1
|
Zhao Z, Wang F, Deng M, Fan G. Identification and Analysis of PPO Gene Family Members in Paulownia fortunei. PLANTS (BASEL, SWITZERLAND) 2024; 13:2033. [PMID: 39124152 PMCID: PMC11313911 DOI: 10.3390/plants13152033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Polyphenol oxidase (PPO) is a common metalloproteinase in plants with important roles in plant responses to abiotic and biotic stresses. There is evidence that PPOs contribute to stress responses in Paulownia fortunei. In this study, PPO gene family members in P. fortunei were comprehensively identified and characterized using bioinformatics methods as well as analyses of phylogenetic relationships, gene and protein structure, codon usage bias, and gene expression in response to stress. The genome contained 10 PPO gene family members encoding 406-593 amino acids, with a G/C bias. Most were localized in chloroplasts. The motif structure was conserved among family members, and α-helices and random coils were the dominant elements in the secondary structure. The promoters contained many cis-acting elements, such as auxin, gibberellin, salicylic acid, abscisic acid, and photoresponsive elements. The formation of genes in this family was linked to evolutionary events, such as fragment replication. Real-time quantitative PCR results showed that PfPPO7, PfPPO10, PfPPO1, PfPPO2, PfPPO3, PfPPO4, PfPPO5, and PfPPO8 may be key genes in drought stress resistance. PfPPO1, PfPPO3, PfPPO4, and PfPPO10 were resistant stress-sensitive genes. These results provide a reliable basis for fully understanding the potential functions of these genes and the selection of resistance breeding.
Collapse
Affiliation(s)
- Zhenli Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Fei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Minjie Deng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
2
|
Broucke E, Dang TTV, Li Y, Hulsmans S, Van Leene J, De Jaeger G, Hwang I, Wim VDE, Rolland F. SnRK1 inhibits anthocyanin biosynthesis through both transcriptional regulation and direct phosphorylation and dissociation of the MYB/bHLH/TTG1 MBW complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1193-1213. [PMID: 37219821 DOI: 10.1111/tpj.16312] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Plants have evolved an extensive specialized secondary metabolism. The colorful flavonoid anthocyanins, for example, not only stimulate flower pollination and seed dispersal, but also protect different tissues against high light, UV and oxidative stress. Their biosynthesis is highly regulated by environmental and developmental cues and induced by high sucrose levels. Expression of the biosynthetic enzymes involved is controlled by a transcriptional MBW complex, comprising (R2R3) MYB- and bHLH-type transcription factors and the WD40 repeat protein TTG1. Anthocyanin biosynthesis is not only useful, but also carbon- and energy-intensive and non-vital. Consistently, the SnRK1 protein kinase, a metabolic sensor activated in carbon- and energy-depleting stress conditions, represses anthocyanin biosynthesis. Here we show that Arabidopsis SnRK1 represses MBW complex activity both at the transcriptional and post-translational level. In addition to repressing expression of the key transcription factor MYB75/PAP1, SnRK1 activity triggers MBW complex dissociation, associated with loss of target promoter binding, MYB75 protein degradation and nuclear export of TTG1. We also provide evidence for direct interaction with and phosphorylation of multiple MBW complex proteins. These results indicate that repression of expensive anthocyanin biosynthesis is an important strategy to save energy and redirect carbon flow to more essential processes for survival in metabolic stress conditions.
Collapse
Affiliation(s)
- Ellen Broucke
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Thi Tuong Vi Dang
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Yi Li
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Sander Hulsmans
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Van den Ende Wim
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| |
Collapse
|
3
|
Zha Q, Yin X, Xi X, Jiang A. Heterologous VvDREB2c Expression Improves Heat Tolerance in Arabidopsis by Inducing Photoprotective Responses. Int J Mol Sci 2023; 24:5989. [PMID: 36983065 PMCID: PMC10053783 DOI: 10.3390/ijms24065989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Extreme temperatures limit grape production and sustainability. Dehydration-responsive element-binding (DREB) transcription factors affect plant responses to temperature related stresses. Therefore, we investigated the role of VvDREB2c, a DREB-coding gene, found in grapes (Vitis vinifera L.). Protein characterization revealed that VvDREB2c is localized to the nucleus and that its AP2/ERF domain contains three β-sheets and one α-helix sheet. Analysis of the VvDREB2c promoter region revealed the presence of light-, hormone-, and stress-related cis-acting elements. Furthermore, we observed that the heterologous expression of VvDREB2c in Arabidopsis improved growth, drought tolerance, and heat tolerance. Furthermore, it improved the leaf quantum yield of regulated energy dissipation [Y(NPQ)], elevated the activities of RuBisCO, and phosphoenolpyruvate carboxylase and reduced the quantum yield of non-regulated energy dissipation [Y(NO)] in plants exposed to high temperatures. VvDREB2c-overexpressing lines also specifically upregulated several photosynthesis-related genes (CSD2, HSP21, and MYB102). In addition, VvDREB2c-overexpressing lines reduced light damage and enhanced photoprotective ability by dissipating excess light energy and converting it into heat, which eventually improves tolerance to high temperature. The contents of abscisic acid, jasmonic acid, and salicylic acid and differentially expressed genes (DEGs) in the mitogen-activated protein kinase (MAPK) signaling pathway were affected by heat stress in VvDREB2c-overexpressing lines, which indicated that VvDREB2c positively regulates heat tolerance via a hormonal pathway in Arabidopsis. VvDREB2c promotes heat tolerance in Arabidopsis by exerting effects on photosynthesis, hormones, and growth conditions. This study may provide useful insights into the enrichment of the heat-tolerance pathways in plants.
Collapse
Affiliation(s)
- Qian Zha
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.Z.); (X.Y.)
- Shanghai Key Labs of the Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiangjing Yin
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.Z.); (X.Y.)
- Shanghai Key Labs of the Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaojun Xi
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.Z.); (X.Y.)
- Shanghai Key Labs of the Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Aili Jiang
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.Z.); (X.Y.)
- Shanghai Key Labs of the Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
4
|
Sabater B. On the Edge of Dispensability, the Chloroplast ndh Genes. Int J Mol Sci 2021; 22:12505. [PMID: 34830386 PMCID: PMC8621559 DOI: 10.3390/ijms222212505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species scattered among different genera, families, and orders. The recent identification of many plants lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution. Variable evolutionary environments place Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes challenge models about the role of ndh genes protecting against stress and promoting leaf senescence. Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of their response to stress will provide a unified model of the evolutionary and functional consequences of the lack of ndh genes.
Collapse
Affiliation(s)
- Bartolomé Sabater
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
5
|
Zhuang Y, Wei M, Ling C, Liu Y, Amin AK, Li P, Li P, Hu X, Bao H, Huo H, Smalle J, Wang S. EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in Arabidopsis. Cell Rep 2021; 36:109384. [PMID: 34260941 DOI: 10.1016/j.celrep.2021.109384] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The chloroplast is the main organelle for stress-induced production of reactive oxygen species (ROS). However, how chloroplastic ROS homeostasis is maintained under salt stress is largely unknown. We show that EGY3, a gene encoding a chloroplast-localized protein, is induced by salt and oxidative stresses. The loss of EGY3 function causes stress hypersensitivity while EGY3 overexpression increases the tolerance to both salt and chloroplastic oxidative stresses. EGY3 interacts with chloroplastic Cu/Zn-SOD2 (CSD2) and promotes CSD2 stability under stress conditions. In egy3-1 mutant plants, the stress-induced CSD2 degradation limits H2O2 production in chloroplasts and impairs H2O2-mediated retrograde signaling, as indicated by the decreased expression of retrograde-signal-responsive genes required for stress tolerance. Both exogenous application of H2O2 (or APX inhibitor) and CSD2 overexpression can rescue the salt-stress hypersensitivity of egy3-1 mutants. Our findings reveal that EGY3 enhances the tolerance to salt stress by promoting the CSD2 stability and H2O2-mediated chloroplastic retrograde signaling.
Collapse
Affiliation(s)
- Yong Zhuang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ming Wei
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chengcheng Ling
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yangxuan Liu
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Abdul Karim Amin
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Li
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Pengwei Li
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xufan Hu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Huaxu Bao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Apopka, FL 32703, USA
| | - Jan Smalle
- Plant Physiology, Biochemistry and Molecular Biology Program, Department of Plant and Soil Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | - Songhu Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Xie DF, Cheng RY, Fu X, Zhang XY, Price M, Lan YL, Wang CB, He XJ. A Combined Morphological and Molecular Evolutionary Analysis of Karst-Environment Adaptation for the Genus Urophysa (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:667988. [PMID: 34177982 PMCID: PMC8223000 DOI: 10.3389/fpls.2021.667988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
The karst environment is characterized by low soil water content, periodic water deficiency, and poor nutrient availability, which provides an ideal natural laboratory for studying the adaptive evolution of its inhabitants. However, how species adapt to such a special karst environment remains poorly understood. Here, transcriptome sequences of two Urophysa species (Urophysa rockii and Urophysa henryi), which are Chinese endemics with karst-specific distribution, and allied species in Semiaquilegia and Aquilegia (living in non-karst habitat) were collected. Single-copy genes (SCGs) were extracted to perform the phylogenetic analysis using concatenation and coalescent methods. Positively selected genes (PSGs) and clusters of paralogous genes (Mul_genes) were detected and subsequently used to conduct gene function annotation. We filtered 2,271 SCGs and the coalescent analysis revealed that 1,930 SCGs shared the same tree topology, which was consistent with the topology detected from the concatenated tree. Total of 335 PSGs and 243 Mul_genes were detected, and many were enriched in stress and stimulus resistance, transmembrane transport, cellular ion homeostasis, calcium ion transport, calcium signaling regulation, and water retention. Both molecular and morphological evidences indicated that Urophysa species evolved complex strategies for adapting to hostile karst environments. Our findings will contribute to a new understanding of genetic and phenotypic adaptive mechanisms of karst adaptation in plants.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Fu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiang-Yi Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan-Ling Lan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | | | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Natural Root Cellular Variation in Responses to Osmotic Stress in Arabidopsis thaliana Accessions. Genes (Basel) 2019; 10:genes10120983. [PMID: 31795411 PMCID: PMC6969899 DOI: 10.3390/genes10120983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023] Open
Abstract
Arabidopsis naturally occurring populations have allowed for the identification of considerable genetic variation remodeled by adaptation to different environments and stress conditions. Water is a key resource that limits plant growth, and its availability is initially sensed by root tissues. The root’s ability to adjust its physiology and morphology under water deficit makes this organ a useful model to understand how plants respond to water stress. Here, we used hyperosmotic shock stress treatments in different Arabidopsis accessions to analyze the root cell morphological responses. We found that osmotic stress conditions reduced root growth and root apical meristem (RAM) size, promoting premature cell differentiation without affecting the stem cell niche morphology. This phenotype was accompanied by a cluster of small epidermal and cortex cells with radial expansion and root hairs at the transition to the elongation zone. We also found this radial expansion with root hairs when plants are grown under hypoosmotic conditions. Finally, root growth was less affected by osmotic stress in the Sg-2 accession followed by Ws, Cvi-0, and Col-0; however, after a strong osmotic stress, Sg-2 and Cvi-0 were the most resilience accessions. The sensitivity differences among these accessions were not explained by stress-related gene expression. This work provides new cellular insights on the Arabidopsis root phenotypic variability and plasticity to osmotic stress.
Collapse
|
8
|
Cui F, Brosché M, Shapiguzov A, He XQ, Vainonen JP, Leppälä J, Trotta A, Kangasjärvi S, Salojärvi J, Kangasjärvi J, Overmyer K. Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis. Free Radic Biol Med 2019; 134:555-566. [PMID: 30738155 DOI: 10.1016/j.freeradbiomed.2019.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/20/2023]
Abstract
Reactive oxygen species (ROS) are key signalling intermediates in plant metabolism, defence, and stress adaptation. In plants, both the chloroplast and mitochondria are centres of metabolic control and ROS production, which coordinate stress responses in other cell compartments. The herbicide and experimental tool, methyl viologen (MV) induces ROS generation in the chloroplast under illumination, but is also toxic in non-photosynthetic organisms. We used MV to probe plant ROS signalling in compartments other than the chloroplast. Taking a genetic approach in the model plant Arabidopsis (Arabidopsis thaliana), we used natural variation, QTL mapping, and mutant studies with MV in the light, but also under dark conditions, when the chloroplast electron transport is inactive. These studies revealed a light-independent MV-induced ROS-signalling pathway, suggesting mitochondrial involvement. Mitochondrial Mn SUPEROXIDE DISMUTASE was required for ROS-tolerance and the effect of MV was enhanced by exogenous sugar, providing further evidence for the role of mitochondria. Mutant and hormone feeding assays revealed roles for stress hormones in organellar ROS-responses. The radical-induced cell death1 mutant, which is tolerant to MV-induced ROS and exhibits altered mitochondrial signalling, was used to probe interactions between organelles. Our studies suggest that mitochondria are involved in the response to ROS induced by MV in plants.
Collapse
Affiliation(s)
- Fuqiang Cui
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland; Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland; Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia
| | - Xin-Qiang He
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland; College of Life Sciences, Peking University, Beijing, 100871, China
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Johanna Leppälä
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland; School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland.
| |
Collapse
|
9
|
Jung JH, Kim HY, Kim HS, Jung SH. Transcriptome analysis of Panax ginseng response to high light stress. J Ginseng Res 2019; 44:312-320. [PMID: 32148414 PMCID: PMC7031748 DOI: 10.1016/j.jgr.2018.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/18/2018] [Accepted: 12/24/2018] [Indexed: 11/28/2022] Open
Abstract
Background Ginseng (Panax ginseng Meyer) is an essential source of pharmaceuticals and functional foods. Ginseng productivity has been compromised by high light (HL) stress, which is one of the major abiotic stresses during the ginseng cultivation period. The genetic improvement for HL tolerance in ginseng could be facilitated by analyzing its genetic and molecular characteristics associated with HL stress. Methods Genome-wide analysis of gene expression was performed under HL and recovery conditions in 1-year-old Korean ginseng (P. ginseng cv. Chunpoong) using the Illumina HiSeq platform. After de novo assembly of transcripts, we performed expression profiling and identified differentially expressed genes (DEGs). Furthermore, putative functions of identified DEGs were explored using Gene Ontology terms and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis. Results A total of 438 highly expressed DEGs in response to HL stress were identified and selected from 29,184 representative transcripts. Among the DEGs, 326 and 114 transcripts were upregulated and downregulated, respectively. Based on the functional analysis, most upregulated and a significant number of downregulated transcripts were related to stress responses and cellular metabolic processes, respectively. Conclusion Transcriptome profiling could be a strategy to comprehensively elucidate the genetic and molecular mechanisms of HL tolerance and susceptibility. This study would provide a foundation for developing breeding and metabolic engineering strategies to improve the environmental stress tolerance of ginseng.
Collapse
Affiliation(s)
- Je Hyeong Jung
- Center for Natural Products Convergence Research, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Ho-Youn Kim
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Hyoung Seok Kim
- Center for Natural Products Convergence Research, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea.,Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Sang Hoon Jung
- Center for Natural Products Convergence Research, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| |
Collapse
|
10
|
Coneva V, Chitwood DH. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype. FRONTIERS IN PLANT SCIENCE 2018; 9:322. [PMID: 29593772 PMCID: PMC5861201 DOI: 10.3389/fpls.2018.00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/27/2018] [Indexed: 05/16/2023]
Abstract
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.
Collapse
|
11
|
Gabruk M, Habina I, Kruk J, Dłużewska J, Szymańska R. Natural variation in tocochromanols content in Arabidopsis thaliana accessions - the effect of temperature and light intensity. PHYSIOLOGIA PLANTARUM 2016; 157:147-160. [PMID: 27174597 DOI: 10.1111/ppl.12408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
In this study, 25 accessions of Arabidopsis thaliana originating from a variety of climate conditions were grown under controlled circumstances of different light intensity and temperature. The accessions were analyzed for prenyllipids content and composition, as well as expression of the genes involved in tocochromanol biosynthesis (vte1-5). It was found that the applied conditions did not strongly affect total tocochromanols content and there was no apparent correlation of the tocochromanol content with the origin of the accessions. However, the presented results indicate that the temperature, more than the light intensity, affects the expression of the vte1-5 genes and the content of some prenyllipids. An interesting observation was that under low growth temperature, the hydroxy-plastochromanol (PC-OH) to plastochromanol (PC) ratio was considerably increased regardless of the light intensity in most of the accessions. PC-OH is known to be formed as a result of singlet oxygen stress, therefore this observation indicates that the singlet oxygen production is enhanced under low temperature. Unexpectedly, the highest increase in the PC-OH/PC ratio was found for accessions originating from cold climate (Shigu, Krazo-1 and Lov-5), even though such plants could be expected to be more resistant to low temperature stress.
Collapse
Affiliation(s)
- Michał Gabruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Iwona Habina
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, 30-059, Poland
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Jolanta Dłużewska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, 30-059, Poland
| |
Collapse
|
12
|
Babitha KC, Vemanna RS, Nataraja KN, Udayakumar M. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress. PLoS One 2015; 10:e0137098. [PMID: 26366726 PMCID: PMC4569372 DOI: 10.1371/journal.pone.0137098] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/12/2015] [Indexed: 02/01/2023] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV) treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses.
Collapse
Affiliation(s)
- K. C. Babitha
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Ramu S. Vemanna
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - M. Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| |
Collapse
|
13
|
Ghorecha V, Patel K, Ingle S, Sunkar R, Krishnayya NSR. Analysis of biochemical variations and microRNA expression in wild ( Ipomoea campanulata ) and cultivated ( Jacquemontia pentantha ) species exposed to in vivo water stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:57-67. [PMID: 24554839 PMCID: PMC3925483 DOI: 10.1007/s12298-013-0207-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 05/27/2023]
Abstract
The current study analyses few important biochemical parameters and microRNA expression in two closely related species (wild but tolerant Ipomoea campanulata L. and cultivated but sensitive Jacquemontia pentantha Jacq.G.Don) exposed to water deficit conditions naturally occurring in the field. Under soil water deficit, both the species showed reduction in their leaf area and SLA as compared to well-watered condition. A greater decrease in chlorophyll was noticed in J. pentantha (~50 %) as compared to I. campanulata (20 %) under stress. By contrast, anthocyanin and MDA accumulation was greater in J. pentantha as compared to I. campanulata. Multiple isoforms of superoxide dismutases (SODs) with differing activities were observed under stress in these two plant species. CuZnSOD isoforms showed comparatively higher induction (~10-40 %) in I. campanulata than J. pentantha. MicroRNAs, miR398, miR319, miR395 miR172, and miR408 showed opposing expression under water deficit in these two plant species. Expression of miR156, miR168, miR171, miR172, miR393, miR319, miR396, miR397 and miR408 from either I. campanulata or J. pentantha or both demonstrated opposite pattern of expression to that of drought stressed Arabidopsis. The better tolerance of the wild species (I. campanulata) to water deficit could be attributed to lesser variations in chlorophyll and anthocyanin levels; and relatively higher levels of SODs than J. pentantha. miRNA expression was different in I. campanulata than J. pentantha.
Collapse
Affiliation(s)
- Vallabhi Ghorecha
- />Ecology Laboratory, Botany Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - Ketan Patel
- />Microbiology Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - S. Ingle
- />Microbiology Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| | - Ramanjulu Sunkar
- />Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74074 USA
| | - N. S. R. Krishnayya
- />Ecology Laboratory, Botany Department, Faculty of Science, M.S.University of Baroda, Baroda, 390002 India
| |
Collapse
|
14
|
Sabater B, Martín M. Hypothesis: increase of the ratio singlet oxygen plus superoxide radical to hydrogen peroxide changes stress defense response to programmed leaf death. FRONTIERS IN PLANT SCIENCE 2013; 4:479. [PMID: 24324479 PMCID: PMC3839260 DOI: 10.3389/fpls.2013.00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/05/2013] [Indexed: 05/07/2023]
Abstract
The level of reactive oxygen species (ROS) increases under different stresses and, by destroying cellular components, may cause cell death. In addition, ROS are part of the complex network of transduction signals that induce defense reactions against stress or, alternatively, trigger programmed cell death, and key questions are the levels of each ROS that, respectively determine defense and death responses of the cell. The answer to those questions is difficult because there are several patterns of cell death that frequently appear mixed and are hardly distinguishable. Moreover, although considerable progresses have been achieved in the determination of the levels of specific ROS, critical questions remain on the ROS level in specific cell compartments. By considering chloroplasts as the main source of ROS in photosynthetic tissues at light, a comparison of the levels in stress and senescence of the chloroplastic activities involved in the generation and scavenging of ROS suggests plausible differences in the levels of specific ROS between stress defense and death. In effect, the three activities of the chlororespiratory chain increase similarly in stress defense response. However, in senescence, superoxide dismutase (SOD), that converts superoxide anion radical ([Formula: see text]) to hydrogen peroxide (H2O2,) decreases, while the thylakoid Ndh complex, that favors the generation of singlet oxygen ((1)O2) and [Formula: see text], and peroxidase (PX), that consumes H2O2, increase. The obvious inference is that, in respect to defense response, the ratio ((1)O2 plus [Formula: see text])/H2O2 is increased in the senescence previous to cell death. We hypothesize that the different ROS ratios, probably through changes in the jasmonic acid/H2O2 ratio, could determine the activation of the defense network or the death network response of the cell.
Collapse
Affiliation(s)
- Bartolomé Sabater
- *Correspondence: Bartolomé Sabater, Departamento de Ciencias de la Vida (Fisiología Vegetal), Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain e-mail:
| | | |
Collapse
|
15
|
Juszczak I, Rudnik R, Pietzenuk B, Baier M. Natural genetic variation in the expression regulation of the chloroplast antioxidant system among Arabidopsis thaliana accessions. PHYSIOLOGIA PLANTARUM 2012; 146:53-70. [PMID: 22339086 DOI: 10.1111/j.1399-3054.2012.01602.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photosynthesis is the predominant source of reactive oxygen species in light. In order to prevent the negative influence of reactive oxygen species (ROS) on cell functionality, chloroplasts have evolved a highly efficient antioxidant protection system. Here, we present the first study on natural variation in this system. Comparison of temperature and developmental responses in seven accessions of Arabidopsis thaliana from northern habitats showed that the regulation is widely genetically manifested, but hardly correlates with geographic parameters. Transcript, polysomal RNA (pRNA) and protein data showed that the ecotypes use different strategies to adjust the chloroplast antioxidative defense system, either by regulating transcript abundance or initiation of translation. Comparison of mRNA and pRNA levels showed that Col-0 invests more into transcript accumulation, while Van-0, WS and C24 regulates the chloroplast antioxidant protection system more on the level of pRNA. Nevertheless, both strategies of regulation led to the expression of chloroplast antioxidant enzymes at sufficient level to efficiently protect plants from ROS accumulation in Col-0, WS, C24 and Van-0. On the contrary, Cvi-0, Ms-0 and Kas-1 accumulated high amounts of ROS. The expression of copper/zinc superoxide dismutase (Csd2), ascorbate peroxidases and 2-Cys peroxiredoxins was higher in Cvi-0 on the transcriptional level, while Csd2, peroxiredoxin Q, type II peroxiredoxin E and glutathione peroxidase 1 were induced in Ms-0 on the mRNA level. Similar to Kas-1, in which mRNA levels were less than or similar to Col-0 gene, specific support for translation was observed in Ms-0, showing that the ecotypes use different strategies to adjust the antioxidant system.
Collapse
Affiliation(s)
- Ilona Juszczak
- Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
16
|
Serrot PH, Sabater B, Martín M. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays. PHYSIOLOGIA PLANTARUM 2012; 146:110-20. [PMID: 22324908 PMCID: PMC3457125 DOI: 10.1111/j.1399-3054.2012.01598.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the Ndh complex after native electrophoresis of solubilized fractions from L. nobilis, V. tinus, C. oblonga and P. domestica leaves, but not in those of T. plicata. However, Ndh subunits were detected after SDS-PAGE of thylakoid solubilized proteins of T. plicata. The leaves of the five plants showed the post-illumination chlorophyll fluorescence increase dependent on the presence of active Ndh complex. The fluorescence increase was higher in autumn in deciduous, but not in evergreen trees, which suggests that the thylakoid Ndh complex could be involved in autumnal leaf senescence. Two ndhB genes were sequenced from T. plicata that differ at the 350 bp 3' end sequence. Comparison with the mRNA revealed that ndhB genes have a 707-bp type II intron between exons 1 (723 bp) and 2 (729 bp) and that the UCA 259th codon is edited to UUA in mRNA. Phylogenetically, the ndhB genes of T. plicata group close to those of Metasequoia, Cryptomeria, Taxodium, Juniperus and Widdringtonia in the cupresaceae branch and are 5' end shortened by 18 codons with respect to that of angiosperms.
Collapse
|
17
|
Alter P, Dreissen A, Luo FL, Matsubara S. Acclimatory responses of Arabidopsis to fluctuating light environment: comparison of different sunfleck regimes and accessions. PHOTOSYNTHESIS RESEARCH 2012; 113:221-37. [PMID: 22729524 PMCID: PMC3430843 DOI: 10.1007/s11120-012-9757-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/06/2012] [Indexed: 05/20/2023]
Abstract
Acclimation to fluctuating light environment with short (lasting 20 s, at 650 or 1,250 μmol photons m(-2) s(-1), every 6 or 12 min) or long (for 40 min at 650 μmol photons m(-2) s(-1), once a day at midday) sunflecks was studied in Arabidopsis thaliana. The sunfleck treatments were applied in the background daytime light intensity of 50 μmol photons m(-2) s(-1). In order to distinguish the effects of sunflecks from those of increased daily irradiance, constant light treatments at 85 and 120 μmol photons m(-2) s(-1), which gave the same photosynthetically active radiation (PAR) per day as the different sunfleck treatments, were also included in the experiments. The increased daily total PAR in the two higher constant light treatments enhanced photosystem II electron transport and starch accumulation in mature leaves and promoted expansion of young leaves in Columbia-0 plants during the 7-day treatments. Compared to the plants remaining under 50 μmol photons m(-2) s(-1), application of long sunflecks caused upregulation of electron transport without affecting carbon gain in the form of starch accumulation and leaf growth or the capacity of non-photochemical quenching (NPQ). Mature leaves showed marked enhancement of the NPQ capacity under the conditions with short sunflecks, which preceded recovery and upregulation of electron transport, demonstrating the initial priority of photoprotection. The distinct acclimatory responses to constant PAR, long sunflecks, and different combinations of short sunflecks are consistent with acclimatory adjustment of the processes in photoprotection and carbon gain, depending on the duration, frequency, and intensity of light fluctuations. While the responses of leaf expansion to short sunflecks differed among the seven Arabidopsis accessions examined, all plants showed NPQ upregulation, suggesting limited ability of this species to utilize short sunflecks. The increase in the NPQ capacity was accompanied by reduced chlorophyll contents, higher levels of the xanthophyll-cycle pigments, faster light-induced de-epoxidation of violaxanthin to zeaxanthin and antheraxanthin, increased amounts of PsbS protein, as well as enhanced activity of superoxide dismutase. These acclimatory mechanisms, involving reorganization of pigment-protein complexes and upregulation of other photoprotective reactions, are probably essential for Arabidopsis plants to cope with photo-oxidative stress induced by short sunflecks without suffering from severe photoinhibition and lipid peroxidation.
Collapse
Affiliation(s)
- Philipp Alter
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich, 52425 Jülich, Germany
- Aachen University of Applied Sciences, 52066 Aachen, Germany
- Present Address: Cell Biology and Plant Biochemistry, Universität Regensburg, 93053 Regensburg, Germany
| | - Anne Dreissen
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich, 52425 Jülich, Germany
- Aachen University of Applied Sciences, 52066 Aachen, Germany
| | - Fang-Li Luo
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich, 52425 Jülich, Germany
- College of Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Shizue Matsubara
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
18
|
Juszczak I, Baier M. The strength of the miR398-Csd2-CCS1 regulon is subject to natural variation in Arabidopsis thaliana. FEBS Lett 2012; 586:3385-90. [PMID: 22841720 DOI: 10.1016/j.febslet.2012.07.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 06/29/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
Abstract
miR398 links expression of the three major chloroplast copper proteins, plastocyanin, CCS1 and Csd2, to copper availability. miR398 abundance was stronger plastocyanin-controlled in accessions from cold and continental habitats (Kas-1, Ms-0, WS) than in Cvi-0 and Col-0. Target gene regulation was broken for Csd2 in Cvi-0 upon cold-treatment. Comparison of miR398 levels, target gene regulation as well as Ago1 and miR168 expression demonstrated that the miR398 regulon can be overwritten by accession specific transcriptional regulation in Cvi-0. It is concluded that the escape from the miRNA control of copper homeostasis is linked to adaptation of Cvi-0 to its harsh natural habitat.
Collapse
Affiliation(s)
- Ilona Juszczak
- Plant Physiology, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
19
|
Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. PLANT, CELL & ENVIRONMENT 2011; 34:1488-506. [PMID: 21554326 DOI: 10.1111/j.1365-3040.2011.02347.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The heat shock response continues to be layered with additional complexity as interactions and crosstalk among heat shock proteins (HSPs), the reactive oxygen network and hormonal signalling are discovered. However, comparative analyses exploring variation in each of these processes among species remain relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 to 42 °C and indicated that temperature optimum of light-saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves, and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network-enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock modules relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.
Collapse
Affiliation(s)
- David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Chu SH, Noh HN, Kim S, Kim KH, Hong SW, Lee H. Enhanced drought tolerance in Arabidopsis via genetic manipulation aimed at the reduction of glucosamine-induced ROS generation. PLANT MOLECULAR BIOLOGY 2010; 74:493-502. [PMID: 20878347 DOI: 10.1007/s11103-010-9691-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/10/2010] [Indexed: 05/09/2023]
Abstract
In animals, high glucose exerts some of its deleterious effects by activation of the hexosamine biosynthesis pathway (HBP), a branch of the glycolytic pathway that produces amino sugars (Daniels et al. in Mol Endocrinol 7:1041-1048, 1993; Du et al. in Proc Natl Acad Sci USA 97:12222-12226, 2000). Glucosamine (GlcN) is a naturally occurring amino sugar produced by amidation of fructose-6-phosphate. Previously, we observed that glucosamine (GlcN) inhibits hypocotyl elongation in Arabidopsis thaliana by a process involving the significant increase of reactive oxygen species. The present study investigated the relationship between GlcN-induced ROS generation and abiotic stress responses in Arabidopsis by generating two types of transgenic plant. Scavenging of endogenous GlcN by ectopic expression of E. coli glucosamine-6-phosphate deaminase (NagB) was observed to confer enhanced tolerance to oxidative, drought, and cold stress. Consistent with this result, overproduction of GlcN by the ectopic expression of E. coli glucosamine-6-phosphate synthase (GlmS) induced cell death at an early stage. Taken together, these data suggest that genetic manipulation of endogenous GlcN level can effectively lead to the generation of abiotic stress-tolerant transgenic crop plants.
Collapse
Affiliation(s)
- Seung Hee Chu
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Brosché M, Merilo E, Mayer F, Pechter P, Puzõrjova I, Brader G, Kangasjärvi J, Kollist H. Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. PLANT, CELL & ENVIRONMENT 2010; 33:914-25. [PMID: 20082669 DOI: 10.1111/j.1365-3040.2010.02116.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Genetic variation between naturally occurring populations provides a unique source to unravel the complex mechanisms of stress tolerance. Here, we have analysed O(3) sensitivity of 93 natural Arabidopsis thaliana accessions together with five O(3)-sensitive mutants to acute O(3) exposure. The variation in O(3) sensitivity among the natural accessions was much higher than among the O(3)-sensitive mutants and corresponding wild types. A subset of nine accessions with major variation in their O(3) responses was studied in more detail. Among the traits assayed, stomatal conductance (g(st)) was an important factor determining O(3) sensitivity of the selected accessions. The most O(3)-sensitive accession, Cvi-0, had constitutively high g(st), leading to high initial O(3) uptake rate and dose received during the first 30 min of exposure. Analyzing O(3)-induced changes in stress hormone concentrations indicated that jasmonate (JA) concentration was also positively correlated with leaf damage. Quantitative trait loci (QTL) mapping in a Col-0 x Cvi-0 recombinant inbred line (RIL) population identified three QTLs for O(3) sensitivity, and one for high water loss of Cvi-0. The major O(3) QTL mapped to the same position as the water loss QTL further supporting the role of stomata in regulating O(3) entry and damage.
Collapse
Affiliation(s)
- Mikael Brosché
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kondou Y, Higuchi M, Matsui M. High-throughput characterization of plant gene functions by using gain-of-function technology. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:373-93. [PMID: 20192750 DOI: 10.1146/annurev-arplant-042809-112143] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gain-of-function approaches have been used as an alternative or complementary method to loss-of-function approaches as well as to confer new functions to plants. Gain-of-function is achieved by increasing gene expression levels through the random activation of endogenous genes by transcriptional enhancers or the expression of individual transgenes by transformation. The advantages of gain-of-function approaches compared to loss-of-function approaches for the characterization of gene functions include the abilities to (a) analyze individual gene family members, (b) characterize the function of genes from nonmodel plants using a heterologous expression system, and (c) identify genes that confer stress tolerance to plants that result from the introduction of transgenes. In this review, we describe the current status of gain-of-function mutagenesis and provide several examples of how gene functions have been characterized via high-throughput screening using gain-of-function technology.
Collapse
Affiliation(s)
- Youichi Kondou
- Plant Functional Genomics Research Team, RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Japan.
| | | | | |
Collapse
|
23
|
Lefebvre V, Kiani SP, Durand-Tardif M. A focus on natural variation for abiotic constraints response in the model species Arabidopsis thaliana. Int J Mol Sci 2009; 10:3547-82. [PMID: 20111677 PMCID: PMC2812820 DOI: 10.3390/ijms10083547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/04/2009] [Accepted: 08/11/2009] [Indexed: 11/30/2022] Open
Abstract
Plants are particularly subject to environmental stress, as they cannot move from unfavourable surroundings. As a consequence they have to react in situ. In any case, plants have to sense the stress, then the signal has to be transduced to engage the appropriate response. Stress response is effected by regulating genes, by turning on molecular mechanisms to protect the whole organism and its components and/or to repair damage. Reactions vary depending on the type of stress and its intensity, but some are commonly turned on because some responses to different abiotic stresses are shared. In addition, there are multiple ways for plants to respond to environmental stress, depending on the species and life strategy, but also multiple ways within a species depending on plant variety or ecotype. It is regularly accepted that populations of a single species originating from diverse geographic origins and/or that have been subjected to different selective pressure, have evolved retaining the best alleles for completing their life cycle. Therefore, the study of natural variation in response to abiotic stress, can help unravel key genes and alleles for plants to cope with their unfavourable physical and chemical surroundings. This review is focusing on Arabidopsis thaliana which has been largely adopted by the global scientific community as a model organism. Also, tools and data that facilitate investigation of natural variation and abiotic stress encountered in the wild are set out. Characterization of accessions, QTLs detection and cloning of alleles responsible for variation are presented.
Collapse
Affiliation(s)
- Valérie Lefebvre
- INRA/IJPB, Genetics and Plant Breeding Laboratory, UR 254, Route de St Cyr, F-78000 Versailles, France; E-Mails:
(V.L.);
(S.P.K.)
| | - Seifollah Poormohammad Kiani
- INRA/IJPB, Genetics and Plant Breeding Laboratory, UR 254, Route de St Cyr, F-78000 Versailles, France; E-Mails:
(V.L.);
(S.P.K.)
| | - Mylène Durand-Tardif
- INRA/IJPB, Genetics and Plant Breeding Laboratory, UR 254, Route de St Cyr, F-78000 Versailles, France; E-Mails:
(V.L.);
(S.P.K.)
| |
Collapse
|
24
|
Sundaram S, Khanna S, Khanna-Chopra R. Purification and characterization of thermostable monomeric chloroplastic Cu/Zn superoxide dismutase from Chenopodium murale. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2009; 15:199-209. [PMID: 23572930 PMCID: PMC3550362 DOI: 10.1007/s12298-009-0024-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Superoxide dismutase is the first line of defense against oxidative stress and thus helps in maintaining the cellular integrity. Chenopodium murale, a weed species adapted to widely varying climatic conditions faces extremes of temperatures ranging from 4 °C to 45 °C (Tmax) during growth and development. From this plant, we have purified a thermostable chloroplastic Cu/Zn superoxide dismutase (Chl Cu/Zn SOD) to homogeneity using minimal steps. Incubation of lysed chloroplasts at 70 °C for 1h reduced the interference of cytosolic SOD isoforms and reduced the protein content by 75 %. Chloroplastic SOD was purified from the heat stable fraction by gel filtration chromatography. The purified enzyme had a native molecular weight of 24 kDa, a half-life of 47.9 min at 80 °C and showed a single band at 24 kDa on SDS-PAGE. The N-terminus contained the conserved amino acids of chl Cu-Zn SOD. The Chl Cu/Zn SOD protein and its activity were enhanced under very high temperatures, high light intensities and in water stress/recovered C. murale plants under controlled environment conditions. Chl Cu/Zn SOD was also one of the predominant isoforms throughout growing period in field grown plants and declined during senescence. The Chl Cu/Zn SOD activity increased with the increase in ambient temperature and peaked in April with a 45 °C Tmax. These results clearly indicate that the chloroplastic Cu/Zn SOD is stably expressed at extreme environmental conditions. The presence of stable monomeric chloroplastic Cu/Zn SOD might help the plants to maintain the cellular homeostatis against adverse environmental conditions.
Collapse
Affiliation(s)
- Sabarinath Sundaram
- />Water Technology Centre, Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Sunil Khanna
- />Department of Biotechnology and Bioinformatics, NIIT Institute of Information Technology (TNI), NIIT House, Balaji Estate, Kalkaji, New Delhi, 110 019 India
| | - Renu Khanna-Chopra
- />Water Technology Centre, Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
25
|
Alboresi A, Ballottari M, Hienerwadel R, Giacometti GM, Morosinotto T. Antenna complexes protect Photosystem I from photoinhibition. BMC PLANT BIOLOGY 2009; 9:71. [PMID: 19508723 PMCID: PMC2704212 DOI: 10.1186/1471-2229-9-71] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 06/09/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. RESULTS In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. CONCLUSION We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed.
Collapse
Affiliation(s)
- Alessandro Alboresi
- Laboratoire de Génétique et Biophysique des Plantes – UMR 6191 CEA-CNRS-Université de la Méditerranée, Marseille, France
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | | | - Rainer Hienerwadel
- Laboratoire de Génétique et Biophysique des Plantes – UMR 6191 CEA-CNRS-Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
26
|
Jung HS, Niyogi KK. Quantitative genetic analysis of thermal dissipation in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:977-86. [PMID: 19339502 PMCID: PMC2689978 DOI: 10.1104/pp.109.137828] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/30/2009] [Indexed: 05/18/2023]
Abstract
Feedback deexcitation is a photosynthetic regulatory mechanism that can protect plants from high light stress by harmlessly dissipating excess absorbed light energy as heat. To understand the genetic basis for intraspecies differences in thermal dissipation capacity, we investigated natural variation in Arabidopsis (Arabidopsis thaliana). We determined the variation in the amount of thermal dissipation by measuring nonphotochemical quenching (NPQ) of chlorophyll fluorescence in Arabidopsis accessions of diverse origins. Ll-1 and Sf-2 were selected as high NPQ Arabidopsis accessions, and Columbia-0 (Col-0) and Wassilewskija-2 were selected as relatively low NPQ accessions. In spite of significant differences in NPQ, previously identified NPQ factors were indistinguishable between the high and the low NPQ accessions. Intermediate levels of NPQ in Ll-1 x Col-0 F1 and Sf-2 x Col-0 F1 compared to NPQ levels in their parental lines and continuous distribution of NPQ in F2 indicated that the variation in NPQ is under the control of multiple nuclear factors. To identify genetic factors responsible for the NPQ variation, we developed a polymorphic molecular marker set for Sf-2 x Col-0 at approximately 10-centimorgan intervals. From quantitative trait locus (QTL) mapping with undistorted genotype data and NPQ measurements in an F2 mapping population, we identified two high NPQ QTLs, HQE1 (high qE 1, for high energy-dependent quenching 1) and HQE2, on chromosomes 1 and 2, and the phenotype of HQE2 was validated by analysis of near isogenic lines. Neither QTL maps to a gene that had been identified previously in extensive forward genetics screens using induced mutants, suggesting that quantitative genetics can be used to find new genes affecting thermal dissipation.
Collapse
Affiliation(s)
- Hou-Sung Jung
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | |
Collapse
|
27
|
Attia H, Arnaud N, Karray N, Lachaâl M. Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves. PHYSIOLOGIA PLANTARUM 2008; 132:293-305. [PMID: 18275461 DOI: 10.1111/j.1399-3054.2007.01009.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Arabidopsis thaliana plants (wild-type accessions Col and N1438) were submitted to a prolonged, mild salt stress using two types of protocols. These protocols allowed salt-treated plants to absorb nutrients either through a part of their root system maintained in control medium (split-rooted plants) or during episodes on control medium alternating with salt application (salt alternation experiment). Full-salt treatments (salt applied continuously to whole root system) resulted in severe (but non-lethal) growth inhibition. This effect was partly alleviated in split-rooted plants on mixed salt-control medium and in plants submitted to salt-control medium alternation. The activity of the various isoforms of superoxide dismutases (SODs) did not appreciably change with the treatments. The abundance of the mRNAs of the seven SOD genes present in Arabidopsis genome was determined using real-time polymerase chain reaction. The two protocols gave qualitatively identical results. The expression level was increased by full-salt treatments for some genes and diminished for other genes. However, the nature of these genes differed according to the accessions: the responses to salt of FSD1 and MSD were opposite in Col and N1438. In Col, salt treatments inhibited the expression of FSD1 and strongly stimulated that of CSD1 and MSD. In N1438, the stimulation by salt concerned FSD1 and CSD1 and MSD expression being inhibited. In both accessions, the expression of CSD2 and CSD3 was lowered by salt. For all genes, the treatments that mitigated stress partially restored SOD expression to control level. Thus, the changes in SOD transcript abundance accurately reflected the severity of the salt stress.
Collapse
Affiliation(s)
- Houneida Attia
- Physiologie et Biochimie de la Tolérance au Sel des Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
| | | | | | | |
Collapse
|
28
|
Jung HW, Lim CW, Lee SC, Choi HW, Hwang CH, Hwang BK. Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses. PLANTA 2008; 227:409-25. [PMID: 17899171 DOI: 10.1007/s00425-007-0628-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/07/2007] [Accepted: 09/08/2007] [Indexed: 05/06/2023]
Abstract
A Capsicum annuum hypersensitive induced reaction protein1 (CaHIR1) was recently proposed as a positive regulator of hypersensitive cell death in plants. Overexpression of CaHIR1 in transgenic Arabidopsis plants conferred enhanced resistance against the hemi-biotrophic Pseudomonas syringae pv. tomato (Pst) and the biotrophic Hyaloperonospora parasitica. Infection by avirulent Pseudomonas strains carrying avrRpm1 or avrRpt2 caused enhanced resistance responses in transgenic plants, suggesting that CaHIR1 is involved in basal disease resistance in a race-nonspecific manner. H. parasitica exhibited low levels of asexual sporulation on CaHIR1 seedlings. In contrast, transgenic plants were susceptible not only to the necrotrophic fungal pathogen Botrytis cinerea but were also sensitive to osmotic stress caused by high salinity and drought. To identify proteins whose expression was altered by CaHIR1 overexpression in Arabidopsis leaves, a quantitative comparative proteome analysis using two-dimensional gel electrophoresis coupled with mass spectrometry was performed. Of about 400 soluble proteins, 11 proteins involved in several metabolic pathways were up- or down-regulated by CaHIR1 overexpression. Genes encoding glycine decarboxylase (At2g35370) and an unidentified protein (At2g03440), which were strongly upregulated in CaHIR1-overexpressing Arabidopsis, were also differentially induced at the transcriptional level by Pst infection. Arabidopsis carbonic anhydrase (At3g01500), highly similar to tobacco salicylic acid-binding protein 3, was up-regulated by CaHIR1 overexpression. The activity of an anti-oxidant enzyme, cooper/zinc superoxide dismutase (At2g28190), was also attenuated in transgenic Arabidopsis by CaHIR1 overexpression. Together, these results suggest that CaHIR1 overexpression in Arabidopsis mediates plant responses to biotrophic, hemi-biotrophic and necrotrophic pathogens, as well as to osmotic stress in different ways.
Collapse
Affiliation(s)
- Ho Won Jung
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, South Korea
| | | | | | | | | | | |
Collapse
|
29
|
Moeder W, Del Pozo O, Navarre DA, Martin GB, Klessig DF. Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2007; 63:273-87. [PMID: 17013749 DOI: 10.1007/s11103-006-9087-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 09/01/2006] [Indexed: 05/07/2023]
Abstract
In animals, aconitase is a bifunctional protein. When an iron-sulfur cluster is present in its catalytic center, aconitase displays enzymatic activity; when this cluster is lost, it switches to an RNA-binding protein that regulates the translatability or stability of certain transcripts. To investigate the role of aconitase in plants, we assessed its ability to bind mRNA. Recombinant aconitase failed to bind an iron responsive element (IRE) from the human ferritin gene. However, it bound the 5' UTR of the Arabidopsis chloroplastic CuZn superoxide dismutase 2 (CSD2) mRNA, and this binding was specific. Arabidopsis aconitase knockout (KO) plants were found to have significantly less chlorosis after treatment with the superoxide-generating compound, paraquat. This phenotype correlated with delayed induction of the antioxidant gene GST1, suggesting that these KO lines are more tolerant to oxidative stress. Increased levels of CSD2 mRNAs were observed in the KO lines, although the level of CSD2 protein was not affected. Virus-induced gene silencing (VIGS) of aconitase in Nicotiana benthamiana caused a 90% reduction in aconitase activity, stunting, spontaneous necrotic lesions, and increased resistance to paraquat. The silenced plants also had less cell death after transient co-expression of the AvrPto and Pto proteins or the pro-apoptotic protein Bax. Following inoculation with Pseudomonas syringae pv. tabaci carrying avrPto, aconitase-silenced N. benthamiana plants expressing the Pto transgene displayed a delayed hypersensitive response (HR) and supported higher levels of bacterial growth. Disease-associated cell death in N. benthamiana inoculated with P. s. pv. tabaci was also reduced. Taken together, these results suggest that aconitase plays a role in mediating oxidative stress and regulating cell death.
Collapse
Affiliation(s)
- Wolfgang Moeder
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY 14850, USA
| | | | | | | | | |
Collapse
|
30
|
Vyas D, Kumar S. Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:383-8. [PMID: 15907690 DOI: 10.1016/j.plaphy.2005.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 02/28/2005] [Indexed: 05/02/2023]
Abstract
There is no literature available on the response of tea plant to low temperature. We studied the effect of low temperature on two clones of tea with contrasting periods of winter dormancy, a phenomenon in which the growth of apical shoots of tea is diminished during winter months. Clone 'Teenali 17/154' (TNL) showed shorter periods of winter dormancy than clone 'Kangra Jat' (KNJ). Low temperature (5 degrees C) resulted in increase of metabolic superoxide (O2*-) content and cellular damage (as measured by tetrazolium chloride reduction test) in both the clones, however, the increase was lesser in the case of TNL compared to KNJ. Activities of superoxide dismutase (SOD; EC 1.15.1.1), ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) increased in both the clones in response to low temperature however, GR activity exhibited significant differences (P < 0.05) between the two clones. Low temperature caused increase in the intensity of various isozymes of SOD, APX and GR. A new isozyme of SOD (Cu/Zn type) was induced in both the clones at low temperature. Significantly higher GR activity in both the clones suggested a role of this enzyme in imparting better protection to tea at low temperature. Also, clonal variation for GR isozyme was observed between the clones. Based on these results it appears that TNL, a clone with relatively lesser period of winter dormancy experiences lesser oxidative stress in response to low temperature compared to KNJ, a clone with relatively higher period of winter dormancy.
Collapse
Affiliation(s)
- Dhiraj Vyas
- Biotechnology Division, Institute of Himalayan Bioresource Technology, P.O. BOX: 6, Palampur- 176 061 (HP) INDIA.
| | | |
Collapse
|
31
|
Ivanov S, Miteva L, Alexieva V, Karjin H, Karanov E. Alterations in some oxidative parameters in susceptible and resistant wheat plants infected with Puccinia recondita f.sp. tritici. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:275-9. [PMID: 15832679 DOI: 10.1016/j.jplph.2004.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We studied the systemic effects after infection of susceptible and resistant (expressing HSR) wheat plants with leaf rust (Puccinia recondita f.sp. tritici) on the amount of hydrogen peroxide and activity of some ROS scavenging enzymes. Measurements were performed 7 and 21 days after inoculation. In susceptible cultivar (Sadovo 1), an inhibition of activity of catatase and GST was found. By contrast, in resistant cultivar (Kristal), the infection caused an activation of these enzymes. Moreover, it was established that cv. Kristal plants possess constitutive higher levels of hydrogen peroxide, as well as higher superoxide dismutase activity.
Collapse
Affiliation(s)
- Sergei Ivanov
- Acad. M. Popov Institute of Plant Physiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl 21, 1113 Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
32
|
Banowetz GM, Dierksen KP, Azevedo MD, Stout R. Microplate quantification of plant leaf superoxide dismutases. Anal Biochem 2004; 332:314-20. [PMID: 15325300 DOI: 10.1016/j.ab.2004.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Indexed: 10/26/2022]
Abstract
Superoxide dismutases (SODs) catalyze the dismutation of superoxide radicals in a broad range of organisms, including plants. Quantification of SOD activity in crude plant extracts has been problematic due to the presence of compounds that interfere with the dose-response of the assay. Although strategies exist to partially purify SODs from plant extracts, the requirement for purification limits the rapidity and practical number of assays that can be conducted. In this article, we describe modification of a procedure using o-dianisidine as substrate that permits relatively rapid quantification of SOD activity in crude leaf extracts in a microplate format. The method employs the use of a commercial apparatus that permits lysis of 12 tissue samples at once and the use of Pipes buffer to reduce interference from compounds present in crude leaf extracts. The assay provided a linear response from 1 to 50 units of SOD. The utility of the assay was demonstrated using tissue extracts prepared from a group of taxonomically diverse plants. Reaction rates with tissue extracts from two grasses were linear for at least 60 min. Tissues of certain species contained interfering compounds, most of which could be removed by ultrafiltration. The presence of plant catalases, peroxidases, and ascorbate in physiological quantities did not interfere with the assay. This approach provides a means to quantify SOD activity in relatively large numbers of plant samples provided that the possibility for the presence of interfering compounds is considered. The presence of interfering compounds in certain plant tissues necessitates caution in interpreting the effects of plant stresses on SOD.
Collapse
Affiliation(s)
- Gary M Banowetz
- US Department of Agriculture/Agricultural Research Service (USDA/ARS), 3450 S.W. Campus Way, Corvallis, OR 97331, USA.
| | | | | | | |
Collapse
|
33
|
Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K. Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray. PLANT PHYSIOLOGY 2004; 135:1697-709. [PMID: 15247402 PMCID: PMC519083 DOI: 10.1104/pp.104.039909] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Salt cress (Thellungiella halophila), a halophyte, is a genetic model system with a small plant size, short life cycle, copious seed production, small genome size, and an efficient transformation. Its genes have a high sequence identity (90%-95% at cDNA level) to genes of its close relative, Arabidopsis. These qualities are advantageous not only in genetics but also in genomics, such as gene expression profiling using Arabidopsis cDNA microarrays. Although salt cress plants are salt tolerant and can grow in 500 mm NaCl medium, they do not have salt glands or other morphological alterations either before or after salt adaptation. This suggests that the salt tolerance in salt cress results from mechanisms that are similar to those operating in glycophytes. To elucidate the differences in the regulation of salt tolerance between salt cress and Arabidopsis, we analyzed the gene expression profiles in salt cress by using a full-length Arabidopsis cDNA microarray. In salt cress, only a few genes were induced by 250 mm NaCl stress in contrast to Arabidopsis. Notably a large number of known abiotic- and biotic-stress inducible genes, including Fe-SOD, P5CS, PDF1.2, AtNCED, P-protein, beta-glucosidase, and SOS1, were expressed in salt cress at high levels even in the absence of stress. Under normal growing conditions, salt cress accumulated Pro at much higher levels than did Arabidopsis, and this corresponded to a higher expression of AtP5CS in salt cress, a key enzyme of Pro biosynthesis. Furthermore, salt cress was more tolerant to oxidative stress than Arabidopsis. Stress tolerance of salt cress may be due to constitutive overexpression of many genes that function in stress tolerance and that are stress inducible in Arabidopsis.
Collapse
Affiliation(s)
- Teruaki Taji
- Laboratory of Plant Molecular Biology, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Clerkx EJM, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SPC, Vreugdenhil D, Koornneef M. Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. PLANT PHYSIOLOGY 2004. [PMID: 15122038 DOI: 10.1111/j.0031-9317.2004.00339.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Quantitative trait loci (QTL) mapping was used to identify loci controlling various aspects of seed longevity during storage and germination. Similar locations for QTLs controlling different traits might be an indication for a common genetic control of such traits. For this analysis we used a new recombinant inbred line population derived from a cross between the accessions Landsberg erecta (Ler) and Shakdara (Sha). A set of 114 F9 recombinant inbred lines was genotyped with 65 polymerase chain reaction-based markers and the phenotypic marker erecta. The traits analyzed were dormancy, speed of germination, seed sugar content, seed germination after a controlled deterioration test, hydrogen peroxide (H2O2) treatment, and on abscisic acid. Furthermore, the effects of heat stress, salt (NaCl) stress, osmotic (mannitol) stress, and natural aging were analyzed. For all traits one or more QTLs were identified, with some QTLs for different traits colocating. The relevance of colocation for mechanisms underlying the various traits is discussed.
Collapse
Affiliation(s)
- Emile J M Clerkx
- Graduate School of Experimental Plant Science and Laboratory of Genetics, Wageningen University, NL-6703 BD Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. PLANT PHYSIOLOGY 2004; 134:275-85. [PMID: 14657410 PMCID: PMC316307 DOI: 10.1104/pp.103.033480] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 10/10/2003] [Accepted: 10/20/2003] [Indexed: 05/17/2023]
Abstract
To better understand the role of active oxygen species (AOS) in acquired resistance to increased levels of ultraviolet (UV)-B irradiation in plants, we isolated an Arabidopsis mutant that is resistant to methyl viologen, and its sensitivity to UV-B was investigated. A complementation test revealed that the obtained mutant was allelic to the ozone-sensitive radical-induced cell death1-1 (rcd1-1). Therefore, this mutant was named rcd1-2. rcd1-2 was recessive and nearly 4-fold more resistant to methyl viologen than wild type. It exhibited a higher tolerance to short-term UV-B supplementation treatments than the wild type: UV-B-induced formation of cyclobutane pyrimidine dimers was reduced by one-half after 24 h of exposure; the decrease in quantum yield of photosystem II was also diminished by 40% after 12 h of treatment. Furthermore, rcd1-2 was tolerant to freezing. Steady-state mRNA levels of plastidic Cu/Zn superoxide dismutase and stromal ascorbate peroxidase were higher in rcd1-2 than in wild type, and the mRNA level of the latter enzyme was enhanced by UV-B exposure more effectively in rcd1-2. UV-B-absorbing compounds were more accumulated in rcd1-2 than in wild type after UV-B exposure for 24 h. These findings suggest that rcd1-2 methyl viologen resistance is due to the enhanced activities of the AOS-scavenging enzymes in chloroplasts and that the acquired tolerance to the short-term UV-B exposure results from a higher accumulation of sunscreen pigments. rcd1 appears to be a mutant that constitutively shows stress responses, leading to accumulation of more pigments and AOS-scavenging enzymes without any stresses.
Collapse
Affiliation(s)
- Takahiro Fujibe
- Division of Biological Sciences, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810 Japan
| | | | | | | | | | | |
Collapse
|
36
|
Koornneef M, Alonso-Blanco C, Vreugdenhil D. Naturally occurring genetic variation in Arabidopsis thaliana. ANNUAL REVIEW OF PLANT BIOLOGY 2004; 55:141-72. [PMID: 15377217 DOI: 10.1146/annurev.arplant.55.031903.141605] [Citation(s) in RCA: 428] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Currently, genetic variation is probably the most important basic resource for plant biology. In addition to the variation artificially generated by mutants in model plants, naturally occurring genetic variation is extensively found for most species, including Arabidopsis. In many cases, natural variation present among accessions is multigenic, which has historically hampered its analysis. However, the exploitation of this resource down to the molecular level has now become feasible, especially in model species like Arabidopsis, where several genes accounting for natural variation have already been identified. Dissecting this variation requires first a quantitative trait locus (QTL) analysis, which in Arabidopsis has proven very effective by using recombinant inbred lines (RILs). Second, identifying the particular gene and the nucleotide polymorphism underlying QTL is the major challenge, and is now feasible by combining high-throughput genetics and functional genomic strategies. The analysis of Arabidopsis natural genetic variation is providing unique knowledge from functional, ecological, and evolutionary perspectives. This is illustrated by reviewing current research in two different biological fields: flowering time and plant growth. The analysis of Arabidopsis natural variation for flowering time revealed the identity of several genes, some of which correspond to genes with previously unknown function. In addition, for many other traits such as those related to primary metabolism and plant growth, Arabidopsis QTL analyses are detecting loci with small effects that are not easily amenable by mutant approaches, and which might provide new insights into the networks of gene regulation.
Collapse
Affiliation(s)
- Maarten Koornneef
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, NL-6703 BD Wageningen, The Netherlands.
| | | | | |
Collapse
|
37
|
Taylor NL, Rudhe C, Hulett JM, Lithgow T, Glaser E, Day DA, Millar AH, Whelan J. Environmental stresses inhibit and stimulate different protein import pathways in plant mitochondria. FEBS Lett 2003; 547:125-30. [PMID: 12860399 DOI: 10.1016/s0014-5793(03)00691-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The impact of various environmental stresses (drought, chilling or herbicide treatment) on the capacity of plant mitochondria to import precursor proteins was investigated. Drought treatment stimulated import and processing of various precursor proteins via the general import pathway. The stimulatory effect of drought on the general import pathway was due to an increased rate of import, was accompanied by an increased rate of processing, and could be attributed to the presequence of the precursor protein. Interestingly, drought decreased the import of the F(A)d subunit of ATP synthase suggesting a bypass of the point of stimulation during import of this precursor. Both chilling and herbicide treatment of plants, on the other hand, caused inhibition of import with all precursors tested. No decrease in processing of imported proteins was observed by these stress treatments. Western analysis of several mitochondrial proteins indicated that the steady-state level of several mitochondrial components, including the TOM20 receptor and the core subunits of the cytochrome bc(1) complex responsible for processing, remained largely unchanged. Thus environmental stresses differentially affect import of precursor proteins in a complicated manner dependent on the import pathway utilised.
Collapse
Affiliation(s)
- Nicolas L Taylor
- Plant Molecular Biology Group, Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, 6009, Crawley, WA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Richier S, Merle PL, Furla P, Pigozzi D, Sola F, Allemand D. Characterization of superoxide dismutases in anoxia- and hyperoxia-tolerant symbiotic cnidarians. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1621:84-91. [PMID: 12667614 DOI: 10.1016/s0304-4165(03)00049-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many cnidarians, such as sea anemones, contain photosynthetic symbiotic dinoflagellates called zooxanthellae. During a light/dark cycle, the intratentacular O(2) state changes in minutes from hypoxia to hyperoxia (3-fold normoxia). To understand the origin of the high tolerance to these unusual oxic conditions, we have characterized superoxide dismutases (SODs) from the three cellular compartments (ectoderm, endoderm and zooxanthellae) of the Mediterranean sea anemone Anemonia viridis. The lowest SOD activity was found in ectodermal cells while endodermal cells and zooxanthellae showed a higher SOD activity. Two, seven and six SOD activity bands were identified on native PAGE in ectoderm, endoderm and zooxanthellae, respectively. A CuZnSOD was identified in both ectodermal and endodermal tissues. MnSODs were detected in all compartments with two different subcellular localizations. One band displays a classical mitochondrial localization, the three others being extramitochondrial. FeSODs present in zooxanthellae also appeared in endodermal host tissue. The isoelectric points of all SODs were distributed between 4 and 5. For comparative study, a similar analysis was performed on the whole homogenate of a scleractinian coral Stylophora pistillata. These results are discussed in the context of tolerance to hyperoxia and to the transition from anoxia to hyperoxia.
Collapse
Affiliation(s)
- Sophie Richier
- UMR 1112 INRA-UNSA, Faculté des Sciences, Université de Nice Sophia-Antipolis, BP 71, F-06108, Cedex 02, Nice, France
| | | | | | | | | | | |
Collapse
|
39
|
Fink RC, Scandalios JG. Molecular evolution and structure--function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys 2002; 399:19-36. [PMID: 11883900 DOI: 10.1006/abbi.2001.2739] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study assesses whether the phylogenetic relationships between SODs from different organisms could assist in elucidating the functional relationships among these enzymes from evolutionarily distinct species. Phylogenetic trees and intron positions were compared to determine the relationships among these enzymes. Alignment of Cu/ZnSOD amino acid sequences indicates high homology among plant sequences, with some features that distinguish chloroplastic from cytosolic Cu/ZnSODs. Among eukaryotes, the plant SODs group together. Alignment of the Mn and FeSOD amino acid sequences indicates a higher degree of homology within the group of MnSODs (>70%) than within FeSODs (approximately 60%). Tree topologies are similar and reflect the taxonomic classification of the corresponding species. Intron number and position in the Cu/Zn Sod genes are highly conserved in plants. Genes encoding cytosolic SODs have seven introns and genes encoding chloroplastic SODs have eight introns, except the chloroplastic maize Sod1, which has seven. In Mn Sod genes the number and position of introns are highly conserved among plant species, but not among nonplant species. The link between the phylogenetic relationships and SOD functions remains unclear. Our findings suggest that the 5' region of these genes played a pivotal role in the evolution of function of these enzymes. Nevertheless, the system of SODs is highly structured and it is critical to understand the physiological differences between the SODs in response to different stresses in order to compare their functions and evolutionary history.
Collapse
Affiliation(s)
- Ryan C Fink
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, 27695-7614, USA
| | | |
Collapse
|
40
|
Abarca D, Martín M, Sabater B. Differential leaf stress responses in young and senescent plants. PHYSIOLOGIA PLANTARUM 2001; 113:409-415. [PMID: 12060287 DOI: 10.1034/j.1399-3054.2001.1130315.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Responses to low temperature, mechanical wounding and salicylic acid (SA) treatments were studied in 3-week-old (young) and 6-week-old (senescent) Arabidopsis thaliana (L.) Heynh. plants by analyzing increases in Pal1 and Pr1 expression and superoxide dismutase (SOD; EC 1.15.1.1) and peroxidase (POX; EC 1.11.1.7) activities. Young plants showed higher Pal1 transcript accumulation after low temperature and wounding. In contrast, senescent plants presented higher accumulation of Pr1 transcripts after SA treatments. Similar results were obtained with the ethylene-insensitive etr1 mutant, suggesting that these differences are not related to increased ethylene content in senescent tissues. SOD activity and inducibility were lower, whereas POX activity and inducibility were higher in senescent plants. A possible relationship between senescence-associated changes in responses to stress and in the metabolism of active oxygen species is discussed.
Collapse
Affiliation(s)
- Dolores Abarca
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Alcalá, E-28871 Madrid, Spain
| | | | | |
Collapse
|