1
|
Khallouki F, Zennouhi W, Hajji L, Bourhia M, Benbacer L, El Bouhali B, Rezig L, Poirot M, Lizard G. Current advances in phytosterol free forms and esters: Classification, biosynthesis, chemistry, and detection. Steroids 2024; 212:109520. [PMID: 39378976 DOI: 10.1016/j.steroids.2024.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Phytosterols are plant sterols that are important secondary plant metabolites with significant pharmacological properties. Their presence in the plant kingdom concerns many unrelated botanical families such as oleageneous plants and cereals. The structures of phytosterols evoke those of cholesterol. These molecules are composed of a sterane ring, also known as perhydrocyclopentanophenanthrene, along with a methyl or ethyl group at C-24 in their side chains, a hydroxyl group at C-3 on ring A, and one or two double bonds in the B ring. Phytosterols display different oxidation degrees at the sterane ring and at the side chain as well as varying numbers of carbons with complex stereochemistries. Fats and water solubilities of phytosterols have been achieved by physical, chemical and enzymatic esterifications to favor their bioavailability and to improve the sensory quality of food, and the efficiency of pharmaceutic and cosmetic products. This review aims to provide comprehensive information starting from the definition and structural classification of phytosterols, and exposes an update of their biogenic relationships. Next, the synthesis of phytosterol esters and their applications as well as their effective roles as hormone precursors are discussed. Finally, a concise exploration of the latest advancements in phytosterol / oxyphytosterols analysis techniques is provided, with a particular focus on modern hyphenated techniques.
Collapse
Affiliation(s)
- Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco.
| | - Wafa Zennouhi
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco
| | - Lhoussain Hajji
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Mohamed Bourhia
- Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000 Laayoune, Morocco
| | - Laila Benbacer
- Unité de Biologie et Recherches Moléculaires Département Sciences du Vivant, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), Rabat, Morocco
| | - Bachir El Bouhali
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES24, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia; High Institute of Food Industries, University of Carthage, Tunis, Tunisia
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse III, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
| | - Gérard Lizard
- Laboratoiry Bio-PeroxIL / EA7270, Université de Bourgogne / Inserm, 21000 Dijon, France; PHYNOHA Consulting, 21121 Fontaine-lès-Dijon, France.
| |
Collapse
|
2
|
Miszczuk E, Bajguz A, Kiraga Ł, Crowley K, Chłopecka M. Phytosterols and the Digestive System: A Review Study from Insights into Their Potential Health Benefits and Safety. Pharmaceuticals (Basel) 2024; 17:557. [PMID: 38794127 PMCID: PMC11124171 DOI: 10.3390/ph17050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Phytosterols are a large group of substances belonging to sterols-compounds naturally occurring in the tissues of plants, animals, and humans. The most well-known animal sterol is cholesterol. Among phytosterols, the most significant compounds are β-sitosterol, stigmasterol, and campesterol. At present, they are mainly employed in functional food products designed to counteract cardiovascular disorders by lowering levels of 'bad' cholesterol, which stands as their most extensively studied purpose. It is currently understood that phytosterols may also alleviate conditions associated with the gastrointestinal system. Their beneficial pharmacological properties in relation to gastrointestinal tract include anti-inflammatory and hepatoprotective activity. Also, the anti-cancer properties as well as the impact on the gut microbiome could be a very interesting area of research, which might potentially lead to the discovery of their new application. This article provides consolidated knowledge on a new potential use of phytosterols, namely the treatment or prevention of gastrointestinal diseases. The cited studies indicate high therapeutic efficacy in conditions such as peptic ulcer disease, IBD or liver failure caused by hepatotoxic xenobiotics, however, these are mainly in vitro or in vivo studies. Nevertheless, studies to date indicate their therapeutic potential as adjunctive treatments to conventional therapies, which often exhibit unsatisfactory efficacy or serious side effects. Unfortunately, at this point there is a lack of significant clinical study data to use phytosterols in clinical practice in this area.
Collapse
Affiliation(s)
- Edyta Miszczuk
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (E.M.); (K.C.)
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Bialystok, Poland;
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (E.M.); (K.C.)
| | - Kijan Crowley
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (E.M.); (K.C.)
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (E.M.); (K.C.)
| |
Collapse
|
3
|
Munawar M, Khan MS, Saeed M, Younas U, Farag MR, Di Cerbo A, El-Shall N, Loschi AR, Dhama K, Alagawany M. Phytosterol: nutritional significance, health benefits, and its uses in poultry and livestock nutrition. Anim Biotechnol 2023; 34:3206-3215. [PMID: 35839248 DOI: 10.1080/10495398.2022.2099882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Medicinal plants with active ingredients have shown great potential as natural and sustainable additives in livestock and poultry diets as growth promoters, performance, feed conversion ratio, digestibility of nutrient enhancers, and antioxidants and immune system modulators. Among active ingredients, phytosterols, which are plant-based bio-factors that may be found in seeds, fruits, grains, vegetables and legumes, are thought to be involved in the aforementioned activities but are also widely known in human medicine due to their efficacy in treating diabetes, coronary heart disease, and tumors. Nevertheless, phytosterols can also promote carcinogens production, angiogenesis inhibition, metastasis, infiltration, and cancer cells proliferation. This review focuses on the deepening of the biological role and health benefits of phytosterols and their new potential application in poultry and livestock nutrition.
Collapse
Affiliation(s)
- Mahzaib Munawar
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Muhammad Saeed
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Umair Younas
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Nahed El-Shall
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Anna Rita Loschi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Siddiqui SA, Khan S, Mehdizadeh M, Bahmid NA, Adli DN, Walker TR, Perestrelo R, Câmara JS. Phytochemicals and bioactive constituents in food packaging - A systematic review. Heliyon 2023; 9:e21196. [PMID: 37954257 PMCID: PMC10632435 DOI: 10.1016/j.heliyon.2023.e21196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Designing and manufacturing functional bioactive ingredients and pharmaceuticals have grown worldwide. Consumers demand for safe ingredients and concerns over harmful synthetic additives have prompted food manufacturers to seek safer and sustainable alternative solutions. In recent years the preference by consumers to natural bioactive agents over synthetic compounds increased exponentially, and consequently, naturally derived phytochemicals and bioactive compounds, with antimicrobial and antioxidant properties, becoming essential in food packaging field. In response to societal needs, packaging needs to be developed based on sustainable manufacturing practices, marketing strategies, consumer behaviour, environmental concerns, and the emergence of new technologies, particularly bio- and nanotechnology. This critical systematic review assessed the role of antioxidant and antimicrobial compounds from natural resources in food packaging and consumer behaviour patterns in relation to phytochemical and biologically active substances used in the development of food packaging. The use of phytochemicals and bioactive compounds inside packaging materials used in food industry could generate unpleasant odours derived from the diffusion of the most volatile compounds from the packaging material to the food and food environment. These consumer concerns must be addressed to understand minimum concentrations that will not affect consumer sensory and aroma negative perceptions. The research articles were carefully chosen and selected by following the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Sipper Khan
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Iran
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
- Agricultural Product Technology Department, Universitas Sulawesi Barat, Majene, 90311, Indonesia
| | - Danung Nur Adli
- Faculty of Animal Science, University of Brawijaya, Malang, East Java, 65145, Indonesia
| | - Tony R. Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, B3H, 4R2, Canada
| | - Rosa Perestrelo
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
5
|
Methanolic Extract of Piper sarmentosum Attenuates Obesity and Hyperlipidemia in Fructose-Induced Metabolic Syndrome Rats. Molecules 2021; 26:molecules26133985. [PMID: 34210097 PMCID: PMC8271521 DOI: 10.3390/molecules26133985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 01/14/2023] Open
Abstract
Obesity and hyperlipidemia are metabolic dysregulations that arise from poor lifestyle and unhealthy dietary intakes. These co-morbidity conditions are risk factors for vascular diseases. Piper sarmentosum (PS) is a nutritious plant that has been shown to pose various phytochemicals and pharmacological actions. This study aimed to investigate the effect of PS on obesity and hyperlipidemia in an animal model. Forty male Wistar rats were randomly divided into five experimental groups. The groups were as follows: UG-Untreated group; CTRL-control; FDW-olive oil + 20% fructose; FDW-PS-PS (125 mg/kg) + 20% fructose; FDW-NGN-naringin (100 mg/kg) + 20% fructose. Fructose drinking water was administered daily for 12 weeks ad libitum to induce metabolic abnormality. Treatment was administered at week 8 for four weeks via oral gavage. The rats were sacrificed with anesthesia at the end of the experimental period. Blood, liver, and visceral fat were collected for further analysis. The consumption of 20% fructose water by Wistar rats for eight weeks displayed a tremendous increment in body weight, fat mass, percentage fat, LDL, TG, TC, HMG-CoA reductase, leptin, and reduced the levels of HDL and adiponectin as well as adipocyte hypertrophy. Following the treatment period, FDW-PS and FDW-NGN showed a significant reduction in body weight, fat mass, percentage fat, LDL, TG, TC, HMG-CoA reductase, and leptin with an increment in the levels of HDL and adiponectin compared to the FDW group. FDW-PS and FDW-NGN also showed adipocyte hypotrophy compared to the FDW group. In conclusion, oral administration of 125 mg/kg PS methanolic extract to fructose-induced obese rats led to significant amelioration of obesity and hyperlipidemia through suppressing the adipocytes and inhibiting HMG-CoA reductase. PS has the potential to be used as an alternative or adjunct therapy for obesity and hyperlipidemia.
Collapse
|
6
|
Li F, Wang X, Wang H, Mei X. Preparation and characterization of phytosterol-loaded nanoparticles with sodium caseinate/dextran conjugates. Food Sci Biotechnol 2021; 30:531-539. [PMID: 33936844 DOI: 10.1007/s10068-021-00885-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Sodium caseinate (SC)/dextran conjugates were prepared via Maillard reaction under controlled dry-heating conditions. Moreover, the nanoparticles of phytosterols (PS) encapsulated by SC or SC/dextran were produced using the emulsion evaporation method. The encapsulation efficiency (78.81 ± 5.22%) of PS in SC/dextran nanoparticles was higher than that (73.5 ± 2.78%) in SC nanoparticles. Compared with the compact and dense structure of SC nanoparticles, SC/dextran nanoparticles existed as relatively loose aggregates. The result of differential scanning calorimetry demonstrated that the encapsulation of PS greatly decreased its crystallinity. The released rates of PS from SC and SC/dextran nanoparticles under acidic gastric conditions were 8.59% and 4.73%, respectively. After 7 h of intestinal digestion, the released rate (52.19%) of PS from SC/dextran nanoparticles was significantly higher than that from SC (32.67%) nanoparticles. Therefore, SC/dextran conjugates prepared by the Maillard reaction are more suitable to be used as wall material for the nano-encapsulation of PS.
Collapse
Affiliation(s)
- Feifan Li
- No. 17 Qinghua East Road, Haidian District, Beijing, 100083 China
| | - Xiaoli Wang
- No. 17 Qinghua East Road, Haidian District, Beijing, 100083 China
| | - Hongfu Wang
- No. 17 Qinghua East Road, Haidian District, Beijing, 100083 China
| | - Xiaohong Mei
- No. 17 Qinghua East Road, Haidian District, Beijing, 100083 China
| |
Collapse
|
7
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
8
|
Shrestha SC, Ghebremeskel K, White K, Minelli C, Tewfik I, Thapa P, Tewfik S. Formulation and Characterization of Phytostanol Ester Solid Lipid Nanoparticles for the Management of Hypercholesterolemia: An ex vivo Study. Int J Nanomedicine 2021; 16:1977-1992. [PMID: 33727810 PMCID: PMC7955784 DOI: 10.2147/ijn.s276301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Phytostanols are naturally occurring compounds that reduce blood cholesterol levels significantly. However, their aqueous insolubility poses formulation challenges. AIM To formulate and characterize solid lipid nanoparticle carriers for phytostanol esters to enhance the bioavailability of phytostanols. METHODS Phytostanol ester solid lipid nanoparticles were formulated by the microemulsion method. They were characterized for particle size distribution, polydispersity index, shape, surface charge, entrapment efficiency, stability, chemical structure, and thermal properties. The uptake of the formulation by cell lines, HepG2 and HT-29, and its effect on cell viability were evaluated. RESULTS The formulation of solid lipid nanoparticles was successfully optimised by varying the type of lipids and their concentration relative to that of surfactants in the present study. The optimised formulation had an average diameter of (171 ± 9) nm, a negative surface charge of (-23.0 ± 0.8) mV and was generally spherical in shape. We report high levels of drug entrapment at (89 ± 5)% in amorphous form, drug loading of (9.1 ± 0.5)%, nanoparticle yield of (67 ± 4)% and drug excipient compatibility. The biological safety and uptake of the formulations were demonstrated on hepatic and intestinal cell lines. CONCLUSION Phytostanol ester solid lipid nanoparticles were successfully formulated and characterized. The formulation has the potential to provide an innovative drug delivery system for phytostanols which reduce cholesterol and have a potentially ideal safety profile. This can contribute to better management of one of the main risk factors of cardiovascular diseases.
Collapse
Affiliation(s)
- Sony Chandi Shrestha
- School of Human Sciences, London Metropolitan University, London, UK
- Surface Technology, National Physical Laboratory, London, UK
| | | | - Kenneth White
- School of Human Sciences, London Metropolitan University, London, UK
| | | | - Ihab Tewfik
- Life Sciences, University of Westminster, London, UK
| | - Panna Thapa
- Department of Pharmacy, Kathmandu University, Dhulikhel, Nepal
| | - Sundus Tewfik
- Department of Applied Nanomolecules, Bloomsnano Limited, London, UK
| |
Collapse
|
9
|
Jia C, Xia X, Wang H, Bertrand M, Chen G, Zhang X. Preparation of phytosteryl ornithine ester hydrochloride and improvement of its bioaccessibility and cholesterol-reducing activity in vitro. Food Chem 2020; 331:127200. [DOI: 10.1016/j.foodchem.2020.127200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022]
|
10
|
Magro Dos Reis I, Houben T, Oligschläger Y, Bücken L, Steinbusch H, Cassiman D, Lütjohann D, Westerterp M, Prickaerts J, Plat J, Shiri-Sverdlov R. Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease. J Lipid Res 2020; 61:830-839. [PMID: 32291331 PMCID: PMC7269767 DOI: 10.1194/jlr.ra120000632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/23/2020] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick type C (NPC)1 disease is a rare genetic condition in which the function of the lysosomal cholesterol transporter NPC1 protein is impaired. Consequently, sphingolipids and cholesterol accumulate in lysosomes of all tissues, triggering a cascade of pathological events that culminate in severe systemic and neurological symptoms. Lysosomal cholesterol accumulation is also a key factor in the development of atherosclerosis and NASH. In these two metabolic diseases, the administration of plant stanol esters has been shown to ameliorate cellular cholesterol accumulation and inflammation. Given the overlap of pathological mechanisms among atherosclerosis, NASH, and NPC1 disease, we sought to investigate whether dietary supplementation with plant stanol esters improves the peripheral features of NPC1 disease. To this end, we used an NPC1 murine model featuring a Npc1-null allele (Npc1nih ), creating a dysfunctional NPC1 protein. Npc1nih mice were fed a 2% or 6% plant stanol ester-enriched diet over the course of 5 weeks. During this period, hepatic and blood lipid and inflammatory profiles were assessed. Npc1nih mice fed the plant stanol-enriched diet exhibited lower hepatic cholesterol accumulation, damage, and inflammation than regular chow-fed Npc1nih mice. Moreover, plant stanol consumption shifted circulating T-cells and monocytes in particular toward an anti-inflammatory profile. Overall, these effects were stronger following dietary supplementation with 6% stanols, suggesting a dose-dependent effect. The findings of our study highlight the potential use of plant stanols as an affordable complementary means to ameliorate disorders in hepatic and blood lipid metabolism and reduce inflammation in NPC1 disease.
Collapse
Affiliation(s)
- Inês Magro Dos Reis
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Tom Houben
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Yvonne Oligschläger
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Leoni Bücken
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Hellen Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - David Cassiman
- Liver Research Unit University of Leuven, Leuven, Belgium; Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Marit Westerterp
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School for Nutrition, Toxicology, and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands. mailto:
| |
Collapse
|
11
|
Blanco-Vaca F, Cedó L, Julve J. Phytosterols in Cancer: From Molecular Mechanisms to Preventive and Therapeutic Potentials. Curr Med Chem 2020; 26:6735-6749. [PMID: 29874991 DOI: 10.2174/0929867325666180607093111] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/13/2018] [Accepted: 02/24/2018] [Indexed: 12/17/2022]
Abstract
Cancer is the second leading cause of death worldwide. Compelling evidence supports the hypothesis that the manipulation of dietary components, including plant compounds termed as phytochemicals, demonstrates certain important health benefits in humans, including those in cancer. In fact, beyond their well-known cardiovascular applications, phytosterols may also possess anticancer properties, as has been demonstrated by several studies. Although the mechanism of action by which phytosterols (and derivatives) may prevent cancer development is still under investigation, data from multiple experimental studies support the hypothesis that they may modulate proliferation and apoptosis of tumor cells. Phytosterols are generally considered safe for human consumption and may also be added to a broad spectrum of food matrices; further, they could be used in primary and secondary prevention. However, few interventional studies have evaluated the relationship between the efficacy of different types and forms of phytosterols in cancer prevention. In this context, the purpose of this review was to revisit and update the current knowledge on the molecular mechanisms involved in the anticancer action of phytosterols and their potential in cancer prevention or treatment.
Collapse
Affiliation(s)
- Francisco Blanco-Vaca
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau [IRHSCSP] i Institut d'Investigacio Biomedica Sant Pau [IIB-Sant Pau], Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lídia Cedó
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau [IRHSCSP] i Institut d'Investigacio Biomedica Sant Pau [IIB-Sant Pau], Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau [IRHSCSP] i Institut d'Investigacio Biomedica Sant Pau [IIB-Sant Pau], Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| |
Collapse
|
12
|
Nouri M, Farajdokht F, Torbati M, Ranjbar F, Hamedyazdan S, Araj-khodaei M, Sadigh-Eteghad S. A Close Look at Echium amoenum Processing, Neuroactive Components, and Effects on Neuropsychiatric Disorders. Galen Med J 2019; 8:e1559. [PMID: 34466529 PMCID: PMC8343809 DOI: 10.31661/gmj.v8i0.1559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/21/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
Pharmacological researches in the area of herbal medicine have considerably increased over the last two centuries. Echium amoenum (known as Gol-e-Gavzaban in Persian) is a medicinal plant that has been widely used in Iranian folk medicine. In this review, databases including PubMed, Scopus, and Google Scholar were searched up. Data collecting was completed by January 2019 and available scientific reports regarding the processing methods, main chemical constituents, and effects of E. amoenum on different neuropsychiatric disorders are summarized. Thirteen five studies met the inclusion criteria. According to results, the important phytochemicals of the plant was phenolic compounds, fatty acids, rosmarinic acid, anthocyanidins, and flavonoids. Also, experimental and clinical studies demonstrated the effectiveness of E. amoenum in the treatment of several neuropsychiatric disorders such as anxiety, depression, ischemic stroke, seizure, Alzheimer's disease, and pain. Many of these effects are, at least in part, due to its rosmarinic acid or polyphenolic compounds such as flavonoids and natural pigments such as anthocyanins. Also, fatty acids such as gamma-linolenic acid play critical role in neuroactive properties of this herb. Among these effects, only the antidepressant and anxiolytic properties of the plant extract have been examined both experimentally and clinically. There was some controversy over its toxicity effects. It seems that E. amoenum protects neurons via attenuation of oxidative stress and inflammation as well as blocking of apoptosis in the nervous system. However, more studies are necessary for assessing exact mechanisms of action in neuropsychiatric disorders, finding of bioactive ingredients, and processing methods of this plant.
Collapse
Affiliation(s)
- Mohammad Nouri
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ranjbar
- Psychiatry Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hamedyazdan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-khodaei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Olatunya AM, Omojola A, Akinpelu K, Akintayo ET. Vitamin E, Phospholipid, and Phytosterol Contents of Parkia biglobosa and Citrullus colocynthis Seeds and Their Potential Applications to Human Health. Prev Nutr Food Sci 2019; 24:338-343. [PMID: 31608260 PMCID: PMC6779087 DOI: 10.3746/pnf.2019.24.3.338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022] Open
Abstract
Vitamin E, phytosterol, and phospholipids are classes of lipids that are also referred to as nutraceuticals. These lipids are components of foods, which have nutritional as well as numerous other health benefits, and consumption has been shown to prevent certain deadly diseases. These compounds can only be obtained from plant products; there is therefore a need for more research on the availability of these compounds from common food sources. Oils extracted from Citrullus colocynthis and Parkia biglobosa seeds were analysed for vitamin E, phospholipid, and phytosterol contents using a chromatographic technique. The seeds had total vitamin E contents of 53.47 and 42.57 mg/100 g, phytosterol contents of 260 and 451 mg/100 g, and phospholipid contents of 409 and 1,603 mg/100 g for C. colocynthis and P. biglobosa, respectively. Thus, consumption of these two plants as condiments will help people consume these essential lipids and could serve as dietary supplements to prevent and combat occurrence of certain deadly diseases; this is important as the world is revolving towards disease prevention rather than curing, which is often more expensive and difficult.
Collapse
Affiliation(s)
| | - Akinwale Omojola
- Department of Chemistry, Ekiti State University, Ado-Ekiti, Ekiti State 360221, Nigeria
| | - Kolawole Akinpelu
- Department of Chemistry, Ekiti State University, Ado-Ekiti, Ekiti State 360221, Nigeria
| | | |
Collapse
|
14
|
Kilvington A, Maldonado‐Pereira L, Torres‐Palacios C, Medina‐Meza I. Phytosterols and their oxidative products in infant formula. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alice Kilvington
- Department of Chemical Engineering and Materials ScienceMichigan State University East Lansing Michigan
| | - Lisaura Maldonado‐Pereira
- Department of Chemical Engineering and Materials ScienceMichigan State University East Lansing Michigan
| | - Cristobal Torres‐Palacios
- Department of Biosystems and Agricultural EngineeringMichigan State University East Lansing Michigan
| | - Ilce Medina‐Meza
- Department of Chemical Engineering and Materials ScienceMichigan State University East Lansing Michigan
- Department of Biosystems and Agricultural EngineeringMichigan State University East Lansing Michigan
| |
Collapse
|
15
|
Ubeyitogullari A, Moreau R, Rose DJ, Ciftci ON. In Vitro Bioaccessibility of Low-Crystallinity Phytosterol Nanoparticles Generated Using Nanoporous Starch Bioaerogels. J Food Sci 2019; 84:1812-1819. [PMID: 31218690 DOI: 10.1111/1750-3841.14673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/05/2019] [Accepted: 05/07/2019] [Indexed: 11/27/2022]
Abstract
Phytosterols are natural health-promoting bioactive compounds; however, phytosterols have very limited bioavailability due to their crystalline lipophilic structure. With the aim of improving bioaccessibility, low-crystallinity phytosterol nanoparticles were generated by supercritical carbon dioxide (SC-CO2 ) impregnation of phytosterols into nanoporous starch aerogels (NSAs). The in vitro bioaccessibility of the phytosterol nanoparticles (35%) was significantly higher than that of the crude phytosterols (3%) after sequential oral, gastric, and intestinal digestion. The percentages of starch hydrolysis were not different among the various NSA preparations and reached to 64% after sequential digestion. The zeta potential of the phytosterol nanoparticles was higher compared to that of crude phytosterols in the micellar phase; indicating higher stability. The findings of this study support the use of NSA to produce nanoparticles of reduced crystallinity to improve the bioaccessibility of the lipophilic bioactive compounds. PRACTICAL APPLICATIONS: This novel process can decrease the size and crystallinity of phytosterols and thus improve phytosterols' bioavailability. It is a blueprint to apply to other water insoluble food bioactives. This novel approach may (i) improve the health benefits of water-insoluble bioactives; (ii) enable food manufacturers to add water-insoluble bioactives into low- and high-fat foods to produce health-promoting foods; and (iii) enhance the cost-benefit ratio of water insoluble bioactives.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Dept. of Food Science and Technology, Univ. of Nebraska-Lincoln, Lincoln, NE, 68588-6205, U.S.A
| | - Régis Moreau
- Dept. of Nutrition and Health Sciences, Univ. of Nebraska-Lincoln, Lincoln, NE, 68583-0806, U.S.A
| | - Devin J Rose
- Dept. of Food Science and Technology, Univ. of Nebraska-Lincoln, Lincoln, NE, 68588-6205, U.S.A
| | - Ozan N Ciftci
- Dept. of Food Science and Technology, Univ. of Nebraska-Lincoln, Lincoln, NE, 68588-6205, U.S.A
| |
Collapse
|
16
|
Ayaz M, Sadiq A, Wadood A, Junaid M, Ullah F, Zaman Khan N. Cytotoxicity and molecular docking studies on phytosterols isolated from Polygonum hydropiper L. Steroids 2019; 141:30-35. [PMID: 30444979 DOI: 10.1016/j.steroids.2018.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023]
Abstract
Based on our previous studies on cytotoxic potentials of Polygonum hydropiper L, two steroidal compounds beta-sitosterol and stigmasterol were isolated from the most active fraction and were subjected to cell lines cytotoxicity. Isolated compounds were tested against HeLa, MCF-7 and NIH/3T3 cell lines following MTT assay. Furthermore, the compounds were also docked against tyrosine kinase enzyme to predict the binding mode of phytosterols in the active sites of the enzyme. Beta-sitosterol exhibited considerable cytotoxicity against NIH/3T3, HeLa and MCF-7 cell with 67.05 ± 2.08, 79.63 ± 2.34 and 71.50 ± 1.57% lethality respectively at 1 mg/ml concentration. Median inhibitory concentrations calculated from dose response curve against NIH/3T3, HeLa and MCF-7 cells were 440, 170 and 200 µg/ml respectively. Stigmasterol was more effective against MCF-7 and NIH/3T3 cells by killing 87.50 and 81.45% cancerous cells respectively at 1 mg/ml concentration. Stigmasterol showed 77.25% cyctotoxicity against HeLA cells at 1 mg/ml concentration in MTT assay. The IC50 values for HeLA, MCF-7 and NIH/3T3 cells were 170, 60 and 140 µg/ml respectively. In docking studies, the docking score for beta-sitosterol and stigmasterol were -7.266 and -4.89 respectively. The binding energies for beta-sitosterol and stigmasterol were -41.21 and -41.04 respectively. Such lower binding energies indicate that the compounds fit into the active site more strongly. Binding affinities for both compounds were -7.76 and -7.68 respectively. Both phytosterols possess significant anticancer potentials and can be effective in the prevention and treatment of several malignancies.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK, Pakistan; Department of Life Sciences & Chemistry, Faculty of Health, Jacobs University Bremen, Germany
| | - Abdul Wadood
- Department of Biochemistry, UCS, Shankar Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan.
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK, Pakistan
| | - Nadir Zaman Khan
- Department of Biotechnology, University of Malakand, Chakdara 18000, Dir (L), KPK, Pakistan.
| |
Collapse
|
17
|
Yang W, Gage H, Jackson D, Raats M. The effectiveness and cost-effectiveness of plant sterol or stanol-enriched functional foods as a primary prevention strategy for people with cardiovascular disease risk in England: a modeling study. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2018; 19:909-922. [PMID: 29110223 PMCID: PMC6105215 DOI: 10.1007/s10198-017-0934-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/04/2017] [Indexed: 05/08/2023]
Abstract
This study appraises the effectiveness and cost-effectiveness of consumption of plant sterol-enriched margarine-type spreads for the prevention of cardiovascular disease (CVD) in people with hypercholesterolemia in England, compared to a normal diet. A nested Markov model was employed using the perspective of the British National Health Service (NHS). Effectiveness outcomes were the 10-year CVD risk of individuals with mild (4-6 mmol/l) and high (above 6 mmol/l) cholesterol by gender and age groups (45-54, 55-64, 65-74, 75-85 years); CVD events avoided and QALY gains over 20 years. This study found that daily consumption of enriched spread reduces CVD risks more for men and older age groups. Assuming 50% compliance, 69 CVD events per 10,000 men and 40 CVD events per 10,000 women would be saved over 20 years. If the NHS pays the excess cost of enriched spreads, for the high-cholesterol group, the probability of enriched spreads being cost-effective is 100% for men aged over 64 years and women over 74, at £20,000/QALY threshold. Probabilities of cost-effectiveness are lower at younger ages, with mildly elevated cholesterol and over a 10-year time horizon. If consumers bear the full cost of enriched spreads, NHS savings arise from reduced CVD events.
Collapse
Affiliation(s)
- Wei Yang
- Department of Global Health and Social Medicine, King’s College London, London, WC2R 2LS UK
| | - Heather Gage
- School of Economics, University of Surrey, Guildford, Surrey, GU2 7XH UK
| | - Daniel Jackson
- School of Economics, University of Surrey, Guildford, Surrey, GU2 7XH UK
| | - Monique Raats
- School of Psychology, Faculty of Health and Medical Sciences, Food, Consumer Behaviour and Health Research Centre, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
18
|
Kuang H, Yang F, Zhang Y, Wang T, Chen G. The Impact of Egg Nutrient Composition and Its Consumption on Cholesterol Homeostasis. CHOLESTEROL 2018; 2018:6303810. [PMID: 30210871 PMCID: PMC6126094 DOI: 10.1155/2018/6303810] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Nutrient deficiencies and excess are involved in many aspects of human health. As a source of essential nutrients, eggs have been used worldwide to support the nutritional needs of human societies. On the other hand, eggs also contain a significant amount of cholesterol, a lipid molecule that has been associated with the development of cardiovascular diseases. Whether the increase of egg consumption will lead to elevated cholesterol absorption and disruption of cholesterol homeostasis has been a concern of debate for a while. Cholesterol homeostasis is regulated through its dietary intake, endogenous biosynthesis, utilization, and excretion. Recently, some research interests have been paid to the effects of egg consumption on cholesterol homeostasis through the intestinal cholesterol absorption. Nutrient components in eggs such as phospholipids may contribute to this process. The goals of this review are to summarize the recent progress in this area and to discuss some potential benefits of egg consumption.
Collapse
Affiliation(s)
- Heqian Kuang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
19
|
Shimada R, Ebihara K. Soybean amplifies the hypohomocysteinemic effect of betaine and improves its hypercholesterolemic effect. Biosci Biotechnol Biochem 2018; 82:669-676. [PMID: 29207911 DOI: 10.1080/09168451.2017.1403886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
We examined whether soybean (SB) and soy protein isolate (SPI) can prevent the betaine-induced elevation of plasma cholesterol as well as maintain the betaine-induced reduction of plasma Hcy concentration. Rats were fed casein-, SB-, or SPI-based diet with or without betaine; SPI-based diet with betaine containing soybean fiber (SF) or soy lecithin (SL) or the combination of SF and SL. Plasma Hcy concentration was decreased by feeding betaine to rats fed the casein-, SB-, and SPI-based diets. Betaine-induced elevation of plasma cholesterol was decreased by feeding the SB-based diet compared with the casein-based diet, but was not decreased by feeding the SPI-based diet. In rats fed the SPI-based diet, the increased concentration of plasma cholesterol by betaine feeding was not prevented by independent addition of SL or SF, but was prevented by a combination of SL and SF, and was associated with increased fecal excretion of bile acids.
Collapse
Key Words
- BHMT, betaine-homocysteine-S-methyltransferase
- Betaine
- CBS, cystathionine β-synthesis
- CYP7A1, cholesterol 7α-hydroxylase
- HMG-CoA reductase, hydroxymethylglutaryl-CoA reductase
- Hcy, homocysteine
- MS, methionine synthesis
- MTP, microsomal triglyceride transfer protein
- SAH, S-adenosyl-L-homocysteine
- SAM, S-adenosylmethionine, SPI, soy protein isolate
- SB, soybean
- SF, soy fiber
- SL, soy lecithin
- TG, triglyceride
- plasma cholesterol
- plasma homocysteine
- soy protein isolate
- soybean
Collapse
Affiliation(s)
- Ryoko Shimada
- a Faculty of Health Sciences , Osaka Aoyama University , Osaka , Japan
| | - Kiyoshi Ebihara
- a Faculty of Health Sciences , Osaka Aoyama University , Osaka , Japan
- b Department of Biological Resources, Faculty of Agriculture , Ehime University , Matsuyama , Japan
| |
Collapse
|
20
|
Saberioon M, Císař P, Labbé L, Souček P, Pelissier P, Kerneis T. Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1027. [PMID: 29596375 PMCID: PMC5948703 DOI: 10.3390/s18041027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 11/23/2022]
Abstract
The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k-Nearest neighbours (k-NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.
Collapse
Affiliation(s)
- Mohammadmehdi Saberioon
- Institute of Complex Systems, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zámek 136, Nové Hrady 37 333, Czech Republic.
| | - Petr Císař
- Institute of Complex Systems, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zámek 136, Nové Hrady 37 333, Czech Republic.
| | - Laurent Labbé
- Institut National de la Recherche Agronomique (INRA), UE 0937 PEIMA (Pisciculture Expérimentale INRA des Monts d'Arrée), 29450 Sizun, France.
| | - Pavel Souček
- Institute of Complex Systems, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zámek 136, Nové Hrady 37 333, Czech Republic.
| | - Pablo Pelissier
- Institut National de la Recherche Agronomique (INRA), UE 0937 PEIMA (Pisciculture Expérimentale INRA des Monts d'Arrée), 29450 Sizun, France.
| | - Thierry Kerneis
- Institut National de la Recherche Agronomique (INRA), UE 0937 PEIMA (Pisciculture Expérimentale INRA des Monts d'Arrée), 29450 Sizun, France.
| |
Collapse
|
21
|
Kim Y, Keogh JB, Clifton PM. Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions. Nutrients 2017; 9:E1271. [PMID: 29165404 PMCID: PMC5707743 DOI: 10.3390/nu9111271] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Epidemiological and clinical studies have indicated that nut consumption could be a healthy dietary strategy to prevent and treat type 2 diabetes (T2DM) and related cardiovascular disease (CVD). The objective of this review is to examine the potential mechanisms of action of nuts addressing effects on glycemic control, weight management, energy balance, appetite, gut microbiota modification, lipid metabolism, oxidative stress, inflammation, endothelial function and blood pressure with a focus on data from both animal and human studies. The favourable effects of nuts could be explained by the unique nutrient composition and bioactive compounds in nuts. Unsaturated fatty acids (monounsaturated fatty acids and polyunsaturated fatty acids) present in nuts may play a role in glucose control and appetite suppression. Fiber and polyphenols in nuts may also have an anti-diabetic effect by altering gut microbiota. Nuts lower serum cholesterol by reduced cholesterol absorption, inhibition of HMG-CoA reductase and increased bile acid production by stimulation of 7-α hydroxylase. Arginine and magnesium improve inflammation, oxidative stress, endothelial function and blood pressure. In conclusion, nuts contain compounds that favourably influence glucose homeostasis, weight control and vascular health. Further investigations are required to identify the most important mechanisms by which nuts decrease the risk of T2DM and CVD.
Collapse
Affiliation(s)
- Yoona Kim
- School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia.
| | - Jennifer B Keogh
- School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia.
| | - Peter M Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
22
|
Ubeyitogullari A, Ciftci ON. Generating phytosterol nanoparticles in nanoporous bioaerogels via supercritical carbon dioxide impregnation: Effect of impregnation conditions. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Isolation, biological evaluation and validated HPTLC-quantification of the marker constituent of the edible Saudi plant Sisymbrium irio L. Saudi Pharm J 2016; 25:750-759. [PMID: 28725148 PMCID: PMC5506741 DOI: 10.1016/j.jsps.2016.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022] Open
Abstract
Phytochemical investigation and chromatographic purification of the n-hexane fraction of the aerial parts of the edible Saudi plant Sisymbrium irio led to the isolation of β-sitosterol (1), stigmasterol (2) and β-sitosterol-β-d-glucoside (3). The cytotoxic effects of the n-hexane, dichloromethane, ethyl acetate and n-butanol fractions were tested against three cancer cell lines viz., MCF-7, HCT-116 and HepG2, using the crystal violet staining (CVS) method, while the antibacterial activity against a number of pathogenic bacterial strains, was also estimated using the broth microdilution assay. The n-hexane fraction showed potent cytotoxic activities against all tested human cancer cell lines (IC50: 11.7–13.4 μg/mL), while the dichloromethane fraction was particularly potent against HCT-116 cells (IC50: 5.42 μg/mL). On the other hand, the n-hexane and EtOAc fractions demonstrated significant inhibitory activities against the Gram positive bacteria S. pyogenes and C. perfringens; and the Gram negative bacterium S. enteritidis. Our results warrant the therapeutic potential of S. irio as nutritional supplement to reduce the risk of contemporary diseases. Additionally, a validated high performance thin-layer chromatography (HPTLC) method was developed for the quantitative analysis of biomarker β-sitosterol glucoside (isolated in high quantity) from the n-hexane fraction. The system was found to furnish a compact, sharp, symmetrical and high resolution band for β-sitosterol glucoside (Rf = 0.43 ± 0.002). The limit of detection (LOD) and limit of quantification (LOQ) for β-sitosterol glucoside was found to be 21.84 and 66.18 ng band−1, respectively. β-sitosterol glucoside was found to be present only in n-hexane fraction (2.10 μg/mg of dried fraction) while it was absent in the other fractions of S. irio which validated the high cytotoxic and antibacterial activity of n-hexane fraction of S. irio.
Collapse
|
24
|
|
25
|
Izadi Z, Nasirpour A, Garoosi GA, Tamjidi F. Rheological and physical properties of yogurt enriched with phytosterol during storage. Journal of Food Science and Technology 2014; 52:5341-6. [PMID: 26243963 DOI: 10.1007/s13197-014-1593-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/06/2013] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
Phytosterols enriched products are innovative types of functional foods, in which dairy products, like low fat yogurt are ideal vehicles for this functional component. In this study, phytosterol dispersions were prepared using an oil/water (O/W) emulsion. The emulsion was added to yogurt milk. pH, titratable acidity (TA), syneresis, firmness and apparent viscosity of enriched yogurt were determined during storage. Moreover, phytosterols distribution in different parts of enriched yogurt was studied. Results indicated that in enriched yogurt, apparent viscosity and syneresis were lower and firmness was higher compared to the control. Addition of phytosterol to the yogurt had significant effect on acidity. Distribution of phytosterols in different parts of one sample was not uniform. Sensory results showed that there was no significant difference between enriched and control on texture, appearance, flavor and overall acceptance.
Collapse
Affiliation(s)
- Zahra Izadi
- Young Researcher Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Islamic Republic of Iran ; Department of Food Science and Technology, Faculty of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Ali Nasirpour
- Department of Food Science and Technology, Faculty of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Ghasemali Ali Garoosi
- Department of Agricultural Biotechnology, Faculty of Engineering, Imam Khomeini International University (IKIU), Qazvin, Islamic Republic of Iran
| | - Fardin Tamjidi
- College of Agriculture, University of Kurdistan, Sanandaj, 66177-15175 Iran
| |
Collapse
|
26
|
Flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats modulate lipid metabolism and biliary cholesterol secretion in C57BL/6 mice. Br J Nutr 2014; 112:886-99. [DOI: 10.1017/s0007114514001536] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Black bean (Phaseolus vulgaris L.) seed coats are a rich source of natural compounds with potential beneficial effects on human health. Beans exert hypolipidaemic activity; however, this effect has not been attributed to any particular component, and the underlying mechanisms of action and protein targets remain unknown. The aim of the present study was to identify and quantify primary saponins and flavonoids extracted from black bean seed coats, and to study their effects on lipid metabolism in primary rat hepatocytes and C57BL/6 mice. The methanol extract of black bean seed coats, characterised by a HPLC system with a UV–visible detector and an evaporative light-scattering detector and HPLC–time-of-flight/MS, contained quercetin 3-O-glucoside and soyasaponin Af as the primary flavonoid and saponin, respectively. The extract significantly reduced the expression of SREBP1c, FAS and HMGCR, and stimulated the expression of the reverse cholesterol transporters ABCG5/ABCG8 and CYP7A1 in the liver. In addition, there was an increase in the expression of hepatic PPAR-α. Consequently, there was a decrease in hepatic lipid depots and a significant increase in bile acid secretion. Furthermore, the ingestion of this extract modulated the proportion of lipids that was used as a substrate for energy generation. Thus, the results suggest that the extract of black bean seed coats may decrease hepatic lipogenesis and stimulate cholesterol excretion, in part, via bile acid synthesis.
Collapse
|
27
|
A moderate-fat diet containing pistachios improves emerging markers of cardiometabolic syndrome in healthy adults with elevated LDL levels. Br J Nutr 2014; 112:744-52. [PMID: 25008473 DOI: 10.1017/s0007114514001561] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A randomised, cross-over, controlled-feeding study was conducted to evaluate the cholesterol-lowering effects of diets containing pistachios as a strategy for increasing total fat (TF) levels v. a control (step I) lower-fat diet. Ex vivo techniques were used to evaluate the effects of pistachio consumption on lipoprotein subclasses and functionality in individuals (n 28) with elevated LDL levels ( ≥ 2·86 mmol/l). The following test diets (SFA approximately 8 % and cholesterol < 300 mg/d) were used: a control diet (25 % TF); a diet comprising one serving of pistachios per d (1PD; 30 % TF); a diet comprising two servings of pistachios per d (2PD; 34 % TF). A significant decrease in small and dense LDL (sdLDL) levels was observed following the 2PD dietary treatment v. the 1PD dietary treatment (P= 0·03) and following the 2PD dietary treatment v. the control treatment (P= 0·001). Furthermore, reductions in sdLDL levels were correlated with reductions in TAG levels (r 0·424, P= 0·025) following the 2PD dietary treatment v. the control treatment. In addition, inclusion of pistachios increased the levels of functional α-1 (P= 0·073) and α-2 (P= 0·056) HDL particles. However, ATP-binding cassette transporter A1-mediated serum cholesterol efflux capacity (P= 0·016) and global serum cholesterol efflux capacity (P= 0·076) were only improved following the 2PD dietary treatment v. the 1PD dietary treatment when baseline C-reactive protein status was low ( < 103μg/l). Moreover, a significant decrease in the TAG:HDL ratio was observed following the 2PD dietary treatment v. the control treatment (P= 0·036). There was a significant increase in β-sitosterol levels (P< 0·0001) with the inclusion of pistachios, confirming adherence to the study protocol. In conclusion, the inclusion of pistachios in a moderate-fat diet favourably affects the cardiometabolic profile in individuals with an increased risk of CVD.
Collapse
|
28
|
|
29
|
Cusack LK, Fernandez ML, Volek JS. The food matrix and sterol characteristics affect the plasma cholesterol lowering of phytosterol/phytostanol. Adv Nutr 2013; 4:633-43. [PMID: 24228192 PMCID: PMC3823509 DOI: 10.3945/an.113.004507] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Foods with added phytosterols/phytostanols (PS) are recommended to lower LDL cholesterol (LDL-c) concentrations. Manufacturers have incorporated PS into a variety of common foods. Understanding the cholesterol-lowering impact of the food matrix and the PS characteristics would maximize their success and increase the benefit to consumers. This review systematically examines whether the PS characteristics and the fatty acid composition of foods with added PS affects serum LDL-c. A total of 33 studies published between the years 1998 and 2011 inclusive of 66 individual primary variables (strata) were evaluated. The functional food matrices included margarine, mayonnaise, yogurt, milk, cheese, meat, grain, juice, and chocolate. Consistently, ≥10% reductions in LDL-c were reported when the characteristics of the food matrix included poly- and monounsaturated fatty acids known to lower LDL-c. Also, >10% mean reductions in LDL-c were reported when β-sitostanol and campestanol as well as stanol esters were used. These characteristics allow both low-fat and high-fat foods to successfully incorporate PS and significantly lower LDL-c.
Collapse
Affiliation(s)
| | | | - Jeff S. Volek
- Departments of Kinesiology and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Lakshminarayana R, Baskaran V. Influence of olive oil on the bioavailability of carotenoids. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Vallikannan Baskaran
- Department of Biochemistry and Nutrition and Department of Molecular NutritionCentral Food Technological Research Institute (CSIR)MysoreIndia
| |
Collapse
|
31
|
Kunces LJ, Cusack LK, Kupchak BR, Volk BM, Freidenreich DJ, Aristizabal JC, Saenz C, Pei R, Guo Y, Fernandez ML, Bruno RS, Maresh CM, Kraemer WJ, Pronczuk A, Hayes KC, Volek JS. Triglyceride Recrystallized Phytosterols in Fat-Free Milk Improve Lipoprotein Profiles More Than Unmodified Free Phytosterols in Hypercholesterolemic Men and Women. J Am Coll Nutr 2013; 32:234-42. [DOI: 10.1080/07315724.2013.816597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
|
33
|
Hovingh GK, Davidson MH, Kastelein JJ, O'Connor AM. Diagnosis and treatment of familial hypercholesterolaemia. Eur Heart J 2013; 34:962-71. [DOI: 10.1093/eurheartj/eht015] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
Izadi Z, Nasirpour A, Garousi G. Optimization of Phytosterols Dispersion in an Oil/Water Emulsion Using Mixture Design Approach. J DISPER SCI TECHNOL 2012. [DOI: 10.1080/01932691.2011.646599] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Investigation of unsaponifiable matter of plant oils and isolation of eight phytosterols by means of high-speed counter-current chromatography. J Chromatogr A 2012; 1237:96-105. [DOI: 10.1016/j.chroma.2012.03.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/20/2022]
|
36
|
The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. Eur J Pharmacol 2012; 676:64-70. [DOI: 10.1016/j.ejphar.2011.11.050] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 11/24/2011] [Accepted: 11/27/2011] [Indexed: 01/13/2023]
|
37
|
AWAISHEH SADDAM, AL-DMOOR HANEE, OMAR SHARAF, HAWARI AZMY, ALROYLI MESHREF. Impact of selected nutraceuticals on viability of probiotic strains in milk during refrigerated storage at 4 °C for 15 days. INT J DAIRY TECHNOL 2012. [DOI: 10.1111/j.1471-0307.2011.00817.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem Phys Lipids 2011; 164:607-24. [PMID: 21699886 DOI: 10.1016/j.chemphyslip.2011.06.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 02/07/2023]
Abstract
Over the past 15 years, plant sterol-enriched foods have faced a great increase in the market, due to the asserted cholesterol-lowering effect of plant sterols. However, owing to their chemical structures, plant sterols can oxidize and produce a wide variety of oxidation products with controversial biological effects. Although oxyphytosterols can derive from dietary sources and endogenous formation, their single contribution should be better defined. The following review provides an overall and critical picture on the current knowledge and future perspectives of plant sterols-enriched food, particularly focused on occurrence of plant sterol oxidation products and their biological effects. The final objective of this overview is to evince the different aspects of plant sterols-enriched food that require further research, for a better understanding of the influence of plant sterols and their oxides on consumers' health.
Collapse
|
39
|
He WS, Jia CS, Yang YB, Ma Y, Zhang XM, Feng B, Jin J. Cholesterol-lowering effects of plant steryl and stanyl laurate by oral administration in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5093-5099. [PMID: 21413824 DOI: 10.1021/jf104031e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The present study was conducted to investigate the efficacy of synthesized plant steryl and stanyl laurate in lowering the cholesterol level and to further examine the cholesterol-lowering potential of the free plant sterols and stanols dissolved in liquid emulsion on serum and liver lipids in mice by oral administration. Experimental results showed that both plant steryl and stanyl laurate could significantly decrease the serum levels of TC, LDL-C, LDL-C/HDL-C, and liver cholesterol contents and markedly increase fecal cholesterol concentrations but have no effect on serum TAG level, indicating that the produced plant steryl and stanyl laurate retained the cholesterol-lowering potential of natural plant sterols and stanols. However, no statistical difference in cholesterol-lowering efficacy was observed between plant steryl laurate and plant stanyl laurate, and free plant sterols and stanols dissolved in liquid emulsion could also significantly decrease serum cholesterol levels and markedly increase fecal cholesterol excretion. These results suggested that the esterified plant sterols/stanols had comparable effects to the free plant sterols/stanols in lowering serum TC levels but that they did gain a solubility advantage from the free plant sterols/stanols. Therefore, plant steryl/stanyl laurate could be considered as a potential nutraceutical or functional ingredient to reduce or prevent atherosclerosis and its related complications.
Collapse
Affiliation(s)
- Wen-Sen He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Lin X, Ma L, Moreau RA, Ostlund RE. Glycosidic bond cleavage is not required for phytosteryl glycoside-induced reduction of cholesterol absorption in mice. Lipids 2011; 46:701-8. [PMID: 21538209 DOI: 10.1007/s11745-011-3560-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
Phytosteryl glycosides occur in natural foods but little is known about their metabolism and bioactivity. Purified acylated steryl glycosides (ASG) were compared with phytosteryl esters (PSE) in mice. Animals on a phytosterol-free diet received ASG or PSE by gavage in purified soybean oil along with tracers cholesterol-d(7) and sitostanol-d(4). In a three-day fecal recovery study, ASG reduced cholesterol absorption efficiency by 45 ± 6% compared with 40 ± 6% observed with PSE. Four hours after gavage, plasma and liver cholesterol-d(7) levels were reduced 86% or more when ASG was present. Liver total phytosterols were unchanged after ASG administration but were significantly increased after PSE. After ASG treatment both ASG and deacylated steryl glycosides (SG) were found in the gut mucosa and lumen. ASG was quantitatively recovered from stool samples as SG. These results demonstrate that ASG reduces cholesterol absorption in mice as efficiently as PSE while having little systemic absorption itself. Cleavage of the glycosidic linkage is not required for biological activity of ASG. Phytosteryl glycosides should be included in measurements of bioactive phytosterols.
Collapse
Affiliation(s)
- Xiaobo Lin
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
41
|
High-speed counter-current chromatographic separation of phytosterols. Anal Bioanal Chem 2011; 400:3615-23. [DOI: 10.1007/s00216-011-4995-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/23/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
|
42
|
Chongtham N, Bisht MS, Haorongbam S. Nutritional Properties of Bamboo Shoots: Potential and Prospects for Utilization as a Health Food. Compr Rev Food Sci Food Saf 2011. [DOI: 10.1111/j.1541-4337.2011.00147.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Consumption of a plant sterol-based spread derived from rice bran oil is effective at reducing plasma lipid levels in mildly hypercholesterolaemic individuals. Br J Nutr 2011; 105:1808-18. [PMID: 21320365 DOI: 10.1017/s0007114510005519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To establish the effectiveness of a new phytosterol-containing spread derived from rice bran oil (RBO), a randomised, double-blind, cross-over human clinical trial was conducted over 12 weeks. A total of eighty mildly hypercholesterolaemic (total blood cholesterol level ≥ 5 and ≤ 7·5 mmol/l with a serum TAG level of ≤ 4·5 mmol/l) individuals were randomised into two groups (n 40). Group 1 consumed spread only daily for 4 weeks. They were randomised to consume 20 g RBO spread (RBOS), 20 g standard spread (SS) or 20 g phytosterol-enriched spread (PS). After a 4-week period, individuals changed to the next randomised treatment until all three treatments had been consumed. Group 2 consumed spread plus oil daily for 4 weeks. They consumed 20 g RBOS plus 30 ml RBO, 20 g SS plus 30 ml sunflower oil or 20 g RBOS. Blood samples were collected for the analysis of lipid parameters, and 3 d diet records were collected. Compared with SS, RBOS significantly reduced total cholesterol by 2·2 % (P = 0·045), total cholesterol:HDL by 4·1 % (P = 0·005) and LDL-cholesterol by 3·5 % (P = 0·016), but was not as effective overall as PS, which reduced total cholesterol by 4·4 % (P = 0·001), total cholesterol:HDL by 3·4 % (P = 0·014) and LDL-cholesterol by 5·6 % (P = 0·001). In group 2, the addition of RBO to the RBOS produced no differences in cholesterol levels. These results confirm that RBOS is effective in lowering serum cholesterol when consumed as part of a normal diet.
Collapse
|
44
|
|
45
|
Abstract
Phytosterols are biofactors found enriched in plant foods such as seeds, grains, and legumes. Their dietary consumption is associated with numerous health benefits. Epidemiologic and experimental animal studies indicate that phytosterols are cancer chemopreventive agents particularly against cancers of the colon, breast, and prostate. Phytosterols impede oncogenesis and prevent cancer cell proliferation and survival. The molecular mechanisms underlying these beneficial actions involve effects on signal transduction processes which regulate cell growth and apoptosis. Phytosterols increase sphingomyelin turnover, ceramide formation, and liver X receptor activation. In concert, these actions slow cell cycle progression, inhibit cell proliferation, and activate caspase cascades and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Peter G Bradford
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, 14214-3000, USA.
| | | |
Collapse
|
46
|
Saraiva D, da Conceição Castilho M, do Rosário Martins M, da Silveira MIN, Ramos F. Evaluation of Phytosterols in Milk and Yogurts Used as Functional Foods in Portugal. FOOD ANAL METHOD 2010. [DOI: 10.1007/s12161-010-9131-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Racette SB, Spearie CA, Phillips KM, Lin X, Ma L, Ostlund RE. Phytosterol-deficient and high-phytosterol diets developed for controlled feeding studies. JOURNAL OF THE AMERICAN DIETETIC ASSOCIATION 2009; 109:2043-51. [PMID: 19942022 PMCID: PMC2833354 DOI: 10.1016/j.jada.2009.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 04/30/2009] [Indexed: 02/07/2023]
Abstract
Phytosterols reduce cholesterol absorption and low-density lipoprotein cholesterol concentrations, but the quantity and physiological significance of phytosterols in common diets are generally unknown because nutrient databases do not contain comprehensive phytosterol data. The primary aim of this study was to design prototype phytosterol-deficient and high-phytosterol diets for use in controlled feeding studies of the influence of phytosterols on health. A second aim was to quantify the phytosterol content of these prototype diets and three other diets consumed in the United States. This study was conducted from June 2001 to September 2008 and involved designing, preparing, and then analyzing five different diets: an experimental phytosterol-deficient control diet, a relatively high-phytosterol diet based on the Dietary Approaches to Stop Hypertension diet, American Heart Association diet, Atkins lifetime maintenance plan, and a vegan diet. A single day of meals for each diet was homogenized and the resulting composites were analyzed for free, esterified, and glycosylated phytosterols by gas chromatography. Independent samples t tests were used to compare the diets' total phytosterol content. The total phytosterol content of the experimental phytosterol-deficient diet was 64 mg/2,000 kcal, with progressively larger quantities in Atkins, American Heart Association, vegan, and the high-phytosterol Dietary Approaches to Stop Hypertension diet (163, 340, 445, and 500 mg/2,000 kcal, respectively). Glycosylated phytosterols, which are often excluded from phytosterol analyses, comprised 15.9%+/-5.9% of total phytosterols. In summary, phytosterol-deficient and high-phytosterol diets that conform to recommended macronutrient guidelines and are palatable can now be used in controlled feeding studies.
Collapse
Affiliation(s)
- Susan B. Racette
- Assistant Professor, Department of Medicine and Program in Physical Therapy, Washington University School of Medicine, Campus Box 8502, 4444 Forest Park Ave. St. Louis, MO 63108, Phone: 314-286-1424, Fax: 314-286-1410
| | - Catherine Anderson Spearie
- Head Dietitian & Nutritionist, General Clinical Research Center, Washington University School of Medicine, Campus Box 8071, 660 S. Euclid Ave. St. Louis, MO 63110, Phone: 314-362-7627, Fax: 314-362-1546
| | - Katherine M. Phillips
- Research Scientist, Department of Biochemistry, Virginia Polytechnic Institute and State University, Director, Food Analysis Laboratory, 304 Engel Hall, Virginia Tech, Blacksburg, VA 24061, Phone: 540-231-9960, Fax: 540-231-9070
| | - Xiaobo Lin
- Senior Scientist, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 S. Euclid Ave. St. Louis, MO 63110, Phone: 314-362-8287, FAX: 314-362-7641
| | - Lina Ma
- Research Technician II, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 S. Euclid Ave. St. Louis, MO 63110, Phone: 314-362-8289, FAX: 314-362-7641
| | - Richard E. Ostlund
- Professor, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 S. Euclid Ave. St. Louis, MO 63110, Phone: 314-362-8286, FAX: 314-362-7641
| |
Collapse
|
48
|
Ferretti G, Bacchetti T, Masciangelo S, Bicchiega V. Effect of phytosterols on copper lipid peroxidation of human low-density lipoproteins. Nutrition 2009; 26:296-304. [PMID: 19815390 DOI: 10.1016/j.nut.2009.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/23/2009] [Accepted: 04/15/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Phytosterols and stanols have received much attention in the past several years because of their cholesterol-lowering properties, and several studies have shown a protective effect against cardiovascular disease and colon and breast cancer development. A significant decrease of plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B has been demonstrated in subjects whose diet was supplemented with 2g/d of plant sterols. Changes in plasma lipoprotein levels were associated with a decrease of oxidized LDL, suggesting that plant sterols could exert an antioxidant effect. The aim of the present study was to further investigate the interaction between the major dietary phytosterols and plasma lipoproteins. Moreover, their antioxidant effect against in vitro-induced lipid peroxidation of human LDL was investigated. METHODS Susceptibility to copper-induced lipid peroxidation was investigated in LDLs isolated from plasma of normolipemic subjects. Concentrations of beta-sitosterol, campesterol, and stigmasterol ranging from 5 to 50 microM were studied. Analyses of the emission fluorescence spectra of tryptophan and of the probe 6-dodecanoyl-2-dimethyl-aminoaphthalene were used to investigate the effect of phytosterols on apoprotein structure and physicochemical properties of LDL. RESULTS Our results demonstrated that phytosterols exert an inhibitory effect against copper-induced lipid peroxidation of LDLs, as shown by the lowered levels of conjugated dienes in oxidized lipoproteins incubated with different concentrations of plant sterols (5-50 microM). Moreover, analysis of fluorescence emission spectra of tryptophan and 6-dodecanoyl-2-dimethyl-aminoaphthalene demonstrated that phytosterols prevent the alterations of apoprotein structure and physicochemical properties associated with copper-triggered lipid peroxidation of lipoproteins. CONCLUSION We suggest that the effect exerted by beta-sitosterol, stigmasterol, and campesterol against lipid peroxidation of LDL possibly related to phytosterol-lipoprotein interactions could be of physiologic relevance.
Collapse
Affiliation(s)
- Gianna Ferretti
- Dipartimento di Biochimica, Biologia e Genetica, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | |
Collapse
|
49
|
Hearty ÁP, Duffy E, Gibney MJ. Intake estimates of naturally occurring phytosterols using deterministic and probabilistic methods in a representative Irish population. Int J Food Sci Nutr 2009; 60:533-46. [DOI: 10.1080/09637480801892437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Baron CP, Hyldig G, Jacobsen C. Does feed composition affect oxidation of rainbow trout (Oncorhynchus mykiss) during frozen storage? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4185-4194. [PMID: 19397372 DOI: 10.1021/jf803552h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Rainbow trout ( Oncorhynchus mykiss ) were fed a diet containing either fish oil or rapeseed oil and with or without 200 mg/kg carotenoid (either astaxanthin or canthaxanthin). A total of six diets were obtained: (1) fish oil/astaxanthin; (2) vegetable oil/astaxanthin; (3) fish oil/canthaxanthin; (4) vegetable oil/canthaxanthin; (5) fish oil/no pigment; and (6) vegetable oil/no pigment. The fish were slaughtered and stored in polyethylene bags individually as butterfly fillets for up to 22 months at -20 °C. The composition of the fish muscle at slaughter and during frozen storage was evaluated by sampling after 4, 8, 13, 18, and 22 months. The carotenoid content in the muscle was found to be approximately 9-10 mg/kg of fish for both carotenoids. Primary oxidation lipid products (peroxides) as well as secondary oxidation products (volatiles) were measured. In addition, the level of protein carbonyl groups and the content of tocopherols and carotenoids in the muscle were also measured. To estimate the overall changes in sensory properties of the different samples during storage, a trained sensory panel also evaluated the samples. Both the sensory panel and the chemical analysis revealed that in this investigation fish fed fish oil were slightly more oxidized than fish fed vegetable oil. Results showed that canthaxanthin effectively protected both protein and lipid against oxidation during frozen storage. In contrast, astaxanthin did not seem to have a clear and systematic effect. Results indicated that the feed composition influenced the fish muscle composition and subsequently the oxidative stability of the fish during frozen storage. Besides, other constituents in the feed might influence deposition of antioxidants in the tissue and consequently affect the oxidative stability of the muscle.
Collapse
Affiliation(s)
- Caroline P Baron
- Section for Aquatic Lipids and Oxidation, National Institute of Aquatic Resources, DTU AQUA, Technical University of Denmark, Building 221, Søltofts Plads, DK-2800 Kgs Lyngby, Denmark.
| | | | | |
Collapse
|