1
|
Azmi WA, Rizki AFM, Shidiq A, Djuardi Y, Artika IM, Siregar JE. Antimalarial drug sulfadoxine induces gametocytogenesis in Plasmodium berghei. Malar J 2024; 23:267. [PMID: 39223522 PMCID: PMC11367840 DOI: 10.1186/s12936-024-05071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The spread of antimalarial drug resistance parasites is a major obstacle in eliminating malaria in endemic areas. This increases the urgency for developing novel antimalarial drugs with improved profiles to eliminate both sensitive and resistant parasites in populations. The invention of the drug candidates needs a model for sensitive and resistant parasites on a laboratory scale. METHODS Repeated Incomplete Treatment (RIcT) method was followed in raising the rodent malaria parasite, Plasmodium berghei, resistant to sulfadoxine. Plasmodium berghei were exposed to an adequate therapeutic dose of sulfadoxine without finishing the treatment to let the parasite recover. Cycles of drug treatment and parasite recovery were repeated until phenotypic resistance appeared. RESULTS After undergoing 3-4 cycles, phenotypic resistance was not yet found in mice treated with sulfadoxine. Nevertheless, the molecular biology of dhps gene (the target of sulfadoxine) was analyzed at the end of the RIcT cycle. There was no mutations found in the gene target. Interestingly, the appearance of gametocytes at the end of every cycle of drug treatment and parasite recovery was observed. These gametocytes later on would no longer extend their life in the RBC stage, unless mosquitoes bite the infected host. This phenomenon is similar to the case in human malaria infections treated with sulfadoxine-pyrimethamine (SP). CONCLUSIONS In this study, the antimalarial drug sulfadoxine induced gametocytogenesis in P. berghei, which could raise the risk factor for malaria transmission.
Collapse
Affiliation(s)
- Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
- Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Achmad Shidiq
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, 10430, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor, 16680, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia.
| |
Collapse
|
2
|
Fola AA, Ciubotariu II, Dorman J, Mwenda MC, Mambwe B, Mulube C, Kasaro R, Hawela MB, Hamainza B, Miller JM, Bailey JA, Moss WJ, Bridges DJ, Carpi G. National genomic profiling of Plasmodium falciparum antimalarial resistance in Zambian children participating in the 2018 Malaria Indicator Survey. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.05.24311512. [PMID: 39148823 PMCID: PMC11326323 DOI: 10.1101/2024.08.05.24311512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The emergence of antimalarial drug resistance is a major threat to malaria control and elimination. Using whole genome sequencing of 282 P. falciparum samples collected during the 2018 Zambia National Malaria Indicator Survey, we determined the prevalence and spatial distribution of known and candidate antimalarial drug resistance mutations. High levels of genotypic resistance were found across Zambia to pyrimethamine, with over 94% (n=266) of samples having the Pfdhfr triple mutant (N51I, C59R, and S108N), and sulfadoxine, with over 84% (n=238) having the Pfdhps double mutant (A437G and K540E). In northern Zambia, 5.3% (n=15) of samples also harbored the Pfdhps A581G mutation. Although 29 mutations were identified in Pfkelch13, these mutations were present at low frequency (<2.5%), and only three were WHO-validated artemisinin partial resistance mutations: P441L (n=1, 0.35%), V568M (n=2, 0.7%) and R622T (n=1, 0.35%). Notably, 91 (32%) of samples carried the E431K mutation in the Pfatpase6 gene, which is associated with artemisinin resistance. No specimens carried any known mutations associated with chloroquine resistance in the Pfcrt gene (codons 72-76). P. falciparum strains circulating in Zambia were highly resistant to sulfadoxine and pyrimethamine but remained susceptible to chloroquine and artemisinin. Despite this encouraging finding, early genetic signs of developing artemisinin resistance highlight the urgent need for continued vigilance and expanded routine genomic surveillance to monitor these changes.
Collapse
Affiliation(s)
- Abebe A. Fola
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
| | - Ilinca I. Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jack Dorman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Mulenga C. Mwenda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Brenda Mambwe
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Conceptor Mulube
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Rachael Kasaro
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Moonga B. Hawela
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital Grounds, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital Grounds, Lusaka, Zambia
| | - John M. Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
| | - William J. Moss
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J. Bridges
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Schreidah C, Giesbrecht D, Gashema P, Young NW, Munyaneza T, Muvunyi CM, Thwai K, Mazarati JB, Bailey JA, Juliano JJ, Karema C. Expansion of artemisinin partial resistance mutations and lack of histidine rich protein-2 and -3 deletions in Plasmodium falciparum infections from Rukara, Rwanda. Malar J 2024; 23:150. [PMID: 38755607 PMCID: PMC11100144 DOI: 10.1186/s12936-024-04981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kyaw Thwai
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Jonathan J Juliano
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Corine Karema
- Quality Equity Health Care, Kigali, Rwanda
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Mesia Kahunu G, Wellmann Thomsen S, Wellmann Thomsen L, Muhindo Mavoko H, Mitashi Mulopo P, Filtenborg Hocke E, Mandoko Nkoli P, Baraka V, Minja DTR, Mousa A, Roper C, Mbongi Moke D, Mumba Ngoyi D, Mukomena Sompwe E, Muyembe Tanfum JJ, Hansson H, Alifrangis M. Identification of the PfK13 mutations R561H and P441L in the Democratic Republic of Congo. Int J Infect Dis 2024; 139:41-49. [PMID: 38016502 DOI: 10.1016/j.ijid.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVES Partial artemisinin resistance, mediated by Plasmodium falciparum K13 (PfK13) mutations, has been confirmed in certain areas of East Africa that are historically associated with high-level antimalarial resistance. The Democratic Republic of Congo (DRC) borders these areas in the East. This study aimed to determine the prevalence of resistance markers in six National Malaria Control Program surveillance sites; Boende, Kabondo, Kapolowe, Kimpese, Mikalayi, and Rutshuru. METHODS The single nucleotide polymorphisms (SNPs) in P. falciparum genes PfK13, Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt were assessed using targeted next-generation sequencing of isolates collected at enrollment in therapeutic efficacy studies. RESULTS PfK13 SNPs were detected in two samples: in Kabondo (R561H) and in Rutshuru (P441L), both areas near Uganda and Rwanda. The Pfdhps ISGEGA haplotype, associated with reduced sulfadoxine-pyrimethamine chemoprevention efficacy, ranged from 0.8% in Mikalayi (central DRC) to 42.2% in Rutshuru (East DRC). CONCLUSIONS R561H and P441L observed in eastern DRC are a concern, as they are associated with delayed artemisinin-based combination therapies-clearance and candidate marker of resistance, respectively. This is consistent with previous observations of shared drug resistance profiles in parasites of that region with bordering areas of Rwanda and Uganda. The likely circulation of parasites has important implications for the ongoing surveillance of partial artemisinin-resistant P. falciparum and for future efforts to mitigate its dispersal.
Collapse
Affiliation(s)
- Gauthier Mesia Kahunu
- Department of Pharmacology and Therapeutics, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Sarah Wellmann Thomsen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Louise Wellmann Thomsen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Emma Filtenborg Hocke
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Papy Mandoko Nkoli
- National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Vito Baraka
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Daniel T R Minja
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Andria Mousa
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Cally Roper
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Dieudonné Mumba Ngoyi
- Department of Tropical Medicine, University of Kinshasa, Democratic Republic of Congo; National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Eric Mukomena Sompwe
- Faculty of Medicine, University of Lubumbashi, Democratic Republic of the Congo, National Malaria Control Program, Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Jean Jacques Muyembe Tanfum
- Department of Tropical Medicine, University of Kinshasa, Democratic Republic of Congo; National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Helle Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Alifrangis
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
5
|
Schreidah C, Giesbrecht D, Gashema P, Young N, Munyaneza T, Muvunyi CM, Thwai K, Mazarati JB, Bailey J, Juliano JJ, Karema C. Expansion of Artemisinin Partial Resistance Mutations and Lack of Histidine Rich Protein-2 and -3 Deletions in Plasmodium falciparum infections from Rukara, Rwanda. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.17.23300081. [PMID: 38196592 PMCID: PMC10775326 DOI: 10.1101/2023.12.17.23300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Emerging artemisinin resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (K13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. K13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015 but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, we sought to assess recent K13-561H prevalence changes, as well as for other key mutations. Prevalence of hrp2/3 deletions was also assessed. Methods We genotyped samples collected in Rukara in 2021 for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. Results Clinically validated K13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of artemisinin resistance mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of K13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other antimalarials were variable, with high levels of multidrug resistance 1 (MDR1) N86 (95.5%) associated with lumefantrine resistance and dihydrofolate reductase (DHFR) 164L (24.7%) associated with antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (CRT ) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. Conclusions Increasing prevalence of artemisinin partial resistance due to K13-561H and the rapid expansion of K13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative mRDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.
Collapse
|
6
|
Quan H, Yu P, Kassegne K, Shen HM, Chen SB, Chen JH. Polymorphism of Drug Resistance Genes dhfr and dhps in Plasmodium falciparum Isolates among Chinese Migrant Workers Who Returned from Ghana in 2013. Trop Med Infect Dis 2023; 8:504. [PMID: 37999623 PMCID: PMC10675347 DOI: 10.3390/tropicalmed8110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
In 2013, an epidemic of falciparum malaria involving over 820 persons unexpectedly broke out in Shanglin County, Guangxi Zhuang Autonomous Region, China, after a large number of migrant workers returned from Ghana, where they worked as gold miners. Herein, we selected 146 isolates randomly collected from these patients to investigate the resistance characteristics of the parasite to sulfadoxine-pyrimethamine (SP) by screening mutations in the dhfr and dhps genes. All 146 isolates were successfully genotyped for dhps, and only 137 samples were successfully genotyped for dhfr. In the dhfr gene, point mutations occurred at three codons: 51 (83.2%, 114/137), 59 (94.9%, 130/137), and 108 (96.4%, 132/137). In the dhps gene, mutations occurred at four codons: 436 (36.3%, 53/146 for S436A, 0.7%, 1/146 for S436Y), 437 (95.2%, 139/146), 540 (3.4%, 5/146), and 613 (2.7%, 4/146). All 146 isolates had mutations in at least one codon, either within dhfr or dhps. Quadruple mutation I51R59N108/G437 (41.1%, 60/146) of partial or low resistance level was the most prevalent haplotype combination. Quintuple I51R59N108/G437E540 accounted for 2.1% (3/146). Sextuple I51R59N108/A436G437S613 was also found and accounted for 1.4% (2/146). A chronological assay incorporating two sets of resistance data from the studies of Duah and Amenga-Etego provided an overview of the resistance trend from 2003 to 2018. During this period, the results we obtained generally coincided with the total development tendency of SP resistance. It can be concluded that Plasmodium falciparum samples collected from Chinese migrant workers from Ghana presented prevalent but relatively partial or low resistance to SP. A chronological assay incorporating two sets of data around 2013 indicates that our results possibly reflect the SP resistance level of Ghana in 2013 and that the possibility of increased resistance exists. Therefore, reasonable drug use and management should be strengthened while also maintaining a continuous screening of resistance to SP. These findings also underscore the need to strengthen the prevention of malaria importation from overseas and focus on preventing its reintroduction and transmission in China.
Collapse
Affiliation(s)
- Hong Quan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Peng Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- Dalian Center for Disease Control and Prevention, Dalian 116000, China
| | - Kokouvi Kassegne
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai-Mo Shen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Shen-Bo Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Jun-Hu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Hainan Tropical Diseases Research Center (Hainan Sub-Center, Chinese Center for Tropical Diseases Research), Haikou 571199, China
| |
Collapse
|
7
|
Kayiba NK, Tshibangu-Kabamba E, Rosas-Aguirre A, Kaku N, Nakagama Y, Kaneko A, Makaba DM, Malekita DY, Devleesschauwer B, Likwela JL, Zakayi PK, DeMol P, Lelo GM, Hayette MP, Dikassa PL, Kido Y, Speybroeck N. The landscape of drug resistance in Plasmodium falciparum malaria in the Democratic Republic of Congo: a mapping systematic review. Trop Med Health 2023; 51:64. [PMID: 37968745 PMCID: PMC10647042 DOI: 10.1186/s41182-023-00551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
CONTEXT The Democratic Republic of Congo (DRC), one of the most malaria-affected countries worldwide, is a potential hub for global drug-resistant malaria. This study aimed at summarizing and mapping surveys of malaria parasites carrying molecular markers of drug-resistance across the country. METHODS A systematic mapping review was carried out before July 2023 by searching for relevant articles through seven databases (PubMed, Embase, Scopus, African Journal Online, African Index Medicus, Bioline and Web of Science). RESULTS We identified 1541 primary studies of which 29 fulfilled inclusion criteria and provided information related to 6385 Plasmodium falciparum clinical isolates (collected from 2000 to 2020). We noted the PfCRT K76T mutation encoding for chloroquine-resistance in median 32.1% [interquartile interval, IQR: 45.2] of analyzed malaria parasites. The proportion of parasites carrying this mutation decreased overtime, but wide geographic variations persisted. A single isolate had encoded the PfK13 R561H substitution that is invoked in artemisinin-resistance emergence in the Great Lakes region of Africa. Parasites carrying various mutations linked to resistance to the sulfadoxine-pyrimethamine combination were widespread and reflected a moderate resistance profile (PfDHPS A437G: 99.5% [IQR: 3.9]; PfDHPS K540E: 38.9% [IQR: 47.7]) with median 13.1% [IQR: 10.3] of them being quintuple IRN-GE mutants (i.e., parasites carrying the PfDHFR N51I-C59R-S108N and PfDHPS A437G-K540E mutations). These quintuple mutants tended to prevail in eastern regions of the country. Among circulating parasites, we did not record any parasites harboring mutations related to mefloquine-resistance, but we could suspect those with decreased susceptibility to quinine, amodiaquine, and lumefantrine based on corresponding molecular surrogates. CONCLUSIONS Drug resistance poses a serious threat to existing malaria therapies and chemoprevention options in the DRC. This review provides a baseline for monitoring public health efforts as well as evidence for decision-making in support of national malaria policies and for implementing regionally tailored control measures across the country.
Collapse
Affiliation(s)
- Nadine Kalenda Kayiba
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
- Department of Public Health, Faculty of Medicine, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Evariste Tshibangu-Kabamba
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Internal Medicine, Faculty of Medicine, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
| | - Angel Rosas-Aguirre
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
| | - Natsuko Kaku
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yu Nakagama
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Akira Kaneko
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Dieudonné Mvumbi Makaba
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Department of Quality of Laboratories, Sciensano, Brussels, Belgium
| | - Doudou Yobi Malekita
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Joris Losimba Likwela
- Department of Public Health, Faculty of Medicine, University of Kisangani, Kisangani, Democratic Republic of Congo
| | - Pius Kabututu Zakayi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Patrick DeMol
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | - Georges Mvumbi Lelo
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Marie-Pierre Hayette
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | - Paul Lusamba Dikassa
- School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Yasutoshi Kido
- Research Center for Infectious Disease Science & Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
| | - Niko Speybroeck
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Figueroa-Romero A, Bissombolo D, Meremikwu M, Ratsimbasoa A, Sacoor C, Arikpo I, Lemba E, Nhama A, Rakotosaona R, Llach M, Pons-Duran C, Sanz S, Ma L, Doderer-Lang C, Maly C, Roman E, Pagnoni F, Mayor A, Menard D, González R, Menéndez C. Prevalence of molecular markers of resistance to sulfadoxine-pyrimethamine before and after community delivery of intermittent preventive treatment of malaria in pregnancy in sub-Saharan Africa: a multi-country evaluation. Lancet Glob Health 2023; 11:e1765-e1774. [PMID: 37858587 DOI: 10.1016/s2214-109x(23)00414-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The effectiveness of community delivery of intermittent preventive treatment (C-IPT) of malaria in pregnancy (IPTp) with sulfadoxine-pyrimethamine has been evaluated in selected areas of the Democratic Republic of the Congo, Madagascar, Mozambique, and Nigeria. We aimed to assess the effect of C-IPTp on the potential development of Plasmodium falciparum resistance to sulfadoxine-pyrimethamine, since it could threaten the effectiveness of this strategy. METHODS Health facility-based cross-sectional surveys were conducted at baseline and 3 years after C-IPTp implementation in two neighbouring areas per country, one with C-IPTp intervention, and one without, in the four project countries. Dried blood spots from children under five years of age with clinical malaria were collected. Sulfadoxine-pyrimethamine resistance-associated mutations of the P falciparum dhfr (Asn51Ile/Cys59Arg/Ser108Asn/Ile164Leu) and dhps (Ile431Val/Ser436Ala/Ala437Gly/Lys540Glu/Ala581Gly/Ala613Ser) genes were analysed. FINDINGS 2536 children were recruited between June 19 and Oct 10, 2018, during baseline surveys. Endline surveys were conducted among 2447 children between July 26 and Nov 30, 2021. In the Democratic Republic of the Congo, the dhfr/dhps IRNI/ISGEAA inferred haplotype remained lower than 10%, from 2% (5 of 296) at baseline to 8% (24 of 292) at endline, and from 3% (9 of 300) at baseline to 6% (18 of 309) at endline surveys in intervention and non-intervention areas respectively with no significant difference in the change between the areas. In Mozambique, the prevalence of this haplotype remained stable at over 60% (194 [64%] of 302 at baseline to 194 [64%] of 303 at endline, and 187 [61%] of 306 at baseline to 183 [61%] of 301 in endline surveys, in non-intervention and intervention areas respectively). No isolates harbouring the dhps ISGEAA genotype were found in Nigeria. In Madagascar, only five isolates with this haplotype were found in the non-intervention area (2 [>1%] of 300 at baseline and 3 [1%] of 300 at endline surveys). No isolates were found carrying the dhps ISGEGA genotype. INTERPRETATION C-IPTp did not increase the prevalence of molecular markers associated with sulfadoxine-pyrimethamine resistance after three years of programme implementation. These findings reinforce C-IPTp as a strategy to optimise the control of malaria during pregnancy, and support the WHO guidelines for prevention of malaria in pregnancy. FUNDING UNITAID [2017-13-TIPTOP].
Collapse
Affiliation(s)
- Antía Figueroa-Romero
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Kinshasa, Democratic Republic of the Congo
| | | | - Martin Meremikwu
- Cross River Health and Demographic Surveillance System, University of Calabar, Cross River State, Nigeria
| | | | - Charfudin Sacoor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Iwara Arikpo
- Cross River Health and Demographic Surveillance System, University of Calabar, Cross River State, Nigeria
| | - Elsha Lemba
- Medecins d'Afrique, Kinshasa, Democratic Republic of the Congo
| | - Abel Nhama
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Instituto Nacional de Saúde (INS), Maputo, Mozambique
| | | | - Mireia Llach
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Clara Pons-Duran
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Sergi Sanz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Kinshasa, Democratic Republic of the Congo; Department of Basic Clinical Practice, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Laurence Ma
- Institut Pasteur, Université Paris Cité, Biomics Platform, Paris, France
| | - Cécile Doderer-Lang
- Université de Strasbourg, Institute of Parasitology and Tropical Diseases, Strasbourg, France
| | - Christina Maly
- Jhpiego, John Hopkins University Affiliate, Baltimore MD, USA
| | - Elaine Roman
- Jhpiego, John Hopkins University Affiliate, Baltimore MD, USA
| | - Franco Pagnoni
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Alfredo Mayor
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Didier Menard
- Université de Strasbourg, Institute of Parasitology and Tropical Diseases, Strasbourg, France; Malaria Genetics and Resistance Unit, Institut Pasteur, Paris, France; Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, Paris, France; CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, Strasbourg, France
| | - Raquel González
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Kinshasa, Democratic Republic of the Congo; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| | - Clara Menéndez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Kinshasa, Democratic Republic of the Congo; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
9
|
González-Sanz M, Berzosa P, Norman FF. Updates on Malaria Epidemiology and Prevention Strategies. Curr Infect Dis Rep 2023; 25:1-9. [PMID: 37361492 PMCID: PMC10248987 DOI: 10.1007/s11908-023-00805-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review The objective of this review was to provide an update on recent malaria epidemiology, both globally and in non-endemic areas, to identify the current distribution and repercussions of genetically diverse Plasmodium species and summarize recently implemented intervention and prevention tools. Recent Findings Notable changes in malaria epidemiology have occurred in recent years, with an increase in the number of total cases and deaths globally during 2020-2021, in part attributed to the COVID-19 pandemic. The emergence of artemisinin-resistant species in new areas and the expanding distribution of parasites harbouring deletions of the pfhrp2/3 genes have been concerning. New strategies to curb the burden of this infection, such as vaccination, have been implemented in certain endemic areas and their performance is currently being evaluated. Summary Inadequate control of malaria in endemic regions may have an effect on imported malaria and measures to prevent re-establishment of transmission in malaria-free areas are essential. Enhanced surveillance and investigation of Plasmodium spp. genetic variations will contribute to the successful diagnosis and treatment of malaria in future. Novel strategies for an integrated One Health approach to malaria control should also be strengthened.
Collapse
Affiliation(s)
- Marta González-Sanz
- Infectious Diseases Department, National Referral Unit for Tropical Diseases, Ramón y Cajal University Hospital, IRYCIS, Universidad de Alcalá, CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Pedro Berzosa
- Malaria and Neglected Tropical Diseases Laboratory, National Centre for Tropical Medicine, Carlos III Health Institute, CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Francesca F. Norman
- Infectious Diseases Department, National Referral Unit for Tropical Diseases, Ramón y Cajal University Hospital, IRYCIS, Universidad de Alcalá, CIBER de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
10
|
Wang X, Zhang X, Chen H, Lu Q, Ruan W, Chen Z. Molecular Determinants of Sulfadoxine-Pyrimethamine Resistance in Plasmodium falciparum Isolates from Central Africa between 2016 and 2021: Wide Geographic Spread of Highly Mutated Pfdhfr and Pfdhps Alleles. Microbiol Spectr 2022; 10:e0200522. [PMID: 36121226 PMCID: PMC9602997 DOI: 10.1128/spectrum.02005-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/27/2022] [Indexed: 12/31/2022] Open
Abstract
Sulfadoxine-pyrimethamine (SP) resistance impairs the efficacy of antimalarial drugs. Monitoring molecular markers in exported malaria infections provides an efficient way to trace the emergence of drug resistance in countries where malaria is endemic. Molecular markers in Pfdhfr and Pfdhps of 237 Plasmodium falciparum infections imported from central Africa between 2016 and 2021 were detected. The spatial and temporal distributions of Pfdhfr and Pfdhps mutations were analyzed. A high prevalence of Pfdhfr single-nucleotide polymorphisms (SNPs) (~92.34% to 99.10%) and a high frequency of the triple mutation haplotype I51R59N108 were observed. Cameroon, Equatorial Guinea, and Gabon showed a higher frequency (~96.61% to 100.00%) of I51R59N108 than other countries (~71.11% to 88.10%). The prevalence of C59R and I51R59N108 increased while that of other SNPs or haplotypes did not fluctuate greatly from 2016 to 2021. Large proportions of Pfdhps SNPs (A437G and K540E) were demonstrated. The SNP distribution of Pfdhps differed between countries, with S436A dominating in northern countries and A437G dominating in others. The proportions of I431V, A437G, and the triple mutant haplotype declined between 2016 and 2021, whereas the prevalence of the single mutant haplotype rose from 61.60% to 73.68%. Combinations of Pfdhfr-Pfdhps alleles conferring partial resistance, full resistance, and superresistance to SP, as defined in the text, were detected in 63.64%, 8.64%, and 0.91% of the samples, respectively. The octuple Pfdhfr-Pfdhps allele (I51R59N108-V431A436G437K540G581S613) was seen in 5.00% of the samples. We demonstrated the wide geographic spread and increasing trends in highly SP-resistant Pfdhfr genes and varying spatial patterns of Pfdhps mutants across countries in central Africa. The high prevalences of partially resistant, fully resistant, and superresistant Pfdhfr-Pfdhps combinations observed here indicated impaired SP efficacy. Increased molecular surveillance is required to monitor the changing status of the Pfdhfr and Pfdhps genes. IMPORTANCE Monitoring drug resistance is important for malaria control because its early detection enables timely action to prevent its spread and mitigate its impact. The wide geographic spread and the increasing trend of highly resistant Pfdhfr genes between 2016 and 2021 found in our study are worrisome and emphasize the urgency to monitor their updated status in central Africa. This study also illustrated the wide spread of the novel mutant Pfdhps I431V as well as the high prevalence of "partially resistant," "fully resistant," and "superresistant" Pfdhfr-Pfdhps combinations, indicating the urgent concern for SP efficacy in central Africa. These findings are alarming in central African countries where malaria is endemic, where SP was is widely used for the intermittent preventive treatment of malaria in pregnancy (IPTp) and the intermittent preventive treatment of malaria in infants below 5 years of age (IPTi), and urge enhanced molecular surveillance and responses to the threat of drug resistance.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Xuan Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Hualiang Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Qiaoyi Lu
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Wei Ruan
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Zhiping Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| |
Collapse
|
11
|
Nundu SS, Simpson SV, Arima H, Muyembe JJ, Mita T, Ahuka S, Yamamoto T. It Is Time to Strengthen the Malaria Control Policy of the Democratic Republic of Congo and Include Schools and School-Age Children in Malaria Control Measures. Pathogens 2022; 11:729. [PMID: 35889975 PMCID: PMC9315856 DOI: 10.3390/pathogens11070729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Despite a decade of sustained malaria control, malaria remains a serious public health problem in the Democratic Republic of Congo (DRC). Children under five years of age and school-age children aged 5-15 years remain at high risk of symptomatic and asymptomatic malaria infections. The World Health Organization's malaria control, elimination, and eradication recommendations are still only partially implemented in DRC. For better malaria control and eventual elimination, the integration of all individuals into the national malaria control programme will strengthen malaria control and elimination strategies in the country. Thus, inclusion of schools and school-age children in DRC malaria control interventions is needed.
Collapse
Affiliation(s)
- Sabin S. Nundu
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; (J.-J.M.); (S.A.)
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (S.V.S.); (T.Y.)
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Shirley V. Simpson
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (S.V.S.); (T.Y.)
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; (J.-J.M.); (S.A.)
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Steve Ahuka
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; (J.-J.M.); (S.A.)
| | - Taro Yamamoto
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (S.V.S.); (T.Y.)
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| |
Collapse
|
12
|
Lingani M, Zango SH, Valéa I, Somé G, Sanou M, Samadoulougou SO, Ouoba S, Rouamba E, Robert A, Dramaix M, Donnen P, Tinto H. Low birth weight and its associated risk factors in a rural health district of Burkina Faso: a cross sectional study. BMC Pregnancy Childbirth 2022; 22:228. [PMID: 35313840 PMCID: PMC8935822 DOI: 10.1186/s12884-022-04554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/09/2022] [Indexed: 12/30/2022] Open
Abstract
Background Low birth weight (LBW) is a major factor of neonate mortality that particularly affects developing countries. However, the scarcity of data to support decision making to reduce LBW occurrence is a major obstacle in sub-Saharan Africa. The aim of this research was to determine the prevalence and associated factors of LBW at the Yako health district in a rural area of Burkina Faso. Methods A cross sectional survey was conducted at four peripheral health centers among mothers and their newly delivered babies. The mothers’ socio-demographic and obstetrical characteristics were collected by face-to-face interview or by review of antenatal care books. Maternal malaria was tested by standard microscopy and neonates’ birth weights were documented. Multivariate logistic regression was used to determine factors associated with LBW. A p-value < 0.05 was considered statistically significant. Results Of 600 neonates examined, the prevalence of low birth weight was 11.0%. Adjustment for socio-demographic characteristic, medical conditions, obstetrical history, malaria prevention measures by multivariate logistic regression found that being a primigravid mother (aOR = 1.8, [95% CI: 1.1–3.0]), the presence of malaria infection (aOR = 1.9, [95% CI: 1.1–3.5]), the uptake of less than three doses of sulfadoxine-pyrimethamine for the intermittent preventive treatment of malaria in pregnancy (IPTp-SP) (aOR = 2.2, [95% CI: 1.3–3.9]), the presence of maternal fever at the time of delivery (aOR = 2.8, [95% CI: 1.5–5.3]) and being a female neonate (aOR = 1.9, [95% CI: 1.1–3.3]) were independently associated with an increased risk of LBW occurrence. The number of antenatal visits performed by the mother during her pregnancy did not provide any direct protection for low birth weight. Conclusion The prevalence of LBW remained high in the study area. Maternal malaria, fever and low uptake of sulfadoxine-pyrimethamine doses were significantly associated with LBW and should be adequately addressed by public health interventions.
Collapse
Affiliation(s)
- Moussa Lingani
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, Burkina Faso. .,École de Santé publique, Université Libre de Bruxelles, Bruxelles, Belgium.
| | - Serge Henri Zango
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, Burkina Faso.,Epidemiology and Biostatistics Research Division, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Innocent Valéa
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, Burkina Faso
| | - Georges Somé
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, Burkina Faso
| | - Maïmouna Sanou
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, Burkina Faso
| | - Sékou O Samadoulougou
- Evaluation Platform on Obesity Prevention, Quebec Heart and Lung Institute Research Center, Quebec, Canada
| | - Serge Ouoba
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, Burkina Faso
| | - Eli Rouamba
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, Burkina Faso
| | - Annie Robert
- Epidemiology and Biostatistics Research Division, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Michèle Dramaix
- École de Santé publique, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Philippe Donnen
- École de Santé publique, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, Burkina Faso
| |
Collapse
|
13
|
Identification of polymorphisms in genes associated with drug resistance in Plasmodium falciparum isolates from school-age children in Kinshasa, Democratic Republic of Congo. Parasitol Int 2022; 88:102541. [PMID: 35051550 DOI: 10.1016/j.parint.2022.102541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND The emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs constitutes an obstacle to malaria control and elimination. This study aimed to identify the prevalence of polymorphisms in pfk13, pfmdr1, pfdhfr, pfdhps and pfcrt genes in isolates from asymptomatic and symptomatic school-age children in Kinshasa. METHODS Nested-PCR followed by sequencing was performed for the detection of pfk13, pfmdr1, pfdhfr, pfdhps and pfcrt polymorphisms. RESULTS Two mutations in pfk13, C532S and Q613E were identified in the Democratic Republic of Congo for the first time. The prevalence of the drug-resistance associated mutations pfcrt K76T, pfdhps K540E and pfmdr1 N86Y was low, being 27%, 20% and 9%, respectively. CONCLUSION We found a low prevalence of genetic markers associated with chloroquine and sulfadoxine-pyrimethamine resistance in Kinshasa. Furthermore, no mutations previously associated with resistance against artemisinin and is derivatives were observed in the pfK13 gene. These findings support the continued use of ACTs and IPTp-SP. Continuous molecular monitoring of antimalarial resistance markers is recommended.
Collapse
|
14
|
Berzosa P, Molina de la Fuente I, Ta-Tang TH, González V, García L, Rodríguez-Galet A, Díaz-Regañón R, Galán R, Cerrada-Gálvez L, Ncogo P, Riloha M, Benito A. Temporal evolution of the resistance genotypes of Plasmodium falciparum in isolates from Equatorial Guinea during 20 years (1999 to 2019). Malar J 2021; 20:463. [PMID: 34906159 PMCID: PMC8670137 DOI: 10.1186/s12936-021-04000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Background Malaria is one of the deadliest diseases in the world, particularly in Africa. As such, resistance to anti-malarial drugs is one of the most important problems in terms of global malaria control. This study assesses the evolution of the different resistance markers over time and the possible influence of interventions and treatment changes that have been made in Equatorial Guinea. Methods A total of 1223 biological samples obtained in the period 1999 to 2019 were included in the study. Screening for mutations in the pfdhfr, pfdhps, pfmdr1, and pfcrt genes was carried out by nested PCR and restriction-fragment length polymorphisms (RFLPs), and the study of pfk13 genes was carried out by nested PCR, followed by sequencing to determine the presence of mutations. Results The partially and fully resistant haplotypes (pfdhfr + pfdhps) were found to increase over time. Moreover, in 2019, the fully resistant haplotype was found to be increasing, although its super-resistant counterpart remains much less prevalent. A continued decline in pfmdr1 and pfcrt gene mutations over time was also found. The number of mutations detected in pfk13 has increased since 2008, when artemisinin-based combination therapy (ACT) were first introduced, with more mutations being observed in 2019, with two synonymous and five non-synonymous mutations being detected, although these are not related to resistance to ACT. In addition, the non-synonymous A578S mutation, which is the most frequent on the African continent, was detected in 2013, although not in the following years. Conclusions Withdrawal of the use of chloroquine (CQ) as a treatment in Equatorial Guinea has been shown to be effective over time, as wild-type parasite populations outnumber mutant populations. The upward trend observed in sulfadoxine-pyrimethamine (SP) resistance markers suggest its misuse, either alone or in combination with artesunate (AS) or amodiaquine (AQ), in some areas of the country, as was found in a previous study conducted by this group, which allows selective pressure from SP to continue. Single nucleotide polymorphisms (SNPs) 540E and 581G do not exceed the limit of 50 and 10%, respectively, thus meaning that SP is still effective as an intermittent preventive treatment (IPT) in this country. As for the pfk13 gene, no mutations have been detected in relation to resistance to ACT. However, in 2019 there is a greater accumulation of non-synonymous mutations compared to years prior to 2008. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Pedro Berzosa
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain.
| | - Irene Molina de la Fuente
- Department of Biomedicine and Biotechnology, University of Alcalá and National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Thuy-Huong Ta-Tang
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Vicenta González
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Luz García
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Ana Rodríguez-Galet
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain.,HIV Molecular Epidemiology Laboratory, Ramón y Cajal-IRyCIS Hospital, Madrid, Spain
| | - Ramón Díaz-Regañón
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Rosario Galán
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Laura Cerrada-Gálvez
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Policarpo Ncogo
- State Foundation, Health, Childhood and Social Welfare FSP, Madrid, Spain
| | - Matilde Riloha
- Ministry of Health and Social Welfare-Malaria National Programme of Equatorial Guinea, Malabo, Equatorial Guinea
| | - Agustin Benito
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Lingani M, Zango SH, Valéa I, Valia D, Sanou M, Samandoulougou SO, Robert A, Tinto H, Dramaix M, Donnen P. Magnitude of low birthweight in malaria endemic settings of Nanoro, rural Burkina Faso: a secondary data analysis. Sci Rep 2021; 11:21332. [PMID: 34716389 PMCID: PMC8556330 DOI: 10.1038/s41598-021-00881-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
Low birthweight (LBW) is a worldwide problem that particularly affects developing countries. However, limited information is available on its magnitude in rural area of Burkina Faso. This study aimed to estimate the prevalence of low birthweight and to identify its associated factors in Nanoro health district. A secondary analysis of data collected during a cross-sectional survey was conducted to assess the prevalence of low birthweight in Nanoro health and demographic surveillance system area (HDSS). Maternal characteristics extracted from antenatal care books or by interview, completed by malaria diagnosis were examined through a multi-level logistic regression to estimate odd-ratios of association with low birthweight. Significance level was set at 5%. Of the 291 neonates examined, the prevalence of low birthweight was 12%. After adjustment for socio-demographic, obstetric and malaria prevention variables, being primigravid (OR = 8.84, [95% CI: 3.72-21.01]), or multigravid with history of stillbirth (OR = 5.03, [95% CI: 1.54-16.40]), as well as the lack of long-lasting insecticide treated bed net use by the mother the night preceding the admission for delivery (OR = 2.5, [95% CI: 1.1-5.9]) were significantly associated with neonate low birthweight. The number of antenatal visits however did not confer any direct benefit on birthweight status within this study area. The prevalence of low birthweight was high in the study area and represents an important public health problem in Burkina Faso. In light of these results, a redefinition of the content of the antenatal care package is needed.
Collapse
Affiliation(s)
- Moussa Lingani
- École de Santé Publique, Université Libre de Bruxelles, Route de Lennik 808, CP594, 1070, Bruxelles, Belgique.
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), BP 218, 11, Nanoro, Burkina Faso.
| | - Serge H Zango
- Epidemiology and Biostatistics Research Division, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Clos Chapelle-aux-Champs 30, B1.30.13, 1200, Brussels, Belgique
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), BP 218, 11, Nanoro, Burkina Faso
| | - Innocent Valéa
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), BP 218, 11, Nanoro, Burkina Faso
| | - Daniel Valia
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), BP 218, 11, Nanoro, Burkina Faso
| | - Maïmouna Sanou
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), BP 218, 11, Nanoro, Burkina Faso
| | - Sékou O Samandoulougou
- Evaluation Platform on Obesity Prevention, Quebec Heart and Lung Institute Research Center, Quebec City, QC, G1V 4G5, Canada
| | - Annie Robert
- Epidemiology and Biostatistics Research Division, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Clos Chapelle-aux-Champs 30, B1.30.13, 1200, Brussels, Belgique
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), BP 218, 11, Nanoro, Burkina Faso
| | - Michèle Dramaix
- École de Santé Publique, Université Libre de Bruxelles, Route de Lennik 808, CP594, 1070, Bruxelles, Belgique
| | - Philippe Donnen
- École de Santé Publique, Université Libre de Bruxelles, Route de Lennik 808, CP594, 1070, Bruxelles, Belgique
| |
Collapse
|
16
|
Yamauchi M, Hirai M, Tachibana SI, Mori T, Mita T. Fitness of sulfadoxine-resistant Plasmodium berghei harboring a single mutation in dihydropteroate synthase (DHPS). Acta Trop 2021; 222:106049. [PMID: 34273314 DOI: 10.1016/j.actatropica.2021.106049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/30/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Genetic changes conferring drug resistance are generally believed to impose fitness costs to pathogens in the absence of the drug. However, the fitness of resistant parasites against sulfadoxine/pyrimethamine has been inconclusive in Plasmodium falciparum. This is because resistance is conferred by the complex combination of mutations in dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr), which makes it difficult to separately assess the extent and magnitude of the costs imposed by mutations in dhps and dhfr. To assess the fitness costs imposed by sulfadoxine resistance alone, we generated a transgenic rodent malaria parasite, P. berghei clone harboring an A394G mutation in dhps (PbDHPS-A394G), corresponding to the causative mutation for sulfadoxine resistance in P. falciparum (PfDHPS-A437G). A four-day suppressive test confirmed that the PbDHPS-A394G clone was resistant to sulfadoxine. PbDHPS-A394G and wild-type clones showed similar growth rates and gametocyte production. This observation was confirmed in competitive experiments in which PbDHPS-A394G and wild-type clones were co-infected into mice to directly assess the survival competition between them. In the mosquitoes, there were no significant differences in oocyst production between PbDHPS-A394G and wild-type. These results indicate that the PbDHPS-A394G mutation alters the parasites to sulfadoxine resistance but may not impose fitness disadvantages during the blood stages in mice and oocyst formation in mosquitoes. These results partly explain the persistence of the PfDHPS-A437G mutant in the natural parasite populations.
Collapse
|
17
|
Evaluation of the usefulness of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine in a context with increased resistance of Plasmodium falciparum in Kingasani Hospital, Kinshasa in the Democratic Republic of Congo. INFECTION GENETICS AND EVOLUTION 2021; 94:105009. [PMID: 34284138 DOI: 10.1016/j.meegid.2021.105009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Increasing resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine (SP) threatens its usefulness for intermittent preventive treatment in pregnancy (IPTp-SP). The prophylactic effects of IPTp-SP on maternal malaria and adverse pregnancy outcomes were evaluated in Kingasani Hospital, Kinshasa in the Democratic Republic of Congo (DRC). METHODS Laboring women (n = 844) and respective newborns were investigated. Blood samples collected from women were tested for malaria using rapid diagnostic test (RDT), blood smears examination, and real-time PCR. The hemoglobin level was measured by HemoCue© analyzer. A PCR-RFLP method was applied for detecting N51I, C59R, and S108N mutations on dhfr along with A437G and K540E mutations on dhps in P. falciparum positive samples. Logistic regression models assessed relationships between IPTp-SP uptake and pregnancy outcomes. RESULTS P. falciparum malaria was detected at delivery in 10.8% of women and was statistically associated with fever during the pregnancy (OR = 2.9 [1.5; 6.3]; p = 0.004) and maternal anemia (OR = 3.9 [2.4; 6.3]; p < 0.001). One out of five parasites was a quintuple mutant encoding dhfr mutations 51I, 59R, and 108 N along with dhps mutations 437G and 540E. The molecular profile of parasites (i.e., 32.6% of parasites carrying dhps K540E) was suitable with continued use of SP for IPTp. IPTp-SP uptake was not associated with reduced maternal malaria, fever reported in pregnancy, or fetal deaths (p > 0.05). Conversely, three or more doses of SP were associated with reduced maternal anemia at delivery (OR = 0.4 [0.2; 0.9]; p = 0.024), shortened gestation (OR = 0.4 [0.2; 0.8]; p = 0.009), and low-birth weights (OR = 0.2 [0.1; 0.5]; p < 0.001). CONCLUSION IPTp-SP was not associated with reduced maternal malaria in our study, but evidence was found of a prophylactic effect against adverse pregnancy outcomes. To counteract further loss of clinical effects of IPTp-SP in the study population, alternative strategies able to improve its anti-malarial efficacy such as combination of SP with partner molecules should be implemented.
Collapse
|
18
|
Chaturvedi R, Chhibber-Goel J, Verma I, Gopinathan S, Parvez S, Sharma A. Geographical spread and structural basis of sulfadoxine-pyrimethamine drug-resistant malaria parasites. Int J Parasitol 2021; 51:505-525. [PMID: 33775670 DOI: 10.1016/j.ijpara.2020.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
The global spread of sulfadoxine (Sdx, S) and pyrimethamine (Pyr, P) resistance is attributed to increasing number of mutations in DHPS and DHFR enzymes encoded by malaria parasites. The association between drug resistance mutations and SP efficacy is complex. Here we provide an overview of the geographical spread of SP resistance mutations in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) encoded dhps and dhfr genes. In addition, we have collated the mutation data and mapped it on to the three-dimensional structures of DHPS and DHFR which have become available. Data from genomic databases and 286 studies were collated to provide a comprehensive landscape of mutational data from 2005 to 2019. Our analyses show that the Pyr-resistant double mutations are widespread in Pf/PvDHFR (P. falciparum ∼61% in Asia and the Middle East, and in the Indian sub-continent; in P. vivax ∼33% globally) with triple mutations prevailing in Africa (∼66%) and South America (∼33%). For PfDHPS, triple mutations dominate South America (∼44%), Asia and the Middle East (∼34%) and the Indian sub-continent (∼27%), while single mutations are widespread in Africa (∼45%). Contrary to the status for P. falciparum, Sdx-resistant single point mutations in PvDHPS dominate globally. Alarmingly, highly resistant quintuple and sextuple mutations are rising in Africa (PfDHFR-DHPS) and Asia (Pf/PvDHFR-DHPS). Structural analyses of DHFR and DHPS proteins in complexes with substrates/drugs have revealed that resistance mutations map proximal to Sdx and Pyr binding sites. Thus new studies can focus on discovery of novel inhibitors that target the non-substrate binding grooves in these two validated malaria parasite drug targets.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ishika Verma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sreehari Gopinathan
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; National Institute of Malaria Research, Dwarka, New Delhi, India.
| |
Collapse
|
19
|
Ebel ER, Reis F, Petrov DA, Beleza S. Historical trends and new surveillance of Plasmodium falciparum drug resistance markers in Angola. Malar J 2021; 20:175. [PMID: 33827587 PMCID: PMC8028775 DOI: 10.1186/s12936-021-03713-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/25/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Plasmodium falciparum resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine (SP) has historically posed a major threat to malaria control throughout the world. The country of Angola officially replaced CQ with artemisinin-based combination therapy (ACT) as a first-line treatment in 2006, but malaria cases and deaths have recently been rising. Many classic resistance mutations are relevant for the efficacy of currently available drugs, making it important to continue monitoring their frequency in Angola. METHODS Plasmodium falciparum DNA was sampled from the blood of 50 hospital patients in Cabinda, Angola from October-December of 2018. Each infection was genotyped for 13 alleles in the genes crt, mdr1, dhps, dhfr, and kelch13, which are collectively involved in resistance to six common anti-malarials. To compare frequency patterns over time, P. falciparum genotype data were also collated from studies published from across Angola in the last two decades. RESULTS The two most important alleles for CQ resistance, crt 76T and mdr1 86Y, were found at respective frequencies of 71.4% and 6.5%. Historical data suggest that mdr1 N86 has been steadily replacing 86Y throughout Angola in the last decade, while the frequency of crt 76T has been more variable across studies. Over a third of new samples from Cabinda were 'quintuple mutants' for SP resistance in dhfr/dhps, with a sixth mutation at dhps A581G present at 9.6% frequency. The markers dhfr 51I, dhfr 108N, and dhps 437G have been nearly fixed in Angola since the early 2000s, whereas dhfr 59R may have risen to high frequency more recently. Finally, no non-synonymous polymorphisms were detected in kelch13, which is involved in artemisinin resistance in Southeast Asia. CONCLUSIONS Genetic markers of P. falciparum resistance to CQ are likely declining in frequency in Angola, consistent with the official discontinuation of CQ in 2006. The high frequency of multiple genetic markers of SP resistance is consistent with the continued public and private use of SP. In the future, more complete haplotype data from mdr1, dhfr, and dhps will be critical for understanding the changing efficacy of multiple anti-malarial drugs. These data can be used to support effective drug policy decisions in Angola.
Collapse
Affiliation(s)
- Emily R Ebel
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Infectious Disease, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fátima Reis
- Hospital Regional de Cabinda, C5QW+XP, Cabinda, Angola
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
20
|
Chughlay MF, El Gaaloul M, Donini C, Campo B, Berghmans PJ, Lucardie A, Marx MW, Cherkaoui-Rbati MH, Langdon G, Angulo-Barturen I, Viera S, Rosanas-Urgell A, Van Geertruyden JP, Chalon S. Chemoprotective Antimalarial Activity of P218 against Plasmodium falciparum: A Randomized, Placebo-Controlled Volunteer Infection Study. Am J Trop Med Hyg 2021; 104:1348-1358. [PMID: 33556040 PMCID: PMC8045640 DOI: 10.4269/ajtmh.20-1165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/02/2020] [Indexed: 11/07/2022] Open
Abstract
P218 is a highly selective dihydrofolate reductase inhibitor with potent in vitro activity against pyrimethamine-resistant Plasmodium falciparum. This single-center, randomized, double-blind, placebo-controlled phase Ib study evaluated P218 safety, pharmacokinetics, and chemoprotective efficacy in a P. falciparum sporozoite (PfSPZ) volunteer infection study (VIS). Consecutive dose safety and tolerability were evaluated (cohort 1), with participants receiving two oral doses of P218 1,000 mg 48 hours apart (n = 6), or placebo (n = 2). P218 chemoprotective efficacy was assessed (cohorts 2 and 3) with direct venous inoculation of 3,200 aseptic, cryopreserved PfSPZ (NF54 strain) followed 2 hours later with two P218 doses of 1,000 mg (cohort 2, n = 9) or 100 mg (cohort 3, n = 9) administered 48 hours apart, or placebo (n = 6). Parasitemia was assessed from day 7 using quantitative PCR targeting the var gene acidic terminal sequence (varATS qPCR). By day 28, all participants in cohort 2 (P218 1,000 mg) and 8/9 in cohort 3 (P218 100 mg) were sterilely protected post-PfSPZ VIS, confirming P218 P. falciparum chemoprotective activity. With placebo, all six participants became parasitemic (geometric mean time to positive parasitemia 10.6 days [90% CI: 9.9–11.4]). P218 pharmacokinetics were similar in participants with or without induced infection. Adverse events of any cause occurred in 45.8% (11/24) of participants who received P218 and 50.0% (4/8) following placebo; all were mild/moderate in severity, transient, and self-limiting. There were no clinically relevant changes in laboratory parameters, vital signs, or electrocardiograms. P218 displayed excellent chemoprotective efficacy against P. falciparum with favorable safety and tolerability.
Collapse
Affiliation(s)
| | | | | | - Brice Campo
- 1Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | | | | | | | - Sara Viera
- 5GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Sitali L, Mwenda MC, Miller JM, Bridges DJ, Hawela MB, Hamainza B, Mudenda-Chilufya M, Chizema-Kawesha E, Daniels RF, Eisele TP, Nerland AH, Chipeta J, Lindtjorn B. Surveillance of molecular markers for antimalarial resistance in Zambia: Polymorphism of Pfkelch 13, Pfmdr1 and Pfdhfr/Pfdhps genes. Acta Trop 2020; 212:105704. [PMID: 33002448 DOI: 10.1016/j.actatropica.2020.105704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022]
Abstract
Antimalarial resistance is an inevitable feature of control efforts and a key threat to achieving malaria elimination. Plasmodium falciparum, the deadliest of several species causing human malaria, has developed resistance to essentially all antimalarials. This study sought to investigate the prevalence of molecular markers associated with resistance to sulfadoxine-pyrimethamine (SP) and artemether-lumefantrine (AL) in Southern and Western provinces in Zambia. SP is used primarily for intermittent preventive treatment during pregnancy, while AL is the first-line antimalarial for uncomplicated malaria in Zambia. Blood samples were collected from household members of all ages in a cross-sectional survey conducted during peak malaria transmission, April to May of 2017, and amplified by polymerase chain reaction (PCR). Amplicons were then analysed by high-resolution melt following PCR to identify mutations associated with SP resistance in the P. falciparum dihydrofolate reductase (Pfdhfr) and P. falciparum dihydropteroate synthase (Pfdhps) genes and lumefantrine resistance in the P. falciparum multi-drug resistance 1 (Pfmdr1) gene. Finally, artemether resistance was assessed in the P. falciparum Kelch 13 (PfK13) gene using nested PCR followed by amplicon sequencing. The results showed a high frequency of genotypic-resistant Pfdhps A437G (93.2%) and Pfdhfr C59R (86.7%), N51I (80.9%), and S108N (80.8%) of which a high proportion (82.4%) were quadruple mutants (Pfdhfr N51I, C59R, S108N +Pfdhps A437G). Pfmrd1 N86Y, Y186F, and D1246Y - NFD mutant haplotypes were observed in 41.9% of isolates. The high prevalence of quadruple dhps/dhfr mutants indicates strong antifolate drug pressure from SP or other drugs (e.g., co-trimoxazole). Three samples contained PfK13 mutations, two synonymous (T478 and V666) and one non-synonymous (A578S), none of which have been associated with delayed clearance. This suggests that artemisinin remains efficacious in Zambia, however, the moderately high prevalence of approximately 40% Pfmdr1 NFD mutations calls for close monitoring of AL.
Collapse
Affiliation(s)
- Lungowe Sitali
- Centre for International Health, Faculty of Medicine, University of Bergen, Bergen, Norway; University of Zambia, School of Health Sciences, Department of Biomedical Sciences, Lusaka, Zambia; School of Medicine and University Teaching Hospital Malaria Research Unit, University of Zambia, Lusaka, Zambia.
| | - Mulenga C Mwenda
- PATH Malaria Control and Elimination Partnership in Africa, National Malaria Elimination Centre, Ministry of Health, Lusaka, Zambia
| | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa, National Malaria Elimination Centre, Ministry of Health, Lusaka, Zambia
| | - Daniel J Bridges
- PATH Malaria Control and Elimination Partnership in Africa, National Malaria Elimination Centre, Ministry of Health, Lusaka, Zambia
| | - Moonga B Hawela
- National Malaria Elimination Centre, Ministry of Health, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Elimination Centre, Ministry of Health, Lusaka, Zambia
| | | | - Elizabeth Chizema-Kawesha
- End Malaria Council, African Leaders Malaria Alliance, National Malaria Elimination Centre, Ministry of Health, Lusaka, Zambia
| | - Rachel F Daniels
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Thomas P Eisele
- Centre for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Audun H Nerland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - James Chipeta
- School of Medicine and University Teaching Hospital Malaria Research Unit, University of Zambia, Lusaka, Zambia; University of Zambia School of Medicine, Department of Paediatrics and Child Health, Lusaka, Zambia
| | - Bernt Lindtjorn
- Centre for International Health, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Turkiewicz A, Manko E, Sutherland CJ, Diez Benavente E, Campino S, Clark TG. Genetic diversity of the Plasmodium falciparum GTP-cyclohydrolase 1, dihydrofolate reductase and dihydropteroate synthetase genes reveals new insights into sulfadoxine-pyrimethamine antimalarial drug resistance. PLoS Genet 2020; 16:e1009268. [PMID: 33382691 PMCID: PMC7774857 DOI: 10.1371/journal.pgen.1009268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum parasites resistant to antimalarial treatments have hindered malaria disease control. Sulfadoxine-pyrimethamine (SP) was used globally as a first-line treatment for malaria after wide-spread resistance to chloroquine emerged and, although replaced by artemisinin combinations, is currently used as intermittent preventive treatment of malaria in pregnancy and in young children as part of seasonal malaria chemoprophylaxis in sub-Saharan Africa. The emergence of SP-resistant parasites has been predominantly driven by cumulative build-up of mutations in the dihydrofolate reductase (pfdhfr) and dihydropteroate synthetase (pfdhps) genes, but additional amplifications in the folate pathway rate-limiting pfgch1 gene and promoter, have recently been described. However, the genetic make-up and prevalence of those amplifications is not fully understood. We analyse the whole genome sequence data of 4,134 P. falciparum isolates across 29 malaria endemic countries, and reveal that the pfgch1 gene and promoter amplifications have at least ten different forms, occurring collectively in 23% and 34% in Southeast Asian and African isolates, respectively. Amplifications are more likely to be present in isolates with a greater accumulation of pfdhfr and pfdhps substitutions (median of 1 additional mutations; P<0.00001), and there was evidence that the frequency of pfgch1 variants may be increasing in some African populations, presumably under the pressure of SP for chemoprophylaxis and anti-folate containing antibiotics used for the treatment of bacterial infections. The selection of P. falciparum with pfgch1 amplifications may enhance the fitness of parasites with pfdhfr and pfdhps substitutions, potentially threatening the efficacy of this regimen for prevention of malaria in vulnerable groups. Our work describes new pfgch1 amplifications that can be used to inform the surveillance of SP drug resistance, its prophylactic use, and future experimental work to understand functional mechanisms.
Collapse
Affiliation(s)
- Anna Turkiewicz
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emilia Manko
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Colin J. Sutherland
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ernest Diez Benavente
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
23
|
Jiang T, Cheng W, Yao Y, Tan H, Wu K, Li J. Molecular surveillance of anti-malarial resistance Pfdhfr and Pfdhps polymorphisms in African and Southeast Asia Plasmodium falciparum imported parasites to Wuhan, China. Malar J 2020; 19:434. [PMID: 33238987 PMCID: PMC7691106 DOI: 10.1186/s12936-020-03509-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Background Anti-malarial drug resistance is a severe challenge for eventual control and global elimination of malaria. Resistance to sulfadoxine-pyrimethamine (SP) increases as mutations accumulate in the Pfdhfr and Pfdhps genes. This study aimed to assess the polymorphisms and prevalence of mutation in these genes in the Plasmodium falciparum infecting migrant workers returning to Wuhan, China. Methods Blood samples were collected for 9 years (2011–2019). Parasite genomic DNA was extracted from blood spots on filter paper. The mutations were evaluated by nested PCR and sequencing. The single-nucleotide polymorphisms (SNPs) and haplotypes of the Pfdhfr and Pfdhps genes were analysed. Results Pfdhfr codon 108 showed a 94.7% mutation rate, while for Pfdhps, the rate for codon 437 was 79.0%. In total, five unique haplotypes at the Pfdhfr locus and 11 haplotypes at the Pfdhps locus were found while the Pfdhfr-Pfdhps combined loci revealed 28 unique haplotypes. A triple mutant (IRNI) of Pfdhfr was the most prevalent haplotype (84.4%). For Pfdhps, a single mutant (SGKAA) and a double mutant (SGEAA) were detected at frequencies of 37.8 and 22.3%, respectively. Among the combined haplotypes, a quadruple mutant (IRNI-SGKAA) was the most common, with a 30.0% frequency, followed by a quintuplet mutant (IRNI-SGEAA) with a frequency of 20.4%. Conclusion The high prevalence and saturation of Pfdhfr haplotypes and the medium prevalence of Pfdhps haplotypes demonstrated in the present data will provide support for predicting the status and progression of antifolate resistance in malaria-endemic regions and imported malaria in nonendemic areas. Additional interventions to evaluate and prevent SP resistance should be continuously considered.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Weijia Cheng
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yi Yao
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Huabing Tan
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Kai Wu
- Department of Schistosomiasis and Endemic Diseases, Wuhan City Center for Disease Prevention and Control, Wuhan, 430015, China.
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China. .,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
24
|
Fagbemi KA, Adebusuyi SA, Nderu D, Adedokun SA, Pallerla SR, Amoo AOJ, Thomas BN, Velavan TP, Ojurongbe O. Analysis of sulphadoxine-pyrimethamine resistance-associated mutations in Plasmodium falciparum isolates obtained from asymptomatic pregnant women in Ogun State, Southwest Nigeria. INFECTION GENETICS AND EVOLUTION 2020; 85:104503. [PMID: 32805431 DOI: 10.1016/j.meegid.2020.104503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Intermittent preventive treatment in pregnancy with sulphadoxine-pyrimethamine (IPTp-SP) is one of the main strategies for protecting pregnant women, fetus, and their new-born against adverse effects of P. falciparum infection. The development of the drug resistance linked to mutations in P. falciparum dihydrofolate reductase gene (pfdhfr) and P. falciparum dihydropteroate synthase gene (pfdhps), is currently threatening the IPTp-SP approach. This study determined the prevalence of pfdhfr and pfdhps mutations in isolates obtained from pregnant women with asymptomatic P. falciparum infection in Nigerian. Additionally, P. falciparum genetic diversity and multiplicity of infection (MOI) was assessed by genotyping the P. falciparum merozoite surface Protein 1 and 2 (pfmsp-1 and pfmsp-2) genes. The pfdhfr and pfdhps were genotyped by direct sequencing, and the pfmsp-1 and pfmsp-2 fragment analysis by polymerase chain reaction was used to determine P. falciparum genetic diversity. Of the 406 pregnant women recruited, 123 had P. falciparum infection by PCR, and of these, 52 were successfully genotyped for pfdhfr and 42 for pfdhps genes. The pfdhfr triple-mutant parasites (N51I, C59R, and S108N) or the IRN haplotype were predominant (98%), whereas pfdhfr mutations C50R and I164L did not occur. For pfdhps gene, the prevalence of A437G, A581G, A436A, and A613S mutations were 98, 71, 55, and 36%, respectively. Nineteen (44%) isolates with quintuple mutations (CIRNI- SGKGA) had the highest combined pfdhfr-pfdhps haplotype. Isolates with sextuple mutants; CIRNI- AGKAS and CIRNI- AGKGA had a prevalence of 29 and 14%, respectively. High genetic diversity (7 pfmsp-1 alleles and 10 pfmsp-2 alleles) and monoclonal infection rate (76%) was observed. This study demonstrated a continuous high prevalence of pfdhfr mutation and an increase in pfdhps mutations associated with SP-resistance in southwest Nigeria. Continuous surveillance of IPTp-SP effectiveness and consideration of alternative IPTp strategies is recommended.
Collapse
Affiliation(s)
- Kaossarath A Fagbemi
- Institute of Tropical Medicine, University of Tübingen, Germany; Department of Biomedical Sciences, Laboratory of Cytogenetics and Medical Genetics, Faculty of Health Sciences, University of Abomey-Calavi, Benin
| | - Sunday A Adebusuyi
- Department of Medical Microbiology & Parasitology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - David Nderu
- Institute of Tropical Medicine, University of Tübingen, Germany; School of Health Sciences, Kirinyaga University, Kirinyaga, Kenya
| | - Samuel A Adedokun
- Institute of Tropical Medicine, University of Tübingen, Germany; Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | | | - Abimbola O J Amoo
- Department of Medical Microbiology & Parasitology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Germany; Duy Tan University, Da Nang, Viet Nam
| | - Olusola Ojurongbe
- Institute of Tropical Medicine, University of Tübingen, Germany; Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.
| |
Collapse
|
25
|
The impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the DRC. Nat Commun 2020; 11:2107. [PMID: 32355199 PMCID: PMC7192906 DOI: 10.1038/s41467-020-15779-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/28/2020] [Indexed: 11/09/2022] Open
Abstract
The Democratic Republic of the Congo (DRC) harbors 11% of global malaria cases, yet little is known about the spatial and genetic structure of the parasite population in that country. We sequence 2537 Plasmodium falciparum infections, including a nationally representative population sample from DRC and samples from surrounding countries, using molecular inversion probes - a high-throughput genotyping tool. We identify an east-west divide in haplotypes known to confer resistance to chloroquine and sulfadoxine-pyrimethamine. Furthermore, we identify highly related parasites over large geographic distances, indicative of gene flow and migration. Our results are consistent with a background of isolation by distance combined with the effects of selection for antimalarial drug resistance. This study provides a high-resolution view of parasite genetic structure across a large country in Africa and provides a baseline to study how implementation programs may impact parasite populations. The genome of the malaria parasite Plasmodium falciparum contains a record of past evolutionary forces. Here, using 2537 parasite sequences from the Democratic Republic of the Congo, the authors demonstrate how drug pressure and human movement have shaped the present-day parasite population.
Collapse
|
26
|
Lin LY, Li J, Huang HY, Liang XY, Jiang TT, Chen JT, Ehapo CS, Eyi UM, Zheng YZ, Zha GC, Xie DD, Wang YL, Chen WZ, Liu XZ, Lin M. Trends in Molecular Markers Associated with Resistance to Sulfadoxine-Pyrimethamine (SP) Among Plasmodium falciparum Isolates on Bioko Island, Equatorial Guinea: 2011-2017. Infect Drug Resist 2020; 13:1203-1212. [PMID: 32431521 PMCID: PMC7197940 DOI: 10.2147/idr.s236898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/19/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Antimalarial drug resistance is one of the major challenges in global efforts to control and eliminate malaria. In 2006, sulfadoxine-pyrimethamine (SP) replaced with artemisinin-based combination therapy (ACT) on Bioko Island, Equatorial Guinea, in response to increasing SP resistance, which is associated with mutations in the dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes. PATIENTS AND METHODS To evaluate the trend of molecular markers associated with SP resistance on Bioko Island from 2011 to 2017, 179 samples collected during active case detection were analysed by PCR and DNA sequencing. RESULTS Pfdhfr and Pfdhps gene sequences were obtained for 90.5% (162/179) and 77.1% (138/179) of the samples, respectively. For Pfdhfr, 97.5% (158/162), 95.7% (155/162) and 98.1% (159/162) of the samples contained N51I, C59R and S108N mutant alleles, respectively. And Pfdhps S436A, A437G, K540E, A581G, and A613S mutations were observed in 25.4% (35/138), 88.4% (122/138), 5.1% (7/138), 1.4% (2/138), and 7.2% (10/138) of the samples, respectively. Two classes of previously described Pfdhfr-Pfdhps haplotypes associated with SP resistance and their frequencies were identified: partial (IRNI-SGKAA, 59.4%) and full (IRNI-SGEAA, 5.5%) resistance. Although no significant difference was observed in different time periods (p>0.05), our study confirmed a slowly increasing trend of the frequencies of these SP-resistance markers in Bioko parasites over the 7 years investigated. CONCLUSION The findings reveal the general existence of SP-resistance markers on Bioko Island even after the replacement of SP as a first-line treatment for uncomplicated malaria. Continuous molecular monitoring and additional control efforts in the region are urgently needed.
Collapse
Affiliation(s)
- Li-Yun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong Province, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences; Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Hui-Ying Huang
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Xue-Yan Liang
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Ting-Ting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences; Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Jiang-Tao Chen
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Medical Laboratory, Huizhou Central Hospital, Huizhou, Guangdong Province, People’s Republic of China
| | - Carlos Salas Ehapo
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Urbano Monsuy Eyi
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Yu-Zhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong Province, People’s Republic of China
| | - Guang-Cai Zha
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong Province, People’s Republic of China
| | - Dong-De Xie
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Medical Laboratory, Huizhou Central Hospital, Huizhou, Guangdong Province, People’s Republic of China
| | - Yu-Ling Wang
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Medical Laboratory, Huizhou Central Hospital, Huizhou, Guangdong Province, People’s Republic of China
| | - Wei-Zhong Chen
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Xiang-Zhi Liu
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
- Correspondence: Min Lin School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong Province, People’s Republic of China Tel/Fax +86 768-2317422 Email
| |
Collapse
|
27
|
Zhao L, Pi L, Qin Y, Lu Y, Zeng W, Xiang Z, Qin P, Chen X, Li C, Zhang Y, Wang S, Si Y, Yang G, Rosenthal BM, Huang Y, Yang Z. Widespread resistance mutations to sulfadoxine-pyrimethamine in malaria parasites imported to China from Central and Western Africa. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 12:1-6. [PMID: 31809965 PMCID: PMC6909128 DOI: 10.1016/j.ijpddr.2019.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Imported cases of infectious disease provide invaluable information about epidemiological conditions abroad, and should guide treatment decisions at home and abroad. Here, we examined cases of malaria imported from Africa to China for mutations eroding the efficacy of sulfadoxine-pyrimethamine (SP), sometimes used as an intermittent preventive treatment during for pregnant women and infants. METHODS A total of 208 blood samples were collected from P. falciparum-infected workers who had returned from Western and Central Africa to Guangxi Province Frequency distribution. Samples were analyzed for the mutations in dhfr and dhps genes by PCR -sequencing. The prevalence of dhfr and dhps polymorphisms was analyzed. Among the isolates, polymorphisms were detected in mutants N51I, C59R, S108N and I164L of Pfdhfr and I431V, S436 A/F, A437G, K540 E/N, A581G and A613T of pfdhps. RESULTS Mutations promoting drug resistance were widespread in this cohort. For pfdhfr and pfdhps, wild types were equally rare among patients returned from Western Africa and Central Africa. A triple-mutant dhfr haplotype was most prevalent (>70%). We report for the first time mutation I164L-dhfr and I431V-dhps in Ghana, and for the first time we found A581G to exceed a clinically-relevant threshold that may counter-indicate current clinical practices. For Pfdhps, the double-mutant IAGKAA was high prevalent haplotype in Ghana, Western Africa. The single-mutant ISGKAA was a majority haplotype in Cameroon. Alarmingly, a "super resistance" quintuple mutant was detected, for the first time, in parasites of West African origin (defined by IAGKAA/IRNI in combination with pfdhps 581G and dhfr I164L). This may limit the efficacy of this drug combination for even intermittent clinical applications. CONCLUSIONS These data are cause for great concern and call for continued surveillance of the efficacy of SP in source and recipient populations, and should be considered when developing treatment policy for imported malaria cases in China and elsewhere.
Collapse
Affiliation(s)
- Luyi Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China
| | - Liang Pi
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China
| | - Yucheng Qin
- Shanglin County People's Hospital, Shanglin, 530500, Guangxi, PR China
| | - Yuxin Lu
- Shanglin County People's Hospital, Shanglin, 530500, Guangxi, PR China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China
| | - Zheng Xiang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China
| | - Pien Qin
- Shanglin County People's Hospital, Shanglin, 530500, Guangxi, PR China
| | - Xi Chen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China
| | - Cuiying Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China
| | - Yanmei Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China
| | - Siqi Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China
| | - Yu Si
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China
| | - Gongchao Yang
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500, North State Street, USA
| | - Benjamin M Rosenthal
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Yaming Huang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China; Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, 530021, Guangxi, PR China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, PR China.
| |
Collapse
|
28
|
Deutsch-Feldman M, Aydemir O, Carrel M, Brazeau NF, Bhatt S, Bailey JA, Kashamuka M, Tshefu AK, Taylor SM, Juliano JJ, Meshnick SR, Verity R. The changing landscape of Plasmodium falciparum drug resistance in the Democratic Republic of Congo. BMC Infect Dis 2019; 19:872. [PMID: 31640574 PMCID: PMC6805465 DOI: 10.1186/s12879-019-4523-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Drug resistant malaria is a growing concern in the Democratic Republic of the Congo (DRC), where previous studies indicate that parasites resistant to sulfadoxine/pyrimethamine or chloroquine are spatially clustered. This study explores longitudinal changes in spatial patterns to understand how resistant malaria may be spreading within the DRC, using samples from nation-wide population-representative surveys. METHODS We selected 552 children with PCR-detectable Plasmodium falciparum infection and identified known variants in the pfdhps and pfcrt genes associated with resistance. We compared the proportion of mutant parasites in 2013 to those previously reported from adults in 2007, and identified risk factors for carrying a resistant allele using multivariate mixed-effects modeling. Finally, we fit a spatial-temporal model to the observed data, providing smooth allele frequency estimates over space and time. RESULTS The proportion of co-occurring pfdhps K540E/A581G mutations increased by 16% between 2007 and 2013. The spatial-temporal model suggests that the spatial range of the pfdhps double mutants expanded over time, while the prevalence and range of pfcrt mutations remained steady. CONCLUSIONS This study uses population-representative samples to describe the changing landscape of SP resistance within the DRC, and the persistence of chloroquine resistance. Vigilant molecular surveillance is critical for controlling the spread of resistance.
Collapse
Affiliation(s)
- Molly Deutsch-Feldman
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.
| | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Margaret Carrel
- Department of Geographical & Sustainability Sciences, University of Iowa, Iowa City, IA, USA
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Samir Bhatt
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Melchior Kashamuka
- Ecole de Santé Publique, , Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Antoinette K Tshefu
- Ecole de Santé Publique, , Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Steve M Taylor
- Division of Infectious Diseases and Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.,Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Robert Verity
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
29
|
Bansal D, Bharti PK, Acharya A, Abdelraheem MH, Patel P, Elmalik A, Abosalah S, Khan FY, ElKhalifa M, Kaur H, Farag E, Sarmah NP, Mohapatra PK, Sehgal R, Mahanta J, Sultan AA. Molecular surveillance of putative drug resistance markers of antifolate and artemisinin among imported Plasmodium falciparum in Qatar. Pathog Glob Health 2019; 113:158-166. [PMID: 31296112 PMCID: PMC6758627 DOI: 10.1080/20477724.2019.1639018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Malaria remains a significant public health challenge and is of global importance. Imported malaria is a growing problem in non-endemic areas throughout the world and also in Qatar due to a massive influx of migrants from endemic countries. Antimalarial drug resistance is an important deterrent in our fight against malaria today. Molecular markers mirror intrinsic antimalarial drug resistance and their changes precede clinical resistance. Thus, in the present study, molecular markers of sulphadoxine-pyrimethamine (Pfdhfr and Pfdhps) and artemisinin (PfATPase6 and Pfk13) were sequenced to determine the drug resistance genotypes among 118 imported P. falciparum isolates in Qatar, between 2013 and 2016. All the isolates had mutant Pfdhfr alleles, with either double mutant (51I/108N) (59.3%) or triple mutant (51I, 59R and 108N) (30.6%) genotypes. I164L substitution was not found in this study. In case of Pfdhps, majority of the samples were carriers of either single (S436A/ A437G/ K540E) mutant (47.2%) or double (S436A/K540E, A437G/K540E, K540E/A581G) mutant (39.8%). A single novel point mutation (431V) was observed in the samples originated from Nigeria and Ghana. Polymorphisms in PfATPase6 were absent and only one non-synonymous mutation in Pfk13 was found at codon G453A from a sample of Kenyan origin. High levels of sulphadoxine-pyrimethamine resistance in the present study provide potential information about the spread of antimalarial drug resistance and will be beneficial for the treatment of imported malaria cases in Qatar.
Collapse
Affiliation(s)
- Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City , Doha , Qatar
| | - Praveen K Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research , Jabalpur , India
| | - Anushree Acharya
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City , Doha , Qatar
| | - Mohamed H Abdelraheem
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, Sultan Qaboos University , Muscat , Oman
| | - Priyanka Patel
- National Institute for Research in Tribal Health, Indian Council of Medical Research , Jabalpur , India
| | - Ashraf Elmalik
- Department of Emergency Medicine, Hamad General Hospital, Hamad Medical Corporation , Doha , Qatar
| | - Salem Abosalah
- Department of Emergency Medicine, Hamad General Hospital, Hamad Medical Corporation , Doha , Qatar
| | - Fahmi Y Khan
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation , Doha , Qatar
| | - Mohamed ElKhalifa
- Department of Laboratory Medicine and Pathology, Hamad General Hospital, Hamad Medical Corporation , Doha , Qatar
| | - Hargobinder Kaur
- Department of Parasitology, Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | | | - Nilanju P Sarmah
- Regional Medical Research Centre, NE, Indian Council of Medical Research , Dibrugarh , India
| | - Pradyumna K Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research , Dibrugarh , India
| | - Rakesh Sehgal
- Department of Parasitology, Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research , Dibrugarh , India
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City , Doha , Qatar
| |
Collapse
|
30
|
Mutation Profile of pfdhfr and pfdhps in Plasmodium falciparum among Returned Chinese Migrant Workers from Africa. Antimicrob Agents Chemother 2019; 63:AAC.01927-18. [PMID: 30803964 DOI: 10.1128/aac.01927-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/17/2019] [Indexed: 01/29/2023] Open
Abstract
We evaluated markers of sulfadoxine-pyrimethamine (SP) resistance in Plasmodium falciparum among 254 returned migrant workers in China from Africa from 2013 to 2016. High prevalences of pfdhfr (97.2%) and pfdhps (96.5%) mutations were observed. The partially resistant genotype was homogeneously distributed in Africa with a modestly high prevalence (48%), whereas the super resistant genotype was only found in West Africa with a very low frequency (1.2%). The findings provided baseline data about the molecular markers of SP resistance.
Collapse
|
31
|
Jiang T, Chen J, Fu H, Wu K, Yao Y, Eyi JUM, Matesa RA, Obono MMO, Du W, Tan H, Lin M, Li J. High prevalence of Pfdhfr-Pfdhps quadruple mutations associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea. Malar J 2019; 18:101. [PMID: 30914041 PMCID: PMC6434785 DOI: 10.1186/s12936-019-2734-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/18/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sulfadoxine-pyrimethamine (SP) is recommended for intermittent preventive treatment of malaria in Africa. However, increasing SP resistance (SPR) affects the therapeutic efficacy of the SP. As molecular markers, Pfdhfr (dihydrofolate reductase) and Pfdhps (dihydropteroate synthase) genes are widely used for SPR surveillance. This study aimed to assess the prevalence of Pfdhfr and Pfdhps genes mutations and haplotypes in Plasmodium falciparum isolates collected from Bioko Island, Equatorial Guinea (EG). METHODS In total, 180 samples were collected in 2013-2014. The single nucleotide polymorphisms (SNPs) of the Pfdhfr and Pfdhps genes were identified with nested PCR and Sanger sequencing. The genotypes and linkage disequilibrium (LD) tests were also analysed. RESULTS Sequences of Pfdhfr and Pfdhps genes were obtained from 92.78% (167/180) and 87.78% (158/180) of the samples, respectively. For Pfdhfr, 97.60% (163/167), 87.43% (146/167) and 97.01% (162/167) of the samples carried N51I, C59R and S108N mutant alleles, respectively. The prevalence of the Pfdhps S436A, A437G, K540E, A581G, and A613S mutations were observed in 20.25% (32/158), 90.51% (143/158), 5.06% (8/158), 0.63% (1/158), and 3.16% (5/158) of the samples, respectively. In total, 3 unique haplotypes at the Pfdhfr locus and 8 haplotypes at the Pfdhps locus were identified. A triple mutation (CIRNI) in Pfdhfr was the most prevalent haplotype (86.83%), and a single mutant haplotype (SGKAA; 62.66%) was predominant in Pfdhps. A total of 130 isolates with 12 unique haplotypes were found in the Pfdhfr and Pfdhps combined haplotypes, 65.38% (85/130) of them carried quadruple allele combinations (CIRNI-SGKAA), whereas only one isolate (0.77%, 1/130) was found to carry the wild-type (CNCSI-SAKAA). For LD analysis, the Pfdhfr N51I was significantly associated with the Pfdhps A437G (P < 0.05). CONCLUSION Bioko Island possesses a high prevalence of the Pfdhfr triple mutation (CIRNI) and Pfdhps single mutation (SGKAA), which will undermine the pharmaceutical effect of SP for malaria treatment strategies. To avoid an increase in SPR, continuous molecular monitoring and additional control efforts are urgently needed in Bioko Island, Equatorial Guinea.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Jiangtao Chen
- The Chinese Medical Aid Team To the Republic of Equatorial Guinea; Laboratory Medical Center, Huizhou Municipal Central Hospital, Huizhou, 516001, People's Republic of China
| | - Hongxia Fu
- Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Kai Wu
- Department of Schistosomiasis and Endemic Diseases, Wuhan City Center for Disease Prevention and Control, Wuhan, People's Republic of China
| | - Yi Yao
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | | | - Rocio Apicante Matesa
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | | | - Weixing Du
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Huabing Tan
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Min Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, People's Republic of China.
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| |
Collapse
|