1
|
Rosen J, Alford S, Allan B, Anand V, Arnon S, Arockiaraj FG, Art J, Bai B, Balasubramaniam GM, Birnbaum T, Bisht NS, Blinder D, Cao L, Chen Q, Chen Z, Dubey V, Egiazarian K, Ercan M, Forbes A, Gopakumar G, Gao Y, Gigan S, Gocłowski P, Gopinath S, Greenbaum A, Horisaki R, Ierodiaconou D, Juodkazis S, Karmakar T, Katkovnik V, Khonina SN, Kner P, Kravets V, Kumar R, Lai Y, Li C, Li J, Li S, Li Y, Liang J, Manavalan G, Mandal AC, Manisha M, Mann C, Marzejon MJ, Moodley C, Morikawa J, Muniraj I, Narbutis D, Ng SH, Nothlawala F, Oh J, Ozcan A, Park Y, Porfirev AP, Potcoava M, Prabhakar S, Pu J, Rai MR, Rogalski M, Ryu M, Choudhary S, Salla GR, Schelkens P, Şener SF, Shevkunov I, Shimobaba T, Singh RK, Singh RP, Stern A, Sun J, Zhou S, Zuo C, Zurawski Z, Tahara T, Tiwari V, Trusiak M, Vinu RV, Volotovskiy SG, Yılmaz H, De Aguiar HB, Ahluwalia BS, Ahmad A. Roadmap on computational methods in optical imaging and holography [invited]. APPLIED PHYSICS. B, LASERS AND OPTICS 2024; 130:166. [PMID: 39220178 PMCID: PMC11362238 DOI: 10.1007/s00340-024-08280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging. In addition to registering the perspectives of the modern-day architects of the above research areas, the roadmap also reports some of the latest studies on the topic. Computational codes and pseudocodes are presented for computational methods in a plug-and-play fashion for readers to not only read and understand but also practice the latest algorithms with their data. We believe that this roadmap will be a valuable tool for analyzing the current trends in computational methods to predict and prepare the future of computational methods in optical imaging and holography. Supplementary Information The online version contains supplementary material available at 10.1007/s00340-024-08280-3.
Collapse
Affiliation(s)
- Joseph Rosen
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Blake Allan
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Vijayakumar Anand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Shlomi Arnon
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Francis Gracy Arockiaraj
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Jonathan Art
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Ganesh M. Balasubramaniam
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Tobias Birnbaum
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- Swave BV, Gaston Geenslaan 2, 3001 Leuven, Belgium
| | - Nandan S. Bisht
- Applied Optics and Spectroscopy Laboratory, Department of Physics, Soban Singh Jeena University Campus Almora, Almora, Uttarakhand 263601 India
| | - David Blinder
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Liangcai Cao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Qian Chen
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
| | - Ziyang Chen
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Karen Egiazarian
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Mert Ercan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Andrew Forbes
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - G. Gopakumar
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, Vallikavu, Kerala India
| | - Yunhui Gao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Paweł Gocłowski
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Alon Greenbaum
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695 USA
| | - Ryoichi Horisaki
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
| | - Daniel Ierodiaconou
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Saulius Juodkazis
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Tanushree Karmakar
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Vladimir Katkovnik
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Svetlana N. Khonina
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
- Samara National Research University, 443086 Samara, Russia
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Vladislav Kravets
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Ravi Kumar
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Yingming Lai
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Chen Li
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Jiaji Li
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shaoheng Li
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Yuzhu Li
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Jinyang Liang
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Gokul Manavalan
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Aditya Chandra Mandal
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Manisha Manisha
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Christopher Mann
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011 USA
- Center for Materials Interfaces in Research and Development, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Marcin J. Marzejon
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Chané Moodley
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Junko Morikawa
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Inbarasan Muniraj
- LiFE Lab, Department of Electronics and Communication Engineering, Alliance School of Applied Engineering, Alliance University, Bangalore, Karnataka 562106 India
| | - Donatas Narbutis
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius, Lithuania
| | - Soon Hock Ng
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Fazilah Nothlawala
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
- Tomocube Inc., Daejeon, 34051 South Korea
| | - Alexey P. Porfirev
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Mariana Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Shashi Prabhakar
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Jixiong Pu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Mani Ratnam Rai
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Meguya Ryu
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (AIST), 1-1-1 Umezono, Tsukuba, 305-8563 Japan
| | - Sakshi Choudhary
- Department Chemical Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Shiva, Israel
| | - Gangi Reddy Salla
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Peter Schelkens
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | - Sarp Feykun Şener
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Igor Shevkunov
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Tomoyoshi Shimobaba
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Rakesh K. Singh
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Ravindra P. Singh
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Adrian Stern
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Jiasong Sun
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shun Zhou
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Chao Zuo
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Tatsuki Tahara
- Applied Electromagnetic Research Center, Radio Research Institute, National Institute of Information and Communications Technology (NICT), 4-2-1 Nukuikitamachi, Koganei, Tokyo 184-8795 Japan
| | - Vipin Tiwari
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - R. V. Vinu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Sergey G. Volotovskiy
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Hasan Yılmaz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Hilton Barbosa De Aguiar
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Balpreet S. Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
2
|
Abimbola I, McAfee M, Creedon L, Gharbia S. In-situ detection of microplastics in the aquatic environment: A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173111. [PMID: 38740219 DOI: 10.1016/j.scitotenv.2024.173111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Microplastics are ubiquitous in the aquatic environment and have emerged as a significant environmental issue due to their potential impacts on human health and the ecosystem. Current laboratory-based microplastic detection methods suffer from various drawbacks, including a lack of standardisation, limited spatial and temporal coverage, high costs, and time-consuming procedures. Consequently, there is a need for the development of in-situ techniques to detect and monitor microplastics to effectively identify and understand their sources, pathways, and behaviours. Herein, we adopt a systematic literature review method to assess the development and application of experimental and field technologies designed for the in-situ detection and monitoring of aquatic microplastics, without the need for sample preparation. Four scientific databases were searched in March 2023, resulting in a review of 62 relevant studies. These studies were classified into seven sensor categories and their working principles were discussed. The sensor classes include optical devices, digital holography, Raman spectroscopy, other spectroscopy, hyperspectral imaging, remote sensing, and other methods. We also looked at how data from these technologies are integrated with machine learning models to develop classifiers capable of accurately characterising the physical and chemical properties of microplastics and discriminating them from other particles. This review concluded that in-situ detection of microplastics in aquatic environments is feasible and can be achieved with high accuracy, even though the methods are still in the early stages of development. Nonetheless, further research is still needed to enhance the in-situ detection of microplastics. This includes exploring the possibility of combining various detection methods and developing robust machine-learning classifiers. Additionally, there is a recommendation for in-situ implementation of the reviewed methods to assess their effectiveness in detecting microplastics and identify their limitations.
Collapse
Affiliation(s)
- Ismaila Abimbola
- Department of Environmental Science, Faculty of Science, Atlantic Technological University, Sligo, Ireland.
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Sligo, Ireland
| | - Leo Creedon
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Sligo, Ireland
| | - Salem Gharbia
- Department of Environmental Science, Faculty of Science, Atlantic Technological University, Sligo, Ireland
| |
Collapse
|
3
|
Han M, Smith D, Kahro T, Stonytė D, Kasikov A, Gailevičius D, Tiwari V, Ignatius Xavier AP, Gopinath S, Ng SH, John Francis Rajeswary AS, Tamm A, Kukli K, Bambery K, Vongsvivut J, Juodkazis S, Anand V. Extending the Depth of Focus of an Infrared Microscope Using a Binary Axicon Fabricated on Barium Fluoride. MICROMACHINES 2024; 15:537. [PMID: 38675348 PMCID: PMC11052387 DOI: 10.3390/mi15040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Axial resolution is one of the most important characteristics of a microscope. In all microscopes, a high axial resolution is desired in order to discriminate information efficiently along the longitudinal direction. However, when studying thick samples that do not contain laterally overlapping information, a low axial resolution is desirable, as information from multiple planes can be recorded simultaneously from a single camera shot instead of plane-by-plane mechanical refocusing. In this study, we increased the focal depth of an infrared microscope non-invasively by introducing a binary axicon fabricated on a barium fluoride substrate close to the sample. Preliminary results of imaging the thick and sparse silk fibers showed an improved focal depth with a slight decrease in lateral resolution and an increase in background noise.
Collapse
Affiliation(s)
- Molong Han
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.H.); (D.S.); (S.H.N.); (S.J.)
| | - Daniel Smith
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.H.); (D.S.); (S.H.N.); (S.J.)
| | - Tauno Kahro
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Dominyka Stonytė
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, 10223 Vilnius, Lithuania; (D.S.); (D.G.)
| | - Aarne Kasikov
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Darius Gailevičius
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, 10223 Vilnius, Lithuania; (D.S.); (D.G.)
| | - Vipin Tiwari
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Agnes Pristy Ignatius Xavier
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
- School of Electrical and Computer Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Shivasubramanian Gopinath
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.H.); (D.S.); (S.H.N.); (S.J.)
| | | | - Aile Tamm
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Kaupo Kukli
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| | - Keith Bambery
- Infrared Microspectroscopy (IRM) Beamline, ANSTO—Australian Synchrotron, Clayton, VIC 3168, Australia (J.V.)
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO—Australian Synchrotron, Clayton, VIC 3168, Australia (J.V.)
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.H.); (D.S.); (S.H.N.); (S.J.)
- Tokyo Tech World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Vijayakumar Anand
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.H.); (D.S.); (S.H.N.); (S.J.)
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia; (T.K.); (A.K.); (V.T.); (A.P.I.X.); (S.G.); (A.S.J.F.R.); (A.T.); (K.K.)
| |
Collapse
|
4
|
Akemann W, Bourdieu L. Acousto-optic holography for pseudo-two-dimensional dynamic light patterning. APL PHOTONICS 2024; 9:046103. [PMID: 38601951 PMCID: PMC11003399 DOI: 10.1063/5.0185857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Optical systems use acousto-optic deflectors (AODs) mostly for fast angular scanning and spectral filtering of laser beams. However, AODs may transform laser light in much broader ways. When time-locked to the pulsing of low repetition rate laser amplifiers, AODs permit the holographic reconstruction of 1D and pseudo-two-dimensional (ps2D) intensity objects of rectangular shape by controlling the amplitude and phase of the light field at high (20-200 kHz) rates for microscopic light patterning. Using iterative Fourier transformations (IFTs), we searched for AOD-compatible holograms to reconstruct the given ps2D target patterns through either phase-only or complex light field modulation. We previously showed that phase-only holograms can adequately render grid-like patterns of diffraction-limited points with non-overlapping diffraction orders, while side lobes to the target pattern can be cured with an apodization mask. Dense target patterns, in contrast, are typically encumbered by apodization-resistant speckle noise. Here, we show the denoised rendering of dense ps2D objects by complex acousto-optic holograms deriving from simultaneous optimization of the amplitude and phase of the light field. Target patterns lacking ps2D symmetry, although not translatable into single holograms, were accessed by serial holography based on a segregation into ps2D-compatible components. The holograms retrieved under different regularizations were experimentally validated in an AOD random-access microscope. IFT regularizations characterized in this work extend the versatility of acousto-optic holography for fast dynamic light patterning.
Collapse
Affiliation(s)
| | - Laurent Bourdieu
- Institut de Biologie de l’ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
5
|
Tsai CM, Vyas S, Luo Y. Common-path digital holographic microscopy based on a volume holographic grating for quantitative phase imaging. OPTICS EXPRESS 2024; 32:7919-7930. [PMID: 38439461 DOI: 10.1364/oe.514225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
Digital holographic microscopy (DHM) is a powerful quantitative phase imaging (QPI) technique that is capable of recording sample's phase information to enhance image contrast. In off-axis DHM, high-quality QPI images can be generated within a single recorded hologram, and the system stability can be enhanced by common-path configuration. Diffraction gratings are widely used components in common-path DHM systems; however, the presence of multiple diffraction beams leads to system power loss. Here, we propose and demonstrate implementation of a volume holographic grating (VHG) in common-path DHM, which provides single diffraction order. VHG in common-path DHM (i.e., VHG-DHM) helps in improving signal-to-noise ratio as compared to the conventional DHM. In addition, VHG, with inherently high angular selectivity, reduces image noise caused by stray light. With a simple fabrication process, it is convenient to utilize VHG to control the beam separation angle of DHM. Further, by using Bragg-matched wavelength degeneracy to avoid potential cell damaging effect in blue light, the VHG is designed for recording at a maximum sensitive wavelength of ∼488 nm, while our VHG-DHM is operated at the longer wavelength of red 632.8 nm for cell observation. Experimental results, measured by the VHG-DHM, show the measurement of target thickness ranging from 100 nm to 350 nm. In addition, stability of the system is quantitatively measured. High-contrast QPI images of human lung cancer cells are demonstrated.
Collapse
|
6
|
Fujimori S, Ito T, Shimobaba T. Rationalized diffraction calculations for high accuracy and high speed with few bits. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:303-310. [PMID: 38437343 DOI: 10.1364/josaa.510884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/23/2023] [Indexed: 03/06/2024]
Abstract
Diffraction calculations in few-bit formats, such as single-precision floating-point and fixed-point numbers, are important because they yield faster calculations and lower memory usage. However, these methods suffer from low accuracy owing to the loss of trailing digits. Fresnel diffraction is widely known to prevent the loss of trailing digits. However, it can only be used when the paraxial approximation is valid. In this study, a few-bit diffraction calculation method that achieves high accuracy without using any approximation is proposed. The proposed method is derived only by rationalizing the numerator of conventional formulas. Even for scenarios requiring double-precision floating-point numbers using conventional methods, the proposed method exhibits higher accuracy and faster computation time using single-precision floating-point numbers.
Collapse
|
7
|
Abbasian V, Darafsheh A. A dataset of digital holograms of normal and thalassemic cells. Sci Data 2024; 11:3. [PMID: 38168104 PMCID: PMC10762191 DOI: 10.1038/s41597-023-02818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Digital holographic microscopy (DHM) is an intriguing medical diagnostic tool due to its label-free and quantitative nature, providing high-contrast images of phase samples. By capturing both intensity and phase information, DHM enables the numerical reconstruction of quantitative phase images. However, the lateral resolution is limited by the diffraction limit, which prompted the recent suggestion of microsphere-assisted DHM to enhance the DHM resolution straightforwardly. The use of such a technique as a medical diagnostic tool requires testing and validation of the proposed assays to prove their feasibility and viability. This paper publishes 760 and 609 microsphere-assisted DHM images of normal and thalassemic red blood cells obtained from a normal and thalassemic male individual, respectively.
Collapse
Affiliation(s)
- Vahid Abbasian
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
- Imaging Science Program, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| |
Collapse
|
8
|
Kang YG, Park K, Hyeon MG, Yang TD, Choi Y. Three-dimensional imaging in reflection phase microscopy with minimal axial scanning. OPTICS EXPRESS 2023; 31:44741-44753. [PMID: 38178536 DOI: 10.1364/oe.510519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Reflection phase microscopy is a valuable tool for acquiring three-dimensional (3D) images of objects due to its capability of optical sectioning. The conventional method of constructing a 3D map is capturing 2D images at each depth with a mechanical scanning finer than the optical sectioning. This not only compromises sample stability but also slows down the acquisition process, imposing limitations on its practical applications. In this study, we utilized a reflection phase microscope to acquire 2D images at depth locations significantly spaced apart, far beyond the range of optical sectioning. By employing a numerical propagation, we successfully filled the information gap between the acquisition layers, and then constructed complete 3D maps of objects with substantially reduced number of axial scans. Our experimental results also demonstrated the effectiveness of this approach in enhancing imaging speed while maintaining the accuracy of the reconstructed 3D structures. This technique has the potential to improve the applicability of reflection phase microscopy in diverse fields such as bioimaging and material science.
Collapse
|
9
|
Park S, Huang H, Ross I, Moreno J, Khyeam S, Simmons J, Huang GN, Payumo AY. Quantitative Three-dimensional Label-free Digital Holographic Imaging of Cardiomyocyte Size, Ploidy, and Cell Division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565407. [PMID: 37961676 PMCID: PMC10635088 DOI: 10.1101/2023.11.02.565407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiac regeneration in newborn rodents depends on the ability of pre-existing cardiomyocytes to proliferate and divide. This capacity is lost within the first week of postnatal development when these cells rapidly switch from hyperplasia to hypertrophy, withdraw from the cell cycle, become binucleated, and increase in size. How these dynamic changes in size and ploidy impact cardiomyocyte proliferative potential is not well understood. In this study, we innovate the application of a commercially available digital holographic imaging microscope, the Holomonitor M4, to evaluate the proliferative responses of mononucleated diploid and binucleated tetraploid cardiomyocytes. This instrument coupled with the powerful Holomonitor App Suite software enables long-term label-free quantitative three-dimensional tracking of primary cardiomyocyte dynamics in real-time with single-cell resolution. Our digital holographic imaging results provide direct evidence that mononucleated cardiomyocytes retain significant proliferative potential as most can successfully divide with high frequency. In contrast, binucleated cardiomyocytes exhibit a blunted response to a proliferative stimulus with the majority not attempting to divide at all. Nevertheless, some binucleated cardiomyocytes were capable of complete division, suggesting that these cells still do retain limited proliferative capacity. By quantitatively tracking cardiomyocyte volume dynamics during these proliferative responses, we reveal that both mononucleated and binucleated cells reach a unique size threshold prior to attempted cell division. The absolute threshold is increased by binucleation, which may limit the ability of binucleated cardiomyocytes to divide. By defining the interrelationship between cardiomyocyte size, ploidy, and cell cycle control, we will better understand the cellular mechanisms that drive the loss of mammalian cardiac regenerative capacity after birth.
Collapse
|
10
|
S Barroso V, Geelmuyden A, Ajithkumar SC, Kent AJ, Weinfurtner S. Multiplexed digital holography for fluid surface profilometry. APPLIED OPTICS 2023; 62:7175-7184. [PMID: 37855573 DOI: 10.1364/ao.496937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023]
Abstract
Digital holography (DH) has been widely used for imaging and characterization of microstructures and nanostructures in materials science and biology and also has the potential to provide high-resolution, nondestructive measurement of fluid surfaces. DH setups capture the complex wavefronts of light scattered by an object or reflected from a surface, allowing the quantitative measurements of their shape and deformation. However, their use in fluid profilometry is scarce and has not been explored in much depth to the best of our knowledge. We present an alternative use for a DH setup that can measure and monitor the surface of fluid samples. Based on DH reflectometry, our modeling shows that multiple reflections from the sample and the reference interfere and generate multiple holograms of the sample, resulting in a multiplexed image of the wavefront. The individual interferograms can be isolated in the spatial frequency domain, and the fluid surface can be digitally reconstructed from them. We further show that this setup can be used to track changes in the surface of a fluid over time, such as during the formation and propagation of waves or the evaporation of surface layers.
Collapse
|
11
|
Manisha, Mandal AC, Rathor M, Zalevsky Z, Singh RK. Randomness assisted in-line holography with deep learning. Sci Rep 2023; 13:10986. [PMID: 37419990 PMCID: PMC10329003 DOI: 10.1038/s41598-023-37810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
We propose and demonstrate a holographic imaging scheme exploiting random illuminations for recording hologram and then applying numerical reconstruction and twin image removal. We use an in-line holographic geometry to record the hologram in terms of the second-order correlation and apply the numerical approach to reconstruct the recorded hologram. This strategy helps to reconstruct high-quality quantitative images in comparison to the conventional holography where the hologram is recorded in the intensity rather than the second-order intensity correlation. The twin image issue of the in-line holographic scheme is resolved by an unsupervised deep learning based method using an auto-encoder scheme. Proposed learning technique leverages the main characteristic of autoencoders to perform blind single-shot hologram reconstruction, and this does not require a dataset of samples with available ground truth for training and can reconstruct the hologram solely from the captured sample. Experimental results are presented for two objects, and a comparison of the reconstruction quality is given between the conventional inline holography and the one obtained with the proposed technique.
Collapse
Affiliation(s)
- Manisha
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Aditya Chandra Mandal
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Mohit Rathor
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Zeev Zalevsky
- Faculty of Engineering and Nano Technology Center, Bar-Ilan University, Ramat Gan, Israel
| | - Rakesh Kumar Singh
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
12
|
Xu D, Huang Z, Cao L. Adaptive constraints by morphological operations for single-shot digital holography. Sci Rep 2023; 13:10267. [PMID: 37355715 DOI: 10.1038/s41598-023-37423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
Digital holography provides access to quantitative measurement of the entire complex field, which is indispensable for the investigation of wave-matter interactions. The emerging iterative phase retrieval approach enables to solve the inverse imaging problem only from the given intensity measurements and physical constraints. However, enforcing imprecise constraints limits the reconstruction accuracy and convergence speed. Here, we propose an advanced iterative phase retrieval framework for single-shot in-line digital holography that incorporates adaptive constraints, which achieves optimized convergence behavior, high-fidelity and twin-image-free reconstruction. In conjunction with morphological operations which can extract the object structure while eliminating the irrelevant part such as artifacts and noise, adaptive constraints allow the support region to be accurately estimated and automatically updated at each iteration. Numerical reconstruction of complex-valued objects and the capability of noise immunity are investigated. The improved reconstruction performance of this approach is experimentally validated. Such flexible and versatile framework has promising applications in biomedicine, X-ray coherent diffractive imaging and wavefront sensing.
Collapse
Affiliation(s)
- Danlin Xu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhengzhong Huang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Zhao J, Liu L, Wang T, Wang X, Du X, Hao R, Liu J, Zhang J. Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094339. [PMID: 37177540 PMCID: PMC10181755 DOI: 10.3390/s23094339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Quantitative phase imaging and measurement of surface topography and fluid dynamics for objects, especially for moving objects, is critical in various fields. Although effective, existing synchronous phase-shifting methods may introduce additional phase changes in the light field due to differences in optical paths or need specific optics to implement synchronous phase-shifting, such as the beamsplitter with additional anti-reflective coating and a micro-polarizer array. Therefore, we propose a synchronous phase-shifting method based on the Mach-Zehnder interferometer to tackle these issues in existing methods. The proposed method uses common optics to simultaneously acquire four phase-shifted digital holograms with equal optical paths for object and reference waves. Therefore, it can be used to reconstruct the phase distribution of static and dynamic objects with high precision and high resolution. In the experiment, the theoretical resolution of the proposed system was 1.064 µm while the actual resolution could achieve 1.381 µm, which was confirmed by measuring a phase-only resolution chart. Besides, the dynamic phase imaging of a moving standard object was completed to verify the proposed system's effectiveness. The experimental results show that our proposed method is suitable and promising in dynamic phase imaging and measurement of moving objects using phase-shifting digital holography.
Collapse
Affiliation(s)
- Jiaxi Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tianhe Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiangzhou Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaohui Du
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruqian Hao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Juanxiu Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jing Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
14
|
Fandiño-Toro H, Aristizábal-López Y, Restrepo-Martínez A, Briñez-de León J. Fringe pattern analysis to evaluate light sources and sensors in digital photoelasticity. APPLIED OPTICS 2023; 62:2560-2568. [PMID: 37132804 DOI: 10.1364/ao.483735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
When experimental photoelasticity images are acquired, the spectral interaction between the light source and the sensor used affect the visual information of the fringe patterns in the produced images. Such interaction can lead to fringe patterns with an overall high quality, but also can lead to images with indistinguishable fringes, and bad stress field reconstruction. We introduce a strategy to evaluate such interaction that relies on measuring the value of four handcrafted descriptors: contrast, an image descriptor that accounts simultaneously for blur and noise, a Fourier-based descriptor to measure image quality, and image entropy. The utility of the proposed strategy was validated by measuring the selected descriptors on computational photoelasticity images, and the fringe orders achieved when evaluating the stress field, from 240 spectral configurations: 24 light sources and 10 sensors. We found that high values of the selected descriptors can be related to spectral configurations that lead to better stress field reconstruction. Overall, the results show that the selected descriptors can be useful to identify bad and good spectral interactions, which could help to design better protocols for acquiring photoelasticity images.
Collapse
|
15
|
Shen X(S, Gao J, Li M, Zhou C, Hu S, He M, Zhuang W. Toward immersive communications in 6G. FRONTIERS IN COMPUTER SCIENCE 2023. [DOI: 10.3389/fcomp.2022.1068478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The sixth generation (6G) networks are expected to enable immersive communications and bridge the physical and the virtual worlds. Integrating extended reality, holography, and haptics, immersive communications will revolutionize how people work, entertain, and communicate by enabling lifelike interactions. However, the unprecedented demand for data transmission rate and the stringent requirements on latency and reliability create challenges for 6G networks to support immersive communications. In this survey article, we present the prospect of immersive communications and investigate emerging solutions to the corresponding challenges for 6G. First, we introduce use cases of immersive communications, in the fields of entertainment, education, and healthcare. Second, we present the concepts of immersive communications, including extended reality, haptic communication, and holographic communication, their basic implementation procedures, and their requirements on networks in terms of transmission rate, latency, and reliability. Third, we summarize the potential solutions to addressing the challenges from the aspects of communication, computing, and networking. Finally, we discuss future research directions and conclude this study.
Collapse
|
16
|
Midtvedt B, Pineda J, Skärberg F, Olsén E, Bachimanchi H, Wesén E, Esbjörner EK, Selander E, Höök F, Midtvedt D, Volpe G. Single-shot self-supervised object detection in microscopy. Nat Commun 2022; 13:7492. [PMID: 36470883 PMCID: PMC9722899 DOI: 10.1038/s41467-022-35004-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Object detection is a fundamental task in digital microscopy, where machine learning has made great strides in overcoming the limitations of classical approaches. The training of state-of-the-art machine-learning methods almost universally relies on vast amounts of labeled experimental data or the ability to numerically simulate realistic datasets. However, experimental data are often challenging to label and cannot be easily reproduced numerically. Here, we propose a deep-learning method, named LodeSTAR (Localization and detection from Symmetries, Translations And Rotations), that learns to detect microscopic objects with sub-pixel accuracy from a single unlabeled experimental image by exploiting the inherent roto-translational symmetries of this task. We demonstrate that LodeSTAR outperforms traditional methods in terms of accuracy, also when analyzing challenging experimental data containing densely packed cells or noisy backgrounds. Furthermore, by exploiting additional symmetries we show that LodeSTAR can measure other properties, e.g., vertical position and polarizability in holographic microscopy.
Collapse
Affiliation(s)
- Benjamin Midtvedt
- grid.8761.80000 0000 9919 9582Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Pineda
- grid.8761.80000 0000 9919 9582Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Skärberg
- grid.8761.80000 0000 9919 9582Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Erik Olsén
- grid.5371.00000 0001 0775 6028Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Harshith Bachimanchi
- grid.8761.80000 0000 9919 9582Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Emelie Wesén
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Elin K. Esbjörner
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Erik Selander
- grid.8761.80000 0000 9919 9582Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Höök
- grid.5371.00000 0001 0775 6028Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Daniel Midtvedt
- grid.8761.80000 0000 9919 9582Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Volpe
- grid.8761.80000 0000 9919 9582Department of Physics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Bloom D, K Southworth M, R Silva J, N Avari Silva J. The Expanding Uses of Medical Extended Reality in the Cardiac
Catheterization Laboratory: Pre-procedural Planning,
Intraprocedural Guidance, and Intraprocedural Navigation. US CARDIOLOGY REVIEW 2022. [DOI: 10.15420/usc.2021.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The use of innovative imaging practices in the field of interventional cardiology and electrophysiology has led to significant progress in both diagnostic and therapeutic capabilities. 3D reconstructions of 2D images allows a proceduralist to develop a superior understanding of patient anatomy. Medical extended reality (MXR) technologies employ 3D interactive images for the user to improve depth perception and spatial awareness. Although MXR procedural navigation is a relatively new concept, the potential for use within interventional cardiology and EP is significant with the eventual goal of improving patient outcomes and reducing patient harm. This review article will discuss the current landscape of MXR use in the catheterization lab including pre-procedural planning, intraprocedural planning and intraprocedural guidance in diagnostic cardiac catheterization, valvar and coronary interventions, electrophysiology studies, and device implants.
Collapse
Affiliation(s)
- David Bloom
- Division of Pediatric Cardiology, School of Medicine, Washington University in St. Louis, St. Louis, MO
| | | | | | - Jennifer N Avari Silva
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
18
|
Kaya GU, Onur TÖ. Genetic algorithm based image reconstruction applying the digital holography process with the Discrete Orthonormal Stockwell Transform technique for diagnosis of COVID-19. Comput Biol Med 2022; 148:105934. [PMID: 35961086 PMCID: PMC9344740 DOI: 10.1016/j.compbiomed.2022.105934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/28/2022] [Accepted: 07/30/2022] [Indexed: 11/08/2022]
Abstract
World Health Organization has described the real-time reverse transcription-polymerase chain reaction test method for the diagnosis of the novel coronavirus disease (COVID-19). However, the limited number of test kits, the long-term results of the tests, the high probability of the disease spreading during the test and imaging without focused images necessitate the use of alternative diagnostic methods such as chest X-ray (CXR) imaging. The storage of data obtained for the diagnosis of the disease also poses a major problem. This causes misdiagnosis and delays treatment. In this work, we propose a hybrid 3D reconstruction method of CXR images (CXRI) to detect coronavirus pneumonia and prevent misdiagnosis on CXRI. We used the digital holography technique (DHT) for obtaining a priori information of CXRI stored in created digital hologram (CDH). In this way, the elimination of the storage problem that requires high space was revealed. In addition, Discrete Orthonormal S-Transform (DOST) is applied to the reconstructed CDH image obtained by using DHT. This method is called CDH_DHT_DOST. A multiresolution spatial-frequency representation of the lung images that belong to healthy people and diseased people with the COVID-19 virus is obtained by using the CDH_DHT_DOST. Moreover, the genetic algorithm (GA) is adopted for the reconstruction process for optimization of the CDH image and then DOST is applied. This hybrid method is called CDH_GA_DOST. Finally, we compare the results obtained from CDH_DHT_DOST and CDH_GA_DOST. The results show the feasibility of reconstructing CXRI with CDH_GA_DOST. The proposed method holds promises to meet demands for the detection of the COVID-19 virus.
Collapse
|
19
|
MacNeil L, Desai DK, Costa M, LaRoche J. Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf. Sci Rep 2022; 12:13078. [PMID: 35906469 PMCID: PMC9338326 DOI: 10.1038/s41598-022-17313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
The planktonic diversity throughout the oceans is vital to ecosystem functioning and linked to environmental change. Plankton monitoring tools have advanced considerably with high-throughput in-situ digital cameras and genomic sequencing, opening new challenges for high-frequency observations of community composition, structure, and species discovery. Here, we combine multi-marker metabarcoding based on nuclear 18S (V4) and plastidial 16S (V4–V5) rRNA gene amplicons with a digital in-line holographic microscope to provide a synoptic diversity survey of eukaryotic plankton along the Newfoundland Shelf (Canada) during the winter transition phase of the North Atlantic bloom phenomenon. Metabarcoding revealed a rich eukaryotic diversity unidentifiable in the imaging samples, confirming the presence of ecologically important saprophytic protists which were unclassifiable in matching images, and detecting important groups unobserved or taxonomically unresolved during similar sequencing campaigns in the Northwest Atlantic Ocean. In turn, imaging analysis provided quantitative observations of widely prevalent plankton from every trophic level. Despite contrasting plankton compositions portrayed by each sampling method, both capture broad spatial differences between the northern and southern sectors of the Newfoundland Shelf and suggest complementary estimations of important features in eukaryotic assemblages. Future tasks will involve standardizing digital imaging and metabarcoding for wider use and consistent, comparable ocean observations.
Collapse
Affiliation(s)
- Liam MacNeil
- Biology Department, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4J1, Canada. .,GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | - Dhwani K Desai
- Biology Department, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4J1, Canada.,Department of Biology and Pharmacology, Dalhousie University, 5850 College St, Halifax, NS, B3H 4R2, Canada
| | - Maycira Costa
- Department of Geography, University of Victoria, STN CSC, PO Box 1700, Victoria, BC, V8W2Y2, Canada
| | - Julie LaRoche
- Biology Department, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4J1, Canada.
| |
Collapse
|
20
|
Liu H, Wu X, Liu G, Ren H, R V V, Chen Z, Pu J. Label-free single-shot imaging with on-axis phase-shifting holographic reflectance quantitative phase microscopy. JOURNAL OF BIOPHOTONICS 2022; 15:e202100400. [PMID: 35285152 DOI: 10.1002/jbio.202100400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Quantitative phase microscopy (QPM) has been emerged as an indispensable diagnostic and characterization tool in biomedical imaging with its characteristic nature of label-free, noninvasive, and real time imaging modality. The integration of holography to the conventional microscopy opens new advancements in QPM featuring high-resolution and quantitative three-dimensional image reconstruction. However, the holography schemes suffer in space-bandwidth and time-bandwidth issues in the off-axis and phase-shifting configuration, respectively. Here, we introduce an on-axis phase-shifting holography based QPM system with single-shot imaging capability. The technique utilizes the Fizeau interferometry scheme in combination with polarization phase-shifting and space-division multiplexing to achieve the single-shot recording of the multiple phase-shifted holograms. Moreover, the high-speed imaging capability with instantaneous recording of spatially phase shifted holograms offers the flexible utilization of the approach in dynamic quantitative phase imaging with robust phase stability. We experimentally demonstrated the validity of the approach by quantitative phase imaging and depth-resolved imaging of paramecium cells. Furthermore, the technique is applied to the phase imaging and quantitative parameter estimation of red blood cells. This integration of a Fizeau-based phase-shifting scheme to the optical microscopy enables a simple and robust tool for the investigations of engineered and biological specimen with real-time quantitative analysis.
Collapse
Affiliation(s)
- Hanzi Liu
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Xiaoyan Wu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
- Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang, China
| | - Guodong Liu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
- Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang, China
| | - Hongliang Ren
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Vinu R V
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Ziyang Chen
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| | - Jixiong Pu
- College of Information Science and Engineering, Fujian Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
21
|
Zhu L, Makita S, Oida D, Miyazawa A, Oikawa K, Mukherjee P, Lichtenegger A, Distel M, Yasuno Y. Computational refocusing of Jones matrix polarization-sensitive optical coherence tomography and investigation of defocus-induced polarization artifacts. BIOMEDICAL OPTICS EXPRESS 2022; 13:2975-2994. [PMID: 35774308 PMCID: PMC9203103 DOI: 10.1364/boe.454975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Here we demonstrate a long-depth-of-focus imaging method using polarization sensitive optical coherence tomography (PS-OCT). This method involves a combination of Fresnel-diffraction-model-based phase sensitive computational refocusing and Jones-matrix based PS-OCT (JM-OCT). JM-OCT measures four complex OCT images corresponding to four polarization channels. These OCT images are computationally refocused as preserving the mutual phase consistency. This method is validated using a static phantom, postmortem zebrafish, and ex vivo porcine muscle samples. All the samples demonstrated successful computationally-refocused birefringence and degree-of-polarization-uniformity (DOPU) images. We found that defocusing induces polarization artifacts, i.e., incorrectly high birefringence values and low DOPU values, which are substantially mitigated by computational refocusing.
Collapse
Affiliation(s)
- Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daisuke Oida
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Arata Miyazawa
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Sky technology Inc., Tsukuba, Ibaraki, Japan
| | - Kensuke Oikawa
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Distel
- Innovative Cancer Models, St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Single-Shot On-Axis Fizeau Polarization Phase-Shifting Digital Holography for Complex-Valued Dynamic Object Imaging. PHOTONICS 2022. [DOI: 10.3390/photonics9030126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Digital holography assisted with inline phase-shifting methods has the benefit of a large field of view and a high resolution, but it is limited in dynamic imaging due to sequential detection of multiple holograms. Here we propose and experimentally demonstrate a single-shot phase-shifting digital holography system based on a highly stable on-axis Fizeau-type polarization interferometry. The compact on-axis design of the system with the capability of instantaneous recording of multiple phase-shifted holograms and with robust stability features makes the technique a novel tool for the imaging of complex-valued dynamic objects. The efficacy of the approach is demonstrated experimentally by complex field imaging of various kinds of reflecting-type static and dynamic objects. Moreover, a quantitative analysis on the robust phase stability and sensitivity of the technique is evaluated by comparing the approach with conventional phase-shifting methods. The high phase stability and dynamic imaging potential of the technique are expected to make the system an ideal tool for quantitative phase imaging and real-time imaging of dynamic samples.
Collapse
|
23
|
Trolinger JD, Mansoor MM. History and metrology applications of a game-changing technology: digital holography [Invited]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:A29-A43. [PMID: 35200948 DOI: 10.1364/josaa.440610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
In digital holography (DH), information in the hologram is recorded and stored in digital format in discrete bits. Like its parent, holography, DH evolved over many years with periods of dormancy and revival. Almost abandoned, multiple times, unanticipated events or developments in separate industries revived it with explosive, quantum jumps, making it useful and popular to a wide audience. Although its history has been treated in many papers and books, the field is dynamic and constantly providing new opportunities. Having been born long before low-cost, fast, powerful digital computers and digital detectors were available, DH was confined to the academic world, where practical applications and commercial opportunities were few if any. Consumer demand that led to low-cost personal computers, high-resolution digital cameras, supporting software, and related products changed the situation drastically by providing every potential researcher affordable, powerful hardware and software needed to apply image processing algorithms and move DH to new practical application levels. In this paper, as part of the sixtieth anniversary of off-axis holography, we include a brief introduction to the fundamentals of DH and examine the history and evolution of DH during its periods of rise and fall. We summarize many new emerging techniques, applications, and potential future applications along with additional details for metrological examples from the authors' research.
Collapse
|
24
|
|
25
|
Tajbakhsh K, Ebrahimi S, Dashtdar M. Low-coherence quantitative differential phase-contrast microscopy using Talbot interferometry. APPLIED OPTICS 2022; 61:398-402. [PMID: 35200875 DOI: 10.1364/ao.445369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
This paper presents a simple, cost-efficient, and highly stable quantitative differential phase-contrast (PC) microscopy based on Talbot interferometry. The proposed system is composed of an optical microscope coupled with a pair of Ronchi amplitude gratings that utilizes a light-emitting diode as a low temporal coherence light source. The quantitative differential PC images of the microscopic transparent samples are reconstructed by analyzing the deformation of moiré patterns using a phase-shifting procedure. Low temporal coherence leads to eliminating speckle noise and undesirable interferences to obtain high-quality images. The spatial phase stability of the system is investigated and compared to two other common-path interferometers. Additionally, the performance of the method is verified by the experimental results of a standard resolution test target and phase biological samples.
Collapse
|
26
|
Roadmap on Digital Holography-Based Quantitative Phase Imaging. J Imaging 2021; 7:jimaging7120252. [PMID: 34940719 PMCID: PMC8703719 DOI: 10.3390/jimaging7120252] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Quantitative Phase Imaging (QPI) provides unique means for the imaging of biological or technical microstructures, merging beneficial features identified with microscopy, interferometry, holography, and numerical computations. This roadmap article reviews several digital holography-based QPI approaches developed by prominent research groups. It also briefly discusses the present and future perspectives of 2D and 3D QPI research based on digital holographic microscopy, holographic tomography, and their applications.
Collapse
|
27
|
Zheng X, Duan X, Tu X, Jiang S, Song C. The Fusion of Microfluidics and Optics for On-Chip Detection and Characterization of Microalgae. MICROMACHINES 2021; 12:1137. [PMID: 34683188 PMCID: PMC8540680 DOI: 10.3390/mi12101137] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/21/2023]
Abstract
It has been demonstrated that microalgae play an important role in the food, agriculture and medicine industries. Additionally, the identification and counting of the microalgae are also a critical step in evaluating water quality, and some lipid-rich microalgae species even have the potential to be an alternative to fossil fuels. However, current technologies for the detection and analysis of microalgae are costly, labor-intensive, time-consuming and throughput limited. In the past few years, microfluidic chips integrating optical components have emerged as powerful tools that can be used for the analysis of microalgae with high specificity, sensitivity and throughput. In this paper, we review recent optofluidic lab-on-chip systems and techniques used for microalgal detection and characterization. We introduce three optofluidic technologies that are based on fluorescence, Raman spectroscopy and imaging-based flow cytometry, each of which can achieve the determination of cell viability, lipid content, metabolic heterogeneity and counting. We analyze and summarize the merits and drawbacks of these micro-systems and conclude the direction of the future development of the optofluidic platforms applied in microalgal research.
Collapse
Affiliation(s)
| | | | | | | | - Chaolong Song
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China; (X.Z.); (X.D.); (X.T.); (S.J.)
| |
Collapse
|
28
|
Bitmap and vectorial hologram recording by using femtosecond laser pulses. Sci Rep 2021; 11:16406. [PMID: 34385498 PMCID: PMC8360943 DOI: 10.1038/s41598-021-95665-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we present two approaches for recording a quasi-hologram on the steel surface by femtosecond laser pulses. The recording process is done by rotating the polarization of the laser beam by a half-wave plate or a spatial light modulator (SLM), so we can control the spatial orientation of the formed laser-induced periodic surface structures (LIPSS). Two different approaches are shown, which use vector and bitmap images to record the hologram. For the first time to our knowledge, we managed to record a hologram of a bitmap image by continuously adjusting the laser beam polarization by SLM during scanning. The developed method can substantially improve hologram recording technology by eliminating complex processing procedures, which can lead to increasing the fabrication speed and reducing the cost.
Collapse
|
29
|
Kwon IH, Kim IY, Heo MB, Park JW, Lee SW, Lee TG. Real-time heart rate monitoring system for cardiotoxicity assessment of Daphnia magna using high-speed digital holographic microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146405. [PMID: 33774290 DOI: 10.1016/j.scitotenv.2021.146405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/22/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Machine vision techniques for monitoring heart rates in aquatic bioassays have been applied to cardiotoxicity assessment. However, the requisite large data sizes and long calculation times make long-term observations of heart rates difficult. In this study, we developed a real-time heart rate monitoring system for individual Daphnia magna in a water chamber mounter that immobilizes their movement in 100 mL media. Heart rates are calculated from real-time, time-resolved relative phase information from digital holograms acquired with a 200 fps camera and parallel computation using a graphics processing unit. With this system, we monitored the real-time changes in the heart rates of individual D. magna specimens exposed to H2O2 as a positive control for reactive oxygen species (ROS) levels in an aquatic environment for 10 h, a period long enough to observe dynamic heart rate responses to the mounting process and exposure and to establish heart rate trends. An additional group analysis was conducted to compare to conventional cardiotoxicity assessment, with results of both assessments showing that the heart rates reduced according to ROS level by H2O2 exposure concentration. Notably, the results of our real-time dynamic heart rate monitoring in aquatic conditions indicated that establishing a relaxation heart rate before measurements could improve the accuracy of toxicity assessment. It is believed that the system developed in this study, achieving the simultaneous measurement, analysis, and display of reconstructed results, will find wide application in other aquatic bioassays.
Collapse
Affiliation(s)
- Ik Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - In Young Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Min Beom Heo
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - June-Woo Park
- Environmental Biology Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang-Won Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; Department of Medical Physics, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea; Department of Nano Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
30
|
Shimobaba T, Hoshi I, Shiomi H, Wang F, Hara T, Kakue T, Ito T. Mitigating ringing artifacts in diffraction calculations using average subtractions. APPLIED OPTICS 2021; 60:6393-6399. [PMID: 34612873 DOI: 10.1364/ao.431216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Fourier transform-based diffraction calculations are essential for computational optics. However, the diffraction calculations can be corrupted by the introduction of strong ringing artifacts due to the introduction of zero-padding to avoid circular convolution or to control the sampling intervals. We propose a simple de-ringing method using average subtractions for application to on-axis and off-axis diffraction calculations. To verify the effectiveness of the proposed method, we compared the diffracted fields obtained using zero-padding, a flat-top window method, a mirror expansion method, and the whole and border average subtractions proposed. Furthermore, we confirmed the effectiveness of the proposed method for hologram calculations using double phase encoding and image reconstructions of inline digital holography.
Collapse
|
31
|
Kalume A, Wang C, Pan YL. Optical-Trapping Laser Techniques for Characterizing Airborne Aerosol Particles and Its Application in Chemical Aerosol Study. MICROMACHINES 2021; 12:466. [PMID: 33924223 PMCID: PMC8074619 DOI: 10.3390/mi12040466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
We present a broad assessment on the studies of optically-trapped single airborne aerosol particles, particularly chemical aerosol particles, using laser technologies. To date, extensive works have been conducted on ensembles of aerosols as well as on their analogous bulk samples, and a decent general description of airborne particles has been drawn and accepted. However, substantial discrepancies between observed and expected aerosols behavior have been reported. To fill this gap, single-particle investigation has proved to be a unique intersection leading to a clear representation of microproperties and size-dependent comportment affecting the overall aerosol behavior, under various environmental conditions. In order to achieve this objective, optical-trapping technologies allow holding and manipulating a single aerosol particle, while offering significant advantages such as contactless handling, free from sample collection and preparation, prevention of contamination, versatility to any type of aerosol, and flexibility to accommodation of various analytical systems. We review spectroscopic methods that are based on the light-particle interaction, including elastic light scattering, light absorption (cavity ring-down and photoacoustic spectroscopies), inelastic light scattering and emission (Raman, laser-induced breakdown, and laser-induced fluorescence spectroscopies), and digital holography. Laser technologies offer several benefits such as high speed, high selectivity, high accuracy, and the ability to perform in real-time, in situ. This review, in particular, discusses each method, highlights the advantages and limitations, early breakthroughs, and recent progresses that have contributed to a better understanding of single particles and particle ensembles in general.
Collapse
Affiliation(s)
- Aimable Kalume
- CCDC-US Army Research Laboratory, Adelphi, MD 20783, USA;
| | - Chuji Wang
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39759, USA;
| | - Yong-Le Pan
- CCDC-US Army Research Laboratory, Adelphi, MD 20783, USA;
| |
Collapse
|
32
|
Rajput SK, Matoba O, Takase Y, Inoue T, Itaya K, Kumar M, Quan X, Xia P, Awatsuji Y. Multimodal sound field imaging using digital holography [Invited]. APPLIED OPTICS 2021; 60:B49-B58. [PMID: 33798136 DOI: 10.1364/ao.415162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Sound is an important invisible physical phenomenon that needs to be explained in several physical and biological processes, along with visual phenomena. For this purpose, multiparameter digital holography (DH) has been proposed to visualize both features simultaneously due to the phase and amplitude reconstruction properties of DH. In this paper, we present a brief review on sound field imaging techniques with special focus on the multiparameter imaging capability of DH for visualizing sound and visual features. The basic theory and several experimental results with very high-speed recordings are also presented to demonstrate sound field imaging for the audible range as well as in the ultrasound range.
Collapse
|
33
|
Yoneda N, Onishi A, Saita Y, Komuro K, Nomura T. Single-shot higher-order transport-of-intensity quantitative phase imaging based on computer-generated holography. OPTICS EXPRESS 2021; 29:4783-4801. [PMID: 33726027 DOI: 10.1364/oe.415598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The imaging quality of quantitative phase imaging (QPI) based on the transport of intensity equation (TIE) can be improved using a higher-order approximation for defocused intensity distributions. However, this requires mechanically scanning an image sensor or object along the optical axis, which in turn requires a precisely aligned optical setup. To overcome this problem, a computer-generated hologram (CGH) technique is introduced to TIE-based QPI. A CGH generating defocused point spread function is inserted in the Fourier plane of an object. The CGH acts as a lens and grating with various focal lengths and orientations, allowing multiple defocused intensity distributions to be simultaneously detected on an image sensor plane. The results of a numerical simulation and optical experiment demonstrated the feasibility of the proposed method.
Collapse
|
34
|
Kumar M, Matoba O, Quan X, Rajput SK, Awatsuji Y, Tamada Y. Single-shot common-path off-axis digital holography: applications in bioimaging and optical metrology [Invited]. APPLIED OPTICS 2021; 60:A195-A204. [PMID: 33690370 DOI: 10.1364/ao.404208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
The demand for single-shot and common-path holographic systems has become increasingly important in recent years, as such systems offer various advantages compared to their counterparts. Single-shot holographic systems, for example, reduce computational complexity as only a single hologram with the object information required to process, making them more suitable for the investigation of dynamic events; and common-path holographic systems are less vibration-sensitive, compact, inexpensive, and high in temporal phase stability. We have developed a single-shot common-path off-axis digital holographic setup based on a beam splitter and pinhole. In this paper, we present a concise review of the proposed digital holographic system for several applications, including the quantitative phase imaging to investigate the morphological and quantitative parameters, as a metrological tool for testing of micro-optics, industrial inspection and measurement, and sound field imaging and visualization.
Collapse
|
35
|
Tahara T, Koujin T, Matsuda A, Ishii A, Ito T, Ichihashi Y, Oi R. Incoherent color digital holography with computational coherent superposition for fluorescence imaging [Invited]. APPLIED OPTICS 2021; 60:A260-A267. [PMID: 33690377 DOI: 10.1364/ao.406068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
We present color fluorescence imaging using an incoherent digital holographic technique in which holographic multiplexing of multiple wavelengths is exploited. Self-interference incoherent digital holography with a single-path in-line configuration and the computational coherent superposition scheme are adopted to obtain color holographic three-dimensional information of self-luminous objects with a monochrome image sensor and no mechanical scanning. We perform not only simultaneous color three-dimensional sensing of multiple self-luminous objects but also color fluorescence imaging of stained biological samples. Color fluorescence imaging with an improved point spread function is also demonstrated experimentally by adopting a Fresnel incoherent correlation holography system.
Collapse
|
36
|
Schilder NJ, Wolterink TAW, Mennes C, Röhrich R, Femius Koenderink A. Phase-retrieval Fourier microscopy of partially temporally coherent nanoantenna radiation patterns. OPTICS EXPRESS 2020; 28:37844-37859. [PMID: 33379611 DOI: 10.1364/oe.410344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
We report an experimental technique for determining phase-resolved radiation patterns of single nanoantennas by phase-retrieval defocused imaging. A key property of nanoantennas is their ability to imprint spatial coherence, for instance, on fluorescent sources. Yet, measuring emitted wavefronts in absence of a reference field is difficult. We realize a defocused back focal plane microscope to measure phase even for partially temporally coherent light and benchmark the method using plasmonic bullseye antenna scattering. We outline the limitations of defocused imaging which are set by spectral bandwidth and antenna mode structure. This work is a first step to resolve wavefronts from fluorescence controlled by nanoantennas.
Collapse
|
37
|
Abbasi A, Miahi E, Mirroshandel SA. Effect of deep transfer and multi-task learning on sperm abnormality detection. Comput Biol Med 2020; 128:104121. [PMID: 33246195 DOI: 10.1016/j.compbiomed.2020.104121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022]
Abstract
Analyzing the abnormality of morphological characteristics of male human sperm has been studied for a long time mainly because it has many implications on the male infertility problem, which accounts for approximately half of the infertility problems in the world. Yet, detecting such abnormalities by embryologists has several downsides. To clarify, analyzing sperms through visual inspection of an expert embryologist is a highly subjective and biased process. Furthermore, it takes much time for a specialist to make a diagnosis. Hence, in this paper, we proposed two deep learning algorithms that are able to automate this process. The first algorithm uses a network-based deep transfer learning approach, while the second technique, named Deep Multi-task Transfer Learning (DMTL), employs a novel combination of network-based deep transfer learning and multi-task learning to classify sperm's head, vacuole, and acrosome as either normal or abnormal. This DMTL technique is capable of classifying all the aforementioned parts of the sperm in a single prediction. Moreover, this is the first time that the concept of multi-task learning has been introduced to the field of Sperm Morphology Analysis (SMA). To benchmark our algorithms, we employed a freely-available SMA dataset named MHSMA. During our experiments, our algorithms reached the state-of-the-art results on the accuracy, precision, and f0.5, as well as other important metrics, such as the Matthews Correlation Coefficient on one, two, or all three labels. Notably, our algorithms increased the accuracy of the head, acrosome, and vacuole by 6.66%, 3.00%, and 1.33%, and reached the accuracy of 84.00%, 80.66%, and 94.00% on these labels, respectively. Consequently, our algorithms can be used in health institutions, such as fertility clinics, with further recommendations to practically improve the performance of our algorithms.
Collapse
Affiliation(s)
- Amir Abbasi
- Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
| | - Erfan Miahi
- Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
| | | |
Collapse
|
38
|
Haleem A, Javaid M, Khan IH. Holography applications toward medical field: An overview. Indian J Radiol Imaging 2020; 30:354-361. [PMID: 33273770 PMCID: PMC7694722 DOI: 10.4103/ijri.ijri_39_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose: 3D Holography is a commercially available, disruptive innovation, which can be customised as per the requirements and is supporting Industry 4.0. The purpose of this paper is to study the potential applications of 3D holography in the medical field. This paper explores the concept of holography and its significant benefits in the medical field. Methods: The paper is derived through the study of various research papers on Holography and its applications in the medical field. The study tries to identify the direction of research &development and see how this innovative technology can be used effectively for better treatment of patients. Results: Holography uses digital imaging inputs and provides an extensive visualisation of the data for training doctors, surgeons and students. Holography converts information about the body into a digital format and has the potential to inform, promote and entertain the medical students and doctors. However, it needs a large amount of space for data storage and extensive software support for analysis and skills for customising. This technology seems good to solve a variety of medical issues by storing and using patient data in developing 3D holograms, which are useful to assist successful treatment and surgery. It seems useful in providing flexible solutions in the area of medical research. Finally, the paper identifies 13 significant applications of this technology in the medical field and discusses them appropriately. Conclusion: The paper explores holographic applications in medical research due to its extensive capability of image processing. Holographic images are non-contact 3D images having a large field of depth. A physician can now zoom the holographic image for a better view of the medical part. This innovative technology can create advancements in the diagnosis and treatment process, which can improve medical practice. It helps in quick detection of problems in various organs like brain, heart, liver, kidney etc. By using this technology, medical practitioners can see colourful organs at multiple angles with better accuracy. It opens up an innovative way of planning, testing of procedures and diagnosis. With technological developments, compact hardware and software are now available to help medical research and related applications.
Collapse
Affiliation(s)
- Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Ibrahim Haleem Khan
- School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
39
|
Kumar M, Quan X, Awatsuji Y, Tamada Y, Matoba O. Single-shot common-path off-axis dual-wavelength digital holographic microscopy. APPLIED OPTICS 2020; 59:7144-7152. [PMID: 32902476 DOI: 10.1364/ao.395001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
A single-shot common-path off-axis self-interference dual-wavelength digital holographic microscopic (DHM) system based on a cube beam splitter is demonstrated to expand the phase range in a stepped microstructure and for simultaneous measurement of the refractive index and physical thickness of a specimen. In the system, two laser beams with wavelengths of 532 nm and 632.8 nm are used. These laser beams are combined to transilluminate the object under study, then the object beam is divided into two beams by using a beam splitter oriented in such a way that both the beams propagate in almost the same direction, with an appropriate lateral separation between them. One of the object beams is spatially filtered at its Fourier plane, using a pinhole to generate a reference spherical beam free from the object information. The reference beam interferes with the object beam to form a digital hologram at the faceplate of the image sensor. The phase information is extracted from a single recorded digital hologram using the phase aberration compensation method that is based on principal component analysis (PCA). Owing to the common-path configuration, the system shows high temporal phase stability and it is less vibration-sensitive compared to counterparts such as a Mach-Zehnder type DHM. The performance of the dual-wavelength DHM system is verified in two different application fields by conducting the experiments using microsphere beads and living plant cells.
Collapse
|
40
|
Nishitsuji T, Shimobaba T, Kakue T, Ito T. Fast calculation of computer-generated hologram of line-drawn objects without FFT. OPTICS EXPRESS 2020; 28:15907-15924. [PMID: 32549425 DOI: 10.1364/oe.389778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Although holographic display technology is one of the most promising three-dimensional (3D) display technologies for virtual and augmented reality, the enormous computational effort required to produce computer-generated holograms (CGHs) to digitally record and display 3D images presents a significant roadblock to the implementation of this technology. One of the most effective methods to implement fast CGH calculations is a diffraction calculation (e.g., angular spectrum diffraction) based on the fast-Fourier transform (FFT). Unfortunately, the computational complexity increases with increasing CGH resolution, which is what determines the size of a 3D image. Therefore, enormous calculations are still required to display a reasonably sized 3D image, even for a simple 3D image. To address this issue, we propose herein a fast CGH algorithm for 3D objects comprised of line-drawn objects at layers of different depths. An aperture formed from a continuous line at a single depth can be regarded as a series of aligned point sources of light, and the wavefront converges for a sufficiently long line. Thus, a CGH of a line-drawn object can be calculated by synthesizing converged wavefronts along the line. Numerical experiments indicate that, compared with the FFT-based method, the proposed method offers a factor-56 gain in speed for calculating 16-k-resolution CGHs from 3D objects composed of twelve line-drawn objects at different depths.
Collapse
|
41
|
Tahara T, Ito T, Ichihashi Y, Oi R. Multiwavelength three-dimensional microscopy with spatially incoherent light, based on computational coherent superposition. OPTICS LETTERS 2020; 45:2482-2485. [PMID: 32356796 DOI: 10.1364/ol.386264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
In this Letter, we propose spatially incoherent multiwavelength three-dimensional (3D) microscopy that exploits holographic multiplexing and is based on computational coherent superposition (CCS). The proposed microscopy generates spatially incoherent wavelength-multiplexed self-interference holograms with a multiband-pass filter and spatially and temporally incoherent light diffracted from specimens. Selective extractions of 3D spatial information at multiple wavelengths from the holograms are realized using the CCS scheme. We constructed fully mechanical-motion-free holographic multiwavelength 3D microscopy systems and conducted experiments to demonstrate the microscopy.
Collapse
|
42
|
Rastogi V, Agarwal S, Dubey SK, Khan GS, Shakher C. Design and development of volume phase holographic grating based digital holographic interferometer for label-free quantitative cell imaging. APPLIED OPTICS 2020; 59:3773-3783. [PMID: 32400505 DOI: 10.1364/ao.387620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a volume phase holographic optical element based digital holographic interferometer is designed and used for quantitative phase imaging of biological cells [white blood cells, red blood cells, platelets, and Staphylococcus aureus (S. aureus) bacteria cells]. The experimental results reveal that sharp images of the S. aureus bacteria cells of the order of ${\sim}{1}\;{\unicode{x00B5}{\rm m}}$∼1µm can be clearly seen. The volume phase holographic grating will remove the stray light from the system reaching toward the grating and will minimize the coherent noise (speckle noise). This will improve the sharpness in the image reconstructed from the recorded digital hologram.
Collapse
|
43
|
Hara T, Tahara T, Ichihashi Y, Oi R, Ito T. Multiwavelength-multiplexed phase-shifting incoherent color digital holography. OPTICS EXPRESS 2020; 28:10078-10089. [PMID: 32225601 DOI: 10.1364/oe.383692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
We propose multiwavelength-multiplexed phase-shifting incoherent color digital holography. In this technique, a monochrome image sensor records wavelength-multiplexed, phase-shifted, and incoherent holograms, and a phase-shifting interferometry technique selectively extracts object waves at multiple wavelengths from the several recorded holograms. Spatially incoherent light that contains multiple wavelengths illuminates objects, and multiwavelength-incoherent object waves are simultaneously obtained without using any wavelength filters. Its effectiveness is experimentally demonstrated for transparent and reflective objects.
Collapse
|
44
|
Enhanced Phase Retrieval Method Based on Random Phase Modulation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10031184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The phase retrieval method based on random phase modulation can wipe out any ambiguity and stagnation problem in reconstruction. However, the two existing reconstruction algorithms for the random phase modulation method are suffering from problems. The serial algorithm from the spread-spectrum phase retrieval method can realize rapid convergence but has poor noise immunity. Although there is a parallel framework that can suppress noise, the convergence speed is slow. Here, we propose a random phase modulation phase retrieval method based on a serial–parallel cascaded reconstruction framework to simultaneously achieve quality imaging and rapid convergence. The proposed serial–parallel cascaded method uses the phased result from the serial algorithm to serve as the initialization of the subsequent parallel process. Simulations and experiments demonstrate that the superiorities of both serial and parallel algorithms are fetched by the proposed serial–parallel cascaded method. In the end, we analyze the effect of iteration numbers from the serial process on the reconstruction performance to find the optimal allocation scope of iteration numbers.
Collapse
|
45
|
Kim MK. Wide area quantitative phase microscopy by spatial phase scanning digital holography. OPTICS LETTERS 2020; 45:784-786. [PMID: 32004311 DOI: 10.1364/ol.385322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
A new technique of digital holographic microscopy is introduced for large area quantitative phase microscopy, dubbed spatial phase scanning digital holography, where the object specimen in an interferometer is scanned across the tilted reference phase field, while acquiring camera frames at regular intervals. Both the large area scan and phase shift acquisition are achieved in one sweep, using a simple optomechanical system. The technique can be useful in diverse applications such as fast scans of blood smear, cell and tissue cultures, and microelectronic surface profiles.
Collapse
|
46
|
Wagatsuma Y, Shimobaba T, Yamamoto Y, Hoshi I, Kakue T, Ito T. Phase retrieval using axial diffraction patterns and a ptychographic iterative engine. APPLIED OPTICS 2020; 59:354-362. [PMID: 32225314 DOI: 10.1364/ao.375503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
We propose a phase retrieval method using axial diffraction patterns under planar and spherical wave illuminations. The proposed method uses a ptychographic iterative engine (PIE) for the phase retrieval algorithm. The proposed approach uses multiple diffraction patterns. Thus, adjusting the alignment of each diffraction pattern is mandatory, and we propose a method to adjust the alignment. In addition, a random selection of the measured diffraction patterns is used to further accelerate the convergence of the PIE-based optimization. To confirm the effectiveness of the proposed method, we compare the conventional and proposed methods using a simulation and optical experiments.
Collapse
|
47
|
The Holographic Academic: Rethinking Telepresence in Higher Education. EMERGING TECHNOLOGIES AND PEDAGOGIES IN THE CURRICULUM 2020. [DOI: 10.1007/978-981-15-0618-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
48
|
Kodama S, Ohta M, Ikeda K, Kano Y, Miyamoto Y, Osten W, Takeda M, Watanabe E. Three-dimensional microscopic imaging through scattering media based on in-line phase-shift digital holography. APPLIED OPTICS 2019; 58:G345-G350. [PMID: 31873519 DOI: 10.1364/ao.58.00g345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Microscopic three-dimensional imaging and phase quantification for objects hidden behind a scattering medium by using in-line phase-shift digital holography are proposed. A spatial resolution of 1.81 µm and highly accurate quantitative phase imaging are demonstrated for objects behind a scatter plate. Three-dimensional imaging was confirmed using objects with a depth difference of 1.32 mm. Further, imaging was performed using rat skin as a demonstration for imaging through a complex multilayer scattering medium, where a spatial resolution close to the theoretically predicted value was achieved by experiment.
Collapse
|
49
|
Tahara T, Endo Y. Multiwavelength-selective phase-shifting digital holography without mechanical scanning. APPLIED OPTICS 2019; 58:G218-G225. [PMID: 31873505 DOI: 10.1364/ao.58.00g218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
We propose multiwavelength in-line phase-shifting digital holography with a monochrome image sensor, single reference arm, and no mechanical scanning. We use phase-shifting interferometry selectively extracting wavelength information as a method to obtain multiwavelength object waves separately from wavelength-multiplexed phase-shifted holograms. By exploiting a liquid crystal on silicon spatial light modulator with a wide phase-modulation range as an electrically driven phase shifter in this interferometry, we remove mechanically moving parts during phase shifting. Its effectiveness is experimentally demonstrated.
Collapse
|
50
|
Besaga VR, Saetchnikov AV, Gerhardt NC, Ostendorf A, Hofmann MR. Monitoring of photochemically induced changes in phase-modulating samples with digital holographic microscopy. APPLIED OPTICS 2019; 58:G41-G47. [PMID: 31873483 DOI: 10.1364/ao.58.000g41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
This paper analyzes the performance of single-shot digital holographic microscopy for rapid characterization of static step-index structures in transparent polymer materials and for online monitoring of the photoinduced polymerization dynamics. The experiments are performed with a modified Mach-Zehnder transmission digital holographic microscope of high stability (phase accuracy of 0.69°) and of high magnification (of ≈90×). Use of near-infrared illumination allows both nondestructive examination of the manufactured samples and monitoring of optically induced processes in a photosensitive material concurrently with its excitation. The accuracy of the method for a precise sample's topography evaluation is studied on an example of microchannel sets fabricated via two-photon polymerization and is supported by reference measurements with an atomic force microscope. The applicability of the approach for dynamic measurements is proved via online monitoring of the refractive index evolution in a photoresin layer illuminated with a focused laser beam at 405 nm. High correlation between the experimental results and a kinetics model for the photopolymerization process is achieved.
Collapse
|