereas xHYB significantly improved detection at 601,576 RPKM, indicating an average 5,805-fold increase in sensitivity. For instance, sul1 was detected at 15 and 114,229 RPKM using mDNA-seq and xHYB, respectively. The blaCTX-M, blaKPC, and mcr gene variants were not detected by mDNA-Seq but were detected by xHYB at 67, 20, and 1,010 RPKM, respectively. This study demonstrates that the multiplex xHYB method could be a suitable evaluation standard with high sensitivity and specificity for deep-dive detection, highlighting a broader illustration of ongoing dissemination in the entire community.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjyuku, Tokyo, Japan
| | - Nobuyasu Yamaguchi
- Department of Environmental Health, Osaka Institute of Public Health, Osaka, Japan
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjyuku, Tokyo, Japan
| |
Collapse
|
15
|
Cong X, Krolla P, Khan UZ, Savin M, Schwartz T. Antibiotic resistances from slaughterhouse effluents and enhanced antimicrobial blue light technology for wastewater decontamionation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109315-109330. [PMID: 37924165 PMCID: PMC10622382 DOI: 10.1007/s11356-023-29972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/19/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023]
Abstract
The frequencies of 6 different facultative pathogenic bacteria of the ESKAPE group (priority list WHO) and a total of 14 antibiotic resistance genes (ARGs) with different priorities for human medicine were quantified in wastewaters of poultry and pig slaughterhouses using molecular biological approaches. Raw sewage from poultry and pig slaughterhouses was found to be contaminated not only with facultative pathogenic bacteria but also with various categories of clinically relevant ARGs, including ARGs against the reserve antibiotics group. The concentration of the different gene targets decreased after on-site conventional biological or advanced oxidative wastewater treatments, but was not eliminated. Hence, the antimicrobial BlueLight (aBL) in combination with a porphyrin photo-sensitizer was studied with ESKAPE bacteria and real slaughterhouse wastewaters. The applied broad LED-based blue light (420-480 nm) resulted in groups of sensitive, intermediate, and non-sensitive ESKAPE bacteria. The killing effect of aBL was increased in the non-sensitive bacteria Klebsiella pneumoniae and Enterococcus faecium due to the addition of porphyrins in concentrations of 10-6 M. Diluted slaughterhouse raw wastewater was treated with broad spectrum aBL and in combination with porphyrin. Here, the presence of the photo-sensitizer enhanced the aBL biocidal impact.
Collapse
Affiliation(s)
- Xiaoyu Cong
- Microbiology/Molecular Biology Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Krolla
- Microbiology/Molecular Biology Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Umer Zeb Khan
- Bioengineering Department, Faculty Life Sciences, Rhein-Waal University of Applied Sciences, Marie Curie Straße 1, 47533, Kleve, Germany
| | - Mykhailo Savin
- Institute for Hygiene and Public Health (IHPH), Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Thomas Schwartz
- Microbiology/Molecular Biology Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
16
|
Marutescu LG, Popa M, Gheorghe-Barbu I, Barbu IC, Rodríguez-Molina D, Berglund F, Blaak H, Flach CF, Kemper MA, Spießberger B, Wengenroth L, Larsson DGJ, Nowak D, Radon K, de Roda Husman AM, Wieser A, Schmitt H, Pircalabioru Gradisteanu G, Vrancianu CO, Chifiriuc MC. Wastewater treatment plants, an "escape gate" for ESCAPE pathogens. Front Microbiol 2023; 14:1193907. [PMID: 37293232 PMCID: PMC10244645 DOI: 10.3389/fmicb.2023.1193907] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Marcela Popa
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Daloha Rodríguez-Molina
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology – IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Fanny Berglund
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Hetty Blaak
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Merel Aurora Kemper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Beate Spießberger
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Laura Wengenroth
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - D. G. Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Andreas Wieser
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Heike Schmitt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gratiela Pircalabioru Gradisteanu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Romanian Academy of Sciences, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| |
Collapse
|
17
|
Davidova-Gerzova L, Lausova J, Sukkar I, Nesporova K, Nechutna L, Vlkova K, Chudejova K, Krutova M, Palkovicova J, Kaspar J, Dolejska M. Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli. Front Cell Infect Microbiol 2023; 13:1184081. [PMID: 37256105 PMCID: PMC10225658 DOI: 10.3389/fcimb.2023.1184081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Hospitals and wastewater are recognized hot spots for the selection and dissemination of antibiotic-resistant bacteria to the environment, but the total participation of hospitals in the spread of nosocomial pathogens to municipal wastewater treatment plants (WWTPs) and adjacent rivers had not previously been revealed. Methods We used a combination of culturing and whole-genome sequencing to explore the transmission routes of Escherichia coli from hospitalized patients suffering from urinary tract infections (UTI) via wastewater to the environment. Samples were collected in two periods in three locations (A, B, and C) and cultured on selective antibiotic-enhanced plates. Results In total, 408 E. coli isolates were obtained from patients with UTI (n=81), raw hospital sewage (n=73), WWTPs inflow (n=96)/outflow (n=106), and river upstream (n=21)/downstream (n=31) of WWTPs. The majority of the isolates produced extended-spectrum beta-lactamase (ESBL), mainly CTX-M-15, and showed multidrug resistance (MDR) profiles. Seven carbapenemase-producing isolates with GES-5 or OXA-244 were obtained in two locations from wastewater and river samples. Isolates were assigned to 74 different sequence types (ST), with the predominance of ST131 (n=80) found in all sources including rivers. Extraintestinal pathogenic lineages frequently found in hospital sewage (ST10, ST38, and ST69) were also found in river water. Despite generally high genetic diversity, phylogenetic analysis of ST10, ST295, and ST744 showed highly related isolates (SNP 0-18) from different sources, providing the evidence for the transmission of resistant strains through WWTPs to surface waters. Discussion Results of this study suggest that 1) UTI share a minor participation in hospitals wastewaters; 2) a high diversity of STs and phylogenetic groups in municipal wastewaters derive from the urban influence rather than hospitals; and 3) pathogenic lineages and bacteria with emerging resistance genotypes associated with hospitals spread into surface waters. Our study highlights the contribution of hospital and municipal wastewater to the transmission of ESBL- and carbapenemase-producing E. coli with MDR profiles to the environment.
Collapse
Affiliation(s)
- Lenka Davidova-Gerzova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jarmila Lausova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Kristina Nesporova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Lucie Nechutna
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Katerina Vlkova
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Katerina Chudejova
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jana Palkovicova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jakub Kaspar
- Center of Cardiovascular and Transplant Surgery, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czechia
| |
Collapse
|
18
|
Drk S, Puljko A, Dželalija M, Udiković-Kolić N. Characterization of Third Generation Cephalosporin- and Carbapenem-Resistant Aeromonas Isolates from Municipal and Hospital Wastewater. Antibiotics (Basel) 2023; 12:antibiotics12030513. [PMID: 36978380 PMCID: PMC10044312 DOI: 10.3390/antibiotics12030513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Antibiotic resistance (AR) remains one of the greatest threats to global health, and Aeromonas species have the potential to spread AR in the aquatic environment. The spread of resistance to antibiotics important to human health, such as third-generation cephalosporins (3GCs) and carbapenems, is of great concern. We isolated and identified 15 cefotaxime (3GC)- and 51 carbapenem-resistant Aeromonas spp. from untreated hospital and treated municipal wastewater in January 2020. The most common species were Aeromonas caviae (58%), A. hydrophila (17%), A. media (11%), and A. veronii (11%). Almost all isolates exhibited a multidrug-resistant phenotype and harboured a diverse plasmidome, with the plasmid replicons ColE, IncU, and IncR being the most frequently detected. The most prevalent carbapenemase gene was the plasmid-associated blaKPC-2 and, for the first time, the blaVIM-2, blaOXA-48, and blaIMP-13 genes were identified in Aeromonas spp. Among the 3GC-resistant isolates, the blaGES-5 and blaMOX genes were the most prevalent. Of the 10 isolates examined, three were capable of transferring carbapenem resistance to susceptible recipient E. coli. Our results suggest that conventionally treated municipal and untreated hospital wastewater is a reservoir for 3GC- and carbapenem-resistant, potentially harmful Aeromonas spp. that can be introduced into aquatic systems and pose a threat to both the environment and public health.
Collapse
Affiliation(s)
- Sara Drk
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
| | - Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
| | - Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
19
|
Oliveira M, Truchado P, Cordero-García R, Gil MI, Soler MA, Rancaño A, García F, Álvarez-Ordóñez A, Allende A. Surveillance on ESBL- Escherichia coli and Indicator ARG in Wastewater and Reclaimed Water of Four Regions of Spain: Impact of Different Disinfection Treatments. Antibiotics (Basel) 2023; 12:antibiotics12020400. [PMID: 36830310 PMCID: PMC9952245 DOI: 10.3390/antibiotics12020400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In the present study, the occurrence of indicator antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) both in the influent and the effluent of four Spanish wastewater treatment plants (WWTPs) was monitored for 12 months, and the susceptibility profiles of 89 recovered extended spectrum β-lactamase (ESBL)-producing Escherichia coli isolates were obtained against a wide range of antimicrobials. The aim of the study was to better understand whether the current wastewater treatment practices allow us to obtain safe reclaimed water mitigating the spread of ARB and ARGs to the environment. Results showed high concentrations of ESBL-producing E. coli as well as a high prevalence of a range of ARGs in the influent samples. The reclamation treatments implemented in the WWTPs were effective in reducing both the occurrence of ESBL E. coli and ARGs, although significant differences were observed among WWTPs. Despite these reductions in occurrence observed upon wastewater treatment, our findings suggest that WWTP effluents may represent an important source of ARGs, which could be transferred among environmental bacteria and disseminate antimicrobial resistance through the food chain. Remarkably, no major differences were observed in the susceptibility profiles of the ESBL E. coli isolated from influent and effluent waters, indicating that water treatments do not give rise to the emergence of new resistance phenotypes.
Collapse
Affiliation(s)
- Márcia Oliveira
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
- Correspondence: ; Tel.: +34-987291182
| | - Pilar Truchado
- Research Group on Microbiology and Quality of Fruit and Vegetables, Food Science and Technology Department, CEBAS-CSIC, 25, Espinardo, 30100 Murcia, Spain
| | | | - María I. Gil
- Research Group on Microbiology and Quality of Fruit and Vegetables, Food Science and Technology Department, CEBAS-CSIC, 25, Espinardo, 30100 Murcia, Spain
| | - Manuel Abellán Soler
- Entidad Regional de Saneamiento y Depuración de Murcia (ESAMUR), Avda. Juan Carlos I, s/n. Ed. Torre Jemeca, 30009 Murcia, Spain
| | - Amador Rancaño
- Acciona Agua, S.A.U., Avda. de Europa, 18, Parque Empresarial La Moraleja, 28108 Alcobendas, Spain
| | - Francisca García
- Acciona Agua, S.A.U., Avda. de Europa, 18, Parque Empresarial La Moraleja, 28108 Alcobendas, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
- Institute of Food Science and Technology, Universidad de León, 24007 León, Spain
| | - Ana Allende
- Research Group on Microbiology and Quality of Fruit and Vegetables, Food Science and Technology Department, CEBAS-CSIC, 25, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
20
|
Depta J, Niedźwiedzka-Rystwej P. The Phenomenon of Antibiotic Resistance in the Polar Regions: An Overview of the Global Problem. Infect Drug Resist 2023; 16:1979-1995. [PMID: 37034396 PMCID: PMC10081531 DOI: 10.2147/idr.s369023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2022] [Accepted: 07/02/2022] [Indexed: 04/11/2023] Open
Abstract
The increasing prevalence of antibiotic resistance is a global problem in human and animal health. This leads to a reduction in the therapeutic effectiveness of the measures used so far and to the limitation of treatment options, which may pose a threat to human health and life. The problem of phenomenon of antibiotic resistance affects more and more the polar regions. This is due to the increase in tourist traffic and the number of people staying at research stations, unmodernised sewage systems in inhabited areas, as well as the migration of animals or the movement of microplastics, which may contain resistant bacteria. Research shows that the presence of antibiotic resistance genes is more dominant in zones of human and wildlife influence than in remote areas. In a polluted environment, there is evidence of a direct correlation between human activity and the spread and survival of antibiotic-resistant bacteria. Attention should be paid to the presence of resistance to synthetic and semi-synthetic antibiotics in the polar regions, which is likely to be correlated with human presence and activity, and possible steps to be taken. We need to understand many more aspects of this, such as bacterial epigenetics and environmental stress, in order to develop effective strategies for minimizing the spread of antibiotic resistance genes. Studying the diversity and abundance of antibiotic resistance genes in regions with less anthropogenic activity could provide insight into the diversity of primary genes and explain the historical evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Julia Depta
- Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland
- Correspondence: Paulina Niedźwiedzka-Rystwej, Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland, Tel +48 91 444 15 15, Email
| |
Collapse
|
21
|
Murray AK, Zhang L, Snape J, Gaze WH. Functional metagenomic libraries generated from anthropogenically impacted environments reveal importance of metabolic genes in biocide and antibiotic resistance. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100184. [PMID: 36908773 PMCID: PMC9995290 DOI: 10.1016/j.crmicr.2023.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/27/2023] Open
Abstract
Anthropogenic activities result in the release of antimicrobial resistant bacteria and a cocktail of antimicrobial compounds into the environment that may directly select or indirectly co-select for antimicrobial resistance (AMR). Many studies use metagenome sequencing or qPCR-based approaches to study the environmental resistome but these methods are limited by a priori knowledge. In this study, a functional metagenomic approach was used to explore biocide resistance mechanisms in two contaminated environments and a pristine site, and to identify whether potentially novel genes conferring biocide resistance also conferred resistance or reduced susceptibility to antibiotics. Resistance was predominately mediated through novel mechanisms exclusive of the well-known qac efflux genes. UDP-galactose 4-epimerase (galE) -like genes were identified in both contaminated environments and were shown to confer cross-resistance to biocides and clinically important antibiotics for the first time (to our knowledge), compared to knockout mutants. GalE -like genes were also co-located with transposons, suggesting mobilisation potential. These results show that housekeeping genes may play a significant yet underappreciated role in AMR in environmental microbiomes.
Collapse
Affiliation(s)
- Aimee K. Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom
- Corresponding author.
| | - Lihong Zhang
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Jason Snape
- AstraZeneca Global Environment, Alderly Park, Macclesfield, United Kingdom
| | - William H. Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
22
|
Mwakyoma AA, Kidenya BR, Minja CA, Mushi MF, Sandeman A, Sabiti W, Holden MTG, Mshana SE. Comparison of Horizontal blaCTX-M Gene Transfer via Conjugation among Extended Spectrum β-Lactamases Producing Escherichia coli Isolates from Patients with Urinary Tract Infection, Their Animals, and Environment. ARCHIVES OF MOLECULAR BIOLOGY AND GENETICS 2023; 2:1-8. [PMID: 37250807 PMCID: PMC7614579 DOI: 10.33696/genetics.2.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 05/31/2023]
Abstract
Background The dissemination of the extended spectrum β-lactamases (ESBL) producing E. coli poses a significant public health problem. Understanding the efficiency and frequency of horizontal gene transfer via conjugation of ESBL producing E. coli is imperative towards devising prevention and control measures. This study compared the frequencies and efficiencies of horizontal blaCTX-M gene transfer via conjugation among Escherichia coli isolates from urine and gastrointestinal tract (GIT) of patients with urinary tract infection (UTI), their animals and environment. Methods Horizontal blaCTX-M gene transfer via conjugation by a broth mating experiment was performed using 50 confirmed ESBL producing E. coli isolates as donors and Escherichia coli J53 (F-, met, pro, Azr), as the recipient. The transconjugants were detected and their frequencies and efficiencies of conjugation were measured and compared between ESBL producing E. coli isolates multi-sourced from urine, GIT, animals and environment. Antimicrobial susceptibility testing of all resulting transconjugants was performed. DNA was extracted from all transconjugants to confirm the presence and the acquisition of blaCTX-M gene. Results Out of 50 ESBL producing E. coli isolates harboring blaCTX-M gene, 37 (74.0%) successfully exercised horizontal gene transfer through conjugation. All transconjugants were confirmed phenotypically and genotypically by PCR. Of note, all of the isolates from environment 100.0% (7/7) performed conjugation, exhibiting the highest transfer efficiency, followed by isolates from urine and animals, with the conjugation transfer efficiency of 77.8% (14/18) and 76.1% (10/13), respectively. The isolates from the environment conjugated with a significant more efficiency than those from the GIT [Two-sample test of proportions; p-value = 0.0119]. The overall conjugation transfer frequencies ranged from 0.4 × 10-14 - 5.5 × 10-11 per donor cells with the highest median conjugation transfer frequency observed among isolates from animal (3.23 × 10-12 [IQR: 0.70 × 10-12 - 7.22 × 10-12]) followed by that of isolates from the environment (1.60 × 10-12 [IQR: 0.30 × 10-12 - 5.0 × 10-12]). Conclusion ESBL producing E. coli from human, animals and environment exercises horizontal blaCTX-M gene transfer efficiently with the highest occurrence among isolates from the environment and animals. The antimicrobial resistance control and prevention strategies should be widened up to explore strategies to prevent horizontal AMR gene transfer.
Collapse
Affiliation(s)
- Adam A. Mwakyoma
- Department of Bochemistry and Molecular Biology, Catholic University of Health and Allied Sciences, P. O. Box 1464, Bugando, Mwanza, Tanzania
- Department of Clinical Microbiology, Kilimanjaro Christian Medical Centre, P. O. Box 3010 Moshi, Kilimanjaro, Tanzania
| | - Benson R. Kidenya
- Department of Bochemistry and Molecular Biology, Catholic University of Health and Allied Sciences, P. O. Box 1464, Bugando, Mwanza, Tanzania
| | - Caroline A. Minja
- Department of Bochemistry and Molecular Biology, Catholic University of Health and Allied Sciences, P. O. Box 1464, Bugando, Mwanza, Tanzania
| | - Martha F. Mushi
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, P. O. Box 1464, Bugando, Mwanza, Tanzania
| | - Alison Sandeman
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Wilber Sabiti
- School of Medicine, University of St Andrews, St Andrews, UK
| | | | - Stephen E. Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, P. O. Box 1464, Bugando, Mwanza, Tanzania
| |
Collapse
|
23
|
Sekizuka T, Tanaka R, Hashino M, Yatsu K, Kuroda M. Comprehensive Genome and Plasmidome Analysis of Antimicrobial Resistant Bacteria in Wastewater Treatment Plant Effluent of Tokyo. Antibiotics (Basel) 2022; 11:antibiotics11101283. [PMID: 36289941 PMCID: PMC9598598 DOI: 10.3390/antibiotics11101283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 01/01/2023] Open
Abstract
To characterize environmental antimicrobial resistance (AMR) in urban areas, extended-spectrum β-lactamase- (ESBL)/carbapenemase-producing bacteria (EPB/CPB, respectively) from urban wastewater treatment plant effluents in Tokyo were isolated on CHROMagar ESBL plate. Complete genome sequence analysis, including plasmids, indicated that 126 CTX-M-positive isolates (31%) were identified among the 404 obtained isolates. The CTX-M-9 group was predominant (n = 65, 52%), followed by the CTX-M-1 group (n = 44, 35%). Comparative genome analysis revealed that CTX-M-27-positive E. coli O16:H5-ST131-fimH41 exhibited a stable genome structure and clonal-global dissemination. Plasmidome network analysis revealed that 304 complete plasmid sequences among 85 isolates were grouped into 14 incompatibility (Inc) network communities (Co1 to Co14). Co10 consisted of primarily IncFIA/IncFIB plasmids harboring blaCTX-M in E. coli, whereas Co12 consisted primarily of IncFIA(HI1)/Inc FIB(K) plasmids harboring blaCTX-M, blaKPC, and blaGES in Klebsiella spp. Co11 was markedly located around Co10 and Co12. Co11 exhibited blaCTX-M, blaKPC, and blaNDM, and was mainly detected in E. coli and Klebsiella spp. from human and animal sources, suggesting a mutual role of Co11 in horizontal gene transfer between E. coli and Klebsiella spp. This comprehensive resistome analysis uncovers the mode of relational transfer among bacterial species, highlighting the potential source of AMR burden on public health in urban communities.
Collapse
|
24
|
Sekizuka T, Itokawa K, Tanaka R, Hashino M, Yatsu K, Kuroda M. Metagenomic Analysis of Urban Wastewater Treatment Plant Effluents in Tokyo. Infect Drug Resist 2022; 15:4763-4777. [PMID: 36039320 PMCID: PMC9419991 DOI: 10.2147/idr.s370669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Urban wastewater treatment plant (WWTP) effluents, even with proper treatment, may cause antimicrobial resistance (AMR) burden, with a high frequency of acquired antimicrobial resistance genes (ARGs). The dissemination of ARGs into the environment increases the risk of infectious diseases; however, there is little direct evidence regarding their epidemiological effects. This study aimed to assess effluents from urban WWTPs around the Tama River and Tokyo Bay using metagenomic analysis of (AMR) genes (ARGs) and heavy-metal resistance genes. Methods Metagenomic DNA-seq analysis of water samples and resistome analysis were performed. Results The most prevalent ARG was the sulfonamide resistance gene, sul1, followed by the quaternary ammonium compound resistance gene, qacE, suggesting that basic gene sets (sul1 and ∆qacE) in the class 1 integrons are the predominant ARGs. The aminoglycoside resistance genes, aadA and aph, and macrolide resistance genes, msr(E) and mph(E), were the predominant ARGs against each antimicrobial. bla OXA and bla GES were frequently detected, whereas the bla CTX-M cluster was faintly detected. Non-metric multidimensional scaling plot analysis and canonical correspondence analysis results suggested that marked differences in ARGs could be involved in the seasonal differences; qnrS2, aac(6')-Ib, and mef(C) increased markedly in summer, whereas msr(E) was more frequently detected in winter. Heavy-metal (Hg and Cu) resistance genes (HMRGs) were significantly detected in effluents from all WWTPs. Conclusion We characterized a baseline level of the environmental ARG/HMRG profile in the overall community, suggesting that environmental AMR surveillance, particularly in urban WWTPs, is a valuable first step in monitoring the AMR dissemination of bacteria from predominantly healthy individuals carrying notable ARG/Bs.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Rina Tanaka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Masanori Hashino
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Koji Yatsu
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| |
Collapse
|
25
|
Damashek J, Westrich JR, McDonald JMB, Teachey ME, Jackson CR, Frye JG, Lipp EK, Capps KA, Ottesen EA. Non-point source fecal contamination from aging wastewater infrastructure is a primary driver of antibiotic resistance in surface waters. WATER RESEARCH 2022; 222:118853. [PMID: 35870389 DOI: 10.1016/j.watres.2022.118853] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/20/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance is a global threat to human health. Many surface water resources are environmental hotspots of antibiotic resistant gene (ARG) transfer, with agricultural runoff and human waste highlighted as common sources of ARGs to aquatic systems. Here we quantified fecal marker genes and ARGs in 992 stream water samples collected seasonally during a 5-year period from 115 sites across the Upper Oconee watershed (Georgia, USA), an area characterized by gradients of agricultural and urban development. Widespread fecal contamination was found from humans (48% of samples), ruminants (55%), and poultry (19%), and 73% of samples tested positive for at least one of the six targeted ARGs (ermB, tet(B), blaCTX-M-1, blaKPC, blaSHV, and qnrS). While ARGs were strongly correlated with human fecal markers, many highly contaminated samples were not associated with sewage outfalls, an expected source of fecal and ARG pollution. To determine sources of contamination, we synthesized ARG and fecal marker data with geospatial data on land use/land cover and wastewater infrastructure across the watershed. This novel analysis found strong correlations between ARGs and measures of sewer density, sewer length, and septic system age within sample watersheds, indicating non-point sources of fecal contamination from aging wastewater infrastructure can be critical disseminators of anthropogenic ARGs in the environment.
Collapse
Affiliation(s)
- Julian Damashek
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA 30602, USA
| | - Jason R Westrich
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA 30602, USA
| | - Jacob M Bateman McDonald
- Lewis F. Rogers Institute for Environmental and Spatial Analysis, University of North Georgia, 2636 Mathis Drive, Oakwood, GA 30566, USA
| | - Morgan E Teachey
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA 30602, USA
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, 950 College Station Road, Athens, GA 30605, USA
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, 950 College Station Road, Athens, GA 30605, USA
| | - Erin K Lipp
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, USA
| | - Krista A Capps
- Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602, USA; Savannah River Ecology Laboratory, University of Georgia, SRS Building 737A, Aiken, SC 29808, USA
| | - Elizabeth A Ottesen
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA 30602, USA.
| |
Collapse
|
26
|
Ferreira C, Abreu-Silva J, Manaia CM. The balance between treatment efficiency and receptor quality determines wastewater impacts on the dissemination of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128933. [PMID: 35460999 DOI: 10.1016/j.jhazmat.2022.128933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/28/2021] [Revised: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 05/09/2023]
Abstract
This study investigated the balance between treatment efficiency and impact caused by urban wastewater treatment plants (UWTPs) on the dissemination of antibiotic resistance. Four full-scale UWTPs (PT1-PT4) and the receiving river were sampled over four campaigns. The 16 S rRNA gene, two mobile genetic elements (MGEs), eight antibiotic resistance genes (ARGs), and culturable bacteria were monitored over different treatment stages and in hospital effluent. The bacterial and antibiotic resistance load was not significantly different in the inflow of the four UWTPs (p > 0.01). Biological treatment promoted ARGs reduction values up to 2.5 log-units/mL, while UV (PT1, PT2) or sand filtration/ozonation (PT3) led to removal values < 0.6 log-units/mL. The final effluent of PT3, with the highest removal rates and significantly lower ARGs abundance, was not significantly different from the receiving water body. Emerging ARGs (e.g., blaVIM, blaOXA-48, and blaKPC) were sporadically detected in the river, although more frequent downstream. Hospital effluent might contribute for the occurrence of some, but not all these ARGs in the river. A major conclusion was that the impact of the UWTPs on the river was not only determined by treatment efficiency and final effluent quality, but also by the background contamination of the river and/or dilution rate.
Collapse
Affiliation(s)
- Catarina Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Abreu-Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
27
|
Lopes R, Furlan JPR, Rodrigues Dos Santos LD, Stehling EG. Detection of CTX-M-27-positive endophytic Escherichia coli ST131 lineage C1/H30R subclade carrying bla KPC-2 on an IncX3-IncU plasmid in a fresh vegetable. J Glob Antimicrob Resist 2022; 30:178-179. [PMID: 35738387 DOI: 10.1016/j.jgar.2022.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2022] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Ralf Lopes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Lucas David Rodrigues Dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.
| |
Collapse
|
28
|
Mounsey O, Wareham K, Hammond A, Findlay J, Gould VC, Morley K, Cogan TA, Turner KM, Avison MB, Reyher KK. Evidence that faecal carriage of resistant Escherichia coli by 16-week-old dogs in the United Kingdom is associated with raw feeding. One Health 2022; 14:100370. [PMID: 35146110 PMCID: PMC8802057 DOI: 10.1016/j.onehlt.2022.100370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
We report a survey (August 2017 to March 2018) and risk factor analysis of faecal carriage of antibacterial-resistant (ABR) Escherichia coli in 223 16-week-old dogs in the United Kingdom. Raw feeding was associated with the presence of fluoroquinolone-resistant (FQ-R) E. coli and those resistant to tetracycline, amoxicillin, and streptomycin, but not to cefalexin. Whole genome sequencing of 36 FQ-R E. coli isolates showed a wide range of sequence types (STs), with almost exclusively mutational FQ-R dominated by ST744 and ST162. Comparisons between E. coli isolates from puppies known to be located within a 50 × 50 km region with those isolated from human urinary tract infections (isolated in parallel in the same region) identified an ST744 FQ-R lineage that was carried by one puppy and caused one urinary tract infection. Accordingly, we conclude that raw feeding is associated with carriage of ABR E. coli in dogs even at 16 weeks of age and that bacteria carried by puppies are shared with humans. We therefore suggest that those who feed their dogs raw meat seriously consider the potential ABR-transmission threat their pet may become as a result and deploy appropriate hygiene practices in mitigation.
Collapse
Affiliation(s)
- Oliver Mounsey
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Kezia Wareham
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - Ashley Hammond
- University of Bristol Medical School, Population Health Sciences, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom
| | - Jacqueline Findlay
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Virginia C. Gould
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - Katy Morley
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - Tristan A. Cogan
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - Katy M.E. Turner
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
- University of Bristol Medical School, Population Health Sciences, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom
| | - Matthew B. Avison
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Kristen K. Reyher
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| |
Collapse
|
29
|
Jesumirhewe C, Springer B, Allerberger F, Ruppitsch W. Genetic Characterization of Antibiotic Resistant Enterobacteriaceae Isolates From Bovine Animals and the Environment in Nigeria. Front Microbiol 2022; 13:793541. [PMID: 35283848 PMCID: PMC8916115 DOI: 10.3389/fmicb.2022.793541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
There is a link between antibiotic resistance in humans, livestock and the environment. This study was carried out to characterize antibiotic resistant bovine and environmental Enterobacteriaceae isolates from Edo state, Nigeria. A total of 109 consecutive isolates of Enterobacteriaceae were isolated from March–May 2015 from 150 fecal samples of healthy bovine animals from three farms at slaughter in Edo state Nigeria. Similarly, 43 Enterobacteriaceae isolates were also obtained from a total of 100 environmental samples from different sources. Isolates were recovered and identified from samples using standard microbiological techniques. Recovered isolates were pre-identified by the Microbact Gram-Negative identification system and confirmed with Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and ribosomal multilocus sequence typing (rMLST). Antibiotic susceptibility testing was carried out by Kirby-Bauer method for 14 antibiotics. Whole genome sequencing (WGS) was carried out for isolate characterization and identification of resistance determinants. Out of 109 animal and 43 environmental Enterobacteriaceae isolates, 18 (17%) and 8 (19%) isolates based on selection criteria showed antibiotic resistance and were further investigated by whole genome sequencing (WGS). Resistance genes were detected in all (100%) of the resistant bovine and environmental Enterobacteriaceae isolates. The resistance determinants included β-lactamase genes, aminoglycoside modifying enzymes, qnr genes, sulfonamide, tetracycline and trimethoprim resistance genes, respectively. Out of the 18 and 8 resistant animal and environmental isolates 3 (17%) and 2 (25%) were multidrug resistant (MDR) and had resistance determinants which included efflux genes, regulatory systems modulating antibiotic efflux and antibiotic target alteration genes. Our study shows the dissemination of antibiotic resistance especially MDR strains among Nigerian bovine and environmental Enterobacteriaceae isolates. The presence of these resistant strains in animals and the environment constitute a serious health concern indicated by the difficult treatment options of the infections caused by these organisms. To the best of our knowledge we report the first detailed genomic characterization of antibiotic resistance in bovine and environmental Enterobacteriaceae isolates for Nigeria.
Collapse
Affiliation(s)
- Christiana Jesumirhewe
- Department of Pharmaceutical Microbiology, Prof Dora Akunyili College of Pharmacy, Igbinedion University, Okada, Nigeria
- *Correspondence: Christiana Jesumirhewe,
| | - Burkhard Springer
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Franz Allerberger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
30
|
Leonard AF, Morris D, Schmitt H, Gaze WH. Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Curr Opin Microbiol 2022; 65:40-46. [PMID: 34739925 DOI: 10.1016/j.mib.2021.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance (AMR) is widely recognised as a considerable threat to human health, wellbeing and prosperity. Many clinically important antibiotic resistance genes are understood to have originated in the natural environment. However, the complex interactions between humans, animals and the environment makes the health implications of environmental AMR difficult to quantify. This narrative review focuses on the current state of knowledge regarding antibiotic resistant bacteria (ARB) in natural bathing waters and implications for human health. It considers the latest research focusing on the transmission of ARB from bathing waters to humans. The limitations of existing evidence are discussed, as well as research priorities. The authors are of the opinion that future studies should include faecally contaminated bathing waters and people exposed to these environments to accurately parameterise environment-to-human transmission.
Collapse
Affiliation(s)
- Anne Fc Leonard
- University of Exeter Medical School, Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, UK.
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland
| | - Heike Schmitt
- National Institute for Public Health and the Environment (RIVM), Centre for Zoonoses and Environmental Microbiology - Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - William H Gaze
- University of Exeter Medical School, Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|
31
|
Rangama S, Lidbury IDEA, Holden JM, Borsetto C, Murphy ARJ, Hawkey PM, Wellington EMH. Mechanisms Involved in the Active Secretion of CTX-M-15 β-Lactamase by Pathogenic Escherichia coli ST131. Antimicrob Agents Chemother 2021; 65:e0066321. [PMID: 34310213 PMCID: PMC8448145 DOI: 10.1128/aac.00663-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Infections caused by antimicrobial-resistant bacterial pathogens are fast becoming an important global health issue. Strains of Escherichia coli are common causal agents of urinary tract infection and can carry multiple resistance genes. This includes the gene blaCTX-M-15, which encodes an extended-spectrum beta-lactamase (ESBL). While studying antimicrobial resistance (AMR) in the environment, we isolated several strains of E. coli ST131 downstream of a wastewater treatment plan (WWTP) in a local river. These isolates were surviving in the river sediment, and characterization proved that a multiresistant phenotype was evident. Here, we show that E. coli strain 48 (river isolate ST131) provided a protective effect against a third-generation cephalosporin (cefotaxime) for susceptible E. coli strain 33 (river isolate ST3576) through secretion of a functional ESBL into the growth medium. Furthermore, extracellular ESBL activity was stable for at least 24 h after secretion. Proteomic and molecular genetic analyses identified CTX-M-15 as the major secreted ESBL responsible for the observed protective effect. In contrast to previous studies, outer membrane vesicles (OMVs) were not the route for CTX-M-15 secretion. Indeed, mutation of the type I secretion system led to a significant reduction in the growth of the ESBL-producing strain as well as a significantly reduced ability to confer protective effect. We speculate that CTX-M-15 secretion, mediated through active secretion using molecular machinery, provides a public goods service by facilitating the survival of otherwise susceptible bacteria in the presence of cefotaxime.
Collapse
Affiliation(s)
- Severine Rangama
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ian D. E. A. Lidbury
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Department of Animal and Plant Science, The University of Sheffield, Sheffield, United Kingdom
| | - Jennifer M. Holden
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Micropathology Ltd., University of Warwick Science Park, Coventry, United Kingdom
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Peter M. Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | | |
Collapse
|
32
|
Valizadeh S, Yousefi B, Abdolshahi A, Emadi A, Eslami M. Determination of genetic relationship between environmental Escherichia coli with PFGE and investigation of IS element in bla CTX-M gene of these isolates. Microb Pathog 2021; 159:105154. [PMID: 34419612 DOI: 10.1016/j.micpath.2021.105154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2021] [Revised: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION ESBL producing Escherichia coli (E. coli) have spread in the hospital settings. The aims of this study determination of genetic relationship between Environmental E. coli with PFGE typing and investigation of IS element in blaCTX-M gene of these isolates. MATERIALS AND METHODS A total of 50 E. coli isolates were collected from hospital environmental. The blaCTX-M producing E. coli and IS element of this gene with phylogenetic typing were detected by PCR. The PFGE was performed to detect genetic relationships between this strains. RESULTS Most of the isolates were from urology wards, other samples were isolated from ICU, surgery and orthopedic ward. The majority of isolates were resistant to cefotaxime and ceftazidime antibiotics and also phosphomycin antibiotic resistant were detected in 10% of isolates. CTX-M gene was detected in 72% of isolates. Moreover, ISEcp1, IS26a, and IS26b were detected upstream of CTX-M in 24%, 8% and 16 of isolates. A phylogroup was the most frequent and PFGE analysis exhibited a diverse distribution of E. coli isolates. CONCLUSIONS The results demonstrated the existence of CTX-M-producing E. coli in a hospital environment which is a source for drug-resistant strains. In the most of strains, ISEcp1 was located in the upstream of CTX-M gene and Orf477 was found in the downstream. However, in some strains, IS26 was inserted within the ISEcp1element. Our results show that despite the fact that antibiotics of phosphomycin are not used in this hospital, resistance to phosphomycin was observed in the environmental E. coli.
Collapse
Affiliation(s)
- Saeid Valizadeh
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Anna Abdolshahi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Emadi
- Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
33
|
Analysis of Wastewater Reveals the Spread of Diverse Extended-Spectrum β-Lactamase-Producing E. coli Strains in uMgungundlovu District, South Africa. Antibiotics (Basel) 2021; 10:antibiotics10070860. [PMID: 34356780 PMCID: PMC8300763 DOI: 10.3390/antibiotics10070860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bacteria (ARB), favouring antibiotic resistance genes (ARGs) interchange among bacteria and they can provide valuable information on ARB circulating in a community. This study characterised extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from the influent and effluent of four WWTPs in uMgungundlovu District, KwaZulu-Natal, South Africa. E. coli was enumerated using the membrane filtration method and confirmed using the API 20E test and real-time polymerase chain reaction. ESBL-producers were phenotypically identified by their susceptibility to the third-generation cephalosporins using the disc diffusion and the double-disc synergy methods against cefotaxime (30 µg) with and without 10 µg clavulanic acid. Genotypic verification was by PCR of the TEM, SHV, and CTX-M genes. The clonality of isolates was assessed by ERIC-PCR. The highest E. coli count ranged between 1.1 × 105 (influent) and 4.3 × 103 CFU/mL (effluent). Eighty pure isolates were randomly selected, ten from the influent and effluent of each of the four WWTP. ESBLs were phenotypically confirmed in 49% (n = 39) of the isolates, of which 77% (n = 30) were genotypically confirmed. Seventy-three percent of the total isolates were multidrug-resistant (MDR). Only two isolates were susceptible to all antibiotics. Overall, resistance to first and second-generation cephalosporins was higher than to third and fourth generation cephalosporins. Also, 15% of the isolates were resistant to carbapenems. The CTX-M-type ESBL (67%; n = 20) was the most common ESBL antibiotic resistance gene (ARG) followed by TEM (57%; n = 17) and SHV-types (27%; n = 8). Also, a substantial number of isolates simultaneously carried all three ESBL genes. ERIC-PCR revealed a high diversity of isolates. The diversity of the isolates observed in the influent samples suggest the potential circulation of different ESBL-producing strains within the studied district, requiring a more comprehensive epidemiological study to prevent the spread of ESBL-producing bacteria within impoverished communities.
Collapse
|
34
|
Conte D, Palmeiro J, Bavaroski A, Rodrigues L, Cardozo D, Tomaz A, Camargo J, Dalla‐Costa L. Antimicrobial resistance in
Aeromonas
species isolated from aquatic environments in Brazil. J Appl Microbiol 2021; 131:169-181. [DOI: https:/doi.org/10.1111/jam.14965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/30/2023]
Affiliation(s)
- D. Conte
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
| | - J.K. Palmeiro
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
- Departamento de Análises Clínicas Universidade Federal de Santa Catarina (ACL‐UFSC) Florianópolis, Santa Catarina Brazil
| | - A.A. Bavaroski
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
| | - L.S. Rodrigues
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
| | - D. Cardozo
- Liga Paranaese de Combate ao Câncer ‐ Hospital Erasto Gaertner (HEG) Curitiba, Paraná Brazil
| | - A.P. Tomaz
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
- Complexo Hospital de ClínicasUniversidade Federal do Paraná (CHC‐UFPR) Curitiba, Paraná Brazil
| | - J.O. Camargo
- Departamento de Bioquímica e Biologia Molecular Universidade Federal do Paraná (UFPR) Curitiba, Paraná Brazil
- Setor de Educação Profissional e Tecnológica (SEPT) Programa de Graduação em Bioinformática Universidade Federal do Paraná (UFPR) Curitiba, Paraná Brazil
| | - L.M. Dalla‐Costa
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
| |
Collapse
|
35
|
Schwermer CU, Uhl W. Calculating expected effects of treatment effectivity and river flow rates on the contribution of WWTP effluent to the ARG load of a receiving river. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112445. [PMID: 33823442 DOI: 10.1016/j.jenvman.2021.112445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/22/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Concentrations of genetic markers for antibiotic resistance genes (ARGs) were measured in the effluents of three Norwegian wastewater treatment plants (WWTPs) and in a receiving river upstream and downstream of the discharge point of one WWTP. Calculations based on mass balances were carried out to evaluate the impact of river flow rates and treatment effectivity on the WWTP's contribution to the load of genetic markers in the river. At average river flow rates, the WWTP effluent contributes 5-15% to the genetic marker load of the respective river. However, at minimum river flow rates, the WWTP effluent contributes 22-55% to the loads of different genetic markers. Scenarios of an improved or worsened removal of genetic markers in the WWTP showed that a further 1-log removal using additional treatment would be sufficient to improve considerably the river water quality with respect to genetic markers. Then, at an average flow rate, the contribution of the WWTP effluent to the load of the river would be less than 2%. However, in the case of low treatment effectivity or malfunction of the WWTP, the marker load of the river would increase dramatically. Even at average flow rate, 75-92% of the marker load would then originate from the WWTP. The results demonstrate the importance of considering the flow rates and hydrologic characteristics of the recipient water body when deciding on priorities regarding the upgrade of WWTPs for further removal of ARGs.
Collapse
Affiliation(s)
| | - Wolfgang Uhl
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway; Aquateam COWI AS, Karvesvingen 2, 0579, Oslo, Norway; Norwegian University of Science and Technology (NTNU), Department of Civil and Environmental Engineering, S. P Andersens vei 5, 7491, Trondheim, Norway.
| |
Collapse
|
36
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
37
|
Distinct Resistomes and Microbial Communities of Soils, Wastewater Treatment Plants and Households Suggest Development of Antibiotic Resistances Due to Distinct Environmental Conditions in Each Environment. Antibiotics (Basel) 2021; 10:antibiotics10050514. [PMID: 34062756 PMCID: PMC8147267 DOI: 10.3390/antibiotics10050514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
The use of antibiotics in humans and animals results in a release of excess antibiotic residues into the environment through wastewaters and insufficient removal in wastewater treatment plants (WWTP), leading to increasing numbers of bacteria enriched in antibiotic resistance genes (ARG). However, the potential transfer of ARG and their host bacteria between different environments remains largely unexplored. Since many factors need to be fulfilled for a transfer between different environments, we hypothesized that antibiotic resistance (ABR) is less frequently transferred between environments in the same geographical region but rather develops and clusters in each distinct environment, leading to characteristic metagenome patterns in samples of different environments. We sampled agricultural soils, a WWTP and private households and performed metagenomic analyses to evaluate differences and potential overlaps in bacterial communities and resistomes of different environments. Wastewater revealed significantly higher richness of ARG (n = 40) and mobile genetic elements (n = 52) than soil and household samples. Bacterial communities differed between the environments and antibiotic resistance factors clustered distinctly. Overall, only few overlaps of ARG between the environments were observed, leading to the conclusion that ABR predominantly develops in individual environments as caused by environmental filtering for ARG, while a transfer between different environments is less likely.
Collapse
|
38
|
Draft Genome Sequences of Seven Extended-Spectrum β-Lactamase-Producing Escherichia coli Strains Isolated from New Zealand Waterways. Microbiol Resour Announc 2021; 10:10/11/e01445-20. [PMID: 33737369 PMCID: PMC7975887 DOI: 10.1128/mra.01445-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Draft genomes of seven extended-spectrum β-lactamase (ESBL)-producing Escherichia coli strains recovered from New Zealand waterways are described. The mean genome size was 5.1 Mb, with 4,724 coding sequences. All genomes contained the ESBL gene blaCTX-M, and one carried a plasmid-mediated AmpC gene, blaCMY-2. A multidrug-resistant genotype was detected in three isolates. Draft genomes of seven extended-spectrum β-lactamase (ESBL)-producing Escherichia coli strains recovered from New Zealand waterways are described. The mean genome size was 5.1 Mb, with 4,724 coding sequences. All genomes contained the ESBL gene blaCTX-M, and one carried a plasmid-mediated AmpC gene, blaCMY-2. A multidrug-resistant genotype was detected in three isolates.
Collapse
|
39
|
Kutilova I, Medvecky M, Leekitcharoenphon P, Munk P, Masarikova M, Davidova-Gerzova L, Jamborova I, Bortolaia V, Pamp SJ, Dolejska M. Extended-spectrum beta-lactamase-producing Escherichia coli and antimicrobial resistance in municipal and hospital wastewaters in Czech Republic: Culture-based and metagenomic approaches. ENVIRONMENTAL RESEARCH 2021; 193:110487. [PMID: 33232750 DOI: 10.1016/j.envres.2020.110487] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/01/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Wastewaters serve as important hot spots for antimicrobial resistance and monitoring can be used to analyse the abundance and diversity of antimicrobial resistance genes at the level of large bacterial and human populations. In this study, whole genome sequencing of beta-lactamase-producing Escherichia coli and metagenomic analysis of whole-community DNA were used to characterize the occurrence of antimicrobial resistance in hospital, municipal and river waters in the city of Brno (Czech Republic). Cefotaxime-resistant E. coli were mainly extended-spectrum beta-lactamase (ESBL) producers (95.6%, n = 158), of which the majority carried blaCTX-M (98.7%; n = 151) and were detected in all water samples except the outflow from hospital wastewater treatment plant. A wide phylogenetic diversity was observed among the sequenced E. coli (n = 78) based on the detection of 40 sequence types and single nucleotide polymorphisms (average number 34,666 ± 15,710) between strains. The metagenomic analysis revealed a high occurrence of bacterial genera with potentially pathogenic members, including Pseudomonas, Escherichia, Klebsiella, Aeromonas, Enterobacter and Arcobacter (relative abundance >50%) in untreated hospital and municipal wastewaters and predominance of environmental bacteria in treated and river waters. Genes encoding resistance to aminoglycosides, beta-lactams, quinolones and macrolides were frequently detected, however blaCTX-M was not found in this dataset which may be affected by insufficient sequencing depth of the samples. The study pointed out municipal treated wastewater as a possible source of multi-drug resistant E. coli and antimicrobial resistance genes for surface waters. Moreover, the combination of two different approaches provided a more holistic view on antimicrobial resistance in water environments. The culture-based approach facilitated insight into the dynamics of ESBL-producing E. coli and the metagenomics shows abundance and diversity of bacteria and antimicrobial resistance genes vary across water sites.
Collapse
Affiliation(s)
- Iva Kutilova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Matej Medvecky
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; Biomedical Center, Faculty of Medicine, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Patrick Munk
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Martina Masarikova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Lenka Davidova-Gerzova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Ivana Jamborova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Valeria Bortolaia
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Sünje J Pamp
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Monika Dolejska
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic; Biomedical Center, Faculty of Medicine, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
40
|
Conte D, Palmeiro JK, Bavaroski AA, Rodrigues LS, Cardozo D, Tomaz AP, Camargo JO, Dalla-Costa LM. Antimicrobial resistance in Aeromonas species isolated from aquatic environments in Brazil. J Appl Microbiol 2020; 131:169-181. [PMID: 33306232 DOI: 10.1111/jam.14965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022]
Abstract
AIM The current study was conducted to determine the antimicrobial resistance profile and genetic relatedness of Aeromonas sp. isolated from healthcare and urban effluents, wastewater treatment plant (WWTP) and river water. METHODS AND RESULTS We detected the presence of genes conferring resistance to β-lactam, quinolone and aminoglycoside. Multilocus sequence typing was carried out to differentiate the strains, and multilocus phylogenetic analysis was used to identify the species. A total of 28 cefotaxime-resistant Aeromonas sp. strains were identified, harbouring uncommon Guiana-extended-spectrum (GES)-type β-lactamases (GES-1, GES-5, GES-7 and GES-16). Multidrug-resistant Aeromonas sp. were found in hospital wastewater, WWTP and sanitary effluent, and A. caviae was identified as the most prevalent species (85·7%). CONCLUSION The release of untreated healthcare effluents, presence of antimicrobials in the environment, in addition to multidrug-resistant Aeromonas sp., are all potential factors for the spread of resistance. SIGNIFICANCE AND IMPACT OF THE STUDY We identified a vast repertoire of antimicrobial resistance genes (ARG) in Aeromonas sp. from diverse aquatic ecosystems, including those that encode enzymes degrading broad-spectrum antimicrobials widely used to treat healthcare-associated infections. Hospital and sanitary effluents serve as potential sources of bacteria harbouring ARG and are a threat to public health.
Collapse
Affiliation(s)
- D Conte
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| | - J K Palmeiro
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil.,Departamento de Análises Clínicas, Universidade Federal de Santa Catarina (ACL-UFSC), Florianópolis, Santa Catarina, Brazil
| | - A A Bavaroski
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| | - L S Rodrigues
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| | - D Cardozo
- Liga Paranaese de Combate ao Câncer - Hospital Erasto Gaertner (HEG), Curitiba, Paraná, Brazil
| | - A P Tomaz
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil.,Complexo Hospital de Clínicas, Universidade Federal do Paraná (CHC-UFPR), Curitiba, Paraná, Brazil
| | - J O Camargo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil.,Setor de Educação Profissional e Tecnológica (SEPT), Programa de Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - L M Dalla-Costa
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| |
Collapse
|
41
|
Lenart-Boroń A, Prajsnar J, Guzik M, Boroń P, Chmiel M. How much of antibiotics can enter surface water with treated wastewater and how it affects the resistance of waterborne bacteria: A case study of the Białka river sewage treatment plant. ENVIRONMENTAL RESEARCH 2020; 191:110037. [PMID: 32810499 DOI: 10.1016/j.envres.2020.110037] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/12/2019] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to gain insight into the presence of antibiotics, occurrence of antimicrobial resistance and prevalence of extended-spectrum β-lactamase (ESBL) genes in Escherichia coli in surface water, based on the example of the Białka river, located in one of the most attractive tourist destinations in Poland. Water samples were collected in three sites: in the Tatra National Park (TNP), by the sewage discharge from the local treatment plant (STP) and c.a. 3 km downstream (DSTP). The analyses included determination of antibiotic content, enumeration of bacterial indicators of poor water quality, isolation and identification of Escherichia coli, which was subjected to antimicrobial susceptibility tests and assessment of ESBL-determining genes. Fourteen antimicrobials out of 24 tested were detected in river waters in varying concentrations. Trimethoprim and ofloxacin were most frequently detected. Most antibiotics were absent in the TNP, the highest numbers and the highest concentrations of antibiotics were observed by the STP discharge to decrease their content downstream. Culture-based tests of microbiological contamination showed similar results. Resistance to ampicillin was most frequent (64.5% strains), followed by cefazolin (50%). 20.6% of strains were ESBL-positive, while ESBL-determining gene, blaTEM was detected in 23.8% of E. coli strains. The largest percentage of antibiotic resistant and MDR E. coli strains was detected nearby the STP, indicating that malfunctioning STP may contribute largely to river water contamination downstream, also having significant environmental and economic impact.
Collapse
Affiliation(s)
- Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Mickiewicza Ave. 24/28, 30-059, Kraków, Poland.
| | - Justyna Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Piotr Boroń
- Department of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425, Kraków, Poland
| | - Maria Chmiel
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Mickiewicza Ave. 24/28, 30-059, Kraków, Poland
| |
Collapse
|
42
|
Bashawri YM, Robins P, Cooper DM, McDonald JE, Jones DL, Williams AP. Impact of Sediment Concentration on the Survival of Wastewater-Derived blaCTX-M-15-Producing E. coli, and the Implications for Dispersal into Estuarine Waters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207608. [PMID: 33086623 PMCID: PMC7589618 DOI: 10.3390/ijerph17207608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
The environmental cycling of antibiotic-resistant blaCTX-M-15-producing E. coli following release from wastewater treatment plants is a major public health concern. This study aimed to (i) assess the impact of sediment concentrations on the rate of their inactivation following release from human wastewater into freshwater, and (ii) simulate their subsequent dispersal to the nearby coastline during a “worst-case” event where heavy rainfall coincided with high spring tide in the Conwy Estuary, North Wales. Freshwater microcosms of low, medium and high turbidity were inoculated with blaCTX-M-15-producing E. coli, then exposed to ultraviolet (UV) radiation. Typical regional wintertime exposure to UV was found to be insufficient to eradicate E. coli, and in highly turbid water, many bacteria survived simulated typical regional summertime UV exposure. Modelling results revealed that blaCTX-M-15-producing E. coli concentrations reduced downstream from the discharge source, with ~30% of the source concentration capable of dispersing through the estuary to the coast, taking ~36 h. Offshore, the concentration simulated at key shellfisheries and bathing water sites ranged from 1.4% to 10% of the upstream input, depending on the distance offshore and tidal regime, persisting in the water column for over a week. Our work indicates that the survival of such organisms post-release into freshwater is extended under typical wintertime conditions, which could ultimately have implications for human health.
Collapse
Affiliation(s)
- Yasir M. Bashawri
- General Directorate of Environmental Health, Ministry of Health, Riyadh 12234, Saudi Arabia;
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK; (J.E.M.); (D.L.G.)
| | - Peter Robins
- School of Ocean Sciences, Bangor University, Bangor LL59 5EG, UK;
| | - David M. Cooper
- Centre for Ecology and Hydrology, Environment Centre Wales, Bangor LL57 2UW, UK;
| | - James E. McDonald
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK; (J.E.M.); (D.L.G.)
| | - Davey L. Jones
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK; (J.E.M.); (D.L.G.)
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley 6009, Australia
| | - A. Prysor Williams
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK; (J.E.M.); (D.L.G.)
- Correspondence:
| |
Collapse
|
43
|
Lenart-Boroń AM, Kulik K, Jelonkiewicz E. Antimicrobial resistance and ESBL genes in E. coli isolated in proximity to a sewage treatment plant. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1571-1580. [PMID: 33030087 DOI: 10.1080/10934529.2020.1826774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/23/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
This study was aimed to determine the prevalence of antibiotic-resistant Escherichia coli in the Szreniawa river with detailed aims of: (i) assessment of differences in the number of microbiological indicators of water quality in a diurnal cycle in a vicinity of the sewage treatment plant (STP); (ii) determination of prevalence of antimicrobial resistant E. coli isolated from three sites located at varying locations toward the STP; (iii) evaluation of the presence of extended-spectrum beta lactamase (ESBL)-determining genes in waterborne E. coli isolated from three sites of Szreniawa and (iv) genetic similarity assessment among the E. coli populations. Bacteriological contamination (coliforms, E. coli, E. faecalis) was assessed using membrane filtration. Fifty E. coli strains, the species of which was confirmed by MALDI-TOF analysis, were subjected to antimicrobial resistance tests using standard disk-diffusion method. Double disk synergy test was used to assess the ESBL production and PCR tests were conducted to detect the ESBL-conferring genes and evaluate the genetic diversity. A significant variation in the number of bacteriological indicators was observed both within and between the sampling sites, suggesting the effect of effluent from the STP, point discharge of household sewage and agricultural runoff on the water contamination. The resistance to amoxicillin/clavulanate (90%) and ampicillin (36%) was most prevalent. Multidrug resistance was observed in 40% of strains but no ESBL-producing strains were observed phenotypically. However, the presence of three ESBL-determining genes (TEM, OXA and CTX-M) was detected in 24, 10 and 8% of strains, respectively. A number of factors caused considerable pollution of the river and numerous multidrug resistant E. coli strains were isolated.
Collapse
Affiliation(s)
- Anna M Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Kraków, Poland
| | - Klaudia Kulik
- Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Kraków, Poland
| | - Ewelina Jelonkiewicz
- Faculty of Geography and Geology, Institute of Geography and Spatial Management, Jagiellonian University, Kraków, Poland
| |
Collapse
|
44
|
Tavares RDS, Tacão M, Figueiredo AS, Duarte AS, Esposito F, Lincopan N, Manaia CM, Henriques I. Genotypic and phenotypic traits of bla CTX-M-carrying Escherichia coli strains from an UV-C-treated wastewater effluent. WATER RESEARCH 2020; 184:116079. [PMID: 32717492 DOI: 10.1016/j.watres.2020.116079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/21/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) are relevant sources of antibiotic resistance into aquatic environments. Disinfection of WWTPs' effluents (e.g. by UV-C irradiation) may attenuate this problem, though some clinically relevant bacteria have been shown to survive disinfection. In this study we characterized 25 CTX-M-producing Escherichia coli strains isolated from a WWTP's UV-C-irradiated effluent, aiming to identify putative human health hazards associated with such effluents. Molecular typing indicated that the strains belong to the phylogroups A, B2 and C and clustered into 9 multilocus sequence types (STs), namely B2:ST131 (n = 7), A:ST58 (n = 1), A:ST155 (n = 4), C:ST410 (n = 2), A:ST453 (n = 2), A:ST617 (n = 2), A:ST744 (n = 1), A:ST1284 (n = 3) and a putative novel ST (n = 3). PCR-screening identified 9 of the 20 antibiotic resistance genes investigated [i.e. sul1, sul2, sul3, tet(A), tet(B), blaOXA-1-like, aacA4, aacA4-cr and qnrS1]. The more prevalent were sul1, sul2 (n = 15 isolates) and tet(A) (n = 14 isolates). Plasmid restriction analysis indicated diverse plasmid content among strains (14 distinct profiles) and mating assays yielded cefotaxime-resistant transconjugants for 8 strains. Two of the transconjugants displayed a multi-drug resistance (MDR) phenotype. All strains were classified as cytotoxic to Vero cells (9 significantly more cytotoxic than the positive control) and 10 of 21 strains were invasive towards this cell line (including all B2:ST131 strains). The 10 strains tested against G. mellonella larvae exhibited a virulent behaviour. Twenty-four and 7 of the 25 strains produced siderophores and haemolysins, respectively. Approximately 66% of the strains formed biofilms. Genome analysis of 6 selected strains identified several virulence genes encoding toxins, siderophores, and colonizing, adhesion and invasion factors. Freshwater microcosms assays showed that after 28 days of incubation 3 out of 6 strains were still detected by cultivation and 4 strains by qPCR. Resistance phenotypes of these strains remained unaltered. Overall, we confirmed WWTP's UV-C-treated outflow as a source of MDR and/or virulent E. coli strains, some probably capable of persisting in freshwater, and that carry conjugative antibiotic resistance plasmids. Hence, disinfected wastewater may still represent a risk for human health. More detailed evaluation of strains isolated from wastewater effluents is urgent, to design treatments that can mitigate the release of such bacteria.
Collapse
Affiliation(s)
- Rafael D S Tavares
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Marta Tacão
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| | - Ana S Figueiredo
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Ana S Duarte
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar Em Saúde (CIIS), Estrada da Circunvalação, 3504-505, Viseu, Portugal
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Isabel Henriques
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; University of Coimbra, Department of Life Sciences, Faculty of Sciences and Technology, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
45
|
Abstract
The effectiveness of antibiotics continues to erode because of the relentless spread of antimicrobial resistance (AMR). Public and private foundations, professional organizations, and international health agencies recognize the threat posed by AMR and have issued calls for action. One of the main drivers of AMR is overprescription of antibiotics, both in human and in veterinary medicine. The One Health concept is a response from a broad group of stakeholders to counter the global health threat posed by AMR. In this article, we discuss current trends in AMR and suggest strategies to mitigate its ongoing dissemination.
Collapse
Affiliation(s)
- Richard R Watkins
- Division of Infectious Diseases, Cleveland Clinic Akron General, Akron, OH, USA; Department of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA; Case VA Center for Antimicrobial Resistance and Epidemiology (Case VA-CARES), Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
46
|
Adekanmbi AO, Akinpelu MO, Olaposi AV, Oyelade AA. Diversity of Extended Spectrum Beta-lactamase (ESBL) genes in Escherichia coli isolated from wastewater generated by a Sick Bay located in a University Health Care Facility. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
47
|
Antimicrobial Drug-Resistant Gram-Negative Saprophytic Bacteria Isolated from Ambient, Near-Shore Sediments of an Urbanized Estuary: Absence of β-Lactamase Drug-Resistance Genes. Antibiotics (Basel) 2020; 9:antibiotics9070400. [PMID: 32664302 PMCID: PMC7400359 DOI: 10.3390/antibiotics9070400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023] Open
Abstract
We assessed the prevalence of antimicrobial resistance and screened for clinically relevant β-lactamase resistance determinants in Gram-negative bacteria from a large urbanized estuary. In contrast to the broad literature documenting potentially hazardous resistance determinants near wastewater treatment discharge points and other local sources of aquatic pollution, we employed a probabilistic survey design to examine ambient, near-shore sediments. We plated environmental samples from 40 intertidal and shallow subtidal areas around San Francisco Bay (California, USA) on drug-supplemented MacConkey agar, and we tested isolates for antimicrobial resistance and presence of clinically relevant β-lactamase resistance determinants. Of the 74 isolates identified, the most frequently recovered taxa were Vibrio spp. (40%), Shewanella spp. (36%), Pseudomonas spp. (11%), and Aeromonas spp. (4%). Of the 55 isolates tested for antimicrobial resistance, the Vibrio spp. showed the most notable resistance profiles. Most (96%) were resistant to ampicillin, and two isolates showed multidrug-resistant phenotypes: V. alginolyticus (cefotaxime, ampicillin, gentamicin, cefoxitin) and V. fluvialis (cefotaxime, ampicillin, cefoxitin). Targeted testing for class 1 integrons and presence of β-lactam-resistance gene variants TEM, SHV, OXA, CTX-M, and Klebsiella pneumonia carbapenemase (KPC) did not reveal any isolates harboring these resistance determinants. Thus, while drug-resistant, Gram-negative bacteria were recovered from ambient sediments, neither clinically relevant strains nor mobile β-lactam resistance determinants were found. This suggests that Gram-negative bacteria in this well-managed, urbanized estuary are unlikely to constitute a major human exposure hazard at this time.
Collapse
|
48
|
Finton MD, Meisal R, Porcellato D, Brandal LT, Lindstedt BA. Whole Genome Sequencing and Characterization of Multidrug-Resistant (MDR) Bacterial Strains Isolated From a Norwegian University Campus Pond. Front Microbiol 2020; 11:1273. [PMID: 32625184 PMCID: PMC7311804 DOI: 10.3389/fmicb.2020.01273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
The presence of extended-spectrum β-lactamase (ESBL)-producing bacteria in environmental sources has been reported worldwide and constitutes a serious risk of community-acquired infections with limited treatment options. The current study aimed to explore the presence of these worrisome bacteria in a pond located at the Norwegian University of Life Sciences in Ås, Norway. A total of 98 bacterial isolates survived growth on selective chromogenic media and were identified by 16S rRNA Sanger sequencing. All strains were evaluated for the presence of the most commonly found β-lactamases and ESBLs in clinical settings (blaCTX–M groups 1, 2, and 9, blaCMY, blaSHV, and blaTEM) and carbapenemases (blaIMP, blaKPC, blaNDM, blaOXA, blaSFC1, blaVIM) through multiplex PCR. A total of eight strains were determined to contain one or more genes of interest. Phenotypic resistance to 18 antimicrobial agents was assessed and isolates were subjected to whole genome sequencing through a combination of Oxford Nanopore’s MinION and Illumina’s MiSeq. Results revealed the presence of β-lactamase and ESBL-producing Escherichia coli, Klebsiella pneumoniae, Stenotrophomonas maltophilia, and a Paraburkholderia spp. Identified β-lactamases and ESBLs include blaCTX–M, blaTEM, blaCMY, blaSHV and a possible blaKPC-like gene, with both documented and novel sequences established. In addition, two inducible β-lactamases were found, a class A β-lactamase (L1) and a cephalosporinase (L2). All strains were determined to be multidrug resistant and numerous resistance genes to non-β-lactams were observed. In conclusion, this study demonstrates that environmental sources are a potential reservoir of clinically relevant ESBL-producing bacteria that may pose a health risk to humans upon exposure.
Collapse
Affiliation(s)
- Misti D Finton
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Roger Meisal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lin T Brandal
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørn-Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
49
|
Reddington K, Eccles D, O'Grady J, Drown DM, Hansen LH, Nielsen TK, Ducluzeau AL, Leggett RM, Heavens D, Peel N, Snutch TP, Bayega A, Oikonomopoulos S, Ragoussis I, Barry T, van der Helm E, Jolic D, Richardson H, Jansen H, Tyson JR, Jain M, Brown BL. Metagenomic analysis of planktonic riverine microbial consortia using nanopore sequencing reveals insight into river microbe taxonomy and function. Gigascience 2020; 9:5855463. [PMID: 32520351 PMCID: PMC7285869 DOI: 10.1093/gigascience/giaa053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2019] [Revised: 02/23/2020] [Accepted: 04/27/2020] [Indexed: 12/02/2022] Open
Abstract
Background Riverine ecosystems are biogeochemical powerhouses driven largely by microbial communities that inhabit water columns and sediments. Because rivers are used extensively for anthropogenic purposes (drinking water, recreation, agriculture, and industry), it is essential to understand how these activities affect the composition of river microbial consortia. Recent studies have shown that river metagenomes vary considerably, suggesting that microbial community data should be included in broad-scale river ecosystem models. But such ecogenomic studies have not been applied on a broad “aquascape” scale, and few if any have applied the newest nanopore technology. Results We investigated the metagenomes of 11 rivers across 3 continents using MinION nanopore sequencing, a portable platform that could be useful for future global river monitoring. Up to 10 Gb of data per run were generated with average read lengths of 3.4 kb. Diversity and diagnosis of river function potential was accomplished with 0.5–1.0 ⋅ 106 long reads. Our observations for 7 of the 11 rivers conformed to other river-omic findings, and we exposed previously unrecognized microbial biodiversity in the other 4 rivers. Conclusions Deeper understanding that emerged is that river microbial consortia and the ecological functions they fulfil did not align with geographic location but instead implicated ecological responses of microbes to urban and other anthropogenic effects, and that changes in taxa manifested over a very short geographic space.
Collapse
Affiliation(s)
- Kate Reddington
- Microbial Diagnostics Research Laboratory, Microbiology, School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland H91 TK33, Ireland
| | - David Eccles
- Malaghan Institute of Medical Research, Gate 7, Victoria University Kelburn Parade, Wellington 6140, Wellington 6242, New Zealand
| | - Justin O'Grady
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, James Watson Rd, Norwich NR4 7TJ, UK
| | - Devin M Drown
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 9975-7000, USA
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Aarhus University, PO Box 358, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Environmental Science, Aarhus University, PO Box 358, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anne-Lise Ducluzeau
- Institute of Arctic Biology, University of Alaska Fairbanks, 311 Irving 1 Building P.O. Box 757000 2140 Koyukuk Drive Fairbanks, AK 99775-7000, USA
| | | | - Darren Heavens
- Earlham Institute, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ned Peel
- Earlham Institute, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Terrance P Snutch
- Michael Smith Laboratories and Department of Zoology, University of British Columbia, #301-2185 East Mall Vancouver, BC V6T 1Z4, Canada
| | - Anthony Bayega
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Spyridon Oikonomopoulos
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Ioannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Thomas Barry
- Nucleic Acid Diagnostics Research Laboratory, Microbiology, School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland H91 TK33, Ireland
| | - Eric van der Helm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Dino Jolic
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5 72076 Tübingen, Germany
| | - Hollian Richardson
- Norwich Medical School, University of East Anglia, James Watson Rd, Norwich NR4 7TJ, UK
| | - Hans Jansen
- Future Genomics Technologies B.V., Nucleus building, Sylviusweg 74, 2333 BE Leiden, The Netherlands
| | - John R Tyson
- Michael Smith Laboratories and Department of Zoology, University of British Columbia, #301-2185 East Mall Vancouver, BC V6T 1Z4, Canada
| | - Miten Jain
- UC Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Bonnie L Brown
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
| |
Collapse
|
50
|
Elder FCT, Feil EJ, Snape J, Gaze WH, Kasprzyk-Hordern B. The role of stereochemistry of antibiotic agents in the development of antibiotic resistance in the environment. ENVIRONMENT INTERNATIONAL 2020; 139:105681. [PMID: 32251898 DOI: 10.1016/j.envint.2020.105681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/13/2020] [Revised: 02/28/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance (ABR) is now recognised as a serious global health and economic threat that is most efficiently managed via a 'one health' approach incorporating environmental risk assessment. Although the environmental dimension of ABR has been largely overlooked, recent studies have underlined the importance of non-clinical settings in the emergence and spread of resistant strains. Despite this, several research gaps remain in regard to the development of a robust and fit-for-purpose environmental risk assessment for ABR drivers such as antibiotics (ABs). Here we explore the role the environment plays in the dissemination of ABR within the context of stereochemistry and its particular form, enantiomerism. Taking chloramphenicol as a proof of principle, we argue that stereoisomerism of ABs impacts on biological properties and the mechanisms of resistance and we discuss more broadly the importance of stereochemistry (enantiomerism in particular) with respect to antimicrobial potency and range of action.
Collapse
Affiliation(s)
- Felicity C T Elder
- Department of Chemistry, University of Bath, BA27AY Bath, United Kingdom
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, BA27AY Bath, United Kingdom
| | - JasoN Snape
- AstraZeneca Global Safety, Health and Environment, Mereside, Macclesfield SK10, 4TG, United Kingdom
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, United Kingdom
| | | |
Collapse
|