1
|
Bonanno G, Veneziano V. Intrapopulation germinability may help the Mediterranean plant species Poterium spinosum L. to cope with climate changes and landscape fragmentation. Sci Rep 2024; 14:22235. [PMID: 39333221 PMCID: PMC11436860 DOI: 10.1038/s41598-024-73021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Poterium spinosum L. is a key plant species forming typical shrub communities, distributed across the Mediterranean eastern coasts. The conservation of P. spinosum is thus of the utmost importance, especially due to the ever-increasing environmental pressures like climate changes and habitat fragmentation. This study, in particular, investigated for the first time the germination variability of P. spinosum at intrapopulation level, by analysing the germination behavior of five different subpopulations growing along the coasts of Sicily. For a more exhaustive picture of the main drivers of biodiversity loss affecting the distributional area of P. spinosum, the trends of climate and land-cover changes were also studied over the periods 1931-2020 and 1958-2018, respectively. The results found significant intrapopulation variability in P. spinosum, whose germination parameters showed that fruits and seeds from distinct subpopulations respond differently to diverse temperatures. Seeds showed generally higher values of final germination percentage (FGP) compared to fruits, and at higher temperatures: the highest FGP in seeds was 70% at 20 °C, whereas in fruits was 58.2% at 15 °C. The environmental threats showed worrying trends across the study area: during 1931-2020, the average temperature increased by 1.5 °C, whereas the average rainfall declined from 710 to 650 mm. Similarly, in the period 1958-2018, the analysis of the CORINE land-cover changes showed a highly fragmented agricultural landscape, where natural areas were reduced to 2.5-5.0%. Germination variability at intrapopulation level should be considered as a fundamental adaptation strategy, which can increase the reproductive success of P. spinosum under climate and land-cover changes.
Collapse
Affiliation(s)
- Giuseppe Bonanno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125, Catania, Italy.
| | - Vincenzo Veneziano
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125, Catania, Italy
| |
Collapse
|
2
|
Yu X, Jin N, Bai R, Mo Y, Pu X, Li J, Lu HZ. Effects of clonal fragmentation on Pyrrosia nuda depend on growth stages in a rubber plantation. FRONTIERS IN PLANT SCIENCE 2024; 15:1371040. [PMID: 38742213 PMCID: PMC11089110 DOI: 10.3389/fpls.2024.1371040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Introduction Clonal fragmentation helps to assess clonal plants' growth resilience to human and environmental disturbance. Although clonal integration in epiphytes in tropical rubber plantations is important to understand their role in enhancing biodiversity and ecosystem services, research on this subject is limited. These plantations are typically monospecific economic forests that face increased anthropogenic disturbances. Methods In this study, we selected the clonal fern Pyrrosia nuda to study its survival status, biomass, maximum quantum yield of photosystem II (Fv/Fm), and frond length in response to the level of clonal fragmentation in a tropical rubber plantation. Results and discussion The results showed that (1) clonal fragmentation significantly negatively affected the survival rate, biomass, and frond length of clonal plants, but with minimal effects on Fv/Fm at different growth stages; (2) the performance of a ramet (e.g., biomass or frond length) increased with ramet developmental ages and decreased with the number of ramets in a clonal fragment. The age-dependent impacts of clonal fragmentation provide insights into the biodiversity conservation of epiphytes and forest management in man-made plantations. Therefore, to better conserve the biodiversity in tropical forests, especially in environment-friendly rubber plantations, there is a need to reduce anthropogenic disturbances and alleviate the level of fragmentation.
Collapse
Affiliation(s)
- Xiaocheng Yu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yunnan Provincial Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Nan Jin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Yunnan Provincial Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Rong Bai
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yunnan Provincial Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yuxuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xiaoyan Pu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Party School of the Xishuangbanna Dai Nationality Autonomous Prefecture Committee of Communist Party of China, Yunnan Xishuangbanna Dai Nationality Autonomous Prefecture Committee and State Government, Jinghong, China
| | - Jingchao Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Yunnan Provincial Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Hua-Zheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Yunnan Provincial Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
3
|
Brandão MM, de Almeida Vieira F, Neves AGDS, dos Santos RM, de Carvalho D, Menezes EV, de Moreira PA, de Oliveira DA, Júnior AFDM, Royo VDA. Unraveling the genetic diversity of Ceiba pubiflora (Malvaceae) in isolated limestone outcrops: Conservation strategies. PLoS One 2024; 19:e0299361. [PMID: 38557644 PMCID: PMC10984428 DOI: 10.1371/journal.pone.0299361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Seasonally Dry Tropical Forests (SDTFs) located on limestone outcrops are vulnerable to degradation caused by timber logging and limestone extraction for cement production. Some of these forests represent the last remnants of native vegetation cover, functioning as isolated islands. Ceiba pubiflora (Malvaceae) is a tree frequently found on limestone outcrops in the central region of Brazil. This study aimed to evaluate the genetic diversity and identify suitable populations for the establishment of Management Units (MUs) for conservation. Inter-simple sequence repeat markers were employed to assess the genetic diversity in ten populations sampled from the Caatinga, Cerrado, and Atlantic Forest biomes. The species exhibited substantial genetic diversity (HT = 0.345; PLP = 97.89%). Populations SAH, JAN, and MON demonstrated elevated rates of polymorphic loci (> 84.2%) along with notable genetic diversity (He > 0.325). Additionally, these populations were the primary contributors to gene flow. The analysis of molecular variance (AMOVA) indicated that most genetic variation occurs within populations (91.5%) than between them. In the Bayesian analysis, the ten populations were clustered into five groups, revealing the presence of at least three barriers to gene flow in the landscape: 1) the Central Plateau or Paranã River valley; 2) near the Espinhaço mountains or the São Francisco River valley; and 3) around the Mantiqueira mountain range, Chapada dos Veadeiros plateau, and disturbed areas. A positive and statistically significant correlation was observed between genetic (θB) and geographic distances (r = 0.425, p = 0.008). Based on these findings, we propose the establishment of Management Units in Minas Gerais state, encompassing the (1) southern region (MIN population), (2) central region (SAH population), and (3) north region (MON population), as well as in Goiás state, covering the (4) Central Plateau region. These units can significantly contribute to preserving the genetic diversity of these trees and protecting their habitat against ongoing threats.
Collapse
Affiliation(s)
- Murilo Malveira Brandão
- Department of Biological Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Fábio de Almeida Vieira
- Academic Unit Specialized in Agricultural Sciences, Federal University of Rio Grande do Norte, Macaíba, Rio Grande do Norte, Brazil
| | - Abidã Gênesis da Silva Neves
- Academic Unit Specialized in Agricultural Sciences, Federal University of Rio Grande do Norte, Macaíba, Rio Grande do Norte, Brazil
| | | | - Dulcineia de Carvalho
- Department of Forest Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Elytania Veiga Menezes
- Department of Biological Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Patrícia Abreu de Moreira
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Dario Alves de Oliveira
- Department of Biological Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | | | - Vanessa de Andrade Royo
- Department of Biological Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
4
|
Hernández-Lao T, Tienda-Parrilla M, Labella-Ortega M, Guerrero-Sánchez VM, Rey MD, Jorrín-Novo JV, Castillejo-Sánchez MÁ. Proteomic and Metabolomic Analysis of the Quercus ilex-Phytophthora cinnamomi Pathosystem Reveals a Population-Specific Response, Independent of Co-Occurrence of Drought. Biomolecules 2024; 14:160. [PMID: 38397397 PMCID: PMC10887186 DOI: 10.3390/biom14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Holm oak (Quercus ilex) is considered to be one of the major structural elements of Mediterranean forests and the agrosilvopastoral Spanish "dehesa", making it an outstanding example of ecological and socioeconomic sustainability in forest ecosystems. The exotic Phytophthora cinnamomi is one of the most aggressive pathogens of woody species and, together with drought, is considered to be one of the main drivers of holm oak decline. The effect of and response to P. cinnamomi inoculation were studied in the offspring of mother trees from two Andalusian populations, Cordoba and Huelva. At the two locations, acorns collected from both symptomatic (damaged) and asymptomatic (apparently healthy) trees were sampled. Damage symptoms, mortality, and chlorophyll fluorescence were evaluated in seedlings inoculated under humid and drought conditions. The effect and response depended on the population and were more apparent in Huelva than in Cordoba. An integrated proteomic and metabolomic analysis revealed the involvement of different metabolic pathways in response to the pathogen in both populations, including amino acid metabolism pathways in Huelva, and terpenoid and flavonoid biosynthesis in Cordoba. However, no differential response was observed between seedlings inoculated under humid and drought conditions. A protective mechanism of the photosynthetic apparatus was activated in response to defective photosynthetic activity in inoculated plants, which seemed to be more efficient in the Cordoba population. In addition, enzymes and metabolites of the phenylpropanoid and flavonoid biosynthesis pathways may have conferred higher resistance in the Cordoba population. Some enzymes are proposed as markers of resilience, among which glyoxalase I, glutathione reductase, thioredoxin reductase, and cinnamyl alcohol dehydrogenase are candidates.
Collapse
Affiliation(s)
| | | | | | | | | | - Jesús V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain; (T.H.-L.); (M.T.-P.); (M.L.-O.); (V.M.G.-S.); (M.-D.R.)
| | - María Ángeles Castillejo-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain; (T.H.-L.); (M.T.-P.); (M.L.-O.); (V.M.G.-S.); (M.-D.R.)
| |
Collapse
|
5
|
Giorgi V, Amicucci A, Landi L, Castelli I, Romanazzi G, Peroni C, Ranocchi B, Zambonelli A, Neri D. Effect of Bacteria Inoculation on Colonization of Roots by Tuber melanosporum and Growth of Quercus ilex Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:224. [PMID: 38256777 PMCID: PMC10819665 DOI: 10.3390/plants13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Tuber melanosporum is an ascomycete that forms ectomycorrhizal (ECM) symbioses with a wide range of host plants, producing edible fruiting bodies with high economic value. The quality of seedlings in the early symbiotic stage is important for successful truffle cultivation. Numerous bacterial species have been reported to take part in the truffle biological cycle and influence the establishment of roots symbiosis in plant hosts and the development of the carpophore. In this work, three different bacteria formulations were co-inoculated in Quercus ilex L. seedlings two months after T. melanosporum inoculation. At four months of bacterial application, the T. melanosporum ECM root tip rate of colonization and bacterial presence were assessed using both morphological and molecular techniques. A 2.5-fold increase in ECM colonization rate was found in the presence of Pseudomonas sp. compared to the seedlings inoculated only with T. melanosporum. The same treatment caused reduced plant growth either for the aerial and root part. Meanwhile, the ECM colonization combined with Bradyrhizobium sp. and Pseudomonas sp. + Bradyrhizobium sp. reduced the relative density of fibrous roots (nutrient absorption). Our work suggests that the role of bacteria in the early symbiotic stages of ECM colonization involves both the mycorrhizal symbiosis rate and plant root development processes, both essential for improve the quality of truffle-inoculated seedlings produced in commercial nurseries.
Collapse
Affiliation(s)
- Veronica Giorgi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.G.); (L.L.); (I.C.); (G.R.); (D.N.)
| | - Antonella Amicucci
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy;
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.G.); (L.L.); (I.C.); (G.R.); (D.N.)
| | - Ivan Castelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.G.); (L.L.); (I.C.); (G.R.); (D.N.)
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.G.); (L.L.); (I.C.); (G.R.); (D.N.)
| | - Cristiano Peroni
- Agenzia per l’Innovazione nel Settore Agroalimentare e della Pesca “Marche Agricoltura Pesca”, AMAP, 60027 Osimo, Italy;
| | - Bianca Ranocchi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy;
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
| | - Davide Neri
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.G.); (L.L.); (I.C.); (G.R.); (D.N.)
| |
Collapse
|
6
|
Alderotti F, Sillo F, Brilli L, Bussotti F, Centritto M, Ferrini F, Gori A, Inghes R, Pasquini D, Pollastrini M, Saurer M, Cherubini P, Balestrini R, Brunetti C. Quercus ilex L. dieback is genetically determined: Evidence provided by dendrochronology, δ 13C and SSR genotyping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166809. [PMID: 37690750 DOI: 10.1016/j.scitotenv.2023.166809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/20/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Quercus ilex L. dieback has been reported in several Mediterranean forests, revealing different degree of crown damages even in close sites, as observed in two Q. ilex forest stands in southern Tuscany (IT). In this work, we applied a novel approach combining dendrochronological, tree-ring δ13C and genetic analysis to test the hypothesis that different damage levels observed in a declining (D) and non-declining (ND) Q. ilex stands are connected to population features linked to distinct response to drought. Furthermore, we investigated the impact of two major drought events (2012 and 2017), that occurred in the last fifteen years in central Italy, on Q. ilex growth and intrinsic water use efficiency (WUEi). Overall, Q. ilex showed slightly different ring-width patterns between the two stands, suggesting a lower responsiveness to seasonal climatic variations for trees at D stand, while Q. ilex at ND stand showed changes in the relationship between climatic parameters and growth across time. The strong divergence in δ13C signals between the two stands suggested a more conservative use of water for Q. ilex at ND compared to D stand that may be genetically driven. Q. ilex at ND resulted more resilient to drought compared to trees at D, probably thanks to its safer water strategy. Genotyping analysis based on simple-sequence repeat (SSR) markers revealed the presence of different Q. ilex populations at D and ND stands. Our study shows intraspecific variations in drought response among trees grown in close. In addition, it highlights the potential of combining tree-ring δ13C data with SSR genotyping for the selection of seed-bearing genotypes aimed to preserve Mediterranean holm oak ecosystem and improve its forest management.
Collapse
Affiliation(s)
- Francesca Alderotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Fabiano Sillo
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Lorenzo Brilli
- CNR-IBE, National Research Council of Italy (CNR), Institute for the BioEconomy, Via Caproni 8, 50145 Firenze, Italy
| | - Filippo Bussotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Mauro Centritto
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy; National Biodiversity Future Center (www.nfbc.it), Italy
| | - Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Roberto Inghes
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Dalila Pasquini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Martina Pollastrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Biodiversity Future Center (www.nfbc.it), Italy
| | - Matthias Saurer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Paolo Cherubini
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; University of British Columbia, Department of Forest and Conservation Sciences, Vancouver, BC, Canada
| | - Raffaella Balestrini
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Cecilia Brunetti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy.
| |
Collapse
|
7
|
Alderotti F, Verdiani E. God save the queen! How and why the dominant evergreen species of the Mediterranean Basin is declining? AOB PLANTS 2023; 15:plad051. [PMID: 37899973 PMCID: PMC10601391 DOI: 10.1093/aobpla/plad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/28/2023] [Indexed: 10/31/2023]
Abstract
Quercus ilex may be considered the queen tree of the Mediterranean Basin, dominating coastal forest areas up to 2000 m above sea level at some sites. However, an increase in holm oak decline has been observed in the last decade. In this review, we analysed the current literature to answer the following questions: what are the traits that allow holm oak to thrive in the Mediterranean environment, and what are the main factors that are currently weakening this species? In this framework, we attempt to answer these questions by proposing a triangle as a graphical summary. The first vertex focuses on the main morpho-anatomical, biochemical and physiological traits that allow holm oak to dominate Mediterranean forests. The other two vertices consider abiotic and biotic stressors that are closely related to holm oak decline. Here, we discuss the current evidence of holm oak responses to abiotic and biotic stresses and propose a possible solution to its decline through adequate forest management choices, thus allowing the species to maintain its ecological domain.
Collapse
Affiliation(s)
- Francesca Alderotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Erika Verdiani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
8
|
Genetic and morphological comparisons of lesser celandine (Ficaria verna) invasions suggest regionally widespread sexual reproduction. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Tikhonova IV, Ekart AK, Kravchenko AN, Tikhonova NA. Genetic Variability in Pinus sylvestris, Picea obovata, and Abies sibirica Populations and in Felling in the Southern Taiga of Central Siberia. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Yu W, Wu B, Wang X, Yao Z, Li Y, Liu Y. Scale-dependent effects of habitat fragmentation on the genetic diversity of Actinidia chinensis populations in China. HORTICULTURE RESEARCH 2020; 7:172. [PMID: 33082978 PMCID: PMC7553913 DOI: 10.1038/s41438-020-00401-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 05/04/2023]
Abstract
Spatial scale partly explains the differentiated effects of habitat fragmentation on plant biodiversity, but the mechanisms remain unclear. To investigate the effects of habitat fragmentation on genetic diversity at different scales, we sampled Actinidia chinensis Planch. at broad and fine scales, China. The broad-scale sampling included five mountain populations and one oceanic island population (Zhoushan Archipelago), and the fine-scale sampling covered 11 lake islands and three neighboring land populations in Thousand-Island Lake (TIL). These populations were genotyped at 30 microsatellite loci, and genetic diversity, gene flow, and genetic differentiation were evaluated. Genetic differentiation was positively related to geographical distance at the broad scale, indicating an isolation-by-distance effect of habitat fragmentation on genetic diversity. The oceanic population differed from the mainland populations and experienced recent bottleneck events, but it showed high gene flow with low genetic differentiation from a mountain population connected by the Yangtze River. At the fine scale, no negative genetic effects of habitat fragmentation were found because seed dispersal with water facilitates gene flow between islands. The population size of A. chinensis was positively correlated with the area of TIL islands, supporting island biogeography theory, but no correlation was found between genetic diversity and island area. Our results highlight the scale-dependent effects of habitat fragmentation on genetic diversity and the importance of connectivity between island-like isolated habitats at both the broad and fine scales.
Collapse
Affiliation(s)
- Wenhao Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| | - Baofeng Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| | - Zhi Yao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| | - Yonghua Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| | - Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, 100012 Beijing, China
| |
Collapse
|
11
|
Castilla AR, Godoy JA, Delibes M, Rodriguez-Prieto A, Fedriani JM. Microgeographic variation in recruitment under adult trees: arrival of new genotypes or perpetuation of the existing ones? PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:695-705. [PMID: 30849217 DOI: 10.1111/plb.12982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Investigating spatial variation in the relative importance of sexual reproduction and clonal propagation is critical to obtain more accurate estimates of future effective population sizes and genetic diversity, as well as to identify ecological correlates of clonality. We combined a stratified sampling scheme with microsatellite genetic analyses to estimate variation in the proportion of sexual versus clonal recruits among saplings in five populations of the tree Pyrus bourgaeana. Using a likelihood framework, we identified clones among the genotypes analysed and examined variation among populations regarding the proportion of saplings coming from clonal propagation. We also examined the relationship between the relative abundance of clonal shoots across the studied populations and their herbivory levels. Our results revealed that one third of the saplings examined (N = 225 saplings) had a probability above 0.9 of being clones of nearby (<10 m) trees, with the ratio between clonal propagation and sexual recruitment varying up to eight-fold among populations. A small portion of these putative clonal shoots reached sexual maturity. Relative abundance of clonal shoots did not significantly relate to the herbivory by ungulates. Our results call into question optimistic expectations of previous studies reporting sufficient levels of recruitment under parental trees without animal seed dispersal services. Nevertheless, given that some of these clonal shoots reach sexual maturity, clonal propagation can ultimately facilitate the long-term persistence of populations during adverse periods (e.g. environmental stress, impoverished pollinator communities, seed dispersal limitation).
Collapse
Affiliation(s)
- A R Castilla
- Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, Instituto Superior of Agronomy, University of Lisbon, Lisbon, Portugal
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - J A Godoy
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - M Delibes
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | | | - J M Fedriani
- Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, Instituto Superior of Agronomy, University of Lisbon, Lisbon, Portugal
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- Centro de Investigaciones sobre Desertificación CIDE, CSIC-UVEG-GV, Carretera de Moncada a Náquera, Moncada, Valencia, Spain
| |
Collapse
|
12
|
Do Silviculture and Forest Management Affect the Genetic Diversity and Structure of Long-Impacted Forest Tree Populations? FORESTS 2018. [DOI: 10.3390/f9060355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Population Genetic Diversity of Quercus ilex subsp. ballota (Desf.) Samp. Reveals Divergence in Recent and Evolutionary Migration Rates in the Spanish Dehesas. FORESTS 2018. [DOI: 10.3390/f9060337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
The Interplay between Forest Management Practices, Genetic Monitoring, and Other Long-Term Monitoring Systems. FORESTS 2018. [DOI: 10.3390/f9030133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Genetic diversity and structure of remnant Magnolia stellata populations affected by anthropogenic pressures and a conservation strategy for maintaining their current genetic diversity. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0817-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Conservation genetics of Magnolia acuminata, an endangered species in Canada: Can genetic diversity be maintained in fragmented, peripheral populations? CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0746-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Ortego J, Bonal R, Muñoz A, Espelta JM. Living on the edge: the role of geography and environment in structuring genetic variation in the southernmost populations of a tropical oak. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:676-683. [PMID: 25284378 DOI: 10.1111/plb.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/26/2014] [Indexed: 06/03/2023]
Abstract
Understanding the factors determining genetic diversity and structure in peripheral populations is a long-standing goal of evolutionary biogeography, yet little empirical information is available for tropical species. In this study, we combine information from nuclear microsatellite markers and niche modelling to analyse the factors structuring genetic variation across the southernmost populations of the tropical oak Quercus segoviensis. First, we tested the hypothesis that genetic variability decreases with population isolation and increases with local habitat suitability and stability since the Last Glacial Maximum (LGM). Second, we employed a recently developed multiple matrix regression with randomisation (MMRR) approach to study the factors associated with genetic divergence among the studied populations and test the relative contribution of environmental and geographic isolation to contemporary patterns of genetic differentiation. We found that genetic diversity was negatively correlated with average genetic differentiation with other populations, indicating that isolation and limited gene flow have contributed to erode genetic variability in some populations. Considering the relatively small size of the study area (<120 km), analyses of genetic structure indicate a remarkable inter-population genetic differentiation. Environmental dissimilarity and differences in current and past climate niche suitability and their additive effects were not associated with genetic differentiation after controlling for geographic distance, indicating that local climate does not contribute to explain spatial patterns of genetic structure. Overall, our data indicate that geographic isolation, but not current or past climate, is the main factor determining contemporary patterns of genetic diversity and structure within the southernmost peripheral populations of this tropical oak.
Collapse
Affiliation(s)
- J Ortego
- Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Estación Biológica de Doñana, Seville, Spain; Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
| | | | | | | |
Collapse
|
18
|
Maldonado-López Y, Cuevas-Reyes P, González-Rodríguez A, Pérez-López G, Acosta-Gómez C, Oyama K. Relationships among plant genetics, phytochemistry and herbivory patterns in Quercus castanea across a fragmented landscape. Ecol Res 2014. [DOI: 10.1007/s11284-014-1218-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Yineger H, Schmidt DJ, Hughes JM. Genetic structuring of remnant forest patches in an endangered medicinal tree in North-western Ethiopia. BMC Genet 2014; 15:31. [PMID: 24602239 PMCID: PMC4021171 DOI: 10.1186/1471-2156-15-31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/28/2014] [Indexed: 11/10/2022] Open
Abstract
Background Habitat loss and fragmentation may have detrimental impacts on genetic diversity, population structure and overall viability of tropical trees. The response of tropical trees to fragmentation processes may, however, be species, cohort or region-specific. Here we test the hypothesis that forest fragmentation is associated with lower genetic variability and higher genetic differentiation in adult and seedling populations of Prunus africana in North-western Ethiopia. This is a floristically impoverished region where all but a few remnant forest patches have been destroyed, mostly by anthropogenic means. Results Genetic diversity (based on allelic richness) was significantly greater in large and less-isolated forest patches as well as in adults than seedlings. Nearly all pairwise FST comparisons showed evidence for significant population genetic differentiation. Mean FST values were significantly greater in seedlings than adults, even after correction for within population diversity, but varied little with patch size or isolation. Conclusions Analysis of long-lived adult trees suggests the formerly contiguous forest in North-western Ethiopia probably exhibited strong spatial patterns of genetic structure. This means that protecting a range of patches including small and isolated ones is needed to conserve the extant genetic resources of the valuable forests in this region. However, given the high livelihood dependence of the local community and the high impact of foreign investors on forest resources of this region, in situ conservation efforts alone may not be helpful. Therefore, these efforts should be supported with ex situ gene conservation actions.
Collapse
Affiliation(s)
- Haile Yineger
- Australian Rivers Institute, Griffith School of Environment, Griffith University, 170 Kessels Road, Nathan QLD 4111, Australia.
| | | | | |
Collapse
|
20
|
Qiu Y, Liu Y, Kang M, Yi G, Huang H. Spatial and temporal population genetic variation and structure of Nothotsuga longibracteata (Pinaceae), a relic conifer species endemic to subtropical China. Genet Mol Biol 2013; 36:598-607. [PMID: 24385864 PMCID: PMC3873192 DOI: 10.1590/s1415-47572013000400019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 08/20/2013] [Indexed: 11/21/2022] Open
Abstract
Nothotsuga longibracteata, a relic and endangered conifer species endemic to subtropical China, was studied for examining the spatial-temporal population genetic variation and structure to understand the historical biogeographical processes underlying the present geographical distribution. Ten populations were sampled over the entire natural range of the species for spatial analysis, while three key populations with large population sizes and varied age structure were selected for temporal analyses using both nuclear microsatellites (nSSR) and chloroplast microsatellites (cpSSR). A recent bottleneck was detected in the natural populations of N. longibracteata. The spatial genetic analysis showed significant population genetic differentiation across its total geographical range. Notwithstanding, the temporal genetic analysis revealed that the level of genetic diversity between different age class subpopulations remained constant over time. Eleven refugia of the Last Glacial Maximum were identified, which deserve particular attention for conservation management.
Collapse
Affiliation(s)
- Yingjun Qiu
- Wuhan Botanical Garden/Wuhan Institute of Botany, Chinese Academy of Sciences, Wuhan, Hubei,
China
- Ningbo City College of Vocational Technology, Ningbo, Zhejiang,
China
| | - Yifei Liu
- South China Botanical Garden/South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, Guangdong,
China
| | - Ming Kang
- South China Botanical Garden/South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, Guangdong,
China
| | - Guanmei Yi
- Ningbo City College of Vocational Technology, Ningbo, Zhejiang,
China
| | - Hongwen Huang
- South China Botanical Garden/South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, Guangdong,
China
| |
Collapse
|
21
|
Barbeta A, Ogaya R, Peñuelas J. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest. GLOBAL CHANGE BIOLOGY 2013; 19:3133-44. [PMID: 23712619 DOI: 10.1111/gcb.12269] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/23/2013] [Indexed: 05/10/2023]
Abstract
Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long-term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (-66.5%) and Q. ilex (-17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005-2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra- and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long-term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we evaluate the effect of long-term (13 years) experimental drought on growth and mortality rates of three forest Mediterranean species, and their response to the different intensities and durations of natural drought. We provide evidence for species-specific responses to drought, what may eventually lead to a partial community shift favoring the more drought-resistant species. However, we also report a dampening of the treatment effect on the two drought-sensitive species, which may indicate a potential adaptation to drier conditions at the ecosystem or population level. These results are thus relevant to account for the stabilizing processes that would alter the initial response of ecosystem to drought through changes in plant physiology, morphology, and demography compensation.
Collapse
Affiliation(s)
- Adrià Barbeta
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès (Catalonia), E-08193, Spain; CREAF, Cerdanyola del Vallès (Catalonia), E-08193, Spain
| | | | | |
Collapse
|
22
|
Herrera-Arroyo ML, Sork VL, González-Rodríguez A, Rocha-Ramírez V, Vega E, Oyama K. Seed-mediated connectivity among fragmented populations of Quercus castanea (Fagaceae) in a Mexican landscape. AMERICAN JOURNAL OF BOTANY 2013; 100:1663-1671. [PMID: 23942083 DOI: 10.3732/ajb.1200396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF STUDY Anthropogenic fragmentation is an ongoing process in many forested areas that may create loss of connectivity among tree populations and constitutes a serious threat to ecological and genetic processes. We tested the central hypothesis that seed dispersal mitigates the impact of fragmentation by comparing connectivity and genetic diversity of adult vs. seedling populations in recently fragmented populations of the Mexican red oak Quercus castanea. METHODS Adult individuals, established before fragmentation, and seedlings, established after fragmentation, were sampled at 33 forest fragments of variable size (0.2 to 294 ha) within the Cuitzeo basin, Michoacán state, and genotyped using seven highly polymorphic chloroplast microsatellite markers (cpSSRs). To test whether seed dispersal retains connectivity among fragmented populations, we compared genetic diversity and connectivity networks between adults and progeny and determined the effect of fragment size on these values. KEY RESULTS Seventy haplotypes were identified, 63 in the adults and 60 in the seedlings, with average within-population diversity (hS) values of 0.624 in the adults and 0.630 in the seedlings. A positive correlation of genetic diversity values with fragment size was found in the seedling populations but not in the adult populations. The network connectivity analysis revealed lower connectivity among seedling populations than among adults. The number of connections (edges) as well as other network properties, such as betweenness centrality, node degree and closeness, were significantly lower in the seedlings network. CONCLUSIONS Habitat fragmentation in this landscape is disrupting seed-dispersal-mediated genetic connectivity among extant populations.
Collapse
Affiliation(s)
- M Luisa Herrera-Arroyo
- Centro de Investigaciones en Ecosistemas. Universidad Nacional Autónoma de México UNAM, Antigua carretera a Pátzcuaro no. 8701, Col. Ex-hacienda San José de la Huerta, Morelia 58190 Michoacán, México
| | | | | | | | | | | |
Collapse
|
23
|
Dodd RS, Mayer W, Nettel A, Afzal-Rafii Z. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae). J Hered 2012; 104:105-14. [PMID: 23109719 DOI: 10.1093/jhered/ess080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species' restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental conditions can be expected to influence levels of clonal spread and SGS, particularly in the case of disturbance regimes such as fire. Here, we characterize fine-scale genetic structure and clonal spread in tanoak from drier upland sites and more mesic lowland woodlands. Clonal spread was a significant mode of stand development, but spread was limited on average to about 5-6 m. Gene dispersal was decomposed into clonal and sexual components. The latter varied according to whether it was estimated from all ramets with the clonal component removed or for a single ramet per genet. We used the difference in these 2 estimates of gene dispersal as a measure of the effect of clonality on effective population size in this species. Although upland sites had a greater number of ramets per genet, most of the other indices computed were not significantly different. However, they tended to show greater heterozygote excess and shorter gene dispersal distances than the lowland sites. The average distance among inferred sibships on upland sites was approximately at the scale of maximum clonal range. This was not the case on lowland sites, where sibs were more dispersed. We recommend minimum distances among seed trees to avoid selecting clones and to maximize genetic diversity for restoration.
Collapse
Affiliation(s)
- Richard S Dodd
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
24
|
Tepedino VJ. Overestimating population sizes of rare clonal plants. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2012; 26:945-947. [PMID: 22830959 DOI: 10.1111/j.1523-1739.2012.01886.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- V J Tepedino
- Department of Biology, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
25
|
Vernesi C, Rocchini D, Pecchioli E, Neteler M, Vendramin GG, Paffetti D. A landscape genetics approach reveals ecological-based differentiation in populations of holm oak (Quercus ilex L.) at the northern limit of its range. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01940.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristiano Vernesi
- Department of Biodiversity and Molecular Ecology-Centre for Research and Innovation; Fondazione Edmund Mach; via E. Mach 1; 38010; S. Michele all'Adige; Italy
| | - Duccio Rocchini
- Department of Biodiversity and Molecular Ecology-Centre for Research and Innovation; Fondazione Edmund Mach; via E. Mach 1; 38010; S. Michele all'Adige; Italy
| | - Elena Pecchioli
- Department of Biodiversity and Molecular Ecology-Centre for Research and Innovation; Fondazione Edmund Mach; via E. Mach 1; 38010; S. Michele all'Adige; Italy
| | - Markus Neteler
- Department of Biodiversity and Molecular Ecology-Centre for Research and Innovation; Fondazione Edmund Mach; via E. Mach 1; 38010; S. Michele all'Adige; Italy
| | - Giovanni G. Vendramin
- IGV; Consiglio Nazionale delle Ricerche; via Madonna del Piano, 10; 50019; Sesto Fiorentino; Italy
| | - Donatella Paffetti
- DEISTAF; University of Florence; via S. Bonaventura 13; 50145; Firenze; Italy
| |
Collapse
|
26
|
Leonardi S, Piovani P, Scalfi M, Piotti A, Giannini R, Menozzi P. Effect of Habitat Fragmentation on the Genetic Diversity and Structure of Peripheral Populations of Beech in Central Italy. J Hered 2012; 103:408-17. [DOI: 10.1093/jhered/ess004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Ortego J, Riordan EC, Gugger PF, Sork VL. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol Ecol 2012; 21:3210-23. [PMID: 22548448 DOI: 10.1111/j.1365-294x.2012.05591.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding how specific environmental factors shape gene flow while disentangling their importance relative to the effects of geographical isolation is a major question in evolutionary biology and a specific goal of landscape genetics. Here, we combine information from nuclear microsatellite markers and ecological niche modelling to study the association between climate and spatial genetic structure and variability in Engelmann oak (Quercus engelmannii), a wind-pollinated species with high potential for gene flow. We first test whether genetic diversity is associated with climatic niche suitability and stability since the Last Glacial Maximum (LGM). Second, we use causal modelling to analyse the potential influence of climatic factors (current and LGM niche suitability) and altitude in the observed patterns of genetic structure. We found that genetic diversity is negatively associated with local climatic stability since the LGM, which may be due to higher immigration rates in unstable patches during favourable climatic periods and/or temporally varying selection. Analyses of spatial genetic structure revealed the presence of three main genetic clusters, a pattern that is mainly driven by two highly differentiated populations located in the northern edge of the species distribution range. After controlling for geographic distance, causal modelling analyses showed that genetic relatedness decreases with the environmental divergence among sampling sites estimated as altitude and current and LGM niche suitability. Natural selection against nonlocal genotypes and/or asynchrony in reproductive phenology may explain this pattern. Overall, this study suggests that local environmental conditions can shape patterns of genetic structure and variability even in species with high potential for gene flow and relatively small distribution ranges.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, CA 90095-7239, USA.
| | | | | | | |
Collapse
|
28
|
Cabrera-Toledo D, González-Astorga J, Flores-Vázquez JC. Fine-scale spatial genetic structure in two Mexican cycad species Dioon caputoi and Dioon merolae (Zamiaceae, Cycadales): Implications for conservation. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2011.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|