1
|
Feng L, Luo Z, Wang J, Wu K, Wang W, Liu Z, Wen J, Wang Z, Duns GJ, Ma X, Tan B. Effects of different ratios of soluble to insoluble dietary fiber on growth performance and intestinal health of piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:257-271. [PMID: 39281054 PMCID: PMC11402385 DOI: 10.1016/j.aninu.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 09/18/2024]
Abstract
This study investigated the impact of different ratios of soluble to insoluble dietary fiber (SDF:IDF) formulations by sugar beet pulp (SBP) supplementation on piglet growth performance, nutrient digestibility, immune function, intestinal morphology, intestinal microbiota and intestinal health. A total of 60 crossbred piglets (Duroc × [Landrace × Yorkshire]) at 40 d old with body weight of 10.0 ± 0.3 kg were randomly assigned to 5 treatments with 6 replicates per treatment and 2 piglets per replicate in a 21-d trial. The dietary treatments included a corn-soybean meal diet (0% SBP supplementation; CON), and diets supplemented with 2%, 4%, 6%, and 8% SBP, representing different SDF:IDF ratios at 10.16%, 13.53%, 16.79%, 19.86%, and 24.81%, respectively. The results indicated that the 8% SBP treatment had a negative effect on feed-to-gain ratio (linear, P = 0.009) compared with the CON treatment (P = 0.021). The apparent total tract digestibility (ATTD) of crude protein was lower in treatments supplemented with SBP (P = 0.002) and showed a linear decrease (P = 0.001), while the ATTD of IDF showed a linear increase (P = 0.037) in four SBP treatments compared to the CON treatment. The 4% SBP treatment increased serum concentrations of triglyceride (quadratic, P = 0.019) and K (linear, P < 0.0037), and decreased alanine transaminase concentration (quadratic, P = 0.015) compared with the CON treatment. The concentrations of Cit, Cys, Ile, Leu, Orn, Arg, taurine, urea, 1-methylhistidine, α-aminoadipic acid, α-aminobutyric acid and cystathionine in the 4% SBP treatment were highest among all treatments (P < 0.05). The serum concentrations of interleukin-6, interleukin-8, interleukin-10, transforming growth factor-β, and tumor necrosis factor-α in the 6% SBP treatment were higher than those in the CON treatment (P < 0.05), which also increased mucin-2 and G protein-coupled receptor 41 mRNA expression (P < 0.05) in colonic mucosa compared with the CON treatment and improved the intestinal barrier function. Diets containing more than 19.86% SDF:IDF could impair the intestinal health in piglets when SBP was used as the SDF source. Supplementing nursery piglet diets with 16.79% to 19.86% SDF:IDF is recommended for improving intestinal barrier function, increasing short-chain fatty acids concentrations, and improving intestinal microbiota composition.
Collapse
Affiliation(s)
- Luya Feng
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Zhenfu Luo
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Kunfu Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Wenliang Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Zhimou Liu
- Hunan Nuoze Biological Technology Co., Ltd., Yiyang 413001, China
| | - Juping Wen
- Hunan Nuoze Biological Technology Co., Ltd., Yiyang 413001, China
| | - Zhenbin Wang
- Hunan Nuoze Biological Technology Co., Ltd., Yiyang 413001, China
| | - Gregory J Duns
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiaokang Ma
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Bi'e Tan
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
2
|
Valente Junior DT, Genova JL, Kim SW, Saraiva A, Rocha GC. Carbohydrases and Phytase in Poultry and Pig Nutrition: A Review beyond the Nutrients and Energy Matrix. Animals (Basel) 2024; 14:226. [PMID: 38254395 PMCID: PMC10812482 DOI: 10.3390/ani14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
This review aimed to clarify the mechanisms through which exogenous enzymes (carbohydrases and phytase) influence intestinal health, as well as their effects on the nutrients and energy matrix in diets fed to poultry and pigs reared under sanitary challenging conditions. Enzyme supplementation can positively affect intestinal microbiota, immune system, and enhance antioxidant status. Although enzymes have been shown to save energy and nutrients, their responses under sanitary challenging conditions are poorly documented. Immune system activation alters nutrient partitioning, which can affect the matrix values for exogenous enzymes on commercial farms. Notably, the carbohydrases and phytase supplementation under sanitary challenging conditions align with energy and nutritional valorization matrices. Studies conducted under commercial conditions have shown that matrices containing carbohydrases and phytase can maintain growth performance and health in poultry and pigs. However, these studies have predominantly focused on assessing a single level of reduction in energy and/or available phosphorus and total calcium, limiting our ability to quantify potential energy and nutrient savings in the diet. Future research should delve deeper into determining the extent of energy and nutrient savings and understanding the effects of alone or blended enzymes supplementation to achieve more specific insights.
Collapse
Affiliation(s)
- Dante Teixeira Valente Junior
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (D.T.V.J.); (J.L.G.); (A.S.)
| | - Jansller Luiz Genova
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (D.T.V.J.); (J.L.G.); (A.S.)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Alysson Saraiva
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (D.T.V.J.); (J.L.G.); (A.S.)
| | - Gabriel Cipriano Rocha
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (D.T.V.J.); (J.L.G.); (A.S.)
| |
Collapse
|
3
|
White CS, Hung CC, Lanka S, Maddox CW, Barri A, Sokale AO, Dilger RN. Dietary monoglyceride supplementation to support intestinal integrity and host defenses in health-challenged weanling pigs. J Anim Sci 2024; 102:skae105. [PMID: 38629856 PMCID: PMC11044705 DOI: 10.1093/jas/skae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Frequent incidence of postweaning enterotoxigenic Escherichia coli (ETEC) diarrhea in the swine industry contributes to high mortality rates and associated economic losses. In this study, a combination of butyric, caprylic, and capric fatty acid monoglycerides was investigated to promote intestinal integrity and host defenses in weanling pigs infected with ETEC. A total of 160 pigs were allotted to treatment groups based on weight and sex. Throughout the 17-d study, three treatment groups were maintained: sham-inoculated pigs fed a control diet (uninfected control [UC], n = 40), ETEC-inoculated pigs fed the same control diet (infected control [IC], n = 60), and ETEC-inoculated pigs fed the control diet supplemented with monoglycerides included at 0.3% of the diet (infected supplemented [MG], n = 60). After a 7-d acclimation period, pigs were orally inoculated on each of three consecutive days with either 3 mL of a sham-control (saline) or live ETEC culture (3 × 109 colony-forming units/mL). The first day of inoculations was designated as 0 d postinoculation (DPI), and all study outcomes reference this time point. Fecal, tissue, and blood samples were collected from 48 individual pigs (UC, n = 12; IC, n = 18; MG, n = 18) on 5 and 10 DPI for analysis of dry matter (DM), bacterial enumeration, inflammatory markers, and intestinal permeability. ETEC-inoculated pigs in both the IC and MG groups exhibited clear signs of infection including lower (P < 0.05) gain:feed and fecal DM, indicative of excess water in the feces, and elevated (P < 0.05) rectal temperatures, total bacteria, total E. coli, and total F18 ETEC during the peak-infection period (5 DPI). Reduced (P < 0.05) expression of the occludin, tumor necrosis factor α, and vascular endothelial growth factor A genes was observed in both ETEC-inoculated groups at the 5 DPI time point. There were no meaningful differences between treatments for any of the outcomes measured at 10 DPI. Overall, all significant changes were the result of the ETEC infection, not monoglyceride supplementation.
Collapse
Affiliation(s)
- Cameron S White
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Chien-Che Hung
- Veterinary Diagnostic Laboratory, University of Illinois, Urbana, IL, USA
| | - Saraswathi Lanka
- Veterinary Diagnostic Laboratory, University of Illinois, Urbana, IL, USA
| | - Carol W Maddox
- Veterinary Diagnostic Laboratory, University of Illinois, Urbana, IL, USA
| | | | | | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
4
|
Liu X, Wei X, Feng Y, Liu H, Tang J, Gao F, Shi B. Supplementation with Complex Dietary Fiber during Late Pregnancy and Lactation Can Improve Progeny Growth Performance by Regulating Maternal Antioxidant Status and Milk Quality. Antioxidants (Basel) 2023; 13:22. [PMID: 38275642 PMCID: PMC10812556 DOI: 10.3390/antiox13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
This study investigated the nutritional benefits of complex dietary fiber (beta-glucan and fructo-oligosaccharides, CDF) supplementation in sows and piglets during late pregnancy and lactation. Twenty-four sows were randomly divided into two groups: the control group was fed a basal diet (n = 12), and the experimental group was fed a CDF diet (0.25% CDF replaced the same proportion of corn in the basal diet, n = 12). Dietary treatment was given from day 107 of pregnancy to day 25 of lactation. The results of this experiment showed that CDF increased the average daily feed intake (ADFI) of sows during lactation and the weaning body weight (BW) and average daily gain of piglets. Dietary CDF supplementation improved the antioxidant capacity and immune level of sows and decreased the serum zonulin level. Dietary supplementation with CDF increased the levels of antioxidant activity, immunoglobulin, and anti-inflammatory factor interleukin-10 (IL-10) in milk. Meanwhile, piglets in the CDF group had increased serum antioxidant activity, immunoglobulin, and growth-related hormone levels; decreased malondialdehyde (MDA), interleukin-6 (IL-6), and D-lactic acid (D-LA) levels; and increased fecal short-chain fatty acid content. In addition, the CDF group increased the diversity of microorganisms in sow feces. In conclusion, the supplementation of a diet with CDF in late pregnancy and lactation can alleviate the oxidative stress of sows, improve milk quality, and have significant positive effects on the antioxidant capacity and growth performance of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.L.); (X.W.); (Y.F.); (H.L.); (J.T.); (F.G.)
| |
Collapse
|
5
|
Duarte ME, Garavito-Duarte Y, Kim SW. Impacts of F18 +Escherichia coli on Intestinal Health of Nursery Pigs and Dietary Interventions. Animals (Basel) 2023; 13:2791. [PMID: 37685055 PMCID: PMC10487041 DOI: 10.3390/ani13172791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This review focused on the impact of F18+E. coli on pig production and explored nutritional interventions to mitigate its deleterious effects. F18+E. coli is a primary cause of PWD in nursery pigs, resulting in substantial economic losses through diminished feed efficiency, morbidity, and mortality. In summary, the F18+E. coli induces intestinal inflammation with elevated IL6 (60%), IL8 (43%), and TNF-α (28%), disrupting the microbiota and resulting in 14% villus height reduction. Besides the mortality, the compromised intestinal health results in a 20% G:F decrease and a 10% ADFI reduction, ultimately culminating in a 28% ADG decrease. Among nutritional interventions to counter F18+E. coli impacts, zinc glycinate lowered TNF-α (26%) and protein carbonyl (45%) in jejunal mucosa, resulting in a 39% ADG increase. Lactic acid bacteria reduced TNF-α (36%), increasing 51% ADG, whereas Bacillus spp. reduced IL6 (27%), increasing BW (12%). Lactobacillus postbiotic increased BW (14%) and the diversity of beneficial bacteria. Phytobiotics reduced TNF-α (23%) and IL6 (21%), enhancing feed efficiency (37%). Additional interventions, including low crude protein formulation, antibacterial minerals, prebiotics, and organic acids, can be effectively used to combat F18+E. coli infection. These findings collectively underscore a range of effective strategies for managing the challenges posed by F18+E. coli in pig production.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (M.E.D.); (Y.G.-D.)
| |
Collapse
|
6
|
Dahmer PL, DeRouchey JM, Gebhardt JT, Paulk CB, Jones CK. Summary of methodology used in enterotoxigenic Escherichia coli (ETEC) challenge experiments in weanling pigs and quantitative assessment of observed variability. Transl Anim Sci 2023; 7:txad083. [PMID: 37711356 PMCID: PMC10499306 DOI: 10.1093/tas/txad083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/18/2023] [Indexed: 09/16/2023] Open
Abstract
Postweaning diarrhea in pigs is often caused by the F4 or F18 strains of enterotoxigenic Escherichia coli (ETEC). To evaluate interventions for ETEC, experimental infection via a challenge model is critical. Others have reviewed ETEC challenge studies, but there is a lack of explanation for the variability in responses observed. Our objective was to quantitatively summarize the responses and variability among ETEC challenge studies and develop a tool for sample size calculation. The most widely evaluated response criteria across ETEC challenge studies consist of growth performance, fecal consistency, immunoglobulins, pro-inflammatory cytokines, and small intestinal morphology. However, there is variation in the responses seen following ETEC infection as well as the variability within each response criteria. Contributing factors include the type of ETEC studied, dose and timing of inoculation, and the number of replications. Generally, a reduction in average daily gain and average daily feed intake are seen following ETEC challenge as well as a rapid increase in diarrhea. The magnitude of response in growth performance varies, and methodologies used to characterize fecal consistency are not standardized. Likewise, fecal bacterial shedding is a common indicator of ETEC infection, but the responses seen across the literature are not consistent due to differences in bacterial enumeration procedures. Emphasis should also be placed on the piglet's immune response to ETEC, which is commonly assessed by quantifying levels of immunoglobulins and pro-inflammatory cytokines. Again, there is variability in these responses across published work due to differences in the timing of sample collection, dose of ETEC pigs are challenged with, and laboratory practices. Small intestinal morphology is drastically altered following infection with ETEC and appears to be a less variable response criterion to evaluate. For each of these outcome variables, we have provided quantitative estimates of the responses seen across the literature as well as the variability within them. While there is a large degree of variability across ETEC challenge experiments, we have provided a quantitative summary of these studies and a Microsoft Excel-based tool was created to calculate sample sizes for future studies that can aid researchers in designing future work.
Collapse
Affiliation(s)
- Payton L Dahmer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | - Chad B Paulk
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
7
|
Song D, Lee J, Kwak W, Oh H, Chang S, An J, Cho H, Park S, Jeon K, Cho J. Effects of stimbiotic supplementation on gut health, immune response, and intestinal microbiota in weaned piglets challenged with E. coli. Front Vet Sci 2023; 10:1187002. [PMID: 37538167 PMCID: PMC10394646 DOI: 10.3389/fvets.2023.1187002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
In order to make piglet diets more effective, it is necessary to investigate effective methods for breaking down xylan in cereal. The objective of this study was to determine the effects of dietary stimbiotic (STB) supplementation on growth performance, intestinal morphology, immune response and intestinal microbiota in weaned piglets. A total of 24 (Duroc × Yorkshire × Landrace) weaned pigs (initial body weight of 8.01 ± 0.38 kg and 28 ± 3 d old), were assigned to 4 treatments with 6 replicates per treatment. Pigs were housed in individual pens for 17 days, including 5 days adaption period and 12 days after the first Escherichia coli (E. coli) challenge. The experiment was conducted in a 2 × 2 factorial arrangement of treatments consisting of two levels of challenge (challenge and non-challenge) and two levels of STB (0 and 0.5 g/kg diet). Supplementations of STB 0.5 g/kg improved the gain to feed ratio (G:F) (P < 0.05) in piglets challenged with shiga toxigenic E. coli (STEC). STB supplementation decreased (P < 0.05) white blood cells, neutrophils, lymphocytes, and expression levels of tumor necrosis factor-alpha and interleukin-6. Supplementation of STB improved (P < 0.05) the lymphocytes and neutrophils in piglets challenged with STEC on 12 dpi. Supplementation of STB also improved (P < 0.05) the villus height to-crypt depth ratio of ileum in piglets challenged with STEC. Supplementation of STB increased (P < 0.05) the expression levels of claudin-1 of ileum. In genus level, supplementation of STB increased (P < 0.001) the abundance of Prevotella compared to non-supplementation of STB groups in pre-inoculation period. Also, supplementation of STB decreased (P < 0.05) the abundance of Faecalibacterium and Eubacterium_coprostanoligenes_group compared to non-supplementation of STB groups in post-inoculation period. In phylum level, supplementation of STB increased (P < 0.05) the abundance of Desulfobacterota and Fibrobacterota in pre-inoculation period. E. coli challenge increased the abundance of Fibrobacterota compared to non-challenged group in post-inoculation period. In conclusion, these findings indicated that STB supplementation could alleviate a decrease of the performance, immune response, and inflammatory response in piglets induced by the STEC challenge.
Collapse
Affiliation(s)
- Dongcheol Song
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia (UGA), Athens, GA, United States
| | - Woogi Kwak
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hanjin Oh
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jaewoo An
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyeongho Jeon
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
8
|
Crome TA, Giesemann MA, Miller HE, Petry AL. Influence of fiber type and carbohydrase supplementation on nutrient digestibility, energy and nitrogen balance, and physiology of sows at mid and late gestation. J Anim Sci 2023; 101:skad390. [PMID: 38016074 PMCID: PMC10734669 DOI: 10.1093/jas/skad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Carbohydrase supplementation in grow-finish pig diets improves energy, nutrient digestibility, and gastrointestinal function, but their efficacy in gestation diets is understudied. The experimental objective was to evaluate the efficacy of a multicarbohydrase to improve digestion, energetics, and various physiological functions in gestating sows fed soluble and insoluble fiber diets. On day 28 of gestation, 36 sows (186 ± 4.6 kg body weight), blocked by parity, were randomly assigned to a 2 × 2 factorial arrangement of dietary treatments (n = 9). Factors included fiber type of insoluble (IF; 20% dried distiller grains with solubles) or soluble fiber (SF; 20% sugar beet pulp) and with (+) or without (-) enzyme (0.05%, Rovabio Advance P10; Adisseo, Antony, France). Diets were fed from days 28 to 109 of gestation at a feeding level of 2.1 kg (SID-Lys 11 g/d and 4.5 net energy-Mcal/d). Two separate 9-d metabolism periods were conducted on days 50 to 59 (mid) and 99 to 108 (late) of gestation. During each period, days 1 to 3 served as an adaptation period, days 4 to 7 total urine and feces were collected (96-h) and followed by a 48-h lactulose-mannitol study. Serum and plasma were collected on days 50 and 99. Data were analyzed as repeated records using a linear mixed model with block as a random effect and fiber type, enzyme, and period and their interactions as fixed effects. Sows fed SF+ had increased serum IL-1ra (Fiber × Enzyme P = 0.035), and IL-2 (Fiber × Enzyme P = 0.042). In the presence of IF, multicarbohydrases increased serum lipopolysaccharide-binding protein, but not when supplemented with SF (Fiber × Enzyme P = 0.028). Circulating IL-8 and TNF-α were decreased in sows fed multicarbohydrases (P < 0.05). Multicarbohydrase supplementation increased the apparent total tract digestibility (ATTD) of gross energy (GE), dry matter, and neutral detergent fiber by 2.8%, 3.4%, and 8.3%, respectively (P < 0.05). Compared to IF-, the ATTD of hemicellulose was 5.3% greater in sows fed IF+ but did not differ from SF- and SF+ (Fiber × Enzyme P = 0.037). Sows fed IF+ had the greatest ATTD of insoluble dietary fiber (Fiber × Enzyme P = 0.011). Sows fed multicarbohydrases excreted less energy in their urine (519 vs. 469 GE kcal/d; Enzyme P = 0.033) and in their feces (985 vs. 900 GE kcal/d; Enzyme P = 0.003). This resulted in an improvement in both digestible energy (Enzyme P < 0.01) and metabolizable energy (Enzyme P = 0.041), irrespective of fiber type. In conclusion, multicarbohydrase supplementation increased the digestibility and energetic contribution of fiber, irrespective of adaptation time or fiber type, but modulation of inflammatory responses was unique to dietary fiber type.
Collapse
Affiliation(s)
- Thomas A Crome
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Hannah E Miller
- Division of Animal Sciences, University of Missouri, Columbia, MO 65201, USA
| | - Amy L Petry
- Division of Animal Sciences, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
9
|
Becker SL, Humphrey DC, Karriker LA, Brown JT, Skoland KJ, Greiner LL. The effects of dietary essential fatty acid ratios and linoleic acid level in grow-finish pigs. J Anim Sci 2023; 101:skad263. [PMID: 37540487 PMCID: PMC10449407 DOI: 10.1093/jas/skad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary linoleic acid level and the ratio of linoleic acid:linolenic acid (LA:ALA) on the growth performance, expression of genes associated with lipid metabolism, and inflammatory status of grow-finish pigs. A total of 300 growing pigs (body weight [BW] = 41.1 ± 6.3 kg) were randomly assigned to either a high (30 g/kg; HLA) or low (15 g/kg; LLA) dietary linoleic acid level with a high (23:1; HR), moderate (13:1; MR) or low (4:1; LR) dietary LA:ALA in a 2 × 3 factorial design. Diets were fed across three 28-d phases and were balanced for dietary metabolizable energy. Pigs were housed five pigs per pen in single-sex pens. Blood samples were collected on days 0, 21, 42, and 84, and synovial fluid was collected from the hock joint on days 0 and 84 for inflammatory marker analysis. Data were analyzed as repeated measures using PROC MIXED (SAS 9.4) with initial BW as a covariate, pen as the experimental unit, and LA level, LA:ALA, sex, phases, and their interactions as fixed effects. Compared to HLA, LLA pigs tended to have increased BW at days 56 and 84 (P = 0.088). There was no effect of LA × LA:ALA for growth performance. For the overall days 0 to 84 growth period, pigs fed HR had increased ADG compared to MR, with pigs receiving LR performing intermediate of MR and HR. Gilts receiving HR diets had increased day 84 BW compared to gilts receiving the low and moderate LA:ALA (P = 0.006), which was a result of improved overall days 0 to 84 ADG compared to gilts receiving the MR diets (P = 0.023). Barrows fed LR had improved BW on day 56 compared to MR and HR and higher final BW compared to HR, with MR performing intermediately (P = 0.006). This was a result of greater days 0 to 84 ADG (P = 0.023). Overall, C-reactive protein (CRP), tumor necrosis factor-α (TNFα), and interleukin-6 were reduced in the plasma of pigs over time (P ≤ 0.037). Across all treatments, CRP and TNFα were reduced in the hock and carpus synovial fluid on day 84 vs. day 0 (P ≤ 0.049). In conclusion, LA:ALA ratios utilized in this study can be fed at varying linoleic acid levels without impacting growth or inflammation. Additionally, LA:ALA ratios can differentially impact the growth of gilts and barrows.
Collapse
Affiliation(s)
- Spenser L Becker
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Dalton C Humphrey
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Locke A Karriker
- Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Justin T Brown
- Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Kristin J Skoland
- Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Laura L Greiner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Becker SL, Humphrey DC, Karriker LA, Brown JT, Skoland KJ, Greiner LL. The effects of dietary essential fatty acid ratios and energy level on growth performance, lipid metabolism, and inflammation in grow-finish pigs. J Anim Sci 2023; 101:skad151. [PMID: 37170903 PMCID: PMC10226270 DOI: 10.1093/jas/skad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary metabolizable energy (ME) level and the ratio of linoleic acid:α-linolenic acid (LA:ALA) on the growth performance, lipid metabolism, circulatory and joint inflammatory status, and synovial fluid proteome of grow-finish pigs. A total of 224 pigs (BW = 41.5 ± 6.1 kg; PIC Genus 337 × 1050, Hendersonville, TN) were randomly assigned to either a high (3.55 Mcal/kg; HE) or low (3.29 Mcal/kg; LE) ME dietary treatment with a high (23:1) or low (12:1) LA:ALA in a 2 × 2 factorial arrangement. Diets were fed across three 28-d phases. Pigs were housed either four barrows or four gilts per pen. Blood samples were collected on days 0, 21, 42, and 84. Synovial fluid was collected from the hock and carpus joints on days 0 and 84. Liver and adipose tissue samples were collected on day 84. Data were analyzed as repeated measures using PROC MIXED (SAS 9.4) with pen as the experimental unit and energy level, essential fatty acid ratio, sex, phase, and their interactions as fixed effects. Compared to LE, HE increased days 28, 56, and 84 body weight (BW; P = 0.005). For the overall period, HE increased average daily gain (ADG) compared to LE (P < 0.001) and improved feed efficiency (P = 0.001), while LE increased feed intake compared to HE (P < 0.001). Gilts receiving diets with low LA:ALA had similar final BW to barrows receiving a low LA:ALA at days 28, 56, and 84 (P = 0.024), resulting from improved overall days 0-84 ADG compared to gilts receiving the high LA:ALA (P = 0.031). In the liver, HE decreased the mRNA abundance of acetyl CoA carboxylase (ACACA; P = 0.004), cluster of differentiation 36 (P = 0.034), and tended to decrease fatty acid synthase (FASN; P = 0.056). In adipose tissue, HE decreased ACACA (P = 0.001) and FASN (P = 0.017). Plasma inflammatory markers C-reactive protein (CRP) and tumor necrosis factor-α (TNFα) were reduced on day 84 compared to day 0 (P ≤ 0.014). In the hock and carpus synovial fluid, LE tended to reduce CRP and TNFα (P ≤ 0.096). Hock and carpus synovial fluid CRP were also reduced on day 84 compared to day 0 (P = 0.001). Age of the pig impacted serum and hock synovial fluid protein abundance, but not energy level, LA:ALA, or their interactions (P < 0.05). To conclude, the high and low LA:ALA ratios utilized in this study can be fed at varying energy levels without impacting growth. Additionally, LA:ALA ratios can differentially impact the growth of barrows and gilts.
Collapse
Affiliation(s)
- Spenser L Becker
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Dalton C Humphrey
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Medicine, Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Justin T Brown
- Department of Veterinary Diagnostic and Production Medicine, Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Kristin J Skoland
- Department of Veterinary Diagnostic and Production Medicine, Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Laura L Greiner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
11
|
Formulating Diets for Improved Health Status of Pigs: Current Knowledge and Perspectives. Animals (Basel) 2022; 12:ani12202877. [DOI: 10.3390/ani12202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Our understanding of nutrition has been evolving to support both performance and immune status of pigs, particularly in disease-challenged animals which experience repartitioning of nutrients from growth towards the immune response. In this sense, it is critical to understand how stress may impact nutrient metabolism and the effects of nutritional interventions able to modulate organ (e.g., gastrointestinal tract) functionality and health. This will be pivotal in the development of effective diet formulation strategies in the context of improved animal performance and health. Therefore, this review will address qualitative and quantitative effects of immune system stimulation on voluntary feed intake and growth performance measurements in pigs. Due to the known repartitioning of nutrients, the effects of stimulating the immune system on nutrient requirements, stratified according to different challenge models, will be explored. Finally, different nutritional strategies (i.e., low protein, amino acid-supplemented diets; functional amino acid supplementation; dietary fiber level and source; diet complexity; organic acids; plant secondary metabolites) will be presented and discussed in the context of their possible role in enhancing the immune response and animal performance.
Collapse
|
12
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
14
|
Patience JF, Ramirez A. Invited review: strategic adoption of antibiotic-free pork production: the importance of a holistic approach. Transl Anim Sci 2022; 6:txac063. [PMID: 35854972 PMCID: PMC9278845 DOI: 10.1093/tas/txac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the use of antibiotics to enhance growth in the 1950s proved to be one of the most dramatic and influential in the history of animal agriculture. Antibiotics have served animal agriculture, as well as human and animal medicine, well for more than seven decades, but emerging from this tremendous success has been the phenomenon of antimicrobial resistance. Consequently, human medicine and animal agriculture are being called upon, through legislation and/or marketplace demands, to reduce or eliminate antibiotics as growth promotants and even as therapeutics. As explained in this review, adoption of antibiotic-free (ABF) pork production would represent a sea change. By identifying key areas requiring attention, the clear message of this review is that success with ABF production, also referred to as "no antibiotics ever," demands a multifaceted and multidisciplinary approach. Too frequently, the topic has been approached in a piecemeal fashion by considering only one aspect of production, such as the use of certain feed additives or the adjustment in health management. Based on the literature and on practical experience, a more holistic approach is essential. It will require the modification of diet formulations to not only provide essential nutrients and energy, but to also maximize the effectiveness of normal immunological and physiological capabilities that support good health. It must also include the selection of effective non-antibiotic feed additives along with functional ingredients that have been shown to improve the utility and architecture of the gastrointestinal tract, to improve the microbiome, and to support the immune system. This holistic approach will require refining animal management strategies, including selection for more robust genetics, greater focus on care during the particularly sensitive perinatal and post-weaning periods, and practices that minimize social and environmental stressors. A clear strategy is needed to reduce pathogen load in the barn, such as greater emphasis on hygiene and biosecurity, adoption of a strategic vaccine program and the universal adoption of all-in-all-out housing. Of course, overall health management of the herd, as well as the details of animal flows, cannot be ignored. These management areas will support the basic biology of the pig in avoiding or, where necessary, overcoming pathogen challenges without the need for antibiotics, or at least with reduced usage.
Collapse
Affiliation(s)
- John F Patience
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Iowa Pork Industry Center, Iowa State University, Ames, IA 50011-1178, USA
| | - Alejandro Ramirez
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ 85737, USA
| |
Collapse
|
15
|
Sauvaitre T, Van Herreweghen F, Delbaere K, Durif C, Van Landuyt J, Fadhlaoui K, Huille S, Chaucheyras-Durand F, Etienne-Mesmin L, Blanquet-Diot S, Van de Wiele T. Lentils and Yeast Fibers: A New Strategy to Mitigate Enterotoxigenic Escherichia coli (ETEC) Strain H10407 Virulence? Nutrients 2022; 14:nu14102146. [PMID: 35631287 PMCID: PMC9144138 DOI: 10.3390/nu14102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Dietary fibers exhibit well-known beneficial effects on human health, but their anti-infectious properties against enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is a major food-borne pathogen that causes acute traveler’s diarrhea. Its virulence traits mainly rely on adhesion to an epithelial surface, mucus degradation, and the secretion of two enterotoxins associated with intestinal inflammation. With the increasing burden of antibiotic resistance worldwide, there is an imperious need to develop novel alternative strategies to control ETEC infections. This study aimed to investigate, using complementary in vitro approaches, the inhibitory potential of two dietary-fiber-containing products (a lentil extract and yeast cell walls) against the human ETEC reference strain H10407. We showed that the lentil extract decreased toxin production in a dose-dependent manner, reduced pro-inflammatory interleukin-8 production, and modulated mucus-related gene induction in ETEC-infected mucus-secreting intestinal cells. We also report that the yeast product reduced ETEC adhesion to mucin and Caco-2/HT29-MTX cells. Both fiber-containing products strengthened intestinal barrier function and modulated toxin-related gene expression. In a complex human gut microbial background, both products did not elicit a significant effect on ETEC colonization. These pioneering data demonstrate the promising role of dietary fibers in controlling different stages of the ETEC infection process.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Florence Van Herreweghen
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Karen Delbaere
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Claude Durif
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Khaled Fadhlaoui
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | | | - Frédérique Chaucheyras-Durand
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France
| | - Lucie Etienne-Mesmin
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Correspondence: ; Tel.: +33-(0)4-73-17-83-90
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| |
Collapse
|
16
|
Badaras S, Ruzauskas M, Gruzauskas R, Zokaityte E, Starkute V, Mockus E, Klementaviciute J, Bartkevics V, Vadopalas L, Klupsaite D, Dauksiene A, Zokaityte G, Mickiene R, Bartkiene E. Strategy for Local Plant-Based Material Valorisation to Higher-Value Feed Stock for Piglets. Animals (Basel) 2022; 12:1092. [PMID: 35565519 PMCID: PMC9100104 DOI: 10.3390/ani12091092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, a 41-day experiment was conducted using 300 (21-day-old) Large White/Norwegian Landrace piglets (100 piglets in each group). Three dietary treatments were compared: (i) a basal diet (C-I), (ii) a basal diet with the addition of extruded-fermented wheat bran (Wex130/screwspeed25Lpa) (TG-II), and (iii) a basal diet with the addition of dried sugar beet pulp (TG-III). Analyses of piglets' blood parameters, faecal microbial and physico-chemical characteristics, and piglets' growth performance were performed. It was found that the extrusion and fermentation combination led to an additional functional value of Wex130/screwspeed25Lpa, which showed desirable antimicrobial and antifungal properties in vitro (inhibited 5 out of 10 tested pathogenic strains and 3 out of 11 tested fungi). Both treatments reduced total enterobacteria and increased lactic acid bacteria counts in piglets' faeces. The consistency of the piglets' faeces (in all three groups) was within a physiological range throughout the whole experiment. Strong positive correlations were found between the LAB count in piglets' faeces and butanoic acid; butanoic acid, 3-methyl-; butyric acid (2-methyl-); pentanoic acid. The treatment groups obtained a significantly higher body weight gain and average daily gain. Finally, substituting the piglets' diet with Wex130/screwspeed25Lpa and sugar beet pulp led to favourable changes in micro-organism populations in the piglets' faeces as well as better growth performance.
Collapse
Affiliation(s)
- Sarunas Badaras
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Modestas Ruzauskas
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Romas Gruzauskas
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania;
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes ilea 3, LV-1076 Riga, Latvia;
| | - Laurynas Vadopalas
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Agila Dauksiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Gintare Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Ruta Mickiene
- Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania;
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
17
|
Wu Q, Cui D, Chao X, Chen P, Liu J, Wang Y, Su T, Li M, Xu R, Zhu Y, Zhang Y. Transcriptome Analysis Identifies Strategies Targeting Immune Response-Related Pathways to Control Enterotoxigenic Escherichia coli Infection in Porcine Intestinal Epithelial Cells. Front Vet Sci 2021; 8:677897. [PMID: 34447800 PMCID: PMC8383179 DOI: 10.3389/fvets.2021.677897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of post-weaning diarrhea (PWD) worldwide, resulting in huge economic losses to the swine industry worldwide. In this study, to understand the pathogenesis, the transcriptomic analysis was performed to explore the biological processes (BP) in porcine intestinal epithelial J2 cells infected with an emerging ETEC strain isolated from weaned pigs with diarrhea. Under the criteria of |fold change| (FC) ≥ 2 and P < 0.05 with false discovery rate < 0.05, a total of 131 referenced and 19 novel differentially expressed genes (DEGs) were identified after ETEC infection, including 96 upregulated DEGs and 54 downregulated DEGs. The Gene Ontology (GO) analysis of DEGs showed that ETEC evoked BP specifically involved in response to lipopolysaccharide (LPS) and negative regulation of intracellular signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response-related pathways were mainly enriched in J2 cells after ETEC infection, in which tumor necrosis factor (TNF), interleukin 17, and mitogen-activated protein kinase (MAPK) signaling pathways possessed the highest rich factor, followed by nucleotide-binding and oligomerization domain-like receptor (NLRs), C-type lectin receptor (CLR), cytokine–cytokine receptor interaction, and Toll-like receptor (TLR), and nuclear factor kappa-B (NF-κB) signaling pathways. Furthermore, 30 of 131 referenced DEGs, especially the nuclear transcription factor AP-1 and NF-κB, participate in the immune response to infection through an integral signal cascade and can be target molecules for prevention and control of enteric ETEC infection by probiotic Lactobacillus reuteri. Our data provide a comprehensive insight into the immune response of porcine intestinal epithelial cells (IECs) to ETEC infection and advance the identification of targets for prevention and control of ETEC-related PWD.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Defeng Cui
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Xinyu Chao
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Peng Chen
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaxuan Liu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yiding Wang
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tongjian Su
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Meng Li
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ruyu Xu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaohong Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yonghong Zhang
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
18
|
Shang Q, Liu S, Liu H, Mahfuz S, Piao X. Maternal supplementation with a combination of wheat bran and sugar beet pulp during late gestation and lactation improves growth and intestinal functions in piglets. Food Funct 2021; 12:7329-7342. [PMID: 34179915 DOI: 10.1039/d1fo00014d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maternal diet has a profound impact on growth and immune development of offspring. This study aimed to evaluate the effects of maternal supplementation with a combination of wheat bran (WB, a source of insoluble dietary fiber) and sugar beet pulp (SBP, a source of soluble dietary fiber) on growth and intestinal morphology, immunity, barrier function and microbiota in piglets. Thirty sows (Landrace × Yorkshire; 3-6 parity) were randomly allocated to 2 dietary treatments from d 85 of gestation to weaning (d 21 of lactation). The 2 dietary treatments were: a control diet (CON, a corn-soybean meal diet) and a dietary fiber diet (DF, 15% WB and 10% SBP during gestation and 7.5% WB and 5% SBP during lactation). Maternal DF supplementation improved growth, serum growth hormones and ileal morphology in piglets. Piglets fed DF showed enhanced intestinal barrier function as indicated by reduced serum concentrations of diamine oxidase and endotoxin, and increased ileal mRNA level of occludin. Maternal DF supplementation reduced pro-inflammatory cytokines in the colostrum, milk and serum of piglets. Furthermore, maternal DF supplementation decreased the colonic abundance of Subdoligranulum and Mogibacterium, and increased the colonic abundance of Lactobacillus and norank_f__Bacteroidales_S24-7_group and the colonic concentration of acetate and butyrate in piglets. In summary, maternal supplementation with a combination of SBP and WB during late gestation and lactation improved cytokines in colostrum and milk, growth, immune responses, intestinal morphology, barrier function and microbiota in piglets, which may be a potential strategy to improve offspring growth and intestinal functions.
Collapse
Affiliation(s)
- Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
19
|
Shang Q, Liu S, Liu H, Mahfuz S, Piao X. Impact of sugar beet pulp and wheat bran on serum biochemical profile, inflammatory responses and gut microbiota in sows during late gestation and lactation. J Anim Sci Biotechnol 2021; 12:54. [PMID: 33879267 PMCID: PMC8059298 DOI: 10.1186/s40104-021-00573-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background Sows are frequently subjected to various stresses during late gestation and lactation, which trigger inflammatory response and metabolic disorders. Dietary fiber can influence animal health by modulating gut microbiota and their by-products, with the effects depending upon the source of the dietary fiber. This study aimed to evaluate the impacts of different fiber sources on body condition, serum biochemical parameters, inflammatory responses and fecal microbiota in sows from late gestation to lactation. Methods Forty-five multiparous sows (Yorkshire × Landrace; 3–6 parity) were assigned to 1 of 3 dietary treatments from d 85 of gestation to the end of lactation (d 21 post-farrowing): a control diet (CON, a corn-soybean meal diet), a sugar beet pulp diet (SBP, 20% SBP during gestation and 10% SBP during lactation), and a wheat bran diet (WB, 30% WB during gestation and 15% WB during lactation). Results Compared with CON, supplementation of SBP decreased (P < 0.05) lactation BW loss, reduced (P < 0.05) serum concentration of total cholesterol, non-esterified fatty acids, interleukin-6 and tumor necrosis factor-α, and increased (P < 0.05) fecal water content on d 110 of gestation and d 21 of lactation, while supplementation of WB reduced (P < 0.05) serum concentration of total cholesterol on d 110 of gestation, increased (P < 0.05) fecal water content and decreased (P < 0.05) serum interleukin-6 concentration on d 110 of gestation and d 21 of lactation. In addition, sows fed SBP had lower (P < 0.01) abundance of Clostridium_sensu_stricto_1 and Terrisporobacter than those fed CON, but had greater (P < 0.05) abundance of Christensenellaceae_R-7_group and Ruminococcaceae_UCG-002 than those fed the other two diets on d 110 of gestation. On d 21 of lactation, supplementation of SBP decreased (P < 0.05) the abundance of Firmicutes and Lactobacillus, but enriched (P < 0.05) the abundance of Christensenellaceae_R-7_group, Prevotellaceae_NK3B31_group, Ruminococcaceae_UCG-002, Prevotellaceae_UCG_001 and unclassified_f__Lachnospiraceae compared with WB. Compared with CON, sows fed SBP had greater (P < 0.05) fecal concentrations of acetate, butyrate and total SCFAs during gestation and lactation, while sows fed WB only had greater (P < 0.05) fecal concentration of butyrate during lactation. Conclusions Supplementation of dietary fiber during late gestation and lactation could improve sow metabolism and gut health, and SBP was more effective than WB.
Collapse
Affiliation(s)
- Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Hansuo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shad Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
20
|
Dietary alternatives to in-feed antibiotics, gut barrier function and inflammation in piglets post-weaning: Where are we now? Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Petry AL, Patience JF. Xylanase supplementation in corn-based swine diets: a review with emphasis on potential mechanisms of action. J Anim Sci 2021; 98:5911008. [PMID: 32970148 PMCID: PMC7759750 DOI: 10.1093/jas/skaa318] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022] Open
Abstract
Corn is a common energy source in pig diets globally; when financially warranted, industrial corn coproducts, such as corn distiller's dried grains with solubles (DDGS), are also employed. The energy provided by corn stems largely from starch, with some contribution from protein, fat, and non-starch polysaccharides (NSP). When corn DDGS are used in the diet, it will reduce starch within the diet; increase dietary protein, fat, and NSP levels; and alter the source profile of dietary energy. Arabinoxylans (AXs) comprise the majority of NSP in corn and its coproducts. One strategy to mitigate the antinutritive effects of NSP and improve its contribution to energy is by including carbohydrases within the diet. Xylanase is a carbohydrase that targets the β-1,4-glycosidic bonds of AX, releasing a mixture of smaller polysaccharides, oligosaccharides, and pentoses that could potentially be used by the pig. Xylanase is consistently effective in poultry production and moderately consistent in wheat-based swine diets, but its efficacy in corn-based swine diets is quite variable. Xylanase has been shown to improve the digestibility of various components of swine-based diets, but this seldom translates into an improvement in growth performance. Indeed, a review of xylanase literature conducted herein suggests that xylanase improves the digestibility of dietary fiber at least 50% of the time in pigs fed corn-based diets, but only 33% and 26% of the time was there an increase in average daily gain or feed efficiency, respectively. Intriguingly, there has been an abundance of reports proposing xylanase alters intestinal barrier integrity, inflammatory responses, oxidative status, and other health markers in the pig. Notably, xylanase has shown to reduce mortality in both high and low health commercial herds. These inconsistencies in performance metrics, and unexpected health benefits, warrant a greater understanding of the in vivo mechanism(s) of action (MOA) of xylanase. While the MOA of xylanase has been postulated considerably in the literature and widely studied in in vitro settings, in wheat-based diets, and in poultry, there is a dearth of understanding of the in vivo MOA in pigs fed corn-based diets. The purpose of this review is to explore the role of xylanase in corn-based swine diets, discuss responses observed when supplemented in diets containing corn-based fiber, suggest potential MOA of xylanase, and identify critical research gaps.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA.,Iowa Pork Industry Center, Iowa State University, Ames, IA
| |
Collapse
|
22
|
Smith BN, Hannas M, Orso C, Martins SMMK, Wang M, Donovan SM, Dilger RN. Dietary osteopontin-enriched algal protein as nutritional support in weaned pigs infected with F18-fimbriated enterotoxigenic Escherichia coli. J Anim Sci 2021; 98:5909275. [PMID: 32954424 DOI: 10.1093/jas/skaa314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/16/2020] [Indexed: 12/30/2022] Open
Abstract
This study investigated the effects of dietary osteopontin (OPN)-enriched algal protein on growth, immune status, and fecal fermentation profiles of weaned pigs challenged with a live infection of F18-fimbriated enterotoxigenic E. coli (ETEC). At 21 d of age, 54 pigs (5.95 ± 0.28 kg BW; blocked by BW) were allotted to 1 of 3 experimental groups combining dietary and health statuses. A control diet, containing 1% wild-type algal protein, was fed to both sham-inoculated (NC) and ETEC-inoculated (PC) pigs, while the test diet contained 1% OPN-enriched algal protein as fed only to ETEC-inoculated pigs (OA). All pigs received their assigned dietary treatment starting at study initiation to permit a 10-d acclimation period prior to inoculation. Growth performance, fecal dry matter, as well as hematological, histopathological, immune, and microbiota outcomes were analyzed by ANOVA, where treatment and time were considered as fixed effects and pig as a random effect; significance was accepted at P < 0.05. Overall, ETEC-inoculated pigs (PC and OA) exhibited decreased (P < 0.05) ADG and G:F, as well as increased (P < 0.05) peripheral blood helper T-cells and total leukocyte counts, compared with NC pigs during the postinoculation period. The OA treatment also elicited the highest (P < 0.05) concentrations of circulating tumor necrosis factor-α and volatile fatty acid concentrations in luminal contents at various postinoculation time-points, compared with other treatments. A principal coordinate analysis based on Unifrac weighted distances indicated that NC and OA groups had similar overall bacterial community structures, while PC pigs exhibited greater diversity, but infection status had no impact on α-diversity. Osteopontin-specific effects on microbial community structure included enrichment within Streptococcus and Blautia genera and decreased abundance of 12 other genera as compared with PC pigs. Overall, ETEC-infected pigs receiving 1% OPN-enriched algal protein exhibited changes immunity, inflammatory status, and colonic microbial community structure that may benefit weanling pigs experiencing F18 ETEC infection.
Collapse
Affiliation(s)
- Brooke N Smith
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Melissa Hannas
- Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Catiane Orso
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | | | - Mei Wang
- Division of Nutritional Sciences, University of Illinois, Urbana, IL
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, University of Illinois, Urbana, IL
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL.,Neuroscience Program, University of Illinois, Urbana, IL
| |
Collapse
|
23
|
Karasova D, Crhanova M, Babak V, Jerabek M, Brzobohaty L, Matesova Z, Rychlik I. Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea - A field study. Res Vet Sci 2020; 135:59-65. [PMID: 33444908 DOI: 10.1016/j.rvsc.2020.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/22/2022]
Abstract
Postweaning diarrhea is a common issue in pig production which is currently controlled by feed supplementation with zinc oxide. However, new alternatives are being sought due to an expected ban on zinc oxide in feed supplementation from 2022 in the EU. One possible alternative is to use novel types of probiotics consisting of microbiota characteristic for healthy weaned piglets. In this study, we therefore collected rectal swabs of piglets 3 days before weaning and 4 days after weaning in a commercial farm considering all risks of field trial like the use of antibiotics, classified the piglets as predisposed, healthy or sick and using 16S rRNA sequencing, we determined and compared the microbiota composition. Increased Actinobacteria before weaning was a marker of piglets predisposed for diarrhea. Increased Chlamydia or Helicobacter before weaning was surprisingly a marker of healthy and resistant piglets after weaning. After weaning, unclassified Clostridiales, Deltaproteobacteria, Selenomonadales, Fusobacterium, Akkermansia or Anaerovibrio increased in microbiota of piglets with postweaning diarrhea while an increase in Prevotella and Faecalibacterium was characteristic for healthy, weaned piglets. Both changes in individual microbiota members and also correct timing of microbiota reshaping around weaning and the increase of mainly Prevotella species just after weaning are equally important for resistance to postweaning diarrhea in piglets under field conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
24
|
van Hees H, Maes D, Millet S, den Hartog L, van Kempen T, Janssens G. Fibre supplementation to pre-weaning piglet diets did not improve the resilience towards a post-weaning enterotoxigenic E. coli challenge. J Anim Physiol Anim Nutr (Berl) 2020; 105:260-271. [PMID: 33241907 DOI: 10.1111/jpn.13475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 01/10/2023]
Abstract
Dietary fibre (DF) is implicated in gastrointestinal health of weaned piglets, either through its physiochemical properties, through modulation of gut microbiota and (or) improved gut integrity. We aimed to study the effect of DF enriched supplemental diets fed to suckling piglets ('creep feed') on health and performance after weaning when challenged with an enterotoxigenic E. coli (ETEC). Seventy-two piglets originating from 28 litters had been fed four creep diets, that is a low-fibre control (CON); a diet containing 2% long-chain arabinoxylans from wheat (lc-AXOS) or 5% purified cellulose (CELL) or a diet containing the high fermentable and the low-fermentable fibre source (i.e. 2% lc-AXOS and 5% CELL). Upon weaning, piglets were individually housed and all fed the same diet. On days 7, 8 and 9, animals received an oral dose of ETEC (5 ml containing 107 to 108 CFU/ml). Besides growth performance, faecal and skin scores were recorded daily. Gut permeability was assessed by urinary excretion of Co-EDTA prior and post-ETEC challenge. Repeated measures in time were statistically evaluated with generalized linear mixed models. We used a binominal distribution for evaluating the faecal and skin scores. Feed intake and body weight gain did not differ between treatments (p > .05). Piglets on CELL decreased gain:feed ratio in week 2 + 3 week compared to CON (p = .035). Prior to ETEC challenge, gut permeability tended to increase for lc-AXOS (p = .092). Moreover, lc-AXOS as main effect increased intestinal permeability before ETEC challenge (p = .013), whereas the low-fermentable fibre lead to elevated intestinal permeability after ETEC challenge (p = .014). The incidence of diarrhoea was higher for lc-AXOS + CELL compared with lc-AXOS (p = .036), while skin condition was unaffected. In conclusion, neither the high fermentable nor the low-fermentable fibre source improved post-weaning growth or gastrointestinal health of the piglets.
Collapse
Affiliation(s)
- Hubèrt van Hees
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium.,Research and Development, Trouw Nutrition, Amersfoort, The Netherlands
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Sam Millet
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium.,ILVO (Flanders Research Institute for Agriculture, Fisheries and Food), Melle, Belgium
| | - Leo den Hartog
- Research and Development, Trouw Nutrition, Amersfoort, The Netherlands.,Department of Animal Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Theo van Kempen
- Research and Development, Trouw Nutrition, Amersfoort, The Netherlands.,North Carolina State University, Raleigh, NC, USA
| | - Geert Janssens
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
25
|
Becker SL, Li Q, Burrough ER, Kenne D, Sahin O, Gould SA, Patience JF. Effects of an F18 enterotoxigenic Escherichia coli challenge on growth performance, immunological status, and gastrointestinal structure of weaned pigs and the potential protective effect of direct-fed microbial blends. J Anim Sci 2020; 98:5821140. [PMID: 32300795 PMCID: PMC7228676 DOI: 10.1093/jas/skaa113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
The objective of this experiment was to investigate the impact of an F18 enterotoxigenic Escherichia coli (ETEC) challenge on growth performance, aspects of intestinal function, and selected immune responses of piglets, as well as to evaluate potential protective effects of direct-fed microbial (DFM) blends. Seventy-two weaned piglets (6.4 ± 0.2 kg body weight [BW]; ~21 d of age) were assigned to one of four treatments: 1) NC: Nonchallenged (n = 10), 2) positive challenged control (PC): F18 ETEC-challenged (n = 10), 3) PC + DFM1 (n = 8; three strains of Bacillus amyloliquefaciens; 7.5 × 105 colony-forming units [cfu]/g), or 4) PC + DFM2 (n=8; 2 strains of B. amyloliquefaciens and one strain of Bacillus subtilis; 1.5 × 105 cfu/g). Feed intake and BW were recorded on day 0, 7, and 17. Pigs were sham-infected either with 6 mL phosphate-buffered saline or inoculated with 6 mL F18 ETEC (~1.9 × 109 cfu/mL) on day 7 (0 d postinoculation [dpi]). All ETEC-challenged pigs were confirmed to be genetically susceptible to F18. Pigs had ad libitum access to feed and water throughout the 17-d trial. Fecal scores were visually ranked and rectal temperatures were recorded daily. To evaluate ETEC shedding, fecal swabs were collected on dpi 0, 1, 2, 3, 5, 7, and 10. Blood samples were collected on dpi 0, 1, 2, 4, 7, and 10. Ileal tissues were collected at necropsy on dpi 10. All challenged treatments had lower final BW, decreased average daily gain (ADG), and average daily feed intake (ADFI) during the 10-d postchallenge period (P < 0.01). The DFM2 treatment increased E. coli shedding on dpi 2 and decreased iton dpi 7 (P < 0.05) compared with the PC. Rectal temperature decreased across all challenged treatments (P < 0.01). Ileal mRNA abundance of occludin (OCLN) and zonula occludens-1 (ZO-1) decreased in PC and DFM1 compared with NC (P < 0.05). Pigs fed DFM2 had intermediate ileal mRNA abundance of OCLN and increased ZO-1 mRNA compared with pigs in PC (P < 0.05). Interleukin 8 (IL-8) increased in the plasma of PC and DFM2 on dpi 2 compared with NC (P < 0.05). Mucosal IL-8 increased in PC compared with NC (P < 0.05). All challenged treatments tended to have elevated tumor necrosis factor-α (TNF-α) mRNA abundance compared with NC (P < 0.10). Challenged pigs had reduced secretory immunoglobulin A and villus height compared with NC pigs (P < 0.05). The impact of an ETEC challenge on intestinal function and the immune system has been revealed, information critical to developing improved treatment regimes.
Collapse
Affiliation(s)
| | - Qingyun Li
- Department of Animal Science, Iowa State University, Ames, IA
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Danielle Kenne
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Stacie A Gould
- Department of Animal Science, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
26
|
Duarte ME, Tyus J, Kim SW. Synbiotic Effects of Enzyme and Probiotics on Intestinal Health and Growth of Newly Weaned Pigs Challenged With Enterotoxigenic F18 + Escherichia coli. Front Vet Sci 2020; 7:573. [PMID: 33033721 PMCID: PMC7509054 DOI: 10.3389/fvets.2020.00573] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the effect of dietary supplementation with xylanase and probiotics on growth performance and intestinal health of nursery pigs challenged with enterotoxigenic Escherichia coli (ETEC). Sixty-four newly weaned pigs (32 barrows and 32 gilts with 7.9 ± 0.4 kg BW) were allotted in a randomized complete block design (2 × 2 factorial). Two factors were ETEC challenge (oral inoculation of saline solution or E. coli F18+ at 6 × 109 CFU) and synbiotics (none or a combination of xylanase 10,000 XU/kg and Bacillus sp. 2 × 108 CFU/kg). All pigs were fed experimental diets following NRC (2012) in two phases (P1 for 10 d and P2 for 11 d). The ETEC was orally inoculated on d 7 after weaning. Feed intake and BW were measured on d 7, 10, 15, and 20. On d 20, pigs were euthanized to collect samples to measure gut health parameters and microbiome. Synbiotics increased (P < 0.05) ADG in phase 1 and ETEC reduced (P < 0.05) ADG and G:F in the post-challenge period. ETEC increased (P < 0.05) the fecal score of pigs from d 7 to 13; however, synbiotics reduced (P < 0.05) it at d 9 and 11 in challenged pigs. ETEC increased (P < 0.05) mucosal MDA, IL-6, Ki-67+, and crypt depth, whereas synbiotics tended to reduce TNFα (P = 0.093), protein carbonyl (P = 0.065), and IL-6 (P = 0.064); reduced (P < 0.05) crypt depth and Ki-67+; and increased (P < 0.05) villus height. ETEC reduced (P < 0.05) the relative abundance of Bacteroidetes and Firmicutes and increased (P < 0.05) the relative abundance of Proteobacteria. In conclusion, ETEC challenge reduced growth performance by affecting microbiome, immune response, and oxidative stress in the jejunum. Synbiotics enhanced growth performance by reducing diarrhea, immune response, and oxidative stress in the jejunum.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - James Tyus
- BioResource International, Inc., Durham, NC, United States
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
27
|
Choi J, Wang L, Liu S, Lu P, Zhao X, Liu H, Lahaye L, Santin E, Liu S, Nyachoti M, Yang C. Effects of a microencapsulated formula of organic acids and essential oils on nutrient absorption, immunity, gut barrier function, and abundance of enterotoxigenic Escherichia coli F4 in weaned piglets challenged with E. coli F4. J Anim Sci 2020; 98:skaa259. [PMID: 32780110 PMCID: PMC7526869 DOI: 10.1093/jas/skaa259] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
The objective was to study the effects of microencapsulated organic acids (OA) and essential oils (EO) on growth performance, immune system, gut barrier function, nutrient digestion and absorption, and abundance of enterotoxigenic Escherichia coli F4 (ETEC F4) in the weaned piglets challenged with ETEC F4. Twenty-four ETEC F4 susceptible weaned piglets were randomly distributed to 4 treatments including (1) sham-challenged control (SSC; piglets fed a control diet and challenged with phosphate-buffered saline (PBS)); (2) challenged control (CC; piglets fed a control diet and challenged with ETEC F4); (3) antibiotic growth promoters (AGP; CC + 55 mg·kg-1 of Aureomycin); and (4) microencapsulated OA and EO [P(OA+EO); (CC + 2 g·kg-1 of microencapsulated OA and EO]. The ETEC F4 infection significantly induced diarrhea at 8, 28, 34, and 40 hr postinoculation (hpi) (P < 0.05) in the CC piglets. At 28 d postinoculation (dpi), piglets fed P(OA+EO) had a lower (P < 0.05) diarrhea score compared with those fed CC, but the P(OA+EO) piglets had a lower (P < 0.05) diarrhea score compared with those fed the AGP diets at 40 dpi. The ETEC F4 infection tended to increase in vivo gut permeability measured by the oral gavaging fluorescein isothiocyanate-dextran 70 kDa (FITC-D70) assay in the CC piglets compared with the SCC piglets (P = 0.09). The AGP piglets had higher FITC-D70 flux than P(OA+EO) piglets (P < 0.05). The ETEC F4 infection decreased mid-jejunal VH in the CC piglets compared with the SCC piglets (P < 0.05). The P(OA+EO) piglets had higher (P < 0.05) VH in the mid-jejunum than the CC piglets. The relative mRNA abundance of Na+-glucose cotransporter and B0AT1 was reduced (P < 0.05) by ETEC F4 inoculation when compared with the SCC piglets. The AGP piglets had a greater relative mRNA abundance of B0AT1 than the CC piglets (P < 0.05). The ETEC F4 inoculation increased the protein abundance of OCLN (P < 0.05), and the AGP piglets had the lowest relative protein abundance of OCLN among the challenged groups (P < 0.05). The supplementation of microencapsulated OA and EO enhanced intestinal morphology and showed anti-diarrhea effects in weaned piglets challenged with ETEC F4. Even if more future studies can be required for further validation, this study brings evidence that microencapsulated OA and EO combination can be useful within the tools to be implemented in strategies for alternatives to antibiotics in swine production.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Lucy Wang
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Haoming Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | | | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
28
|
Acosta JA, Gabler NK, Patience JF. The effect of lactose and a prototype Lactobacillus acidophilus fermentation product on digestibility, nitrogen balance, and intestinal function of weaned pigs. Transl Anim Sci 2020; 4:txaa045. [PMID: 32705042 PMCID: PMC7254483 DOI: 10.1093/tas/txaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
The objective of this study was to determine the effects of lactose (LA) and a prototype Lactobacillus acidophilus fermentation product (FP) on growth performance, diet digestibility, nitrogen (N) balance, and intestinal function of weaned pigs. Twenty-eight newly weaned pigs [approximately 21 d of age; initial body weight (BW) = 5.20 ± 0.15 kg] were housed in metabolism crates and assigned to one of four treatments (n = seven pigs per treatment) corresponding to a 2 × 2 factorial design: with (LA+; 15% inclusion) or without (LA-) LA and with (FP+) or without (FP-) the prototype FP (1 g of FP per kilogram of diet; Diamond V, Cedar Rapids, IA). Feed and water were provided ad libitum. At day 5, pigs were orally given lactulose and mannitol to assess small intestinal permeability. Fecal samples were collected on days 5-9 to determine the apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), and N. Total urine output and fecal samples were collected on days 10-13 to determine N retention. On day 15, all pigs were euthanized to collect intestinal lumen and tissue samples. Data were analyzed for the main effects of LA and FP and their interaction using the MIXED procedure of SAS. Lactose improved average daily feed intake (ADFI; P = 0.017), the ATTD of DM (P = 0.014), the ATTD of GE (P = 0.028), and N retention (P = 0.043) and tended to increase the butyric acid concentration in the colon (P = 0.062). The FP tended to increase the digestibility of N (P = 0.090). Neither LA nor the FP affected intestinal barrier function or inflammation markers. The interaction between LA and FP affected intestinal morphology: in the jejunum, pigs fed LA+FP- had increased villus height compared with those fed LA+FP+ and LA-FP-, whereas LA+FP+ was intermediate (interaction P = 0.034). At the terminal ileum, pigs fed LA-FP+ and LA+FP- had increased villus height and villus: crypt compared with those fed LA-FP-, whereas LA+FP+ was intermediate (interaction P = 0.007 and P = 0.007, respectively). In conclusion, the addition of LA brings important nutritional attributes to nursery diets by improving feed intake, digestibility of DM and GE, and the N retention of weaned pigs; however, the functional capacity of LA to improve markers of intestinal function is limited. On the other hand, the FP showed only a mild increase in the digestibility of N but a limited capacity to improve markers of intestinal function.
Collapse
Affiliation(s)
- Jesus A Acosta
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
29
|
Ruckman LA, Petry AL, Gould SA, Patience JF. The impact of porcine spray-dried plasma protein and dried egg protein harvested from hyper-immunized hens, provided in the presence or absence of subtherapeutic levels of antibiotics in the feed, on growth and indicators of intestinal function and physiology of nursery pigs. Transl Anim Sci 2020; 4:txaa095. [PMID: 32844150 PMCID: PMC7438620 DOI: 10.1093/tas/txaa095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 01/18/2023] Open
Abstract
The objective of this experiment was to compare the effects of spray-dried plasma protein (SDPP) and dried egg protein (DEP), without (AB-) or with (AB+) in-feed antibiotics, on growth performance and markers of intestinal health in nursery pigs raised in commercial conditions. This 42-d experiment utilized 1,230 pigs (4.93 ± 0.04 kg body weight; approximately 15-18 d of age). Pigs were randomly assigned to one of six dietary treatments that were arranged as a 2 × 3 factorial of in-feed antibiotics (AB- vs. AB+) and a specialty protein additive (none [CON], porcine SDPP, or DEP). Diets were fed in four phases with phases 3 and 4 as a common diet across all treatments. Specialty protein additives were fed in phases 1 (0-13 d; 3% SDPP, and 0.20% DEP) and 2 (13-26 d; 2% SDPP, and 0.10% DEP). Antibiotics were fed in phases 1-3 (662 mg chlortetracycline [CTC]/kg, 28 mg carbadox/kg, and 441 mg CTC/kg, respectively). Ileal tissue and blood samples were collected from 48 pigs (8 per treatment) on d 20. Data were analyzed using PROC MIXED of SAS (9.4) with pen as the experimental unit; protein additives, antibiotics, and their interaction were fixed effects and block was a random effect. The pigs experienced naturally occurring health challenges in weeks 2 and 4. In the AB- diets, SDPP and DEP increased average daily gain (ADG; P = 0.036) and average daily feed intake (ADFI; P = 0.040) compared to CON; in the AB+ diets, neither SDPP nor DEP increased ADG or ADFI compared to CON but SDPP did increase these parameters over DEP. The SDPP and DEP diets decreased the number of individual medical treatments compared to CON (P = 0.001). The AB+ increased ileal mucosal interleukin (IL)-1 receptor antagonist (P = 0.017). Feeding DEP reduced the concentration of mucosal IL-1β compared to CON, but not SDPP (P = 0.022). There was a trend for SDPP and DEP to increase villus height:crypt depth compared to CON (P = 0.066). Neither antibiotics or protein additive affected serum malondialdehyde concentration or ileal mRNA abundance of claudin-3 or 4, occludin, or zonula occludens-1 (P > 0.10). In conclusion, SDPP and DEP improved growth performance of weaned pigs in the absence of antibiotics but neither improved growth compared to CON when feeding standard antibiotic levels. The specialty proteins had a positive effect on health; specialty proteins and antibiotics were able to modulate some markers of intestinal inflammation and morphology.
Collapse
Affiliation(s)
- Leigh A Ruckman
- Department of Animal Science, Iowa State University, Ames, IA
| | - Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA
| | - Stacie A Gould
- Department of Animal Science, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
30
|
Li Q, Peng X, Burrough ER, Sahin O, Gould SA, Gabler NK, Loving CL, Dorman KS, Patience JF. Dietary Soluble and Insoluble Fiber With or Without Enzymes Altered the Intestinal Microbiota in Weaned Pigs Challenged With Enterotoxigenic E. coli F18. Front Microbiol 2020; 11:1110. [PMID: 32536908 PMCID: PMC7267687 DOI: 10.3389/fmicb.2020.01110] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
Post-weaning diarrhea caused by enterotoxigenic E. coli (ETEC) causes significant economic losses for pig producers. This study was to test the hypotheses that an ETEC challenge disrupts intestinal microbial homeostasis and the inclusion of dietary soluble (10% sugar beet pulp) or insoluble fiber (15% corn distillers dried grains with solubles) with or without exogenous carbohydrases will protect or restore the gut microbial homeostasis in weaned pigs. Sixty crossbred piglets (6.9 ± 0.1 kg) were blocked by body weight and randomly assigned to one of six treatments (n = 10), including a non-challenged control (NC), ETEC F18-challenged positive control (PC), ETEC-challenged soluble fiber without (SF-) or with carbohydrases (SF+), and ETEC-challenged insoluble fiber without (IF-) or with carbohydrases (IF+). Pigs were housed individually and orally received either ETEC inoculum or PBS-sham inoculum on day 7 post-weaning. Intestinal contents were collected on day 14 or 15. The V4 region of the bacterial 16S rRNA was amplified and sequenced. High-quality reads (total 6,671,739) were selected and clustered into 3,330 OTUs. No differences were observed in α-diversity among treatments. The ileal microbiota in NC and PC had modest separation in the weighted PCoA plot; the microbial structures were slightly altered by SF+ and IF- compared with PC. The PC increased ileal Escherichia-Shigella (P < 0.01) and numerically decreased Lactobacillus compared to NC. Predicted functional pathways enriched in the ileal microbiota of PC pigs indicated enhanced activity of Gram-negative bacteria, in agreement with increased Escherichia-Shigella. The SF+ tended to decrease (P < 0.10) ileal Escherichia-Shigella compared to PC. Greater abundance of ileal Streptococcus, Turicibacter, and Roseburia and colonic Prevotella were observed in SF- and SF+ than PC (P < 0.05). Pigs fed IF + had greater Lactobacillus and Roseburia than PC pigs (P < 0.05). The ETEC challenge reduced total volatile fatty acid (VFA) compared with NC (P < 0.05). The SF+ tended to increase (P < 0.10) and SF- significantly increased (P < 0.05) colonic total VFA compared with PC. Collectively, ETEC challenge disrupted gut microbial homeostasis and impaired microbial fermentation capacity. Soluble fiber improved VFA production. Dietary fiber and carbohydrases altered microbiota composition to maintain or restore microbial homeostasis.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Xiyu Peng
- Department of Statistics, Iowa State University, Ames, IA, United States
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Stacie A Gould
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Crystal L Loving
- Agricultural Research Service of the United States Department of Agriculture-National Animal Disease Center, Ames, IA, United States
| | - Karin S Dorman
- Department of Statistics, Iowa State University, Ames, IA, United States.,Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
31
|
Wellington MO, Hamonic K, Krone JEC, Htoo JK, Van Kessel AG, Columbus DA. Effect of dietary fiber and threonine content on intestinal barrier function in pigs challenged with either systemic E. coli lipopolysaccharide or enteric Salmonella Typhimurium. J Anim Sci Biotechnol 2020; 11:38. [PMID: 32318266 PMCID: PMC7158091 DOI: 10.1186/s40104-020-00444-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/09/2020] [Indexed: 01/10/2023] Open
Abstract
Background The independent and interactive effects of dietary fiber (DF) and threonine (Thr) were investigated in growing pigs challenged with either systemic E. coli lipopolysaccharide (LPS) or enteric Salmonella Typhimurium (ST) to characterise their effect on intestinal barrier function. Results In experiment 1, intestinal barrier function was assessed via oral lactulose and mannitol (L:M) gavage and fecal mucin analysis in pigs challenged with E. coli LPS and fed low fiber (LF) or high fiber (HF) diets with graded dietary Thr. Urinary lactulose recovery and L:M ratio increased (P < 0.05) during the LPS inoculation period in LF fed pigs but not in HF fed pigs. Fecal mucin output was increased (P < 0.05) in pigs fed HF compared to LF fed pigs. In experiment 2, RT-qPCR, ileal morphology, digesta volatile fatty acid (VFA) content, and fecal mucin output were measured in Salmonella Typhimurium challenged pigs, fed LF or HF diets with standard or supplemented dietary Thr. Salmonella inoculation increased (P < 0.05) fecal mucin output compared to the unchallenged period. Supplemental Thr increased fecal mucin output in the HF-fed pigs (Fib × Thr; P < 0.05). Feeding HF increased (P < 0.05) VFA concentration in cecum and colon. No effect of either Thr or fiber on expression of gene markers was observed except a tendency (P = 0.06) for increased MUC2 expression with the HF diet. Feeding HF increased goblet cell numbers (P < 0.05). Conclusion Dietary fiber appears to improve barrier function through increased mucin production capacity (i.e., goblet cell numbers, MUC2 gene expression) and secretion (i.e., fecal mucin output). The lack of effect of dietary Thr in Salmonella-challenged pigs provides further evidence that mucin secretion in the gut is conserved and, therefore, Thr may be limiting for growth under conditions of increased mucin production.
Collapse
Affiliation(s)
- Michael O Wellington
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Kimberley Hamonic
- 2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Jack E C Krone
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- 2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Daniel A Columbus
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
32
|
Helm ET, Curry SM, De Mille CM, Schweer WP, Burrough ER, Gabler NK. Impact of viral disease hypophagia on pig jejunal function and integrity. PLoS One 2020; 15:e0227265. [PMID: 31910236 PMCID: PMC6946155 DOI: 10.1371/journal.pone.0227265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/14/2019] [Indexed: 01/19/2023] Open
Abstract
Pathogen challenges are often accompanied by reductions in feed intake, making it difficult to differentiate impacts of reduced feed intake from impacts of pathogen on various response parameters. Therefore, the objective of this study was to determine the impact of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) and feed intake on parameters of jejunal function and integrity in growing pigs. Twenty-four pigs (11.34 ± 1.54 kg BW) were randomly selected and allotted to 1 of 3 treatments (n = 8 pigs/treatment): 1) PRRSV naïve, ad libitum fed (Ad), 2) PRRSV-inoculated, ad libitum fed (PRRS+), and 3) PRRSV naïve, pair-fed to the PRRS+ pigs' daily feed intake (PF). At 17 days post inoculation, all pigs were euthanized and the jejunum was collected for analysis. At days post inoculation 17, PRRS+ and PF pigs had decreased (P < 0.05) transepithelial resistance compared with Ad pigs; whereas fluorescein isothiocyanate-dextran 4 kDa permeability was not different among treatments. Active glucose transport was increased (P < 0.05) in PRRS+ and PF pigs compared with Ad pigs. Brush border carbohydrase activity was reduced in PRRS+ pigs compared with PF pigs for lactase (55%; P = 0.015), sucrase (37%; P = 0.002), and maltase (30%; P = 0.015). For all three carbohydrases, Ad pigs had activities intermediate that of PRRS+ and PF pigs. The mRNA abundance of the tight junction proteins claudin 2, claudin 3, claudin 4, occludin, and zonula occludens-1 were reduced in PRRS+ pigs compared with Ad pigs; however, neither the total protein abundance nor the cellular compartmentalization of these tight junction proteins differed among treatments. Taken together, this study demonstrates that the changes that occur to intestinal epithelium structure, function, and integrity during a systemic PRRSV challenge can be partially explained by reductions in feed intake. Further, long term adaptation to PRRSV challenge and caloric restriction does reduce intestinal transepithelial resistance but does not appear to reduce the integrity of tight junction protein complexes.
Collapse
Affiliation(s)
- Emma T. Helm
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Shelby M. Curry
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Carson M. De Mille
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Wesley P. Schweer
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Eric R. Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Nicholas K. Gabler
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
33
|
Boyd RD, Zier-Rush CE, Moeser AJ, Culbertson M, Stewart KR, Rosero DS, Patience JF. Review: innovation through research in the North American pork industry. Animal 2019; 13:2951-2966. [PMID: 31426881 PMCID: PMC6874321 DOI: 10.1017/s1751731119001915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
This article involved a broad search of applied sciences for milestone technologies we deem to be the most significant innovations applied by the North American pork industry, during the past 10 to 12 years. Several innovations shifted the trajectory of improvement or resolved significant production limitations. Each is being integrated into practice, with the exception being gene editing technology, which is undergoing the federal approval process. Advances in molecular genomics have been applied to gene editing for control of porcine reproductive and respiratory syndrome and to identify piglet genome contributions from each parent. Post-cervical artificial insemination technology is not novel, but this technology is now used extensively to accelerate the rate of genetic progress. A milestone was achieved with the discovery that dietary essential fatty acids, during lactation, were limiting reproduction. Their provision resulted in a dose-related response for pregnancy, pregnancy maintenance and litter size, especially in maturing sows and ultimately resolved seasonal infertility. The benefit of segregated early weaning (12 to 14 days of age) was realized for specific pathogen removal for genetic nucleus and multiplication. Application was premature for commercial practice, as piglet mortality and morbidity increased. Early weaning impairs intestinal barrier and mucosal innate immune development, which coincides with diminished resilience to pathogens and viability later in life. Two important milestones were achieved to improve precision nutrition for growing pigs. The first involved the updated publication of the National Research Council nutrient requirements for pigs, a collaboration between scientists from America and Canada. Precision nutrition advanced further when ingredient description, for metabolically available amino acids and net energy (by source plant), became a private sector nutrition product. The past decade also led to fortuitous discoveries of health-improving components in ingredients (xylanase, soybeans). Finally, two technologies converged to facilitate timely detection of multiple pathogens in a population: oral fluids sampling and polymerase chain reaction (PCR) for pathogen analysis. Most critical diseases in North America are now routinely monitored by oral fluid sampling and prepared for analysis using PCR methods.
Collapse
Affiliation(s)
- R. D. Boyd
- Hanor Company, 128 W KY Ave, Franklin, KY 42134, USA
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27695, USA
| | - C. E. Zier-Rush
- Rush Consulting, 373 Saint Martin Cir, Richmond Hill, GA 31324, USA
| | - A. J. Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 784 Wilson Rd, East Lansing, MI 48824, USA
| | - M. Culbertson
- Global Product Development, Genus PIC USA, 100 Bluegrass Commons Blvd, Hendersonville, TN 37075, USA
| | - K. R. Stewart
- Department of Animal Sciences, Purdue University, 270 S Russell St, West Lafayette, IN 47907, USA
| | - D. S. Rosero
- The Hanor Company, 4005 E. Owen K. Garriott, Enid, OK 73701, USA
| | - J. F. Patience
- Department of Animal Science, Iowa State University, 1221 Kildee Hall, Ames, IA 50011, USA
| |
Collapse
|