1
|
Xie L, Wu X, Li X, Chen M, Zhang N, Zong S, Yan Y. Impacts of climate change and host plant availability on the potential distribution of Bradysia odoriphaga (Diptera: Sciaridae) in China. PEST MANAGEMENT SCIENCE 2024; 80:2724-2737. [PMID: 38372475 DOI: 10.1002/ps.7977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Chinese chives (Allium tuberosum Rottler ex Sprengel) are favored by consumers because of its delicious taste and unique fragrance. Bradysia odoriphaga (Diptera: Sciaridae) is a main pest that severely harms Chinese chives and other Liliaceae's production. Climate change may change the future distribution of B. odoriphaga in China. In this study, the CLIMEX was employed to project the potential distribution of B. odoriphaga in China, based on China's historical climate data (1987-2016) and forecast climate data (2021-2100). RESULTS Bradysia odoriphaga distributed mainly between 19.8° N-48.3° N and 74.8° E-134.3° E, accounting for 73.25% of the total mainland area of China under historical climate conditions. Among them, the favorable and highly favorable habitats accounted for 30.64% of the total potential distribution. Under future climate conditions, B. odoriphaga will be distributed mainly between 19.8° N-49.3° N and 73.8° E-134.3° E, accounting for 84.89% of China's total mainland area. Among them, the favorable and highly favorable habitats will account for 35.23% of the total potential distribution, indicating an increase in the degree of fitness. Areas with relatively appropriate temperature and humidity will be more suitable for the survival of B. odoriphaga. Temperature was a more important determinant of the climatic suitability of the pest B. odoriphaga than humidity. Host plants (Liliaceae) availability also had impact on climate suitability in some regions. CONCLUSIONS These projected potential distributions will provide supportive information for monitoring and early forecasting of pest outbreaks, and to reduce future economic and ecological losses. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixia Xie
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Xinran Wu
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Xue Li
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Menglei Chen
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Na Zhang
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Shixiang Zong
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Yi Yan
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
2
|
Wang X, Dai W, Zhang C. Transcription Factors AhR and ARNT Regulate the Expression of CYP6SX1 and CYP3828A1 Involved in Insecticide Detoxification in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10805-10813. [PMID: 38712504 DOI: 10.1021/acs.jafc.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mediate the responses of adaptive metabolism to various xenobiotics. Here, we found that BoAhR and BoARNT are highly expressed in the midgut of Bradysia odoriphaga larvae. The expression of BoAhR and BoARNT was significantly increased after exposure to imidacloprid and phoxim. The knockdown of BoAhR and BoARNT significantly decreased the expression of CYP6SX1 and CYP3828A1 as well as P450 enzyme activity and caused a significant increase in the sensitivity of larvae to imidacloprid and phoxim. Exposure to β-naphthoflavone (BNF) significantly increased the expression of BoAhR, BoARNT, CYP6SX1, and CYP3828A1 as well as P450 activity and decreased larval sensitivity to imidacloprid and phoxim. Furthermore, CYP6SX1 and CYP3828A1 were significantly induced by imidacloprid and phoxim, and the silencing of these two genes significantly reduced larval tolerance to imidacloprid and phoxim. Taken together, the BoAhR/BoARNT pathway plays key roles in larval tolerance to imidacloprid and phoxim by regulating the expression of CYP6SX1 and CYP3828A1.
Collapse
Affiliation(s)
- Xinxiang Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Hao Z, Jin T, Yang SY, Lin YY, Zhong H, Peng ZQ, Ma GC. Exploring the hormetic effects of radiation on the life table parameters of Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2024; 80:1533-1546. [PMID: 37964702 DOI: 10.1002/ps.7887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Spodoptera frugiperda, a global agricultural pest, can be effectively controlled through the sterile insect technique. However, exposure to low-dose radiation below the sterilization threshold may induce hormetic effects. Here, the biphasic aspects of the fertile progeny population of S. frugiperda were analyzed using an age-stage, two-sex life table after dosing male and female pupae with 10-350 Gy gamma radiation. RESULTS The parental sterilizing dose for 6-day-old female and male pupae was 200 and 350 Gy, respectively. The total longevity, pre-adult survival rate, net reproduction rate, and intrinsic growth rate of the offspring population increased with decreasing radiation doses from 250 to 10 Gy. Offspring population of parents treated with low doses of 10-100 Gy showed better life table parameters compared to non-irradiated controls. Females and males fecundity irradiated with 10, 50, and 100 Gy and 10 Gy, respectively, exceeded controls, producing 2339.4, 2726.4, 2311, and 2369 eggs, as opposed to 1802.9 eggs produced by the controls. Males irradiated with 10 Gy displayed the highest intrinsic rates of increase and net reproduction rate, at 0.1709 and 682.3, respectively. Projections from the survival rate and fecundity indicated that female and male S. frugiperda populations after 10 Gy irradiation may grow considerably faster than the controls. CONCLUSION This study explores the hormetic effects of low-dose radiation on S. frugiperda through life table analysis, while providing enhancements for utilizing substerilizing gamma dose in a modified F1 sterility technique. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng Hao
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Tao Jin
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sheng-Yuan Yang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yu-Ying Lin
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hao Zhong
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zheng-Qiang Peng
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guang-Chang Ma
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
4
|
Zhang C, Li Y, Qiu T, Wang Y, Wang H, Wang K, Dai W. Functional Characterization of CYP6QE1 and CYP6FV21 in Resistance to λ-Cyhalothrin and Imidacloprid in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2925-2934. [PMID: 38291565 DOI: 10.1021/acs.jafc.3c08807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cytochrome P450 monooxygenases (P450s) belong to a family of metabolic enzymes that are involved in the detoxification of insecticides. In this study, our bioassay results showed that a field-collected population of Bradysia odoriphaga displayed a moderate resistance to λ-cyhalothrin and imidacloprid. Compared to susceptible population, CYP6QE1 and CYP6FV21 were significantly overexpressed in the field population. The expression of CYP6QE1 and CYP6FV21 was more abundant in the third and fourth larval stages, and CYP6QE1 and CYP6FV21 were most highly expressed in the midgut and Malpighian tubules. Exposure to λ-cyhalothrin and imidacloprid significantly increased the expression levels of CYP6QE1 and CYP6FV21. Furthermore, the silencing of CYP6QE1 and CYP6FV21 significantly increased the susceptibility of B. odoriphaga larvae to λ-cyhalothrin and imidacloprid. The overexpression of CYP6QE1 and CYP6FV21 significantly enhanced the tolerance of transgenic Drosophila melanogaster lines to λ-cyhalothrin and imidacloprid. In addition, molecular docking revealed that these two P450 proteins have strong binding affinity toward λ-cyhalothrin and imidacloprid insecticides. Taken together, these results indicate that the overexpression of CYP6QE1 and CYP6FV21 is responsible for resistance to λ-cyhalothrin and imidacloprid in B. odoriphaga.
Collapse
Affiliation(s)
- Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Qiu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaihua Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Zhang C, Tang B, Tan H, Wang X, Dai W. The Orco gene involved in recognition of host plant volatiles and sex pheromone in the chive maggot Bradysia odoriphaga. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105709. [PMID: 38072517 DOI: 10.1016/j.pestbp.2023.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
The insect olfactory recognition system plays a crucial role in the feeding and reproductive behaviors of insects. The odorant receptor co-receptor (Orco), as an obligatory chaperone, is critical for odorant recognition by way of forming heteromeric complexes with conventional odorant receptors (ORs). To investigate the biological functions of Orco in perceiving host plant volatiles and sex pheromone, the Orco gene was identified from the chive maggot Bradysia odoriphaga transcriptome data. Multiple sequence alignment reveals that BodoOrco exhibits an extremely high sequence identity with Orcos from other dipteran insects. The expression of BodoOrco is significantly higher in adults than in larvae and pupae, and the BodoOrco gene is primarily expressed in the antennae of both sexes. Furthermore, the Y-tube assay indicated that knockdown of BodoOrco leads to significant reductions in B. odoriphaga adults' response to all tested host plant volatiles. The dsOrco-treated unmated male adults show less attraction to unmated females and responded slowly compared with dsGFP control group. These results indicated that BodoOrco is involved in recognition of sex pheromone and host plant volatiles in B. odoriphaga and has the potential to be used as a target for the design of novel active compounds for developing ecofriendly pest control strategies.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Bowen Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haoyu Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinxiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Liu TS, Zhu XY, He D, You MS, You SJ. Oxygen stress on age-stage, two-sex life tables and transcriptomic response of diamondback moth (Plutella xylostella). ENVIRONMENTAL ENTOMOLOGY 2023; 52:527-537. [PMID: 36928981 DOI: 10.1093/ee/nvad010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 06/17/2023]
Abstract
Elucidating the genetic basis of local adaption is one of the important tasks in evolutionary biology. The Qinghai-Tibet Plateau has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. The diamondback moth (DBM), Plutella xylostella, is one of the most devastating pests of the global Brassica industry. A highly heterozygous genome of this pest has facilitated its adaptation to a variety of complex environments, and so provides an ideal model to study fast adaptation. We conducted a pilot study combining RNA-seq with an age-stage, two-sex life table to study the effects of oxygen deprivation on DBM. The developmental periods of all instars were significantly shorter in the hypoxic environment. We compared the transcriptomes of DBM from Fuzhou, Fujian (low-altitude) and Lhasa, Tibet (high-altitude) under hypoxia treatment in a hypoxic chamber. Some DEGs are enriched in pathways associated with DNA replication, such as DNA repair, nucleotide excision repair, base excision repair, mismatch repair and homologous recombination. The pathways with significant changes were associated with metabolism process and cell development. Thus, we assumed that insects could adapt to different environments by regulating their metabolism. Our findings indicated that although adaptive mechanisms to hypoxia in different DBM strains could be similar, DBM individuals from Tibet had superior tolerance to hypoxia compared with those of Fuzhou. Local adaptation of the Tibetan colony was assumed to be responsible for this difference. Our research suggests novel mechanisms of insect responses to hypoxia stress.
Collapse
Affiliation(s)
- Tian-Sheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R. China
| | - Xiang-Yu Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Di He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Shi-Jun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- BGI-Sanya, Sanya 572025, P.R. China
| |
Collapse
|
7
|
Zhang C, Zhou T, Li Y, Dai W, Du S. Activation of the CncC pathway is involved in the regulation of P450 genes responsible for clothianidin resistance in Bradysia odoriphaga. PEST MANAGEMENT SCIENCE 2023. [PMID: 36974603 DOI: 10.1002/ps.7482] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Insect cytochrome P450 monooxygenases (P450s) play a key role in the detoxification metabolism of insecticides and their overexpression is often associated with insecticide resistance. Our previous research showed that the overexpression of four P450 genes is responsible for clothianidin resistance in B. odoriphaga. In this study, we characterized another P450 gene, CYP6FV21, associated with clothianidin resistance. However, the molecular basis for the overexpression of P450 genes in clothianidin-resistant strain remains obscure in B. odoriphaga. RESULTS In this study, the CYP6FV21 gene was significantly overexpressed in the clothianidin-resistant (CL-R) strain. Clothianidin exposure significantly increased the expression level of CYP6FV21. Knockdown of CYP6FV21 significantly increased the susceptibility of B. odoriphaga larvae to clothianidin. The transcription factor Cap 'n' Collar isoform-C (CncC) was highly expressed in the midgut of larvae in B. odoriphaga. The expression level of CncC was higher in the CL-R strain compared with the susceptible (SS) strain. Clothianidin exposure caused reactive oxygen species (ROS) accumulation and significantly increased the expression level of CncC. Knockdown of CncC caused a significant decrease in the expression of CYP3828A1 and CYP6FV21, and P450 enzyme activity, and led to a significant increase in mortality after exposure to lethal concentration at 30% (LC30 ) of clothianidin. After treatment with CncC agonist curcumin, the P450 activity and the expression levels of CYP3828A1 and CYP6FV21 significantly increased, and larval sensitivity to clothianidin decreased. The ROS scavenger N-acetylcysteine (NAC) treatment significantly inhibited the expression levels of CncC, CYP3828A1 and CYP6FV21 in response to clothianidin exposure and increased larval sensitivity to clothianidin. CONCLUSION Taken together, these results indicate that activation of the CncC pathway by the ROS burst plays a critical role in clothianidin resistance by regulating the expression of CYP3828A1 and CYP6FV21 genes in B. odoriphaga. This study provides more insight into the mechanisms underlying B. odoriphaga larval resistance to clothianidin. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Taoling Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shaokai Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Zhu J, Wang F, Zhang Y, Yang Y, Hua D. Odorant-binding Protein 10 From Bradysia odoriphaga (Diptera: Sciaridae) Binds Volatile Host Plant Compounds. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7. [PMID: 36729094 PMCID: PMC9894006 DOI: 10.1093/jisesa/iead004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 06/18/2023]
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a major insect pest of seven plant families including 30 commercial crops in Asia. The long-term use of chemical pesticides leads to problems such as insect resistance, environmental issues, and food contamination. Against this background, a novel pest control method should be developed. In insects, odorant-binding proteins (OBPs) transport odor molecules, including pheromones and plant volatiles, to olfactory receptors. Here, we expressed and characterized the recombinant B. odoriphaga OBP BodoOBP10, observing that it could bind the sulfur-containing compounds diallyl disulfide and methyl allyl disulfide with Ki values of 8.01 μM and 7.00 μM, respectively. Homology modeling showed that the BodoOBP10 3D structure was similar to that of a typical OBP. Both diallyl disulfide and methyl allyl disulfide bound to the same site on BodoOBP10, mediated by interactions with six hydrophobic residues Met70, Ile75, Thr89, Met90, Leu93, and Leu94, and one aromatic residue, Phe143. Furthermore, silencing BodoOBP10 expression via RNAi significantly reduced the electroantennogram (EAG) response to diallyl disulfide and methyl allyl disulfide. These findings suggest that BodoOBP10 should be involved in the recognition and localization of host plants.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | |
Collapse
|
9
|
Yang Y, Hua D, Zhu J, Wang F, Zhang Y. Chemosensory protein 4 is required for Bradysia odoriphaga to be olfactory attracted to sulfur compounds released from Chinese chives. Front Physiol 2022; 13:989601. [PMID: 36237523 PMCID: PMC9552003 DOI: 10.3389/fphys.2022.989601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is a serious pest of Chinese chives cultivated in China. Chemosensory proteins (CSPs) are important components of insect olfactory systems that capture and bind environmental semiochemicals which are then transported to olfactory receptors. Despite their importance, the mechanism of olfaction and related behavioral processes in B. odoriphaga have not been characterized. Here, we found that BodoCSP4 has an important olfactory function. RT-qPCR indicated that BodoCSP4 expression was highest in the heads (antennae removed) of adult males, followed by the antennae of adult males. Competitive binding assays with 33 ligands indicated that BodoCSP4 binds well with methyl allyl disulfide, diallyl disulfide, and n-heptadecane; the corresponding dissolution constants (Ki) were as high as 5.71, 5.71, and 6.85 μM, respectively. 3D-structural and molecular docking indicated that BodoCSP4 has five α-helices and surrounds the ligand with certain hydrophobic residues including Leu60, Leu63, Leu64, Ala67, Val28, Ile30, Ile33, Leu34, and Val86, suggesting these residues help BodoCSP4 bind to ligands. Silencing of BodoCSP4 significantly decreased the attraction of B. odoriphaga males to diallyl disulfide and n-heptadecane but not to methyl allyl disulfide in Y-tube olfaction assays. These results increase our understanding of how BodoCSP4 contributes to host and female localization by B. odoriphaga males.
Collapse
Affiliation(s)
- Yuting Yang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Dengke Hua
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan, Hubei, China
| | - Jiaqi Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fu Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, Institute of Insect Sciences, Yangtze University, Jingzhou, Hubei, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Youjun Zhang,
| |
Collapse
|
10
|
Li M, Yang X, Fan F, Ge Y, Hong D, Wang Z, Lu C, Chen S, Wei G. De novo genome assembly of Bradysia cellarum (Diptera: Sciaridae), a notorious pest in traditional special vegetables in China. INSECT MOLECULAR BIOLOGY 2022; 31:508-518. [PMID: 35389542 DOI: 10.1111/imb.12776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Bradysia cellarum (Diptera: Sciaridae) is a destructive vegetable insect pest infesting more than 30 species of host plants from seven families in Asia and Europe. B. cellarum causes grave problems in Chinese chive, which originated in China and is cultivated widely in East Asia. The B. cellarum infestation results in economic losses and subsequent severe food safety problems in farm productions, insecticide resistance and environmental pollution. The genomic and molecular information of B. cellarum to delineate the biological features, insecticide resistance, evolution remains poorly understood. Herein, we decode the whole genome of B. cellarum to delineate the underlying molecular mechanisms causing insecticide resistance. We constructed a highly reliable genome for B. cellarum using PacBio, Illumina and 10X Genomics sequencing platforms. The genome size of B. cellarum was 375.91 Mb with a contig N50 of 1.57 Mb. A total of 16,231 genes were identified, among which 93.8% were functionally annotated, and 42.06% were repeat sequences. According to phylogenetic analysis, B. cellarum diverged from the common ancestor of Drosophila melanogaster and Musca domestica ~139.3-191.0 million years ago. Moreover, some important genes responsible for significant insecticide resistance, such as cytochrome P450s, ABC transporters and those involved in glutathione metabolism, were expanded in B. cellarum. We assembled a high-quality B. cellarum genome to provide valuable insights into their life history strategies, insecticide resistance and biological behaviours. It also lays the foundation for exploring gene structure and functional evolution, as well as comparative genomics of B. cellarum and other model insect species.
Collapse
Affiliation(s)
- Mengyao Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiaofan Yang
- Plant protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Fan Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yafei Ge
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dawei Hong
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, Tibet, China
| | - Zhongyan Wang
- The Technical Education Centre of Nangong City, Xingtai, China
| | - Chenyan Lu
- College of Plant Science&Technology, Huazhong Agricultural University, Wuhan, China
| | - Suyi Chen
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Guoshu Wei
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
11
|
Jing TX, Qi CC, Jiao A, Liu XQ, Zhang S, Su HH, Yang YZ. Life Table Construction under Different Temperatures and Insecticide Susceptibility Analysis of Uroleucon formosanum (Hemiptera: Aphididae). INSECTS 2022; 13:insects13080693. [PMID: 36005318 PMCID: PMC9409224 DOI: 10.3390/insects13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Aphids are major crop pests worldwide, and in China, Uroleucon formosanum is a common aphid pest of lettuce. However, there is little basic and applied information on the control of this pest. To obtain the basic information of this pest, a life table of U. formosanum under different temperatures was constructed. Also, the susceptibility of U. formosanum to six common-used insecticides (chlorpyrifos, abamectin, beta-cypermethrin, imidacloprid, nitenpyram, and thiamethoxam) was evaluated. Results showed that U. formosanum was not suitable to a lower temperature (17 °C), and U. formosanum was relatively sensitive to all six test insecticides. These data may help us to develop integrated management strategies for better population control of U. formosanum. Abstract Uroleucon formosanum is an important aphid pest of lettuce, but basic information on its biology is scarce. In this study, effects of three constant temperatures (17, 21, and 25 °C, simulating the mean temperature range in greenhouses) on the development and fecundity of U. formosanum were analyzed by constructing a life table. U. formosanum could develop and reproduce under all three temperatures, but the survival rate, development, and fecundity of U. formosanum were affected by temperature. The intrinsic rate of increase was lowest at 17 °C (0.17) and it was significantly less than at 21 °C (0.20) and 25 °C (0.23). Furthermore, U. formosanum had the lowest finite rate of increase (1.19) and the largest mean generation time (20.21) at 17 °C. These results mean that U. formosanum is less adapted to the lower temperatures (17 °C) among these three set temperatures. To screen insecticides for control, susceptibility of U. formosanum to six insecticides including chlorpyrifos, abamectin, beta-cypermethrin, imidacloprid, nitenpyram, and thiamethoxam was evaluated. U. formosanum was relatively sensitive to all six test insecticides. Chlorpyrifos had the highest toxicity to U. formosanum (LC50 = 3.08 mg/L). These data may help to develop integrated management strategies for better population control of U. formosanum.
Collapse
Affiliation(s)
- Tian-Xing Jing
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.-X.J.); (C.-C.Q.); (A.J.); (S.Z.); (H.-H.S.)
| | - Chu-Chu Qi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.-X.J.); (C.-C.Q.); (A.J.); (S.Z.); (H.-H.S.)
| | - Ao Jiao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.-X.J.); (C.-C.Q.); (A.J.); (S.Z.); (H.-H.S.)
| | - Xiao-Qiang Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Shuai Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.-X.J.); (C.-C.Q.); (A.J.); (S.Z.); (H.-H.S.)
| | - Hong-Hua Su
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.-X.J.); (C.-C.Q.); (A.J.); (S.Z.); (H.-H.S.)
| | - Yi-Zhong Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.-X.J.); (C.-C.Q.); (A.J.); (S.Z.); (H.-H.S.)
- Correspondence:
| |
Collapse
|
12
|
Chen C, Wang C, Liu Y, Shan T, Shi X, Gao X. Integration analysis of PacBio SMRT- and Illumina RNA-seq reveals P450 genes involved in thiamethoxam detoxification in Bradysia odoriphaga. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105176. [PMID: 35973766 DOI: 10.1016/j.pestbp.2022.105176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The sciarid fly Bradysia odoriphaga is a serious pest of Chinese chive (Liliaceae). Neonicotinoid insecticides including thiamethoxam have been used for B. odoriphaga control. However, thiamethoxam resistance in B. odoriphaga has developed in recent years. To identify potential genes involved in detoxification metabolism of thiamethoxam in B. odoriphaga, a PacBio single-molecule real-time (SMRT) transcriptome sequencing and Illumina RNA-seq analysis on thiamethoxam treated B. odoriphaga were performed to explore differentially expressed genes in B. odoriphaga. After SMRT sequencing, analysis of Illumina RNA-Seq data showed a total of 172 differentially expressed genes (DEGs) after thiamethoxam treatment, among which eight upregulated DEGs were P450 genes that may be related to thiamethoxam metabolism. The qRT-PCR results of the eight up-regulated P450 unigenes after thiamethoxam treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of the eight upregulated P450 transcripts followed by insecticide bioassay was conducted, and three P450 unigenes were verified to be related to thiamethoxam detoxification in B. odoriphaga. This study provides new information about the P450 genes involved in thiamethoxam detoxification in B. odoriphaga.
Collapse
Affiliation(s)
- Chengyu Chen
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huai'an, Jiangsu Province 223001, China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Cuicui Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Institute of Agricultural Resources and Environment, Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Tisheng Shan
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Zhang C, Du S, Liu R, Dai W. Overexpression of Multiple Cytochrome P450 Genes Conferring Clothianidin Resistance in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7636-7643. [PMID: 35709533 DOI: 10.1021/acs.jafc.2c01315] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) play important roles in the detoxification metabolism of xenobiotics and are involved in the resistance of insects to many insecticides. In this study, piperonyl butoxide (PBO), an inhibitor of P450 enzyme activity, significantly increased the toxicity of clothianidin in the clothianidin-resistant (CL-R) population of Bradysia odoriphaga. The enzyme activity of P450 in the CL-R population was significantly higher than that in the SS population. Furthermore, four P450 genes were found to be significantly overexpressed in the CL-R population. Tissue-specific expression analysis indicates that CYP9J57, CYP3828A1, CYP6SX1, and CYP6QE1 were most highly expressed in the midgut and/or Malpighian tubules. After exposure to LC30 of clothianidin, the expression levels of the four P450 genes were significantly upregulated. The RNAi-mediated knockdown of CYP9J57, CYP3828A1, and CYP6QE1 significantly increased the susceptibility of B. odoriphaga to clothianidin. These results suggest that P450 genes are involved in clothianidin resistance in B. odoriphaga. This provides a better understanding of P450-mediated clothianidin resistance in B. odoriphaga and will contribute to the management of insect resistance to insecticides.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaokai Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruifang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Fu H, Huang T, Yin C, Xu Z, Li C, Liu C, Wu T, Song F, Feng F, Yang F. Selection and Validation of Reference Genes for RT-qPCR Normalization in Bradysia odoriphaga (Diptera: Sciaridae) Under Insecticides Stress. Front Physiol 2022; 12:818210. [PMID: 35087425 PMCID: PMC8786907 DOI: 10.3389/fphys.2021.818210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is the most serious root maggot pest which causes substantial damage to the Chinese chive. Organophosphate (OP) and neonicotinoid insecticides are widely used chemical pesticides and play important roles in controlling B. odoriphaga. However, a strong selection pressure following repeated pesticide applications has led to the development of resistant populations of this insect. To understand the insecticide resistance mechanism in B. odoriphaga, gene expression analysis might be required. Appropriate reference gene selection is a critical prerequisite for gene expression studies, as the expression stability of reference genes can be affected by experimental conditions, resulting in biased or erroneous results. The present study shows the expression profile of nine commonly used reference genes [elongation factor 1α (EF-1α), actin2 (ACT), elongation factor 2α (EF-2α), glucose-6-phosphate dehydrogenase (G6PDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L10 (RPL10), ribosomal protein S3 (RPS3), ubiquitin-conjugating enzyme (UBC), and α-tubulin (TUB)] was systematically analyzed under insecticide stress. Moreover, we also evaluated their expression stability in other experimental conditions, including developmental stages, sexes, and tissues. Five programs (NormFinder, geNorm, BestKeeper, RefFinder, and ΔCt) were used to validate the suitability of candidate reference genes. The results revealed that the most appropriate sets of reference genes were RPL10 and ACT across phoxim; ACT and TUB across chlorpyrifos and chlorfluazuron; EF1α and TUB across imidacloprid; EF1α and EF2α across developmental stages; RPL10 and TUB across larvae; EF1α and ACT across tissues, and ACT and G6PDH across sex. These results will facilitate the standardization of RT-qPCR and contribute to further research on B. odoriphaga gene function under insecticides stress.
Collapse
Affiliation(s)
- Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China.,College of Life Science, Northeast Forestry University, Harbin, China
| | - Tubiao Huang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Cheng Yin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Zhenhua Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chao Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chunguang Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Tong Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Fujuan Feng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
15
|
Hu J, Medison RG, Zhang S, Ma P, Shi C. Impacts of Non-Lethal High-Temperature Stress on the Development and Reproductive Organs of Bradysia odoriphaga. INSECTS 2022; 13:insects13010074. [PMID: 35055916 PMCID: PMC8779596 DOI: 10.3390/insects13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Bradysia odoriphaga is a soil-dwelling insect native to China, and its preferred host is Chinese chives. In this study, non-lethal high-temperature as an important limiting factor to affect the population and development of B. odoriphaga was assessed. Meanwhile, the physiological mechanism on non-lethal high-temperature to reduce the population was also identified. These would lay a key theoretical foundation for the future development of high-temperature products for environment friendly pest control strategies. Abstract Bradysia odoriphaga is an agricultural pest in China’s vegetable industry. In this study, pupae and adults were exposed to various non-lethal high-temperatures. The results demonstrated a decreased rate of eclosion once the pupae were exposed to temperatures exceeding 37 °C for 1 h. No effect on the lifespan of unmated female adults was observed after exposure to temperature stress, while unmated male adult lifespan decreased (>37 °C for 2 h). The size of the testis and ovaries for unmated male and female adults decreased, as did the fecundity and egg hatching rate for mated females. Compared with the control group (25 °C), the testis size of unmated male adults decreased after high-temperature stress followed by recovery at 25 °C for 1 h, though the size of the ovaries of female adults did not change. Additionally, the size of the testis and ovaries for unmated male and female adults decreased following high-temperature stress and 24 h of recovery at 25 °C. High temperatures affected males more than females; 37 °C is the critical temperature to control the population of B. odoriphaga. These results lay the foundation for the future development of environmentally friendly high-temperature prevention and pest-control strategies.
Collapse
Affiliation(s)
- Jingrong Hu
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.H.); (R.G.M.); (S.Z.)
| | - Rudoviko Galileya Medison
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.H.); (R.G.M.); (S.Z.)
| | - Seng Zhang
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.H.); (R.G.M.); (S.Z.)
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China
| | - Peifang Ma
- Henan Engineering Research Center of Chinese Chives, Pindingshan Academy of Agricultural Sciences, Pindingshan 467000, China;
| | - Caihua Shi
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.H.); (R.G.M.); (S.Z.)
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China
- Correspondence:
| |
Collapse
|
16
|
Han H, Sun D, Cheng J, Yang Y, Xia J, Xie W, Xu B, Wu Q, Wang S, Guo Z, Zhang Y. The Thermoperiod Alters Boper Gene Expression and Thereby Regulates the Eclosion Rhythm of Bradysia odoriphaga (Diptera: Sciaridae). ENVIRONMENTAL ENTOMOLOGY 2021; 50:1241-1247. [PMID: 34387308 DOI: 10.1093/ee/nvab079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 06/13/2023]
Abstract
In most organisms, various physiological and behavioral functions are expressed rhythmically. Previous studies have shown that thermoperiod is an important factor affecting circadian clock-related genes that regulate insect locomotor activity. Bradysia odoriphaga Yang & Zhang is an underground pest that attacks more than 30 crops but is especially damaging to Chinese chives. In this study, we analyzed the adult eclosion time and period (Boper) gene expression in B. odoriphaga as affected by temperature (cycling vs constant temperature), insect stage, and tissue specific. We found that the eclosion time and expression of the Boper gene changed during the temperature cycle but not under a constant temperature. Silencing of Boper expression significantly decreased the adult eclosion rate and significantly increased adult mortality and malformation. The findings indicate that thermoperiod alters Boper expression and regulates the eclosion rhythm.
Collapse
Affiliation(s)
- Haolin Han
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaxu Cheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Yang Y, Luo L, Tian L, Zhao C, Niu H, Hu Y, Shi C, Xie W, Zhang Y. Function and Characterization Analysis of BodoOBP8 from Bradysia odoriphaga (Diptera: Sciaridae) in the Recognition of Plant Volatiles and Sex Pheromones. INSECTS 2021; 12:879. [PMID: 34680648 PMCID: PMC8539145 DOI: 10.3390/insects12100879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023]
Abstract
The belowground pest Bradysia odoriphaga (Diptera: Sciaridae) has a sophisticated and sensitive olfactory system to detect semiochemical signals from the surrounding environment. In particular, odorant-binding proteins (OBPs) are crucial in capturing and transporting these semiochemical signals across the sensilla lymph to the corresponding odorant receptors. In this study, we cloned a full-length cDNA sequence of BodoOBP8 from B. odoriphaga. Real-time PCR (qRT-PCR) analysis revealed that BodoOBP8 has the highest expression levels in males, with more pronounced expression in the male antennae than in other tissues. In this study, the recombinant protein BodoOBP8 was successfully expressed by a bacterial system to explore its function. Competitive binding assays with 33 host plant volatiles and one putative sex pheromone (n-heptadecane) revealed that purified BodoOBP8 strongly bound to two sulfur compounds (methyl allyl disulfide and diallyl disulfide) and to n-heptadecane; the corresponding dissolution constants (Ki) were 4.04, 6.73, and 4.04 μM, respectively. Molecular docking indicated that Ile96, Ile103, Ala107, and Leu111, located in the hydrophobic cavity of BodoOBP8, are the key residues mediating the interaction of BodoOBP8 with two sulfur compounds (methyl allyl disulfide and diallyl disulfide) and n-heptadecane. These results show that BodoOBP8 plays a role in the recognition of plant volatiles and sex pheromones, suggesting its application as a molecular target for the screening of B. odoriphaga attractants and repellents and facilitating a new mechanism of B. odoriphaga control.
Collapse
Affiliation(s)
- Yuting Yang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Liang Luo
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Lixia Tian
- Institute of Plant and Environment Protection Beijing Academy of Agriculture and Forestry Sciences, Beijing 100081, China;
| | - Changwei Zhao
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Hongli Niu
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Yifeng Hu
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Caihua Shi
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China; (Y.Y.); (L.L.); (C.Z.); (H.N.); (Y.H.); (C.S.)
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
18
|
Zhang C, Tang B, Zhou T, Yu X, Hu M, Dai W. Involvement of Chemosensory Protein BodoCSP1 in Perception of Host Plant Volatiles in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10797-10806. [PMID: 34503327 DOI: 10.1021/acs.jafc.1c02807] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemosensory proteins (CSPs) can bind and transport odorant molecules and play important roles in insect chemoreception. In this study, we focused on the roles of a chemosensory protein (BodoCSP1) in perception of host plant volatiles in Bradysia odoriphaga. The expression of BodoCSP1 was significantly higher in adults than in larvae and pupae, without a significant difference between male and female adults. Recombinant protein BodoCSP1 exhibited relatively high binding affinities to 9 out of 10 tested ligands (Ki < 10 μM). Behavioral assays revealed that adults of B. odoriphaga showed a significant preference for five compounds. The predicted three-dimensional (3D) structure of BodoCSP1 has the typical six α-helices that form the hydrophobic ligand-binding pocket. Molecular docking and site-directed mutagenesis combined with ligand-binding assays indicated that Val48 and Thr66 may be the key binding site in BodoCSP1 for host plant volatiles. RNAi results indicated that dsBodoCSP1-treated adults showed significant reductions in response to diallyl disulfide, dipropyl disulfide, and allyl methyl disulfide. These results indicated that BodoCSP1 plays essential functions in the perception of host plant volatiles in B. odoriphaga.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bowen Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taoling Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoting Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Manfei Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
19
|
Yuting Y, Dengke H, Caihua S, Wen X, Youjun Z. Molecular and Binding Characteristics of OBP5 of Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1509-1516. [PMID: 34050657 DOI: 10.1093/jee/toab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Odorant-binding proteins (OBPs) capture and transport semiochemicals to olfactory receptors (OR) and function in the first step in insect olfaction. In the present study, we cloned a full-length cDNA sequence of BodoOBP5 from the insect pest Bradysia odoriphaga (Diptera: Sciaridae). Real-time PCR (qRT-PCR) analysis revealed that BodoOBP5 was expressed at higher levels in female adults than in other developmental stages. In the different tissues, BodoOBP5 was highly expressed in the female antennae, whereas low levels were expressed in the head and the male antennae, expression was negligible in other tissues. The recombinant protein of BodoOBP5 was successfully expressed with a bacterial system. Competitive binding assays with nine host plant volatiles and a putative sex pheromone revealed that purified BodoOBP5 strongly bound to two sulfur compounds (methyl allyl disulfide and diallyl disulfide); the corresponding dissolution constants (Ki) were 10.38 and 9.23 μM, respectively. Molecular docking indicated that Leu99, Leu103, Ala143, Tyr107, Phe142, and Trp144 in the hydrophobic cavity of BodoOBP5 are the key residues mediating the interaction of BodoOBP5 with methyl allyl disulfide and diallyl disulfide. RNAi-based Y-tube olfactometer assay indicated that there is no significant difference in methyl allyl disulfide and diallyl disulfide. The results of this study increase our understanding of the binding of BodoOBP5 with plant volatiles, facilitating the development of novel ways to control B. odoriphaga.
Collapse
Affiliation(s)
- Yang Yuting
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Hua Dengke
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Shi Caihua
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Xie Wen
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhang Youjun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Enhanced Control of the Fungus Gnat Bradysia odoriphaga (Diptera: Sciaridae) by Co-Application of Clothianidin and Hexaflumuron. INSECTS 2021; 12:insects12070571. [PMID: 34206451 PMCID: PMC8306305 DOI: 10.3390/insects12070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary The fungus gnat (Bradysia odoriphaga Yang and Zhang) is a major pest of chive (Allium tuberosum Rottl. ex Spreng) that can cause more than 50% yield losses during chive production in China. The neonicotinoid, neuroactive insecticide clothianidin has been widely used for chive gnat control; however, following intensive use of this compound, its effects on chive gnat have been markedly reduced, possibly due to the development of insecticide resistance. Hexaflumuron is an insect growth regulator which disrupts chitin synthesis during molting by inhibiting the incorporation of N-acetyl glucosamine monomers into the integument chitin of insects. The present study shows that co-drenching of clothianidin and hexaflumuron enhanced chive absorption of clothianidin, resulting in significant improvement in control of fungus gnat. Additionally, the terminal residues of clothianidin in chive were lower than the maximum residue limit in chive set by the Codex Alimentarius Commission, hence, the chive could be safe for consumption. Abstract The fungus gnat is a major pest of chive in China. Its control has been relied heavily on the application of clothianidin. Due to the intensive application, its control efficacy become reduced. The present study was intended to evaluate co-drenching of clothianidin with hexaflumuron on absorption and dissipation of clothianidin in chive plants and soils and determine the effect of such application on control efficacies. Chive production fields in Guangdong and Hubei Provinces were drenched with clothianidin alone and a mixture of clothianidin and hexaflumuron at low application rates. Concentrations of clothianidin in chive plants and soils were analyzed by HPLC. Results showed that co-application had higher control efficacies against the fungus gnat than clothianidin alone. The co-application enhanced clothianidin absorption and dissipation and extended the half-lives of clothianidin in chive. It was likely that hexaflumuron protected chive roots from larva damage, and healthy roots absorbed more clothianidin, resulting in the extension of the half-lives. Additionally, the terminal residues of clothianidin in chive after 14 days of application were lower than the maximum residue limit in chive set by the Codex Alimentarius Commission. This study for the first time documented that co-application of clothianidin and hexaflumuron improved chive plants in absorption and dissipation of clothianidin and enhanced fungus gnat control efficacies.
Collapse
|
21
|
Del Pino M, Cabello T, Hernández-Suárez E. Age-Stage, Two-Sex Life Table of Chrysodeixis chalcites (Lepidoptera: Noctuidae) at Constant Temperatures on Semi-Synthetic Diet. ENVIRONMENTAL ENTOMOLOGY 2020; 49:777-788. [PMID: 32406911 DOI: 10.1093/ee/nvaa050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 06/11/2023]
Abstract
The golden twin-spot moth or tomato looper, Chrysodeixis chalcites (Esper), is a polyphagous and worldwide pest that causes important aesthetic damages to banana fruits in the Canary Islands. The life history parameters of C. chalcites were determined under laboratory conditions in base on the age-stage, two-sex life table at 15, 20, 25, 30, and 35°C, 65% relative humidity (RH), and a photoperiod of 16:8 (L:D) h, when it was reared on a semi-synthetic diet. The results show that C. chalcites was able to develop and survive from 15 to 30°C, but no development occurred at 35°C. Developmental threshold temperatures of the egg, larval, pupal, and total preoviposition stages were 10.42, 11.73, 11.22, and 9.42°C, respectively, and their effective accumulated temperatures were 58.31, 265.96, 118.57, and 562.39 degree-days, respectively. The adult longevity was reduced with increasing temperature, which ranged between 16.27 and 34.85 d for females and between 14.27 and 35.21 d for males. The highest values of net reproductive rate (R0) and fecundity were observed at 25°C, with 232.70 offspring and 1,224.74 eggs, respectively. Both the intrinsic rate of increase (r) and finite rate of increase (λ) increased significantly and mean generation time (T) decreased significantly with increasing temperature. These results provide useful information that will allow predicting the impact of climate change on the distribution and population dynamics of C. chalcites and developing successful integrated management programs.
Collapse
Affiliation(s)
- Modesto Del Pino
- Laboratory of Agricultural Entomology, Andalusian Institute for Research and Training in Agriculture, Fishery, Food and Organic Production (IFAPA), Málaga Centre, ES Churriana, Málaga, Spain
| | - Tomás Cabello
- Department of Biology and Ecology, University of Almeria, ES Almeria, Spain
| | - Estrella Hernández-Suárez
- Department of Crop Protection, Canarian Institute for Agricultural Research (ICIA), ES La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| |
Collapse
|
22
|
Shi CH, Hu JR, Zhang YJ. The Effects of Temperature and Humidity on a Field Population of Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1927-1932. [PMID: 32484541 DOI: 10.1093/jee/toaa116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 06/11/2023]
Abstract
The production of Chinese chives is reduced throughout China due to a root-feeding dipteran pest Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae), therefore deciphering the conditions influencing its growth and development are important in developing ecological control strategies. A study was conducted from 2014 to 2017 to determine the relationship between the abundance of B. odoriphaga and temperature (atmospheric and soil), soil water content, and atmospheric humidity in a Chinese chive field in Beijing City, China. Numbers of adults peaked in March and October to November and were lowest in July to August and December to next February; numbers of larvae were highest in December to next February and lowest in July to August. From 2014 to 2017, the numbers of adults and larvae were significantly correlated with monthly mean atmospheric temperatures and soil temperatures, but were not significantly correlated with monthly mean atmospheric relative humidity and soil water content. However, for both adults and larvae, numbers were significantly greater with high soil water contents compared with drought treatment. The results of this study suggest that the very low soil water contents, high atmospheric temperatures, and high soil temperatures were critical for regulating field populations of B. odoriphaga.
Collapse
Affiliation(s)
- Cai-Hua Shi
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Jing-Rong Hu
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
23
|
Cheng J, Su Q, Xia J, Yang Z, Shi C, Wang S, Wu Q, Li C, Zhang Y. Comparative transcriptome analysis of differentially expressed genes in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) at different acute stress temperatures. Genomics 2020; 112:3739-3750. [PMID: 32353477 DOI: 10.1016/j.ygeno.2020.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
The gnat, Bradysia odoriphaga Yang et Zhang, is an important underground pest in Asia. B. odoriphaga differ in heat and cold tolerance and exhibit quite different developmental strategies. To understand the underlying mechanisms, we sequenced and compared the transcriptome of B. odoriphaga under 40 °C (a stressful high temperature), 25 °C, and 4 °C (a stressful low temperature) for 1 h. We found that metabolism- and ribosome-related genes were modulated. In high temperature (40 °C), heat shock protein (HSP) genes, detoxication genes, metabolism genes, protein turnover genes, and stress signal transduction genes were differentially expressed. In low temperature (4 °C), genes related with heat shock protein (HSP) and detoxication were differentially expressed. Our study increases our understanding of the complex molecular mechanisms involved in the responses of B. odoriphaga to acute temperature stress and provides a potential strategy for pest management.
Collapse
Affiliation(s)
- Jiaxu Cheng
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China; Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qi Su
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Caihua Shi
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chuanren Li
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
24
|
Shi C, Zhang S, Hu J, Zhang Y. Effects of Non-Lethal High-Temperature Stress on Bradysia odoriphaga (Diptera: Sciaridae) Larval Development and Offspring. INSECTS 2020; 11:E159. [PMID: 32121534 PMCID: PMC7142861 DOI: 10.3390/insects11030159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 11/18/2022]
Abstract
Throughout China, the dipteran pest Bradysia odoriphaga significantly reduces Chinese chive production; therefore, identifying conditions that influence its growth and development is crucial for developing ecological regulation strategies. In this study, different non-lethal high temperatures and treatment durations were used to stress the third-instar larvae of B. odoriphaga, and the effects of this treatment on their growth and offspring were recorded and analyzed. The results showed that the average larval mortality increased with increased temperature and prolonged exposure times. After stress treatment at 40 °C for 2 h, 100% of larvae died within 5 days, which was not significantly different from the 5-day average larval mortality (90.66%) after stress at 37 °C for 4 h, but significantly higher than the 5-day average larval mortality (72.00%) after stress at 40 °C for 1 h. After 5 days, all still-living larvae could pupate, and there was no significant difference in average pupal period after pupation. However, the eclosion rate of subsequent pupae decreased with increased temperature and prolonged exposure times, and were only 43.00% and 42.73% after larvae were stressed at 37 °C for 4 h and 40 °C for 1 h, respectively. After eclosion into adults, there was no significant difference in the lifespan of unmated female adults, while the lifespan of unmated male adults was significantly reduced to 1.67 d and 2 d after larvae were stressed at 37 °C for 4 h and 40 °C for 1 h, respectively. However, there was no significant difference in male and female adult longevity after mating. There was no significant difference in oviposition or egg hatchability. This indicates that non-lethal high temperature at 37 °C for 4 h can hinder development and allow control of B. odoriphaga. There is great potential for non-lethal high temperature to be applied in the field to control agricultural pests.
Collapse
Affiliation(s)
- Caihua Shi
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, Hubei, China; (C.S.); (S.Z.)
| | - Seng Zhang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, Hubei, China; (C.S.); (S.Z.)
| | - Jingrong Hu
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, Hubei, China; (C.S.); (S.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
25
|
Zhao Y, Cui K, Li H, Ding J, Mu W, Zhou C. Identification and Expression Analysis of Chemosensory Receptor Genes in Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:435-450. [PMID: 31687766 DOI: 10.1093/jee/toz286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 06/10/2023]
Abstract
The chive midge, Bradysia odoriphaga, is a major insect pest affecting Chinese chive production in China. Its adult life stage is nonfeeding and has a short life span. Hence, the perception of chemical stimuli is important for its adult behavior and reproductive success. To better understand its chemosensory process at the molecular level, chemosensory receptor genes were identified based on transcriptomes of B. odoriphaga. In total, 101 chemosensory genes were identified from the antenna and body transcriptomes, including 71 odorant receptors (ORs), 18 ionotropic receptors (IRs), 5 gustatory receptors (GRs), and 7 sensory neuron membrane proteins (SNMPs). Phylogenetic analysis indicated that most of these genes have homologs among other Dipteran insects. A transcript abundance comparison based on FPKM values was conducted to analyze the sex- and tissue-specific expression profiles of these chemosensory genes. Moreover, quantitative real-time PCR of OR transcripts was performed on different tissues (female antennae, male antennae, heads, and legs) to verify the transcriptional expression levels of ORs in the transcriptomes. This analysis suggested that 44 ORs showed significantly higher expression in the female antennae, while 16 OR transcripts were most highly expressed in the male antennae and may play significant roles in sex pheromone detection. In addition, some IRs and GRs might be involved in CO2 and sugar detection and temperature sensing. In the present study, 101 chemosensory genes were identified, and their putative functions were predicted. This work could provide a basis to facilitate functional clarification of these chemosensory genes at the molecular level.
Collapse
Affiliation(s)
- Yunhe Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Kaidi Cui
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Huan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Jinfeng Ding
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Chenggang Zhou
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| |
Collapse
|
26
|
Hu JR, Xie C, Shi CH, Wang SL, Wu QJ, Li CR, Zhang YJ. Effect of Sex and Air Temperature on the Flight Capacity of Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2161-2166. [PMID: 31165857 DOI: 10.1093/jee/toz152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Bradysia odoriphaga Yang & Zhang (Diptera: Sciaridae) is an important pest of Chinese chives. Information on the effects of biotic and abiotic factors on the flight performance of B. odoriphaga is crucial for understanding the pest's ability to disperse and migrate. In this study, the effects of sex and air temperature on the flight performance of B. odoriphaga imagoes were assessed by tethering individual imagoes to computerized flight mills for a 10-h experiment. The results showed that the percentage of imagoes that flew a particular distance gradually decreased as flight distance increased. The percentage of imagoes was significantly higher for males than females when the flight distance was <300 m. Sex and air temperature significantly affected average flight time (which ranged from 14.6 to 68.3 min) and average flight distance (which ranged from 10.4 to 107.2 m), but did not significantly affect average flight speed (which ranged from 3.8 to 6.4 m/min). For both females and males, the average flight distance and flight time were shortest at 18°C and longest at 22°C; the interaction between air temperature and sex was not significant. The results suggest that B. odoriphaga has a poor potential for long-distance migration. These findings will be helpful for developing forecasting and management systems for B. odoriphaga.
Collapse
Affiliation(s)
- Jing-Rong Hu
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Chao Xie
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Cai-Hua Shi
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
| | - Shao-Li Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, P.R. China
| | - Qing-Jun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, P.R. China
| | - Chuan-Ren Li
- College of Agriculture, Yangtze University, Jingzhou, Hubei, P.R. China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, Hubei, P.R. China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, P.R. China
| |
Collapse
|
27
|
Yang Y, Su Q, Shi L, Chen G, Zeng Y, Shi C, Zhang Y. Electrophysiological and behavioral responses of Bradysia odoriphaga (Diptera: Sciaridae) to volatiles from its Host Plant, Chinese Chives (Allium tuberosum Rottler ex Spreng). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1638-1644. [PMID: 31220284 DOI: 10.1093/jee/toz057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Bradysia odoriphaga Yang et Zhang is a serious belowground pest of Chinese chives (Allium tuberosum). Our previous studies have indicated that B. odoriphaga females prefer to oviposit near the roots of Chinese chives rather than the roots of other plants, and that the performance (longevity and fecundity) of B. odoriphaga offspring was better on Chinese chives than on Lettuce (var. ramosa Hort.), Onion (Allium cepa) and Potato (Solanum tuberosum) but little is known about how the volatiles released by Chinese chives affect the host-finding and oviposition behaviors of B. odoriphaga. Here, we used gas chromatography-mass spectrometry and determined that Chinese chives releases the following volatiles: methyl allyl disulfide, β-myrcene, cis-ocimene, diallyl disulfide, nonane, n-dodecane, n-tetradecane, and n-hexadecane; quantities released were highest for methyl allyl disulfide and diallyl disulfide. In addition to eliciting strong responses in females in electroantennography assays, the latter two sulfur compounds and their mixtures attracted females in Y-tube olfactometer assays. The addition of methyl allyl disulfide, diallyl disulfide, or a mixture of the two compounds at a 1:5 ratio to chive plants increased oviposition when compared to control plants. These results indicate that methyl allyl disulfide and diallyl disulfide, either alone or in combination, influence the host-seeking behavior of B. odoriphaga.
Collapse
Affiliation(s)
- Yuting Yang
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Su
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Linlin Shi
- Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Gong Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihua Shi
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Tang B, Tai S, Dai W, Zhang C. Expression and Functional Analysis of Two Odorant-Binding Proteins from Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3565-3574. [PMID: 30866622 DOI: 10.1021/acs.jafc.9b00568] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two OBP genes, BodoOBP1 and BodoOBP2, were cloned from Bradysia odoriphaga, a major agricultural pest of Chinese chives. The amino acid sequence alignment of both BodoOBPs showed high similarity. Fluorescence competitive binding assays revealed that both BodoOBPs have a moderate binding affinity to dipropyl trisulfide. Tissue expression profiles indicated that both BodoOBPs are antennae-specific and more abundant in the male antennae than in the female antennae. Developmental expression profile analysis indicated that expression levels of both BodoOBPs were higher in the male adult stage than in the other developmental stages. Both BodoOBPs also showed differential expression in pre- and postmating adults. RNAi assays indicated that ability of dsOBPs-treated males to detect females was significantly reduced compared to controls. Attraction of plant volatile dipropyl trisulfide to dsOBPs-treated adults was also significantly lower than in the control. Our findings indicate that both BodoOBPs are involved in host-seeking behavior and in detecting sex pheromones.
Collapse
Affiliation(s)
- Bowen Tang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Shulei Tai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| |
Collapse
|
29
|
Chen C, Shan T, Liu Y, Shi X, Gao X. Identification of a novel cytochrome P450 CYP3356A1 linked with insecticide detoxification in Bradysia odoriphaga. PEST MANAGEMENT SCIENCE 2019; 75:1006-1013. [PMID: 30221445 DOI: 10.1002/ps.5208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/24/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cytochrome P450 monooxygenases play an important role in the metabolic detoxification of insecticides in insect pests. However, little is known about the role of a specific P450 gene and its responses to insecticide exposure in Bradysia odoriphaga, a major pest in Chinese chive production. RESULTS In this study, a novel P450 gene, CYP3356A1, was cloned from Bradysia odoriphaga. The full-length cDNA sequence of CYP3356A1 is 2153 bp and its open reading frame (ORF) encodes 508 amino acids. Quantitative real time PCR(qRT-PCR) analyses in different tissues showed that CYP3356A1 expression was the highest in the Malpighian tubule. Moreover, among the different developmental stages of the insect, the highest expression of CYP3356A1 was found in fourth-instar larvae. Expression of CYP3356A1 was upregulated by treatment with imidacloprid, thiamethoxam, and β-cypermethrin at median lethal concentrations (LC50 ). RNA interference (RNAi)-mediated silencing of CYP3356A1 significantly increased mortality by 36.90%, 25.17%, and 36.73 when fourth-instar B. odoriphaga larvae were exposed to imidacloprid, thiamethoxam, and β-cypermethrin, respectively, at the LC50 dose. CONCLUSION These results demonstrate that CYP3356A1 is related to the detoxification of imidacloprid, thiamethoxam, and β-cypermethrin in B. odoriphaga. Moreover, the study also increased our understanding of the molecular mechanisms of insecticide detoxification in this pest insect. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Tisheng Shan
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Chen C, Shan T, Liu Y, Wang C, Shi X, Gao X. Identification and functional analysis of a cytochrome P450 gene involved in imidacloprid resistance in Bradysia odoriphaga Yang et Zhang. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:129-135. [PMID: 30744886 DOI: 10.1016/j.pestbp.2018.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 05/20/2023]
Abstract
Insect cytochrome P450 monooxygenases played an important role in detoxifying insecticides which potentially contributed to the metabolic resistance to insecticides. Bradysia odoriphaga, as a major pest of Chinese chive, was reported to be highly tolerant to neonicotinoid insecticides imidacloprid. In this study, a novel P450 gene, CYP6FV12, was cloned from B. odoriphaga. The full-length cDNA sequence of CYP6FV12 is 2520 bp long and its open reading frame (ORF) encodes 519 amino acids. Quantitative real-time PCR showed that the highest expression of CYP6FV12 was observed in fourth-instar larvae, which is 154.32-fold higher than that of eggs. Highest expression of CYP6FV12 was observed in the midgut, followed by fat body, which was 13.67 and 5.42-fold higher than that in cuticle, respectively. The expression of CYP6FV12 was significantly up-regulated in B. odoriphaga larvae after exposed to imidacloprid at the concentrations of 10, 30, 50, and 70 mg/L. Moreover, RNAi mediated silencing of CYP6FV12 increased mortality by 28.62% when the fourth-instar larvae were treated with imidacloprid. This is the first systematic study on isolated P450s gene involved in imidacloprid resistance in B. odoriphaga and increased our understanding of the molecular mechanisms of insecticide detoxification in this pest insect.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tisheng Shan
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Cuicui Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Wang ZL, Wang XP, Li CR, Xia ZZ, Li SX. Effect of Dietary Protein and Carbohydrates on Survival and Growth in Larvae of the Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5049160. [PMID: 29982810 PMCID: PMC6037072 DOI: 10.1093/jisesa/iey067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 06/08/2023]
Abstract
The ratio of protein and carbohydrate in an insect's nutritional regime can significantly influence its survival, growth, and fecundity. The effects of 11 different artificial diets containing protein (p): carbohydrate (c) ratios were determined in larvae of the phytophagus ladybug, Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae). We recorded the developmental times and survival rates of the larvae and weighed their pupae. When the concentration of carbohydrates was kept constant while the concentration of proteins was increased (p29:c20, p31:c20, p33:c20, and p35:c20), H. vigintioctopunctata could successfully complete the larval and pupal stages. The highest survival rate and greatest pupal mass of H. vigintioctopunctata were 72% and 19.5 mg, respectively, when reared on the p33:c20 diet. H. vigintioctopunctata larvae, however, were unable to develop into adults when the concentration of protein remained constant while the level of carbohydrates was increased (p20:c23, p20:c25, p20:c27, and p20:c29), or when the total amount (p + c) was kept at 48% (p22:c26, p 24:c24, p26:c22). Evidently, changing the availability of quality diet, especially the total protein levels, can significantly affect the performance to H. vigintioctopunctata. Our results indicated that the maximum development and survival of H. vigintioctopunctata larvae occurred within a narrow range-when the p:c ratio was (33:20).
Collapse
Affiliation(s)
- Zai-Ling Wang
- Department of Entomology. Yangtze University, Jingzhou, Hubei, P.R. China
| | - Xiang-Ping Wang
- Department of Entomology. Yangtze University, Jingzhou, Hubei, P.R. China
| | - Chuan-Ren Li
- Department of Entomology. Yangtze University, Jingzhou, Hubei, P.R. China
| | - Zhen-Zhou Xia
- Department of Entomology. Yangtze University, Jingzhou, Hubei, P.R. China
| | - Shi-Xiang Li
- Department of Entomology. Yangtze University, Jingzhou, Hubei, P.R. China
| |
Collapse
|
32
|
Chen C, Wang C, Liu Y, Shi X, Gao X. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga. Sci Rep 2018; 8:2564. [PMID: 29416091 PMCID: PMC5803201 DOI: 10.1038/s41598-018-20981-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Cuicui Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xueyan Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
33
|
Zhu G, Luo Y, Xue M, Zhao H, Sun X, Wang X. Effects of Feeding on Different Host Plants and Diets on Bradysia Odoriphaga Population Parameters and Tolerance to Heat and Insecticides. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2371-2380. [PMID: 29045637 DOI: 10.1093/jee/tox242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Bradysia odoriphaga Yang et Zhang, the Chinese chive root maggot, is a devastating pest of agricultural plants causing significant losses in vegetable crops, edible mushrooms, and humus. To determine the effects of feeding on different host plants and diets on the life parameters of B. odoriphaga and its tolerance to stressful conditions, we analyzed the life-table data of B. odoriphaga reared on Chinese chive (Allium hookeri), Welsh onion (Allium fistulosum), garlic (Allium sativum), oyster mushroom (Pleurotus ostreatus), and humus and assayed its tolerance to heat and insecticides. Furthermore, we assayed the physiological responses of B. odoriphaga reared on different hosts. Development from egg to adult was successfully completed on five hosts. Life table indicated that when reared on Chinese chive and oyster mushroom, B. odoriphaga showed better life parameters (shorter development time, higher survival rate, and fecundity) than on humus and garlic. However, B. odoriphaga larvae fed on humus and garlic better tolerated heat and insecticides than those that were fed Chinese chive and oyster mushroom; larvae survived longer at 38 and 40°C heat shock and at higher insecticide doses. Activities of antioxidant and detoxification enzymes varied significantly in larvae fed on different hosts. Catalase, superoxide dismutase, glutathione S-transferase, and carboxylesterase activities were higher in larva reared on garlic and humus than on Chinese chive and oyster mushroom. These findings indicated that B. odoriphaga preferred liliaceous vegetables and mushroom, and their tolerance against stress increased when reared on humus and garlic. Such basic information can promote targeted pest management in different agricultural fields and allow better understanding of the acclimatization strategy of B. odoriphaga.
Collapse
Affiliation(s)
- Guodong Zhu
- College of Plant Protection, Shandong Agricultural University, Key Laboratory of Biology of Vegetable Pests and Diseases, China
| | - Yin Luo
- College of Plant Protection, Shandong Agricultural University, Key Laboratory of Biology of Vegetable Pests and Diseases, China
| | - Ming Xue
- College of Plant Protection, Shandong Agricultural University, Key Laboratory of Biology of Vegetable Pests and Diseases, China
| | - Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Key Laboratory of Biology of Vegetable Pests and Diseases, China
| | - Xia Sun
- College of Plant Protection, Shandong Agricultural University, Key Laboratory of Biology of Vegetable Pests and Diseases, China
| | - Xinhui Wang
- College of Plant Protection, Shandong Agricultural University, Key Laboratory of Biology of Vegetable Pests and Diseases, China
| |
Collapse
|
34
|
Liao QJ, Yang YJ, Wang J, Pang X, Xu CM, Peng CL, Lu ZX, Liu YH. Temperature-dependent development and reproduction of rice leaffolder, Marasmia exigua (Lepidoptera: Pyralidae). PLoS One 2017; 12:e0187972. [PMID: 29125858 PMCID: PMC5695278 DOI: 10.1371/journal.pone.0187972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/30/2017] [Indexed: 11/18/2022] Open
Abstract
Marasmia exigua (Butler) (Lepidoptera: Pyralidae) is one of the major rice leaffolders negatively affecting the rice production in the world. The growth and development of M. exigua was studied at seven constant temperatures (10, 15, 20, 25, 27, 30 and 35°C). The results showed that M. exigua eggs failed to hatch at 10°C and the larvae could not complete development at 15 and 35°C. The developmental times of each stage, survival rates of pre-adult, adult longevity, fecundities and oviposition days of M. exigua at 20, 25, 27 and 30°C were investigated using age-stage, two-sex life table. The total pre-adult development time decreased with the increase in temperature decreasing from 61.58 days at 20°C to 28.94 days at 30°C. The highest survival rate was observed at 25°C (73%). Male adult longevities were generally longer than that of females, except at 30°C. The highest mean fecundity, age-stage specific fecundity and age-specific fecundity peak values were all observed at 27°C. The maximum intrinsic rate of increase r and finite rate of increase λ were observed at 27°C, while the maximum net reproduction rate R0 was observed at 25°C. The longest mean generation time occurred at 20°C and the shortest at 27°C. These results provide better understanding on the development, reproduction and dynamic of M. exigua populations, their distribution, and might be utilized to forecast and manage M. exigua outbreaks in China.
Collapse
Affiliation(s)
- Qiu-Ju Liao
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, China
| | - Ya-Jun Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Jia Wang
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, China
| | - Xiao Pang
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, China
| | - Chun-Mei Xu
- Qianwei Plant Protection Station, Leshan, China
| | | | - Zhong-Xian Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- * E-mail: (ZXL); (YHL)
| | - Ying-Hong Liu
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, China
- * E-mail: (ZXL); (YHL)
| |
Collapse
|
35
|
Effects of short-term heat shock and physiological responses to heat stress in two Bradysia adults, Bradysia odoriphaga and Bradysia difformis. Sci Rep 2017; 7:13381. [PMID: 29042590 PMCID: PMC5645341 DOI: 10.1038/s41598-017-13560-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/26/2017] [Indexed: 11/08/2022] Open
Abstract
Bradysia odoriphaga and Bradysia difformis are devastating pests of vegetable, ornamental crops and edible mushrooms causing significant losses. Temperature may be an important factor restricting their population abundance in the summer. To determine the effects of short-term heat shock on adults, their survival, longevity and fecundity data were collected, and antioxidant responses and heat shock protein expression levels were examined. Our results indicated that the survival rates of Bradysia adults decreased rapidly after heat shock ≥36 °C, and the longevity and reproductive capacities were significantly inhibited, indicating that short-term heat shock had lethal and sub-lethal effects. Moreover, the lipid peroxidation levels of B. difformis and B. odoriphaga increased dramatically at 36 °C and 38 °C, respectively. Four antioxidant enzymes activities of B. odoriphaga were greater than those of B. difformis at 38 °C. Additionally, hsp70 and hsp90 expression levels significantly increased after heat stress, and higher expression levels of B. difformis and B. odoriphaga were discovered at 36 and 38 °C respectively, indicating their different heat tolerance levels. Overall, short-term heat shock (≥36 °C) caused significantly adverse effects on Bradysia adults, indicating that it could be applied in pest control, and antioxidant system and hsp genes played important roles in their heat tolerance levels.
Collapse
|
36
|
Chen C, Shi X, Desneux N, Han P, Gao X. Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) in China. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:868-875. [PMID: 28536793 DOI: 10.1007/s10646-017-1817-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Bradysia odoriphaga Yang et Zhang is a destructive insect pest of Chinese chives. To understand the current status of insecticide resistance of B. odoriphaga in China, the sensitivity variation of eight field populations to six commonly used insecticides, including chlorpyrifos, phoxim, imidacloprid, thiamethoxam, clothianidin and beta-cypermethrin were evaluated. The results showed that almost all the tested B. odoriphaga populations had developed moderate to high resistance to chlorpyrifos and phoxim. There were different resistance levels found in the eight field populations among the three neonicotinoids, imidacloprid, thiamethoxam and clothianidin. Imidacloprid was very effective against B. odoriphaga in most tested populations except those from Yangzhou (10.35-fold) and Tangshan (14.56-fold). While four populations kept susceptible to thiamethoxam, the other four populations showed decreased susceptibility or low resistance. To clothianidin, five populations displayed moderate resistance, two populations displayed low resistance, and one population exhibited susceptibility, respectively. All the tested populations were resistance to beta-cypermethrin, the highest resistance was found in the Tangshan population with a resistance ratio of 172.56-fold. The results of this study provided valuable information for choosing insecticides for control and integrated resistance management of B. odoriphaga.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Xueyan Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| | - Nicolas Desneux
- INRA (French National Institute for Agricultural Research), Université Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Peng Han
- INRA (French National Institute for Agricultural Research), Université Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
37
|
Cheng J, Su Q, Jiao X, Shi C, Yang Y, Han H, Xie W, Guo Z, Wu Q, Xu B, Wang S, Zhang Y. Effects of Heat Shock on the Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1630-1638. [PMID: 28419316 DOI: 10.1093/jee/tox118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 06/07/2023]
Abstract
Bradysia odoriphaga is frequently subjected to heat shock during the summer in China. Although the effects of heat shock on insect ecology and physiology have been widely explored, the effects of heat shock on the life history parameters of Bradysia odoriphaga are largely unknown. In the present study, we investigated the effects of heat shock on B. odoriphaga survival and reproduction as well as on offspring development and sex ratio. We exposed adult B. odoriphaga to 31, 33, 35, or 37 °C for different durations (from 0 to 120 min). The results showed that the survival of both sexes declined with the increase in temperature and exposure time, especially at 33, 35, and 37 °C. Longevity was markedly greater for males than females across all treatments. Fecundity generally declined as temperature and exposure time increased, and no eggs hatched when females were exposed to 37 °C for >75 min. The development of offspring larvae was significantly delayed when the parent female and male had been exposed to ≥31 °C for ≥30 min. In addition, the sex ratio of F1 progeny derived from heat-shocked parental adults was increasingly skewed to female as exposure time and temperature treatment increased. Overall, the results indicate that heat shock negatively influences B. odoriphaga.
Collapse
Affiliation(s)
- Jiaxu Cheng
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qi Su
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Xiaoguo Jiao
- Faculty of Life Sciences, Hubei University, Wuhan 430062, China
| | - Caihua Shi
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Yuting Yang
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Haolin Han
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
38
|
Qin J, Zhang L, Liu Y, Sappington TW, Cheng Y, Luo L, Jiang X. Population Projection and Development of the Mythimna loreyi (Lepidoptera: Noctuidae) as Affected by Temperature: Application of an Age-Stage, Two-Sex Life Table. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1583-1591. [PMID: 28541530 DOI: 10.1093/jee/tox138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 06/07/2023]
Abstract
The Mythimna (=Leucania) loreyi (Duponchel) has recently emerged as a major pest of grain crops in China. Little is known about its basic biology and ecology, making it difficult to predict its population dynamics. An age-stage, two-sex life table was constructed for this insect when reared on maize in the laboratory at five constant temperatures (18, 21, 24, 27, and 30 °C). Both the intrinsic rate of increase (r) and finite rate increase (λ) increased as temperature significantly increased and mean generation time (T) decreased significantly with increasing temperature. The highest values for net reproductive rate (R0) and fecundity were observed at 24 °C. However, M. loreyi was able to develop, survive, and lay eggs at all temperatures tested (18-30 °C). Development rates at different temperatures for the egg, larval, pupal, as well as for a total preoviposition period, fit a linear equation. The lower threshold temperatures of egg, larval, pupal, preoviposition, and total preoviposition period were 8.83, 10.95, 11.67, 9.30, and 9.65 °C, respectively. And their effective accumulated temperatures were 87.64, 298.51, 208.33, 66.47, and 729.93 degree-days, respectively. This study provides insight into the temperature-based phenology and population ecology in M. loreyi. The results will benefit population dynamics monitoring, prediction, and management of this insect pest in the field.
Collapse
Affiliation(s)
- Jianyang Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yueqiu Liu
- USDA-ARS Corn Insects & Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011
| | - Thomas W Sappington
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhi Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
39
|
Ning S, Zhang W, Sun Y, Feng J. Development of insect life tables: comparison of two demographic methods of Delia antiqua (Diptera: Anthomyiidae) on different hosts. Sci Rep 2017; 7:4821. [PMID: 28684791 PMCID: PMC5500477 DOI: 10.1038/s41598-017-05041-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/18/2017] [Indexed: 11/27/2022] Open
Abstract
In this study, we first construct an age-stage, two-sex life table for onion maggot, Delia antiqua, grown on three host plants: onion, scallion, and garlic. We found that onion is the optimal host for this species and populations grown on onion have maximum fecundity, longest adult longevity and reproduction period, and the shortest immature developmental time. In contrast, the fecundity on other hosts was lower, particularly on garlic, but these crops can also serve as important secondary hosts for this pest. These data will be useful to the growers to develop specific integrated management programs for each of hosts. We also compared the demographic analyses of using individually-reared and group-reared methods. These two methods provided similar accurate outcomes for estimating insect population dynamics for this species. However, for gregarious species, using the individually-reared method to construct insect life tables produces inaccurate results, and researchers must use group-reared method for life table calculations. When studying large groups of insect, group-reared demographic analysis for age-stage, two-sex life table can also simplify statistical analysis, save considerable labor, and reduce experimental errors.
Collapse
Affiliation(s)
- Shuoying Ning
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Wenchao Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yan Sun
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Jinian Feng
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|
40
|
Shi CH, Hu JR, Xie W, Yang YT, Wang SL, Zhang YJ. Control of Bradysia odoriphaga (Diptera: Sciaridae) With Allyl Isothiocyanate Under Field and Greenhouse Conditions. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1127-1132. [PMID: 28334285 DOI: 10.1093/jee/tow303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 06/06/2023]
Abstract
The botanical compound allyl isothiocyanate (AITC) is toxic to many microorganisms and insects. The aim of this study was to assess the effects of AITC on the Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) and the seeds and seedlings of the Chinese chive. Allyl isothiocyanate was toxic to all four developmental stages of B. odoriphaga. The adult was significantly more sensitive to AITC than the other three stages, which exhibited no significant differences to one another in sensitivity to the chemical. The control efficacy of AITC against B. odoriphaga was far superior in the greenhouse than the field. In addition, seedling survival was higher in the greenhouse compared with that in the field. In the absence of B. odoriphaga, seed germination and seedling growth of Chinese chives were inhibited by 16 µl/liter of AITC, and significant inhibition occurred under higher doses of AITC. These results indicate that AITC could be used to control B. odoriphaga during cultivation of Chinese chives.
Collapse
Affiliation(s)
- Cai-Hua Shi
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P.R. China ( ; ; )
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China ( ; ; )
| | - Jing-Rong Hu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P.R. China (; ; )
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China (; ; )
| | - Yu-Ting Yang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P.R. China (; ; )
| | - Shao-Li Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China (; ; )
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China ( ; ; )
- Corresponding author, e-mail:
| |
Collapse
|
41
|
Zheng XM, Tao YL, Chi H, Wan FH, Chu D. Adaptability of small brown planthopper to four rice cultivars using life table and population projection method. Sci Rep 2017; 7:42399. [PMID: 28205522 PMCID: PMC5304318 DOI: 10.1038/srep42399] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/09/2017] [Indexed: 11/23/2022] Open
Abstract
In this study, we evaluated the adaptability of the small brown planthopper (SBPH), Laodelphax striatellus (Hemiptera: Delphacidae) to four rice cultivars including Shengdao13 (SD13), Shengdao14 (SD14), Shengdao15 (SD15), and Zixiangnuo (ZXN) using the age-stage, two-sex life table with a simplified method for recording egg production (i.e., every five days vs. daily). The intrinsic rate of increase (r) of the SBPH was the highest (0.1067 d−1) on cultivar SD15, which was similar to the rate on SD14 (0.1029 d−1), but was significantly higher than that occurring on ZXN (0.0897 d−1) and SD13 (0.0802 d−1). The differences of the finite rate of increase (λ) on the four rice cultivars were consistent with the r values. Population projection predicted an explosive population growth of the SBPH occurring in a relatively short time when reared on SD14 and SD15. These findings demonstrated that the SBPH can successfully survive on the four rice cultivars, although there were varying host adaptabilities.
Collapse
Affiliation(s)
- Xiao-Min Zheng
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| | - Yun-Li Tao
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| | - Hsin Chi
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Ömer Halisdemir University, Turkey
| | - Fang-Hao Wan
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
42
|
Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole. Sci Rep 2016; 6:37730. [PMID: 27883048 PMCID: PMC5121901 DOI: 10.1038/srep37730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 01/15/2023] Open
Abstract
Benzothiazole, a microbial secondary metabolite, has been demonstrated to possess fumigant activity against Sclerotinia sclerotiorum, Ditylenchus destructor and Bradysia odoriphaga. However, to facilitate the development of novel microbial pesticides, the mode of action of benzothiazole needs to be elucidated. Here, we employed iTRAQ-based quantitative proteomics analysis to investigate the effects of benzothiazole on the proteomic expression of B. odoriphaga. In response to benzothiazole, 92 of 863 identified proteins in B. odoriphaga exhibited altered levels of expression, among which 14 proteins were related to the action mechanism of benzothiazole, 11 proteins were involved in stress responses, and 67 proteins were associated with the adaptation of B. odoriphaga to benzothiazole. Further bioinformatics analysis indicated that the reduction in energy metabolism, inhibition of the detoxification process and interference with DNA and RNA synthesis were potentially associated with the mode of action of benzothiazole. The myosin heavy chain, succinyl-CoA synthetase and Ca+-transporting ATPase proteins may be related to the stress response. Increased expression of proteins involved in carbohydrate metabolism, energy production and conversion pathways was responsible for the adaptive response of B. odoriphaga. The results of this study provide novel insight into the molecular mechanisms of benzothiazole at a large-scale translation level and will facilitate the elucidation of the mechanism of action of benzothiazole.
Collapse
|
43
|
Demographic comparison and population projection of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) reared on sugarcane at different temperatures. Sci Rep 2016; 6:31659. [PMID: 27545594 PMCID: PMC4992881 DOI: 10.1038/srep31659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/22/2016] [Indexed: 12/03/2022] Open
Abstract
Understanding how temperature affects fitness is important for conservation and pest management, especially in the era of global climate change. Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) is a worldwide pest of many economically important crops. Although much is known about this pest’s life cycle, its adaptability to different temperatures is not fully understood. Here, we used age- and stage-specific life tables to investigate the effects of temperature on fitness-related traits and demographic parameters of R. ferrugineus under eight constant temperature regimens in the laboratory. The growth potential of these populations was also evaluated. The greatest longevity for males and females was 158.0 d at 24 °C and 144.5 d at 21 °C, respectively, but mean total fecundity was the highest at 27 °C. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0) increased initially at low temperatures and then decreased. All metrics reached a maximum at 27 °C and a minimum at 36 °C. Mean generation times (T ) decreased across the temperature range with a minimum at 36 °C. Our results indicate that the optimum temperature for growth of R. ferrugineus was approximately 27 °C. Our work will be of value for developing strategies for control management of this pest species.
Collapse
|
44
|
Shi C, Yang F, Zhu X, Du E, Yang Y, Wang S, Wu Q, Zhang Y. Evaluation of Housekeeping Genes for Quantitative Real-Time PCR Analysis of Bradysia odoriphaga (Diptera: Sciaridae). Int J Mol Sci 2016; 17:ijms17071034. [PMID: 27399679 PMCID: PMC4964410 DOI: 10.3390/ijms17071034] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
The soil insect Bradysia odoriphaga (Diptera: Sciaridae) causes substantial damage to Chinese chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga) have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR). This study was focused on identifying the expression stability of 12 candidate housekeeping genes in B. odoriphaga under various experiment conditions. The final stability ranking of 12 housekeeping genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the most suitable reference genes versus an arbitrarily selected reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in B. odoriphaga was found to be up-regulated under low temperatures. These results will contribute to the standardization of qRT-PCR and will also be valuable for further research on gene function in B. odoriphaga.
Collapse
Affiliation(s)
- Caihua Shi
- College of Agriculture, Yangtze University, Jingzhou 434025, China.
| | - Fengshan Yang
- College of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Xun Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Erxia Du
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Yuting Yang
- College of Agriculture, Yangtze University, Jingzhou 434025, China.
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
45
|
Zhang P, He M, Zhao Y, Ren Y, Wei Y, Mu W, Liu F. Dissipation dynamics of clothianidin and its control efficacy against Bradysia odoriphaga Yang and Zhang in Chinese chive ecosystems. PEST MANAGEMENT SCIENCE 2016; 72:1396-1404. [PMID: 26449486 DOI: 10.1002/ps.4166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Clothianidin is a second-generation neonicotinoid insecticide that is quite effective against Bradysia odoriphaga Yang and Zhang, the major insect pest affecting Chinese chive in northern China. In this study, the dissipation of clothianidin in soil and its residue in leaves and pseudostems/bulbs as well as its control efficacy against B. odoriphaga and two other secondary pests were investigated in Chinese chive fields after soil application of clothianidin by the directional spray-washing method. RESULTS The half-life of clothianidin was 35.73-36.10 days, and it could be detected in Chinese chive plants in both treatment plots up to 240 days after a single soil application. Clothianidin applied at 3.0 and 6.0 kg AI ha(-1) could suppress B. odoriphaga population growth, achieve satisfactory levels of pest control for almost 10 months and reduce the losses of the yield in winter. Moreover, the treatments also significantly reduced Thrips alliorum and Acrolepia alliella populations up to nearly 180 days after one application. CONCLUSION Clothianidin can be considered to show long-lasting efficacy against B. odoriphaga and to be safe for use in Chinese chive at 3.0 and 6.0 kg AI ha(-1) once in the early root-rearing period to control B. odoriphaga in these cultivation ecosystems. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Min He
- Institute of Plant Protection and Environment Protection, Beijing Academy of Agricultural and Forestry Science, Beijing, China
| | - Yunhe Zhao
- Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yupeng Ren
- Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yan Wei
- Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wei Mu
- Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
46
|
Zhao Y, Xu C, Wang Q, Wei Y, Liu F, Xu S, Zhang Z, Mu W. Effects of the microbial secondary metabolite benzothiazole on the nutritional physiology and enzyme activities of Bradysia odoriphaga (Diptera: Sciaridae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 129:49-55. [PMID: 27017881 DOI: 10.1016/j.pestbp.2015.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/26/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is the major pest that damages Chinese chive production. As a volatile compound derived from microbial secondary metabolites, benzothiazole has been determined to possess fumigant activity against B. odoriphaga. However, the mechanism of action of benzothiazole is not well understood. In the present study, fourth-instar larvae of B. odoriphaga were exposed to LC10 and LC30 of benzothiazole. Sublethal concentrations (LC10 and LC30) of benzothiazole significantly reduced the food consumption of the larvae on the second day after treatment (2 DAT). However, there were no significant changes in pupal weight among the different treatments. We also measured the protein, lipid, carbohydrate, and trehalose contents and the digestive enzyme activities of the larvae, and the results suggest that benzothiazole reduced the nutrient accumulation and decreased the digestive enzyme activities of B. odoriphaga. In addition, the activity of glutathione S-transferase was significantly decreased at 6h after treatment with benzothiazole, whereas general esterase activities were significantly increased at 6 and 24h after treatment. The results of this study indicate that benzothiazole interferes in the normal food consumption and digestion process by decreasing the activities of digestive enzymes. These results provide valuable information for understanding the toxicity of benzothiazole and for exploring volatile compound for the control of this pest.
Collapse
Affiliation(s)
- Yunhe Zhao
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chunmei Xu
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qiuhong Wang
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yan Wei
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Feng Liu
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shuangyu Xu
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zhengqun Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Mu
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|